:: POLYNOM5 semantic presentation begin theorem Th1: :: POLYNOM5:1 for n, m being Element of NAT st n <> 0 & m <> 0 holds (((n * m) - n) - m) + 1 >= 0 proof let n, m be Element of NAT ; ::_thesis: ( n <> 0 & m <> 0 implies (((n * m) - n) - m) + 1 >= 0 ) assume that A1: n <> 0 and A2: m <> 0 ; ::_thesis: (((n * m) - n) - m) + 1 >= 0 m >= 0 + 1 by A2, NAT_1:13; then A3: m - 1 >= (0 + 1) - 1 by XREAL_1:9; n >= 0 + 1 by A1, NAT_1:13; then n - 1 >= (0 + 1) - 1 by XREAL_1:9; then (n - 1) * (m - 1) >= 0 by A3; hence (((n * m) - n) - m) + 1 >= 0 ; ::_thesis: verum end; theorem Th2: :: POLYNOM5:2 for x, y being real number st y > 0 holds (min (x,y)) / (max (x,y)) <= 1 proof let x, y be real number ; ::_thesis: ( y > 0 implies (min (x,y)) / (max (x,y)) <= 1 ) assume A1: y > 0 ; ::_thesis: (min (x,y)) / (max (x,y)) <= 1 percases ( x > 0 or x <= 0 ) ; supposeA2: x > 0 ; ::_thesis: (min (x,y)) / (max (x,y)) <= 1 now__::_thesis:_(min_(x,y))_/_(max_(x,y))_<=_1 percases ( x >= y or x < y ) ; supposeA3: x >= y ; ::_thesis: (min (x,y)) / (max (x,y)) <= 1 then ( max (x,y) = x & min (x,y) = y ) by XXREAL_0:def_9, XXREAL_0:def_10; hence (min (x,y)) / (max (x,y)) <= 1 by A1, A3, XREAL_1:183; ::_thesis: verum end; supposeA4: x < y ; ::_thesis: (min (x,y)) / (max (x,y)) <= 1 then ( max (x,y) = y & min (x,y) = x ) by XXREAL_0:def_9, XXREAL_0:def_10; hence (min (x,y)) / (max (x,y)) <= 1 by A2, A4, XREAL_1:183; ::_thesis: verum end; end; end; hence (min (x,y)) / (max (x,y)) <= 1 ; ::_thesis: verum end; supposeA5: x <= 0 ; ::_thesis: (min (x,y)) / (max (x,y)) <= 1 then ( min (x,y) = x & max (x,y) = y ) by A1, XXREAL_0:def_9, XXREAL_0:def_10; hence (min (x,y)) / (max (x,y)) <= 1 by A1, A5; ::_thesis: verum end; end; end; theorem Th3: :: POLYNOM5:3 for x, y being real number st ( for c being real number st c > 0 & c < 1 holds c * x >= y ) holds y <= 0 proof let x, y be real number ; ::_thesis: ( ( for c being real number st c > 0 & c < 1 holds c * x >= y ) implies y <= 0 ) assume A1: for c being real number st c > 0 & c < 1 holds c * x >= y ; ::_thesis: y <= 0 set ma = max (x,y); set mi = min (x,y); set c = (min (x,y)) / (2 * (max (x,y))); assume A2: y > 0 ; ::_thesis: contradiction then A3: y * 2 > y by XREAL_1:155; percases ( x > 0 or x <= 0 ) ; supposeA4: x > 0 ; ::_thesis: contradiction then A5: ( min (x,y) > 0 & max (x,y) > 0 ) by A2, XXREAL_0:15, XXREAL_0:16; then ((min (x,y)) / (max (x,y))) * 2 > (min (x,y)) / (max (x,y)) by XREAL_1:155; then (min (x,y)) / (max (x,y)) > ((min (x,y)) / (max (x,y))) / 2 by XREAL_1:83; then A6: (min (x,y)) / (max (x,y)) > (min (x,y)) / ((max (x,y)) * 2) by XCMPLX_1:78; (min (x,y)) / (max (x,y)) <= 1 by A4, Th2; then (min (x,y)) / (2 * (max (x,y))) < 1 by A6, XXREAL_0:2; then A7: ((min (x,y)) / (2 * (max (x,y)))) * x >= y by A1, A5; now__::_thesis:_contradiction percases ( x >= y or x < y ) ; suppose x >= y ; ::_thesis: contradiction then ( max (x,y) = x & min (x,y) = y ) by XXREAL_0:def_9, XXREAL_0:def_10; then ((min (x,y)) / (2 * (max (x,y)))) * x = y / 2 by A4, XCMPLX_1:92; hence contradiction by A3, A7, XREAL_1:83; ::_thesis: verum end; supposeA8: x < y ; ::_thesis: contradiction then ( max (x,y) = y & min (x,y) = x ) by XXREAL_0:def_9, XXREAL_0:def_10; then ((min (x,y)) / (2 * (max (x,y)))) * x < (x / (2 * y)) * y by A4, A8, XREAL_1:98; then A9: ((min (x,y)) / (2 * (max (x,y)))) * x < x / 2 by A2, XCMPLX_1:92; A10: y > y / 2 by A3, XREAL_1:83; x / 2 < y / 2 by A8, XREAL_1:74; then ((min (x,y)) / (2 * (max (x,y)))) * x < y / 2 by A9, XXREAL_0:2; hence contradiction by A7, A10, XXREAL_0:2; ::_thesis: verum end; end; end; hence contradiction ; ::_thesis: verum end; suppose x <= 0 ; ::_thesis: contradiction then (1 / 2) * x <= 0 ; hence contradiction by A1, A2; ::_thesis: verum end; end; end; Lm1: for x, y being Real st ( for c being Real st c > 0 & c < 1 holds c * x >= y ) holds y <= 0 proof let x, y be Real; ::_thesis: ( ( for c being Real st c > 0 & c < 1 holds c * x >= y ) implies y <= 0 ) assume A1: for c being Real st c > 0 & c < 1 holds c * x >= y ; ::_thesis: y <= 0 for c being real number st c > 0 & c < 1 holds c * x >= y proof let c be real number ; ::_thesis: ( c > 0 & c < 1 implies c * x >= y ) assume A2: ( c > 0 & c < 1 ) ; ::_thesis: c * x >= y c is Real by XREAL_0:def_1; hence c * x >= y by A1, A2; ::_thesis: verum end; hence y <= 0 by Th3; ::_thesis: verum end; theorem Th4: :: POLYNOM5:4 for p being FinSequence of REAL st ( for n being Element of NAT st n in dom p holds p . n >= 0 ) holds for i being Element of NAT st i in dom p holds Sum p >= p . i proof defpred S1[ FinSequence of REAL ] means ( ( for n being Element of NAT st n in dom $1 holds $1 . n >= 0 ) implies for i being Element of NAT st i in dom $1 holds Sum $1 >= $1 . i ); A1: for p being FinSequence of REAL for x being Element of REAL st S1[p] holds S1[p ^ <*x*>] proof let p be FinSequence of REAL ; ::_thesis: for x being Element of REAL st S1[p] holds S1[p ^ <*x*>] let x be Element of REAL ; ::_thesis: ( S1[p] implies S1[p ^ <*x*>] ) assume A2: ( ( for n being Element of NAT st n in dom p holds p . n >= 0 ) implies for i being Element of NAT st i in dom p holds Sum p >= p . i ) ; ::_thesis: S1[p ^ <*x*>] defpred S2[ Element of NAT ] means Sum (p | $1) >= 0 ; assume A3: for n being Element of NAT st n in dom (p ^ <*x*>) holds (p ^ <*x*>) . n >= 0 ; ::_thesis: for i being Element of NAT st i in dom (p ^ <*x*>) holds Sum (p ^ <*x*>) >= (p ^ <*x*>) . i A4: dom p c= dom (p ^ <*x*>) by FINSEQ_1:26; A5: now__::_thesis:_for_n_being_Element_of_NAT_st_n_in_dom_p_holds_ p_._n_>=_0 let n be Element of NAT ; ::_thesis: ( n in dom p implies p . n >= 0 ) assume A6: n in dom p ; ::_thesis: p . n >= 0 then (p ^ <*x*>) . n >= 0 by A3, A4; hence p . n >= 0 by A6, FINSEQ_1:def_7; ::_thesis: verum end; A7: for j being Element of NAT st S2[j] holds S2[j + 1] proof let j be Element of NAT ; ::_thesis: ( S2[j] implies S2[j + 1] ) assume A8: Sum (p | j) >= 0 ; ::_thesis: S2[j + 1] percases ( j + 1 <= len p or j + 1 > len p ) ; supposeA9: j + 1 <= len p ; ::_thesis: S2[j + 1] then p | (j + 1) = (p | j) ^ <*(p /. (j + 1))*> by FINSEQ_5:82; then A10: Sum (p | (j + 1)) = (Sum (p | j)) + (p /. (j + 1)) by RVSUM_1:74; j + 1 >= 1 by NAT_1:11; then A11: j + 1 in dom p by A9, FINSEQ_3:25; then p . (j + 1) >= 0 by A5; then p /. (j + 1) >= 0 by A11, PARTFUN1:def_6; hence S2[j + 1] by A8, A10; ::_thesis: verum end; supposeA12: j + 1 > len p ; ::_thesis: S2[j + 1] then j >= len p by NAT_1:13; then p | j = p by FINSEQ_1:58; hence S2[j + 1] by A8, A12, FINSEQ_1:58; ::_thesis: verum end; end; end; let i be Element of NAT ; ::_thesis: ( i in dom (p ^ <*x*>) implies Sum (p ^ <*x*>) >= (p ^ <*x*>) . i ) (len p) + 1 >= 0 + 1 by XREAL_1:6; then len (p ^ <*x*>) >= 1 by FINSEQ_2:16; then len (p ^ <*x*>) in dom (p ^ <*x*>) by FINSEQ_3:25; then (p ^ <*x*>) . (len (p ^ <*x*>)) >= 0 by A3; then (p ^ <*x*>) . ((len p) + 1) >= 0 by FINSEQ_2:16; then x >= 0 by FINSEQ_1:42; then A13: (p . i) + x >= (p . i) + 0 by XREAL_1:6; A14: p | (len p) = p by FINSEQ_1:58; len (p ^ <*x*>) = (len p) + 1 by FINSEQ_2:16; then A15: dom (p ^ <*x*>) = Seg ((len p) + 1) by FINSEQ_1:def_3 .= (Seg (len p)) \/ {((len p) + 1)} by FINSEQ_1:9 .= (dom p) \/ {((len p) + 1)} by FINSEQ_1:def_3 ; A16: S2[ 0 ] by RVSUM_1:72; for j being Element of NAT holds S2[j] from NAT_1:sch_1(A16, A7); then A17: Sum p >= 0 by A14; assume A18: i in dom (p ^ <*x*>) ; ::_thesis: Sum (p ^ <*x*>) >= (p ^ <*x*>) . i percases ( i in dom p or i in {((len p) + 1)} ) by A18, A15, XBOOLE_0:def_3; supposeA19: i in dom p ; ::_thesis: Sum (p ^ <*x*>) >= (p ^ <*x*>) . i A20: Sum (p ^ <*x*>) = (Sum p) + x by RVSUM_1:74; Sum p >= p . i by A2, A5, A19; then Sum (p ^ <*x*>) >= (p . i) + x by A20, XREAL_1:6; then Sum (p ^ <*x*>) >= p . i by A13, XXREAL_0:2; hence Sum (p ^ <*x*>) >= (p ^ <*x*>) . i by A19, FINSEQ_1:def_7; ::_thesis: verum end; suppose i in {((len p) + 1)} ; ::_thesis: Sum (p ^ <*x*>) >= (p ^ <*x*>) . i then i = (len p) + 1 by TARSKI:def_1; then (p ^ <*x*>) . i = x by FINSEQ_1:42; then (Sum p) + x >= 0 + ((p ^ <*x*>) . i) by A17, XREAL_1:6; hence Sum (p ^ <*x*>) >= (p ^ <*x*>) . i by RVSUM_1:74; ::_thesis: verum end; end; end; A21: S1[ <*> REAL] ; thus for p being FinSequence of REAL holds S1[p] from FINSEQ_2:sch_2(A21, A1); ::_thesis: verum end; theorem Th5: :: POLYNOM5:5 for x, y being Real holds - [**x,y**] = [**(- x),(- y)**] proof let x, y be Real; ::_thesis: - [**x,y**] = [**(- x),(- y)**] thus - [**x,y**] = - (x + (y * )) by COMPLFLD:2 .= [**(- x),(- y)**] ; ::_thesis: verum end; theorem Th6: :: POLYNOM5:6 for x1, y1, x2, y2 being Real holds [**x1,y1**] - [**x2,y2**] = [**(x1 - x2),(y1 - y2)**] proof let x1, y1, x2, y2 be Real; ::_thesis: [**x1,y1**] - [**x2,y2**] = [**(x1 - x2),(y1 - y2)**] thus [**x1,y1**] - [**x2,y2**] = [**x1,y1**] + [**(- x2),(- y2)**] by Th5 .= [**(x1 - x2),(y1 - y2)**] ; ::_thesis: verum end; theorem Th7: :: POLYNOM5:7 for z being Element of F_Complex st z <> 0. F_Complex holds for n being Element of NAT holds |.((power F_Complex) . (z,n)).| = |.z.| to_power n proof let z be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex implies for n being Element of NAT holds |.((power F_Complex) . (z,n)).| = |.z.| to_power n ) defpred S1[ Element of NAT ] means |.((power F_Complex) . (z,$1)).| = |.z.| to_power $1; assume z <> 0. F_Complex ; ::_thesis: for n being Element of NAT holds |.((power F_Complex) . (z,n)).| = |.z.| to_power n then A1: |.z.| <> 0 by COMPLFLD:58; A2: |.z.| >= 0 by COMPLEX1:46; A3: for n being Element of NAT st S1[n] holds S1[n + 1] proof let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) assume A4: |.((power F_Complex) . (z,n)).| = |.z.| to_power n ; ::_thesis: S1[n + 1] thus |.((power F_Complex) . (z,(n + 1))).| = |.(((power F_Complex) . (z,n)) * z).| by GROUP_1:def_7 .= (|.z.| to_power n) * |.z.| by A4, COMPLFLD:71 .= (|.z.| to_power n) * (|.z.| to_power 1) by POWER:25 .= |.z.| to_power (n + 1) by A1, A2, POWER:27 ; ::_thesis: verum end; |.((power F_Complex) . (z,0)).| = 1 by COMPLEX1:48, COMPLFLD:8, GROUP_1:def_7 .= |.z.| to_power 0 by POWER:24 ; then A5: S1[ 0 ] ; thus for n being Element of NAT holds S1[n] from NAT_1:sch_1(A5, A3); ::_thesis: verum end; definition let p be FinSequence of the carrier of F_Complex; func|.p.| -> FinSequence of REAL means :Def1: :: POLYNOM5:def 1 ( len it = len p & ( for n being Element of NAT st n in dom p holds it /. n = |.(p /. n).| ) ); existence ex b1 being FinSequence of REAL st ( len b1 = len p & ( for n being Element of NAT st n in dom p holds b1 /. n = |.(p /. n).| ) ) proof deffunc H1( Nat) -> Element of REAL = |.(p /. $1).|; consider q being FinSequence of REAL such that A1: len q = len p and A2: for n being Nat st n in dom q holds q /. n = H1(n) from FINSEQ_4:sch_2(); take q ; ::_thesis: ( len q = len p & ( for n being Element of NAT st n in dom p holds q /. n = |.(p /. n).| ) ) dom p = dom q by A1, FINSEQ_3:29; hence ( len q = len p & ( for n being Element of NAT st n in dom p holds q /. n = |.(p /. n).| ) ) by A1, A2; ::_thesis: verum end; uniqueness for b1, b2 being FinSequence of REAL st len b1 = len p & ( for n being Element of NAT st n in dom p holds b1 /. n = |.(p /. n).| ) & len b2 = len p & ( for n being Element of NAT st n in dom p holds b2 /. n = |.(p /. n).| ) holds b1 = b2 proof let q1, q2 be FinSequence of REAL ; ::_thesis: ( len q1 = len p & ( for n being Element of NAT st n in dom p holds q1 /. n = |.(p /. n).| ) & len q2 = len p & ( for n being Element of NAT st n in dom p holds q2 /. n = |.(p /. n).| ) implies q1 = q2 ) assume that A3: len q1 = len p and A4: for n being Element of NAT st n in dom p holds q1 /. n = |.(p /. n).| and A5: len q2 = len p and A6: for n being Element of NAT st n in dom p holds q2 /. n = |.(p /. n).| ; ::_thesis: q1 = q2 A7: now__::_thesis:_for_n_being_Nat_st_n_in_dom_p_holds_ q1_/._n_=_q2_/._n let n be Nat; ::_thesis: ( n in dom p implies q1 /. n = q2 /. n ) assume A8: n in dom p ; ::_thesis: q1 /. n = q2 /. n hence q1 /. n = |.(p /. n).| by A4 .= q2 /. n by A6, A8 ; ::_thesis: verum end; ( dom q1 = dom p & dom q2 = dom p ) by A3, A5, FINSEQ_3:29; hence q1 = q2 by A7, FINSEQ_5:12; ::_thesis: verum end; end; :: deftheorem Def1 defines |. POLYNOM5:def_1_:_ for p being FinSequence of the carrier of F_Complex for b2 being FinSequence of REAL holds ( b2 = |.p.| iff ( len b2 = len p & ( for n being Element of NAT st n in dom p holds b2 /. n = |.(p /. n).| ) ) ); theorem Th8: :: POLYNOM5:8 |.(<*> the carrier of F_Complex).| = <*> REAL proof len |.(<*> the carrier of F_Complex).| = len (<*> the carrier of F_Complex) by Def1 .= 0 ; hence |.(<*> the carrier of F_Complex).| = <*> REAL ; ::_thesis: verum end; theorem Th9: :: POLYNOM5:9 for x being Element of F_Complex holds |.<*x*>.| = <*|.x.|*> proof let x be Element of F_Complex; ::_thesis: |.<*x*>.| = <*|.x.|*> 0 + 1 in Seg (0 + 1) by FINSEQ_1:4; then A1: 1 in dom <*x*> by FINSEQ_1:38; A2: len |.<*x*>.| = len <*x*> by Def1 .= 1 by FINSEQ_1:39 ; then A3: dom |.<*x*>.| = Seg 1 by FINSEQ_1:def_3; len |.<*x*>.| = len <*x*> by Def1; then A4: 1 in dom |.<*x*>.| by A1, FINSEQ_3:29; A5: now__::_thesis:_for_n_being_Nat_st_n_in_dom_|.<*x*>.|_holds_ |.<*x*>.|_._n_=_<*|.x.|*>_._n let n be Nat; ::_thesis: ( n in dom |.<*x*>.| implies |.<*x*>.| . n = <*|.x.|*> . n ) assume n in dom |.<*x*>.| ; ::_thesis: |.<*x*>.| . n = <*|.x.|*> . n then A6: n = 1 by A3, FINSEQ_1:2, TARSKI:def_1; hence |.<*x*>.| . n = |.<*x*>.| /. 1 by A4, PARTFUN1:def_6 .= |.(<*x*> /. 1).| by A1, Def1 .= |.x.| by FINSEQ_4:16 .= <*|.x.|*> . n by A6, FINSEQ_1:40 ; ::_thesis: verum end; len <*|.x.|*> = 1 by FINSEQ_1:39; hence |.<*x*>.| = <*|.x.|*> by A2, A5, FINSEQ_2:9; ::_thesis: verum end; theorem :: POLYNOM5:10 for x, y being Element of F_Complex holds |.<*x,y*>.| = <*|.x.|,|.y.|*> proof let x, y be Element of F_Complex; ::_thesis: |.<*x,y*>.| = <*|.x.|,|.y.|*> A1: len |.<*x,y*>.| = len <*x,y*> by Def1 .= 2 by FINSEQ_1:44 ; then A2: dom |.<*x,y*>.| = Seg 2 by FINSEQ_1:def_3; A3: now__::_thesis:_for_n_being_Nat_st_n_in_dom_|.<*x,y*>.|_holds_ |.<*x,y*>.|_._n_=_<*|.x.|,|.y.|*>_._n let n be Nat; ::_thesis: ( n in dom |.<*x,y*>.| implies |.<*x,y*>.| . b1 = <*|.x.|,|.y.|*> . b1 ) assume A4: n in dom |.<*x,y*>.| ; ::_thesis: |.<*x,y*>.| . b1 = <*|.x.|,|.y.|*> . b1 percases ( n = 1 or n = 2 ) by A2, A4, FINSEQ_1:2, TARSKI:def_2; supposeA5: n = 1 ; ::_thesis: |.<*x,y*>.| . b1 = <*|.x.|,|.y.|*> . b1 then A6: 1 in dom <*x,y*> by A2, A4, FINSEQ_1:89; |.<*x,y*>.| . 1 = |.<*x,y*>.| /. 1 by A4, A5, PARTFUN1:def_6 .= |.(<*x,y*> /. 1).| by A6, Def1 ; then |.<*x,y*>.| . 1 = |.x.| by FINSEQ_4:17; hence |.<*x,y*>.| . n = <*|.x.|,|.y.|*> . n by A5, FINSEQ_1:44; ::_thesis: verum end; supposeA7: n = 2 ; ::_thesis: |.<*x,y*>.| . b1 = <*|.x.|,|.y.|*> . b1 then A8: 2 in dom <*x,y*> by A2, A4, FINSEQ_1:89; |.<*x,y*>.| . 2 = |.<*x,y*>.| /. 2 by A4, A7, PARTFUN1:def_6 .= |.(<*x,y*> /. 2).| by A8, Def1 ; then |.<*x,y*>.| . 2 = |.y.| by FINSEQ_4:17; hence |.<*x,y*>.| . n = <*|.x.|,|.y.|*> . n by A7, FINSEQ_1:44; ::_thesis: verum end; end; end; len <*|.x.|,|.y.|*> = 2 by FINSEQ_1:44; hence |.<*x,y*>.| = <*|.x.|,|.y.|*> by A1, A3, FINSEQ_2:9; ::_thesis: verum end; theorem :: POLYNOM5:11 for x, y, z being Element of F_Complex holds |.<*x,y,z*>.| = <*|.x.|,|.y.|,|.z.|*> proof let x, y, z be Element of F_Complex; ::_thesis: |.<*x,y,z*>.| = <*|.x.|,|.y.|,|.z.|*> A1: len |.<*x,y,z*>.| = len <*x,y,z*> by Def1 .= 3 by FINSEQ_1:45 ; then A2: dom |.<*x,y,z*>.| = Seg 3 by FINSEQ_1:def_3; A3: now__::_thesis:_for_n_being_Nat_st_n_in_dom_|.<*x,y,z*>.|_holds_ |.<*x,y,z*>.|_._n_=_<*|.x.|,|.y.|,|.z.|*>_._n let n be Nat; ::_thesis: ( n in dom |.<*x,y,z*>.| implies |.<*x,y,z*>.| . b1 = <*|.x.|,|.y.|,|.z.|*> . b1 ) assume A4: n in dom |.<*x,y,z*>.| ; ::_thesis: |.<*x,y,z*>.| . b1 = <*|.x.|,|.y.|,|.z.|*> . b1 percases ( n = 1 or n = 2 or n = 3 ) by A2, A4, ENUMSET1:def_1, FINSEQ_3:1; supposeA5: n = 1 ; ::_thesis: |.<*x,y,z*>.| . b1 = <*|.x.|,|.y.|,|.z.|*> . b1 A6: 1 in dom <*x,y,z*> by TOPREAL3:1; len |.<*x,y,z*>.| = len <*x,y,z*> by Def1; then 1 in dom |.<*x,y,z*>.| by A6, FINSEQ_3:29; then |.<*x,y,z*>.| . 1 = |.<*x,y,z*>.| /. 1 by PARTFUN1:def_6 .= |.(<*x,y,z*> /. 1).| by A6, Def1 ; then |.<*x,y,z*>.| . 1 = |.x.| by FINSEQ_4:18; hence |.<*x,y,z*>.| . n = <*|.x.|,|.y.|,|.z.|*> . n by A5, FINSEQ_1:45; ::_thesis: verum end; supposeA7: n = 2 ; ::_thesis: |.<*x,y,z*>.| . b1 = <*|.x.|,|.y.|,|.z.|*> . b1 A8: 2 in dom <*x,y,z*> by TOPREAL3:1; len |.<*x,y,z*>.| = len <*x,y,z*> by Def1; then 2 in dom |.<*x,y,z*>.| by A8, FINSEQ_3:29; then |.<*x,y,z*>.| . 2 = |.<*x,y,z*>.| /. 2 by PARTFUN1:def_6 .= |.(<*x,y,z*> /. 2).| by A8, Def1 ; then |.<*x,y,z*>.| . 2 = |.y.| by FINSEQ_4:18; hence |.<*x,y,z*>.| . n = <*|.x.|,|.y.|,|.z.|*> . n by A7, FINSEQ_1:45; ::_thesis: verum end; supposeA9: n = 3 ; ::_thesis: |.<*x,y,z*>.| . b1 = <*|.x.|,|.y.|,|.z.|*> . b1 A10: 3 in dom <*x,y,z*> by TOPREAL3:1; len |.<*x,y,z*>.| = len <*x,y,z*> by Def1; then 3 in dom |.<*x,y,z*>.| by A10, FINSEQ_3:29; then |.<*x,y,z*>.| . 3 = |.<*x,y,z*>.| /. 3 by PARTFUN1:def_6 .= |.(<*x,y,z*> /. 3).| by A10, Def1 ; then |.<*x,y,z*>.| . 3 = |.z.| by FINSEQ_4:18; hence |.<*x,y,z*>.| . n = <*|.x.|,|.y.|,|.z.|*> . n by A9, FINSEQ_1:45; ::_thesis: verum end; end; end; len <*|.x.|,|.y.|,|.z.|*> = 3 by FINSEQ_1:45; hence |.<*x,y,z*>.| = <*|.x.|,|.y.|,|.z.|*> by A1, A3, FINSEQ_2:9; ::_thesis: verum end; theorem Th12: :: POLYNOM5:12 for p, q being FinSequence of the carrier of F_Complex holds |.(p ^ q).| = |.p.| ^ |.q.| proof let p, q be FinSequence of the carrier of F_Complex; ::_thesis: |.(p ^ q).| = |.p.| ^ |.q.| A1: dom |.(p ^ q).| = Seg (len |.(p ^ q).|) by FINSEQ_1:def_3; A2: now__::_thesis:_for_n_being_Nat_st_n_in_dom_|.(p_^_q).|_holds_ |.(p_^_q).|_._n_=_(|.p.|_^_|.q.|)_._n let n be Nat; ::_thesis: ( n in dom |.(p ^ q).| implies |.(p ^ q).| . b1 = (|.p.| ^ |.q.|) . b1 ) A3: len |.p.| = len p by Def1; assume A4: n in dom |.(p ^ q).| ; ::_thesis: |.(p ^ q).| . b1 = (|.p.| ^ |.q.|) . b1 then A5: n >= 1 by A1, FINSEQ_1:1; A6: len |.(p ^ q).| = len (p ^ q) by Def1; then A7: n in dom (p ^ q) by A1, A4, FINSEQ_1:def_3; percases ( n in dom p or not n in dom p ) ; supposeA8: n in dom p ; ::_thesis: |.(p ^ q).| . b1 = (|.p.| ^ |.q.|) . b1 A9: (p ^ q) /. n = (p ^ q) . n by A7, PARTFUN1:def_6 .= p . n by A8, FINSEQ_1:def_7 .= p /. n by A8, PARTFUN1:def_6 ; A10: n in dom |.p.| by A3, A8, FINSEQ_3:29; thus |.(p ^ q).| . n = |.(p ^ q).| /. n by A4, PARTFUN1:def_6 .= |.((p ^ q) /. n).| by A7, Def1 .= |.p.| /. n by A8, A9, Def1 .= |.p.| . n by A10, PARTFUN1:def_6 .= (|.p.| ^ |.q.|) . n by A10, FINSEQ_1:def_7 ; ::_thesis: verum end; suppose not n in dom p ; ::_thesis: |.(p ^ q).| . b1 = (|.p.| ^ |.q.|) . b1 then A11: n > 0 + (len p) by A5, FINSEQ_3:25; then A12: n - (len p) > 0 by XREAL_1:20; A13: n = (len p) + (n - (len p)) .= (len p) + (n -' (len p)) by A12, XREAL_0:def_2 ; n <= len (p ^ q) by A1, A4, A6, FINSEQ_1:1; then n <= (len q) + (len p) by FINSEQ_1:22; then n - (len p) <= len q by XREAL_1:20; then A14: n -' (len p) <= len q by XREAL_0:def_2; 1 + (len p) <= n by A11, NAT_1:13; then 1 <= n - (len p) by XREAL_1:19; then 1 <= n -' (len p) by XREAL_0:def_2; then A15: n -' (len p) in Seg (len q) by A14, FINSEQ_1:1; then A16: n -' (len p) in dom q by FINSEQ_1:def_3; len |.q.| = len q by Def1; then A17: n -' (len p) in dom |.q.| by A15, FINSEQ_1:def_3; A18: (p ^ q) /. n = (p ^ q) . n by A7, PARTFUN1:def_6 .= q . (n -' (len p)) by A13, A16, FINSEQ_1:def_7 .= q /. (n -' (len p)) by A16, PARTFUN1:def_6 ; thus |.(p ^ q).| . n = |.(p ^ q).| /. n by A4, PARTFUN1:def_6 .= |.((p ^ q) /. n).| by A7, Def1 .= |.q.| /. (n -' (len p)) by A16, A18, Def1 .= |.q.| . (n -' (len p)) by A17, PARTFUN1:def_6 .= (|.p.| ^ |.q.|) . n by A3, A13, A17, FINSEQ_1:def_7 ; ::_thesis: verum end; end; end; len |.(p ^ q).| = len (p ^ q) by Def1 .= (len p) + (len q) by FINSEQ_1:22 .= (len p) + (len |.q.|) by Def1 .= (len |.p.|) + (len |.q.|) by Def1 .= len (|.p.| ^ |.q.|) by FINSEQ_1:22 ; hence |.(p ^ q).| = |.p.| ^ |.q.| by A2, FINSEQ_2:9; ::_thesis: verum end; theorem :: POLYNOM5:13 for p being FinSequence of the carrier of F_Complex for x being Element of F_Complex holds ( |.(p ^ <*x*>).| = |.p.| ^ <*|.x.|*> & |.(<*x*> ^ p).| = <*|.x.|*> ^ |.p.| ) proof let p be FinSequence of the carrier of F_Complex; ::_thesis: for x being Element of F_Complex holds ( |.(p ^ <*x*>).| = |.p.| ^ <*|.x.|*> & |.(<*x*> ^ p).| = <*|.x.|*> ^ |.p.| ) let x be Element of F_Complex; ::_thesis: ( |.(p ^ <*x*>).| = |.p.| ^ <*|.x.|*> & |.(<*x*> ^ p).| = <*|.x.|*> ^ |.p.| ) thus |.(p ^ <*x*>).| = |.p.| ^ |.<*x*>.| by Th12 .= |.p.| ^ <*|.x.|*> by Th9 ; ::_thesis: |.(<*x*> ^ p).| = <*|.x.|*> ^ |.p.| thus |.(<*x*> ^ p).| = |.<*x*>.| ^ |.p.| by Th12 .= <*|.x.|*> ^ |.p.| by Th9 ; ::_thesis: verum end; theorem Th14: :: POLYNOM5:14 for p being FinSequence of the carrier of F_Complex holds |.(Sum p).| <= Sum |.p.| proof set D = the carrier of F_Complex; defpred S1[ FinSequence of the carrier of F_Complex] means |.(Sum $1).| <= Sum |.$1.|; A1: now__::_thesis:_for_p_being_FinSequence_of_the_carrier_of_F_Complex for_x_being_Element_of_the_carrier_of_F_Complex_st_S1[p]_holds_ S1[p_^_<*x*>] let p be FinSequence of the carrier of F_Complex; ::_thesis: for x being Element of the carrier of F_Complex st S1[p] holds S1[p ^ <*x*>] let x be Element of the carrier of F_Complex; ::_thesis: ( S1[p] implies S1[p ^ <*x*>] ) assume S1[p] ; ::_thesis: S1[p ^ <*x*>] then A2: |.(Sum p).| + |.x.| <= (Sum |.p.|) + |.x.| by XREAL_1:6; Sum (p ^ <*x*>) = (Sum p) + x by FVSUM_1:71; then A3: |.(Sum (p ^ <*x*>)).| <= |.(Sum p).| + |.x.| by COMPLFLD:62; (Sum |.p.|) + |.x.| = (Sum |.p.|) + (Sum <*|.x.|*>) by FINSOP_1:11 .= (Sum |.p.|) + (Sum |.<*x*>.|) by Th9 .= Sum (|.p.| ^ |.<*x*>.|) by RVSUM_1:75 .= Sum |.(p ^ <*x*>).| by Th12 ; hence S1[p ^ <*x*>] by A2, A3, XXREAL_0:2; ::_thesis: verum end; A4: S1[ <*> the carrier of F_Complex] by Th8, COMPLFLD:57, RLVECT_1:43, RVSUM_1:72; thus for p being FinSequence of the carrier of F_Complex holds S1[p] from FINSEQ_2:sch_2(A4, A1); ::_thesis: verum end; begin definition let L be non empty right_complementable Abelian add-associative right_zeroed commutative right_unital distributive doubleLoopStr ; let p be Polynomial of L; let n be Element of NAT ; funcp `^ n -> sequence of L equals :: POLYNOM5:def 2 (power (Polynom-Ring L)) . (p,n); coherence (power (Polynom-Ring L)) . (p,n) is sequence of L proof reconsider p1 = p as Element of (Polynom-Ring L) by POLYNOM3:def_10; (power (Polynom-Ring L)) . (p1,n) is Element of (Polynom-Ring L) ; hence (power (Polynom-Ring L)) . (p,n) is sequence of L by POLYNOM3:def_10; ::_thesis: verum end; end; :: deftheorem defines `^ POLYNOM5:def_2_:_ for L being non empty right_complementable Abelian add-associative right_zeroed commutative right_unital distributive doubleLoopStr for p being Polynomial of L for n being Element of NAT holds p `^ n = (power (Polynom-Ring L)) . (p,n); registration let L be non empty right_complementable Abelian add-associative right_zeroed commutative right_unital distributive doubleLoopStr ; let p be Polynomial of L; let n be Element of NAT ; clusterp `^ n -> finite-Support ; coherence p `^ n is finite-Support proof reconsider p1 = p as Element of (Polynom-Ring L) by POLYNOM3:def_10; (power (Polynom-Ring L)) . (p1,n) is Polynomial of L by POLYNOM3:def_10; hence p `^ n is finite-Support ; ::_thesis: verum end; end; theorem Th15: :: POLYNOM5:15 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for p being Polynomial of L holds p `^ 0 = 1_. L proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L holds p `^ 0 = 1_. L let p be Polynomial of L; ::_thesis: p `^ 0 = 1_. L reconsider p1 = p as Element of (Polynom-Ring L) by POLYNOM3:def_10; thus p `^ 0 = (power (Polynom-Ring L)) . (p1,0) .= 1_ (Polynom-Ring L) by GROUP_1:def_7 .= 1_. L by POLYNOM3:36 ; ::_thesis: verum end; theorem :: POLYNOM5:16 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for p being Polynomial of L holds p `^ 1 = p proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L holds p `^ 1 = p let p be Polynomial of L; ::_thesis: p `^ 1 = p reconsider p1 = p as Element of (Polynom-Ring L) by POLYNOM3:def_10; thus p `^ 1 = (power (Polynom-Ring L)) . (p1,(0 + 1)) .= ((power (Polynom-Ring L)) . (p1,0)) * p1 by GROUP_1:def_7 .= (1_ (Polynom-Ring L)) * p1 by GROUP_1:def_7 .= p by GROUP_1:def_4 ; ::_thesis: verum end; theorem :: POLYNOM5:17 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for p being Polynomial of L holds p `^ 2 = p *' p proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L holds p `^ 2 = p *' p let p be Polynomial of L; ::_thesis: p `^ 2 = p *' p reconsider p1 = p as Element of (Polynom-Ring L) by POLYNOM3:def_10; thus p `^ 2 = (power (Polynom-Ring L)) . (p1,(1 + 1)) .= ((power (Polynom-Ring L)) . (p1,(0 + 1))) * p1 by GROUP_1:def_7 .= (((power (Polynom-Ring L)) . (p1,0)) * p1) * p1 by GROUP_1:def_7 .= ((1_ (Polynom-Ring L)) * p1) * p1 by GROUP_1:def_7 .= p1 * p1 by GROUP_1:def_4 .= p *' p by POLYNOM3:def_10 ; ::_thesis: verum end; theorem :: POLYNOM5:18 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for p being Polynomial of L holds p `^ 3 = (p *' p) *' p proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L holds p `^ 3 = (p *' p) *' p let p be Polynomial of L; ::_thesis: p `^ 3 = (p *' p) *' p reconsider p1 = p as Element of (Polynom-Ring L) by POLYNOM3:def_10; reconsider pp = p1 * p1 as Polynomial of L by POLYNOM3:def_10; thus p `^ 3 = (power (Polynom-Ring L)) . (p1,(2 + 1)) .= ((power (Polynom-Ring L)) . (p1,(1 + 1))) * p1 by GROUP_1:def_7 .= (((power (Polynom-Ring L)) . (p1,(0 + 1))) * p1) * p1 by GROUP_1:def_7 .= ((((power (Polynom-Ring L)) . (p1,0)) * p1) * p1) * p1 by GROUP_1:def_7 .= (((1_ (Polynom-Ring L)) * p1) * p1) * p1 by GROUP_1:def_7 .= (p1 * p1) * p1 by GROUP_1:def_4 .= pp *' p by POLYNOM3:def_10 .= (p *' p) *' p by POLYNOM3:def_10 ; ::_thesis: verum end; theorem Th19: :: POLYNOM5:19 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for p being Polynomial of L for n being Element of NAT holds p `^ (n + 1) = (p `^ n) *' p proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L for n being Element of NAT holds p `^ (n + 1) = (p `^ n) *' p let p be Polynomial of L; ::_thesis: for n being Element of NAT holds p `^ (n + 1) = (p `^ n) *' p let n be Element of NAT ; ::_thesis: p `^ (n + 1) = (p `^ n) *' p reconsider p1 = p as Element of (Polynom-Ring L) by POLYNOM3:def_10; thus p `^ (n + 1) = ((power (Polynom-Ring L)) . (p1,n)) * p1 by GROUP_1:def_7 .= (p `^ n) *' p by POLYNOM3:def_10 ; ::_thesis: verum end; theorem Th20: :: POLYNOM5:20 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for n being Element of NAT holds (0_. L) `^ (n + 1) = 0_. L proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for n being Element of NAT holds (0_. L) `^ (n + 1) = 0_. L let n be Element of NAT ; ::_thesis: (0_. L) `^ (n + 1) = 0_. L thus (0_. L) `^ (n + 1) = ((0_. L) `^ n) *' (0_. L) by Th19 .= 0_. L by POLYNOM3:34 ; ::_thesis: verum end; theorem :: POLYNOM5:21 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for n being Element of NAT holds (1_. L) `^ n = 1_. L proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for n being Element of NAT holds (1_. L) `^ n = 1_. L defpred S1[ Element of NAT ] means (1_. L) `^ $1 = 1_. L; A1: now__::_thesis:_for_n_being_Element_of_NAT_st_S1[n]_holds_ S1[n_+_1] let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) assume S1[n] ; ::_thesis: S1[n + 1] then (1_. L) `^ (n + 1) = (1_. L) *' (1_. L) by Th19 .= 1_. L by POLYNOM3:35 ; hence S1[n + 1] ; ::_thesis: verum end; A2: S1[ 0 ] by Th15; thus for n being Element of NAT holds S1[n] from NAT_1:sch_1(A2, A1); ::_thesis: verum end; theorem Th22: :: POLYNOM5:22 for L being Field for p being Polynomial of L for x being Element of L for n being Element of NAT holds eval ((p `^ n),x) = (power L) . ((eval (p,x)),n) proof let L be Field; ::_thesis: for p being Polynomial of L for x being Element of L for n being Element of NAT holds eval ((p `^ n),x) = (power L) . ((eval (p,x)),n) let p be Polynomial of L; ::_thesis: for x being Element of L for n being Element of NAT holds eval ((p `^ n),x) = (power L) . ((eval (p,x)),n) let x be Element of L; ::_thesis: for n being Element of NAT holds eval ((p `^ n),x) = (power L) . ((eval (p,x)),n) defpred S1[ Element of NAT ] means eval ((p `^ $1),x) = (power L) . ((eval (p,x)),$1); A1: now__::_thesis:_for_n_being_Element_of_NAT_st_S1[n]_holds_ S1[n_+_1] let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) assume A2: S1[n] ; ::_thesis: S1[n + 1] eval ((p `^ (n + 1)),x) = eval (((p `^ n) *' p),x) by Th19 .= ((power L) . ((eval (p,x)),n)) * (eval (p,x)) by A2, POLYNOM4:24 .= (power L) . ((eval (p,x)),(n + 1)) by GROUP_1:def_7 ; hence S1[n + 1] ; ::_thesis: verum end; eval ((p `^ 0),x) = eval ((1_. L),x) by Th15 .= 1_ L by POLYNOM4:18 .= (power L) . ((eval (p,x)),0) by GROUP_1:def_7 ; then A3: S1[ 0 ] ; thus for n being Element of NAT holds S1[n] from NAT_1:sch_1(A3, A1); ::_thesis: verum end; Lm2: for L being non empty ZeroStr for p being AlgSequence of L st len p > 0 holds p . ((len p) -' 1) <> 0. L proof let L be non empty ZeroStr ; ::_thesis: for p being AlgSequence of L st len p > 0 holds p . ((len p) -' 1) <> 0. L let p be AlgSequence of L; ::_thesis: ( len p > 0 implies p . ((len p) -' 1) <> 0. L ) assume len p > 0 ; ::_thesis: p . ((len p) -' 1) <> 0. L then ex k being Nat st len p = k + 1 by NAT_1:6; then len p = ((len p) -' 1) + 1 by NAT_D:34; hence p . ((len p) -' 1) <> 0. L by ALGSEQ_1:10; ::_thesis: verum end; theorem Th23: :: POLYNOM5:23 for L being domRing for p being Polynomial of L st len p <> 0 holds for n being Element of NAT holds len (p `^ n) = ((n * (len p)) - n) + 1 proof let L be domRing; ::_thesis: for p being Polynomial of L st len p <> 0 holds for n being Element of NAT holds len (p `^ n) = ((n * (len p)) - n) + 1 let p be Polynomial of L; ::_thesis: ( len p <> 0 implies for n being Element of NAT holds len (p `^ n) = ((n * (len p)) - n) + 1 ) defpred S1[ Element of NAT ] means len (p `^ $1) = (($1 * (len p)) - $1) + 1; assume A1: len p <> 0 ; ::_thesis: for n being Element of NAT holds len (p `^ n) = ((n * (len p)) - n) + 1 A2: now__::_thesis:_for_n_being_Element_of_NAT_st_S1[n]_holds_ S1[n_+_1] len p >= 0 + 1 by A1, NAT_1:13; then (len p) - 1 >= (0 + 1) - 1 by XREAL_1:9; then A3: (len p) -' 1 = (len p) - 1 by XREAL_0:def_2; A4: p . ((len p) -' 1) <> 0. L by A1, Lm2; let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) assume A5: S1[n] ; ::_thesis: S1[n + 1] (n * ((len p) -' 1)) + 1 >= 0 + 1 by XREAL_1:6; then (p `^ n) . ((len (p `^ n)) -' 1) <> 0. L by A5, A3, Lm2; then A6: ((p `^ n) . ((len (p `^ n)) -' 1)) * (p . ((len p) -' 1)) <> 0. L by A4, VECTSP_2:def_1; len (p `^ (n + 1)) = len ((p `^ n) *' p) by Th19 .= ((((n * (len p)) - n) + 1) + (len p)) - 1 by A5, A6, POLYNOM4:10 .= (((n + 1) * (len p)) - (n + 1)) + 1 ; hence S1[n + 1] ; ::_thesis: verum end; len (p `^ 0) = len (1_. L) by Th15 .= ((0 * (len p)) - 0) + 1 by POLYNOM4:4 ; then A7: S1[ 0 ] ; thus for n being Element of NAT holds S1[n] from NAT_1:sch_1(A7, A2); ::_thesis: verum end; definition let L be non empty multMagma ; let p be sequence of L; let v be Element of L; funcv * p -> sequence of L means :Def3: :: POLYNOM5:def 3 for n being Element of NAT holds it . n = v * (p . n); existence ex b1 being sequence of L st for n being Element of NAT holds b1 . n = v * (p . n) proof deffunc H1( Element of NAT ) -> Element of the carrier of L = v * (p . $1); consider r being sequence of L such that A1: for n being Element of NAT holds r . n = H1(n) from FUNCT_2:sch_4(); take r ; ::_thesis: for n being Element of NAT holds r . n = v * (p . n) thus for n being Element of NAT holds r . n = v * (p . n) by A1; ::_thesis: verum end; uniqueness for b1, b2 being sequence of L st ( for n being Element of NAT holds b1 . n = v * (p . n) ) & ( for n being Element of NAT holds b2 . n = v * (p . n) ) holds b1 = b2 proof let p1, p2 be sequence of L; ::_thesis: ( ( for n being Element of NAT holds p1 . n = v * (p . n) ) & ( for n being Element of NAT holds p2 . n = v * (p . n) ) implies p1 = p2 ) assume that A2: for n being Element of NAT holds p1 . n = v * (p . n) and A3: for n being Element of NAT holds p2 . n = v * (p . n) ; ::_thesis: p1 = p2 now__::_thesis:_for_k_being_Element_of_NAT_holds_p1_._k_=_p2_._k let k be Element of NAT ; ::_thesis: p1 . k = p2 . k thus p1 . k = v * (p . k) by A2 .= p2 . k by A3 ; ::_thesis: verum end; hence p1 = p2 by FUNCT_2:63; ::_thesis: verum end; end; :: deftheorem Def3 defines * POLYNOM5:def_3_:_ for L being non empty multMagma for p being sequence of L for v being Element of L for b4 being sequence of L holds ( b4 = v * p iff for n being Element of NAT holds b4 . n = v * (p . n) ); registration let L be non empty right_complementable add-associative right_zeroed right-distributive doubleLoopStr ; let p be Polynomial of L; let v be Element of L; clusterv * p -> finite-Support ; coherence v * p is finite-Support proof take s = len p; :: according to ALGSEQ_1:def_1 ::_thesis: for b1 being set holds ( not s <= b1 or (v * p) . b1 = 0. L ) let i be Nat; ::_thesis: ( not s <= i or (v * p) . i = 0. L ) assume A1: i >= s ; ::_thesis: (v * p) . i = 0. L reconsider ii = i as Element of NAT by ORDINAL1:def_12; thus (v * p) . i = v * (p . ii) by Def3 .= v * (0. L) by A1, ALGSEQ_1:8 .= 0. L by VECTSP_1:6 ; ::_thesis: verum end; end; theorem Th24: :: POLYNOM5:24 for L being non empty right_complementable add-associative right_zeroed distributive doubleLoopStr for p being Polynomial of L holds len ((0. L) * p) = 0 proof let L be non empty right_complementable add-associative right_zeroed distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L holds len ((0. L) * p) = 0 let p be Polynomial of L; ::_thesis: len ((0. L) * p) = 0 0 is_at_least_length_of (0. L) * p proof let i be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not 0 <= i or ((0. L) * p) . i = 0. L ) assume i >= 0 ; ::_thesis: ((0. L) * p) . i = 0. L reconsider ii = i as Element of NAT by ORDINAL1:def_12; thus ((0. L) * p) . i = (0. L) * (p . ii) by Def3 .= 0. L by VECTSP_1:7 ; ::_thesis: verum end; hence len ((0. L) * p) = 0 by ALGSEQ_1:def_3; ::_thesis: verum end; theorem Th25: :: POLYNOM5:25 for L being non empty right_complementable almost_left_invertible add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr for p being Polynomial of L for v being Element of L st v <> 0. L holds len (v * p) = len p proof let L be non empty right_complementable almost_left_invertible add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L for v being Element of L st v <> 0. L holds len (v * p) = len p let p be Polynomial of L; ::_thesis: for v being Element of L st v <> 0. L holds len (v * p) = len p let v be Element of L; ::_thesis: ( v <> 0. L implies len (v * p) = len p ) assume A1: v <> 0. L ; ::_thesis: len (v * p) = len p A2: now__::_thesis:_for_n_being_Nat_st_n_is_at_least_length_of_v_*_p_holds_ len_p_<=_n let n be Nat; ::_thesis: ( n is_at_least_length_of v * p implies len p <= n ) assume A3: n is_at_least_length_of v * p ; ::_thesis: len p <= n n is_at_least_length_of p proof let i be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not n <= i or p . i = 0. L ) reconsider i1 = i as Element of NAT by ORDINAL1:def_12; assume i >= n ; ::_thesis: p . i = 0. L then (v * p) . i = 0. L by A3, ALGSEQ_1:def_2; then v * (p . i1) = 0. L by Def3; hence p . i = 0. L by A1, VECTSP_1:12; ::_thesis: verum end; hence len p <= n by ALGSEQ_1:def_3; ::_thesis: verum end; len p is_at_least_length_of v * p proof let i be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not len p <= i or (v * p) . i = 0. L ) assume A4: i >= len p ; ::_thesis: (v * p) . i = 0. L reconsider ii = i as Element of NAT by ORDINAL1:def_12; thus (v * p) . i = v * (p . ii) by Def3 .= v * (0. L) by A4, ALGSEQ_1:8 .= 0. L by VECTSP_1:6 ; ::_thesis: verum end; hence len (v * p) = len p by A2, ALGSEQ_1:def_3; ::_thesis: verum end; theorem Th26: :: POLYNOM5:26 for L being non empty right_complementable add-associative right_zeroed left-distributive doubleLoopStr for p being sequence of L holds (0. L) * p = 0_. L proof let L be non empty right_complementable add-associative right_zeroed left-distributive doubleLoopStr ; ::_thesis: for p being sequence of L holds (0. L) * p = 0_. L let p be sequence of L; ::_thesis: (0. L) * p = 0_. L now__::_thesis:_for_n_being_Element_of_NAT_holds_(0_._L)_._n_=_(0._L)_*_(p_._n) let n be Element of NAT ; ::_thesis: (0_. L) . n = (0. L) * (p . n) thus (0_. L) . n = 0. L by FUNCOP_1:7 .= (0. L) * (p . n) by VECTSP_1:7 ; ::_thesis: verum end; hence (0. L) * p = 0_. L by Def3; ::_thesis: verum end; theorem Th27: :: POLYNOM5:27 for L being non empty well-unital multLoopStr for p being sequence of L holds (1. L) * p = p proof let L be non empty well-unital multLoopStr ; ::_thesis: for p being sequence of L holds (1. L) * p = p let p be sequence of L; ::_thesis: (1. L) * p = p for n being Element of NAT holds p . n = (1. L) * (p . n) by VECTSP_1:def_8; hence (1. L) * p = p by Def3; ::_thesis: verum end; theorem Th28: :: POLYNOM5:28 for L being non empty right_complementable add-associative right_zeroed right-distributive doubleLoopStr for v being Element of L holds v * (0_. L) = 0_. L proof let L be non empty right_complementable add-associative right_zeroed right-distributive doubleLoopStr ; ::_thesis: for v being Element of L holds v * (0_. L) = 0_. L let v be Element of L; ::_thesis: v * (0_. L) = 0_. L now__::_thesis:_for_n_being_Element_of_NAT_holds_(0_._L)_._n_=_v_*_((0_._L)_._n) let n be Element of NAT ; ::_thesis: (0_. L) . n = v * ((0_. L) . n) thus (0_. L) . n = 0. L by FUNCOP_1:7 .= v * (0. L) by VECTSP_1:6 .= v * ((0_. L) . n) by FUNCOP_1:7 ; ::_thesis: verum end; hence v * (0_. L) = 0_. L by Def3; ::_thesis: verum end; theorem Th29: :: POLYNOM5:29 for L being non empty right_complementable add-associative right_zeroed right-distributive well-unital doubleLoopStr for v being Element of L holds v * (1_. L) = <%v%> proof let L be non empty right_complementable add-associative right_zeroed right-distributive well-unital doubleLoopStr ; ::_thesis: for v being Element of L holds v * (1_. L) = <%v%> let v be Element of L; ::_thesis: v * (1_. L) = <%v%> now__::_thesis:_for_n_being_Element_of_NAT_holds_<%v%>_._n_=_v_*_((1_._L)_._n) let n be Element of NAT ; ::_thesis: <%v%> . b1 = v * ((1_. L) . b1) percases ( n = 0 or n <> 0 ) ; supposeA1: n = 0 ; ::_thesis: <%v%> . b1 = v * ((1_. L) . b1) hence <%v%> . n = v by ALGSEQ_1:def_5 .= v * (1. L) by VECTSP_1:def_4 .= v * ((1_. L) . n) by A1, POLYNOM3:30 ; ::_thesis: verum end; supposeA2: n <> 0 ; ::_thesis: <%v%> . b1 = v * ((1_. L) . b1) A3: len <%v%> <= 1 by ALGSEQ_1:def_5; n >= 0 + 1 by A2, NAT_1:13; hence <%v%> . n = 0. L by A3, ALGSEQ_1:8, XXREAL_0:2 .= v * (0. L) by VECTSP_1:6 .= v * ((1_. L) . n) by A2, POLYNOM3:30 ; ::_thesis: verum end; end; end; hence v * (1_. L) = <%v%> by Def3; ::_thesis: verum end; theorem Th30: :: POLYNOM5:30 for L being non empty right_complementable almost_left_invertible add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr for p being Polynomial of L for v, x being Element of L holds eval ((v * p),x) = v * (eval (p,x)) proof let L be non empty right_complementable almost_left_invertible add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L for v, x being Element of L holds eval ((v * p),x) = v * (eval (p,x)) let p be Polynomial of L; ::_thesis: for v, x being Element of L holds eval ((v * p),x) = v * (eval (p,x)) let v, x be Element of L; ::_thesis: eval ((v * p),x) = v * (eval (p,x)) consider F1 being FinSequence of the carrier of L such that A1: eval (p,x) = Sum F1 and A2: len F1 = len p and A3: for n being Element of NAT st n in dom F1 holds F1 . n = (p . (n -' 1)) * ((power L) . (x,(n -' 1))) by POLYNOM4:def_2; consider F2 being FinSequence of the carrier of L such that A4: eval ((v * p),x) = Sum F2 and A5: len F2 = len (v * p) and A6: for n being Element of NAT st n in dom F2 holds F2 . n = ((v * p) . (n -' 1)) * ((power L) . (x,(n -' 1))) by POLYNOM4:def_2; percases ( v <> 0. L or v = 0. L ) ; suppose v <> 0. L ; ::_thesis: eval ((v * p),x) = v * (eval (p,x)) then len F1 = len F2 by A2, A5, Th25; then A7: dom F1 = dom F2 by FINSEQ_3:29; now__::_thesis:_for_i_being_set_st_i_in_dom_F1_holds_ F2_/._i_=_v_*_(F1_/._i) let i be set ; ::_thesis: ( i in dom F1 implies F2 /. i = v * (F1 /. i) ) assume A8: i in dom F1 ; ::_thesis: F2 /. i = v * (F1 /. i) then reconsider i1 = i as Element of NAT ; A9: (p . (i1 -' 1)) * ((power L) . (x,(i1 -' 1))) = F1 . i by A3, A8 .= F1 /. i by A8, PARTFUN1:def_6 ; thus F2 /. i = F2 . i by A7, A8, PARTFUN1:def_6 .= ((v * p) . (i1 -' 1)) * ((power L) . (x,(i1 -' 1))) by A6, A7, A8 .= (v * (p . (i1 -' 1))) * ((power L) . (x,(i1 -' 1))) by Def3 .= v * (F1 /. i) by A9, GROUP_1:def_3 ; ::_thesis: verum end; then F2 = v * F1 by A7, POLYNOM1:def_1; hence eval ((v * p),x) = v * (eval (p,x)) by A1, A4, POLYNOM1:12; ::_thesis: verum end; supposeA10: v = 0. L ; ::_thesis: eval ((v * p),x) = v * (eval (p,x)) hence eval ((v * p),x) = eval ((0_. L),x) by Th26 .= 0. L by POLYNOM4:17 .= v * (eval (p,x)) by A10, VECTSP_1:7 ; ::_thesis: verum end; end; end; theorem Th31: :: POLYNOM5:31 for L being non empty right_complementable add-associative right_zeroed unital right-distributive doubleLoopStr for p being Polynomial of L holds eval (p,(0. L)) = p . 0 proof let L be non empty right_complementable add-associative right_zeroed unital right-distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L holds eval (p,(0. L)) = p . 0 let p be Polynomial of L; ::_thesis: eval (p,(0. L)) = p . 0 consider F being FinSequence of the carrier of L such that A1: eval (p,(0. L)) = Sum F and A2: len F = len p and A3: for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * ((power L) . ((0. L),(n -' 1))) by POLYNOM4:def_2; percases ( len F > 0 or len F = 0 ) ; suppose len F > 0 ; ::_thesis: eval (p,(0. L)) = p . 0 then 0 + 1 <= len F by NAT_1:13; then A4: 1 in dom F by FINSEQ_3:25; now__::_thesis:_for_i_being_Element_of_NAT_st_i_in_dom_F_&_i_<>_1_holds_ F_/._i_=_0._L let i be Element of NAT ; ::_thesis: ( i in dom F & i <> 1 implies F /. i = 0. L ) assume that A5: i in dom F and A6: i <> 1 ; ::_thesis: F /. i = 0. L 0 + 1 <= i by A5, FINSEQ_3:25; then i > 0 + 1 by A6, XXREAL_0:1; then i - 1 > 0 by XREAL_1:20; then A7: i -' 1 > 0 by XREAL_0:def_2; thus F /. i = F . i by A5, PARTFUN1:def_6 .= (p . (i -' 1)) * ((power L) . ((0. L),(i -' 1))) by A3, A5 .= (p . (i -' 1)) * (0. L) by A7, VECTSP_1:36 .= 0. L by VECTSP_1:6 ; ::_thesis: verum end; hence eval (p,(0. L)) = F /. 1 by A1, A4, POLYNOM2:3 .= F . 1 by A4, PARTFUN1:def_6 .= (p . (1 -' 1)) * ((power L) . ((0. L),(1 -' 1))) by A3, A4 .= (p . (1 -' 1)) * ((power L) . ((0. L),0)) by XREAL_1:232 .= (p . (1 -' 1)) * (1_ L) by GROUP_1:def_7 .= p . (1 -' 1) by GROUP_1:def_4 .= p . 0 by XREAL_1:232 ; ::_thesis: verum end; suppose len F = 0 ; ::_thesis: eval (p,(0. L)) = p . 0 then A8: p = 0_. L by A2, POLYNOM4:5; hence eval (p,(0. L)) = 0. L by POLYNOM4:17 .= p . 0 by A8, FUNCOP_1:7 ; ::_thesis: verum end; end; end; definition let L be non empty ZeroStr ; let z0, z1 be Element of L; func<%z0,z1%> -> sequence of L equals :: POLYNOM5:def 4 ((0_. L) +* (0,z0)) +* (1,z1); coherence ((0_. L) +* (0,z0)) +* (1,z1) is sequence of L ; end; :: deftheorem defines <% POLYNOM5:def_4_:_ for L being non empty ZeroStr for z0, z1 being Element of L holds <%z0,z1%> = ((0_. L) +* (0,z0)) +* (1,z1); theorem Th32: :: POLYNOM5:32 for L being non empty ZeroStr for z0 being Element of L holds ( <%z0%> . 0 = z0 & ( for n being Element of NAT st n >= 1 holds <%z0%> . n = 0. L ) ) proof let L be non empty ZeroStr ; ::_thesis: for z0 being Element of L holds ( <%z0%> . 0 = z0 & ( for n being Element of NAT st n >= 1 holds <%z0%> . n = 0. L ) ) let z0 be Element of L; ::_thesis: ( <%z0%> . 0 = z0 & ( for n being Element of NAT st n >= 1 holds <%z0%> . n = 0. L ) ) thus <%z0%> . 0 = z0 by ALGSEQ_1:def_5; ::_thesis: for n being Element of NAT st n >= 1 holds <%z0%> . n = 0. L let n be Element of NAT ; ::_thesis: ( n >= 1 implies <%z0%> . n = 0. L ) A1: len <%z0%> <= 1 by ALGSEQ_1:def_5; assume n >= 1 ; ::_thesis: <%z0%> . n = 0. L hence <%z0%> . n = 0. L by A1, ALGSEQ_1:8, XXREAL_0:2; ::_thesis: verum end; theorem Th33: :: POLYNOM5:33 for L being non empty ZeroStr for z0 being Element of L st z0 <> 0. L holds len <%z0%> = 1 proof let L be non empty ZeroStr ; ::_thesis: for z0 being Element of L st z0 <> 0. L holds len <%z0%> = 1 let z0 be Element of L; ::_thesis: ( z0 <> 0. L implies len <%z0%> = 1 ) assume z0 <> 0. L ; ::_thesis: len <%z0%> = 1 then <%z0%> . 0 <> 0. L by ALGSEQ_1:def_5; then <%z0%> <> <%(0. L)%> by ALGSEQ_1:def_5; then len <%z0%> <> 0 by ALGSEQ_1:14; then A1: len <%z0%> >= 0 + 1 by NAT_1:13; assume len <%z0%> <> 1 ; ::_thesis: contradiction then len <%z0%> > 1 by A1, XXREAL_0:1; hence contradiction by ALGSEQ_1:def_5; ::_thesis: verum end; theorem Th34: :: POLYNOM5:34 for L being non empty ZeroStr holds <%(0. L)%> = 0_. L proof let L be non empty ZeroStr ; ::_thesis: <%(0. L)%> = 0_. L len <%(0. L)%> = 0 by ALGSEQ_1:14; hence <%(0. L)%> = 0_. L by POLYNOM4:5; ::_thesis: verum end; theorem Th35: :: POLYNOM5:35 for L being non empty right_complementable add-associative right_zeroed associative commutative well-unital distributive domRing-like doubleLoopStr for x, y being Element of L holds <%x%> *' <%y%> = <%(x * y)%> proof let L be non empty right_complementable add-associative right_zeroed associative commutative well-unital distributive domRing-like doubleLoopStr ; ::_thesis: for x, y being Element of L holds <%x%> *' <%y%> = <%(x * y)%> let x, y be Element of L; ::_thesis: <%x%> *' <%y%> = <%(x * y)%> A1: len <%x%> <= 1 by ALGSEQ_1:def_5; A2: len <%y%> <= 1 by ALGSEQ_1:def_5; percases ( ( len <%x%> <> 0 & len <%y%> <> 0 ) or len <%x%> = 0 or len <%y%> = 0 ) ; supposeA3: ( len <%x%> <> 0 & len <%y%> <> 0 ) ; ::_thesis: <%x%> *' <%y%> = <%(x * y)%> ( x <> 0. L & y <> 0. L ) proof assume ( x = 0. L or y = 0. L ) ; ::_thesis: contradiction then ( <%x%> = 0_. L or <%y%> = 0_. L ) by Th34; hence contradiction by A3, POLYNOM4:3; ::_thesis: verum end; then x * y <> 0. L by VECTSP_2:def_1; then A4: len <%(x * y)%> = 1 by Th33; consider r being FinSequence of the carrier of L such that A5: len r = 0 + 1 and A6: (<%x%> *' <%y%>) . 0 = Sum r and A7: for k being Element of NAT st k in dom r holds r . k = (<%x%> . (k -' 1)) * (<%y%> . ((0 + 1) -' k)) by POLYNOM3:def_9; 1 in dom r by A5, FINSEQ_3:25; then r . 1 = (<%x%> . (1 -' 1)) * (<%y%> . ((0 + 1) -' 1)) by A7 .= (<%x%> . 0) * (<%y%> . (1 -' 1)) by XREAL_1:232 .= (<%x%> . 0) * (<%y%> . 0) by XREAL_1:232 .= (<%x%> . 0) * y by ALGSEQ_1:def_5 .= x * y by ALGSEQ_1:def_5 ; then A8: r = <*(x * y)*> by A5, FINSEQ_1:40; A9: now__::_thesis:_for_n_being_Nat_st_n_<_1_holds_ (<%x%>_*'_<%y%>)_._n_=_<%(x_*_y)%>_._n let n be Nat; ::_thesis: ( n < 1 implies (<%x%> *' <%y%>) . n = <%(x * y)%> . n ) assume n < 1 ; ::_thesis: (<%x%> *' <%y%>) . n = <%(x * y)%> . n then n < 0 + 1 ; then A10: n = 0 by NAT_1:13; hence (<%x%> *' <%y%>) . n = x * y by A6, A8, RLVECT_1:44 .= <%(x * y)%> . n by A10, ALGSEQ_1:def_5 ; ::_thesis: verum end; ( <%x%> . ((len <%x%>) -' 1) <> 0. L & <%y%> . ((len <%y%>) -' 1) <> 0. L ) by A3, Lm2; then A11: (<%x%> . ((len <%x%>) -' 1)) * (<%y%> . ((len <%y%>) -' 1)) <> 0. L by VECTSP_2:def_1; len <%y%> >= 0 + 1 by A3, NAT_1:13; then A12: len <%y%> = 1 by A2, XXREAL_0:1; len <%x%> >= 0 + 1 by A3, NAT_1:13; then len <%x%> = 1 by A1, XXREAL_0:1; then len (<%x%> *' <%y%>) = (1 + 1) - 1 by A12, A11, POLYNOM4:10; hence <%x%> *' <%y%> = <%(x * y)%> by A9, A4, ALGSEQ_1:12; ::_thesis: verum end; supposeA13: len <%x%> = 0 ; ::_thesis: <%x%> *' <%y%> = <%(x * y)%> then A14: x = 0. L by Th33; <%x%> = 0_. L by A13, POLYNOM4:5; hence <%x%> *' <%y%> = 0_. L by POLYNOM4:2 .= <%(0. L)%> by Th34 .= <%(x * y)%> by A14, VECTSP_1:7 ; ::_thesis: verum end; supposeA15: len <%y%> = 0 ; ::_thesis: <%x%> *' <%y%> = <%(x * y)%> then A16: y = 0. L by Th33; <%y%> = 0_. L by A15, POLYNOM4:5; hence <%x%> *' <%y%> = 0_. L by POLYNOM3:34 .= <%(0. L)%> by Th34 .= <%(x * y)%> by A16, VECTSP_1:7 ; ::_thesis: verum end; end; end; theorem Th36: :: POLYNOM5:36 for L being non empty right_complementable almost_left_invertible Abelian add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr for x being Element of L for n being Element of NAT holds <%x%> `^ n = <%((power L) . (x,n))%> proof let L be non empty right_complementable almost_left_invertible Abelian add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr ; ::_thesis: for x being Element of L for n being Element of NAT holds <%x%> `^ n = <%((power L) . (x,n))%> let x be Element of L; ::_thesis: for n being Element of NAT holds <%x%> `^ n = <%((power L) . (x,n))%> defpred S1[ Element of NAT ] means <%x%> `^ $1 = <%((power L) . (x,$1))%>; A1: for n being Element of NAT st S1[n] holds S1[n + 1] proof let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) assume <%x%> `^ n = <%((power L) . (x,n))%> ; ::_thesis: S1[n + 1] hence <%x%> `^ (n + 1) = <%((power L) . (x,n))%> *' <%x%> by Th19 .= <%(((power L) . (x,n)) * x)%> by Th35 .= <%((power L) . (x,(n + 1)))%> by GROUP_1:def_7 ; ::_thesis: verum end; <%x%> `^ 0 = 1_. L by Th15 .= (1. L) * (1_. L) by Th27 .= <%(1_ L)%> by Th29 .= <%((power L) . (x,0))%> by GROUP_1:def_7 ; then A2: S1[ 0 ] ; thus for n being Element of NAT holds S1[n] from NAT_1:sch_1(A2, A1); ::_thesis: verum end; theorem :: POLYNOM5:37 for L being non empty right_complementable add-associative right_zeroed unital doubleLoopStr for z0, x being Element of L holds eval (<%z0%>,x) = z0 proof let L be non empty right_complementable add-associative right_zeroed unital doubleLoopStr ; ::_thesis: for z0, x being Element of L holds eval (<%z0%>,x) = z0 let z0, x be Element of L; ::_thesis: eval (<%z0%>,x) = z0 consider F being FinSequence of the carrier of L such that A1: eval (<%z0%>,x) = Sum F and A2: len F = len <%z0%> and A3: for n being Element of NAT st n in dom F holds F . n = (<%z0%> . (n -' 1)) * ((power L) . (x,(n -' 1))) by POLYNOM4:def_2; A4: len F <= 1 by A2, ALGSEQ_1:def_5; percases ( len F = 0 or len F = 1 ) by A4, NAT_1:25; suppose len F = 0 ; ::_thesis: eval (<%z0%>,x) = z0 then A5: <%z0%> = 0_. L by A2, POLYNOM4:5; hence eval (<%z0%>,x) = 0. L by POLYNOM4:17 .= (0_. L) . 0 by FUNCOP_1:7 .= z0 by A5, Th32 ; ::_thesis: verum end; supposeA6: len F = 1 ; ::_thesis: eval (<%z0%>,x) = z0 then 0 + 1 in Seg (len F) by FINSEQ_1:4; then 1 in dom F by FINSEQ_1:def_3; then F . 1 = (<%z0%> . (1 -' 1)) * ((power L) . (x,(1 -' 1))) by A3 .= (<%z0%> . 0) * ((power L) . (x,(1 -' 1))) by XREAL_1:232 .= (<%z0%> . 0) * ((power L) . (x,0)) by XREAL_1:232 .= z0 * ((power L) . (x,0)) by Th32 .= z0 * (1_ L) by GROUP_1:def_7 .= z0 by GROUP_1:def_4 ; then F = <*z0*> by A6, FINSEQ_1:40; hence eval (<%z0%>,x) = z0 by A1, RLVECT_1:44; ::_thesis: verum end; end; end; theorem Th38: :: POLYNOM5:38 for L being non empty ZeroStr for z0, z1 being Element of L holds ( <%z0,z1%> . 0 = z0 & <%z0,z1%> . 1 = z1 & ( for n being Nat st n >= 2 holds <%z0,z1%> . n = 0. L ) ) proof let L be non empty ZeroStr ; ::_thesis: for z0, z1 being Element of L holds ( <%z0,z1%> . 0 = z0 & <%z0,z1%> . 1 = z1 & ( for n being Nat st n >= 2 holds <%z0,z1%> . n = 0. L ) ) let z0, z1 be Element of L; ::_thesis: ( <%z0,z1%> . 0 = z0 & <%z0,z1%> . 1 = z1 & ( for n being Nat st n >= 2 holds <%z0,z1%> . n = 0. L ) ) 0 in NAT ; then A1: 0 in dom (0_. L) by FUNCT_2:def_1; thus <%z0,z1%> . 0 = ((0_. L) +* (0,z0)) . 0 by FUNCT_7:32 .= z0 by A1, FUNCT_7:31 ; ::_thesis: ( <%z0,z1%> . 1 = z1 & ( for n being Nat st n >= 2 holds <%z0,z1%> . n = 0. L ) ) 1 in NAT ; then 1 in dom ((0_. L) +* (0,z0)) by FUNCT_2:def_1; hence <%z0,z1%> . 1 = z1 by FUNCT_7:31; ::_thesis: for n being Nat st n >= 2 holds <%z0,z1%> . n = 0. L let n be Nat; ::_thesis: ( n >= 2 implies <%z0,z1%> . n = 0. L ) A2: n in NAT by ORDINAL1:def_12; assume A3: n >= 2 ; ::_thesis: <%z0,z1%> . n = 0. L then n >= 1 + 1 ; then n > 0 + 1 by NAT_1:13; hence <%z0,z1%> . n = ((0_. L) +* (0,z0)) . n by FUNCT_7:32 .= (0_. L) . n by A3, FUNCT_7:32 .= 0. L by A2, FUNCOP_1:7 ; ::_thesis: verum end; registration let L be non empty ZeroStr ; let z0, z1 be Element of L; cluster<%z0,z1%> -> finite-Support ; coherence <%z0,z1%> is finite-Support proof take 2 ; :: according to ALGSEQ_1:def_1 ::_thesis: for b1 being set holds ( not 2 <= b1 or <%z0,z1%> . b1 = 0. L ) let n be Nat; ::_thesis: ( not 2 <= n or <%z0,z1%> . n = 0. L ) thus ( not 2 <= n or <%z0,z1%> . n = 0. L ) by Th38; ::_thesis: verum end; end; theorem Th39: :: POLYNOM5:39 for L being non empty ZeroStr for z0, z1 being Element of L holds len <%z0,z1%> <= 2 proof let L be non empty ZeroStr ; ::_thesis: for z0, z1 being Element of L holds len <%z0,z1%> <= 2 let z0, z1 be Element of L; ::_thesis: len <%z0,z1%> <= 2 2 is_at_least_length_of <%z0,z1%> proof let n be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not 2 <= n or <%z0,z1%> . n = 0. L ) thus ( not 2 <= n or <%z0,z1%> . n = 0. L ) by Th38; ::_thesis: verum end; hence len <%z0,z1%> <= 2 by ALGSEQ_1:def_3; ::_thesis: verum end; theorem Th40: :: POLYNOM5:40 for L being non empty ZeroStr for z0, z1 being Element of L st z1 <> 0. L holds len <%z0,z1%> = 2 proof let L be non empty ZeroStr ; ::_thesis: for z0, z1 being Element of L st z1 <> 0. L holds len <%z0,z1%> = 2 let z0, z1 be Element of L; ::_thesis: ( z1 <> 0. L implies len <%z0,z1%> = 2 ) assume z1 <> 0. L ; ::_thesis: len <%z0,z1%> = 2 then A1: <%z0,z1%> . 1 <> 0. L by Th38; A2: now__::_thesis:_for_n_being_Nat_st_n_is_at_least_length_of_<%z0,z1%>_holds_ 1_+_1_<=_n let n be Nat; ::_thesis: ( n is_at_least_length_of <%z0,z1%> implies 1 + 1 <= n ) assume n is_at_least_length_of <%z0,z1%> ; ::_thesis: 1 + 1 <= n then 1 < n by A1, ALGSEQ_1:def_2; hence 1 + 1 <= n by NAT_1:13; ::_thesis: verum end; 2 is_at_least_length_of <%z0,z1%> proof let n be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not 2 <= n or <%z0,z1%> . n = 0. L ) thus ( not 2 <= n or <%z0,z1%> . n = 0. L ) by Th38; ::_thesis: verum end; hence len <%z0,z1%> = 2 by A2, ALGSEQ_1:def_3; ::_thesis: verum end; theorem Th41: :: POLYNOM5:41 for L being non empty ZeroStr for z0 being Element of L st z0 <> 0. L holds len <%z0,(0. L)%> = 1 proof let L be non empty ZeroStr ; ::_thesis: for z0 being Element of L st z0 <> 0. L holds len <%z0,(0. L)%> = 1 let z0 be Element of L; ::_thesis: ( z0 <> 0. L implies len <%z0,(0. L)%> = 1 ) A1: 1 is_at_least_length_of <%z0,(0. L)%> proof let n be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not 1 <= n or <%z0,(0. L)%> . n = 0. L ) assume A2: n >= 1 ; ::_thesis: <%z0,(0. L)%> . n = 0. L percases ( n = 1 or n > 1 ) by A2, XXREAL_0:1; suppose n = 1 ; ::_thesis: <%z0,(0. L)%> . n = 0. L hence <%z0,(0. L)%> . n = 0. L by Th38; ::_thesis: verum end; suppose n > 1 ; ::_thesis: <%z0,(0. L)%> . n = 0. L then n >= 1 + 1 by NAT_1:13; hence <%z0,(0. L)%> . n = 0. L by Th38; ::_thesis: verum end; end; end; assume z0 <> 0. L ; ::_thesis: len <%z0,(0. L)%> = 1 then A3: <%z0,(0. L)%> . 0 <> 0. L by Th38; now__::_thesis:_for_n_being_Nat_st_n_is_at_least_length_of_<%z0,(0._L)%>_holds_ 0_+_1_<=_n let n be Nat; ::_thesis: ( n is_at_least_length_of <%z0,(0. L)%> implies 0 + 1 <= n ) assume n is_at_least_length_of <%z0,(0. L)%> ; ::_thesis: 0 + 1 <= n then 0 < n by A3, ALGSEQ_1:def_2; hence 0 + 1 <= n by NAT_1:13; ::_thesis: verum end; hence len <%z0,(0. L)%> = 1 by A1, ALGSEQ_1:def_3; ::_thesis: verum end; theorem Th42: :: POLYNOM5:42 for L being non empty ZeroStr holds <%(0. L),(0. L)%> = 0_. L proof let L be non empty ZeroStr ; ::_thesis: <%(0. L),(0. L)%> = 0_. L 0 is_at_least_length_of <%(0. L),(0. L)%> proof let n be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not 0 <= n or <%(0. L),(0. L)%> . n = 0. L ) assume n >= 0 ; ::_thesis: <%(0. L),(0. L)%> . n = 0. L percases ( n = 0 or n > 0 ) ; suppose n = 0 ; ::_thesis: <%(0. L),(0. L)%> . n = 0. L hence <%(0. L),(0. L)%> . n = 0. L by Th38; ::_thesis: verum end; suppose n > 0 ; ::_thesis: <%(0. L),(0. L)%> . n = 0. L then A1: n >= 0 + 1 by NAT_1:13; now__::_thesis:_<%(0._L),(0._L)%>_._n_=_0._L percases ( n = 1 or n > 1 ) by A1, XXREAL_0:1; suppose n = 1 ; ::_thesis: <%(0. L),(0. L)%> . n = 0. L hence <%(0. L),(0. L)%> . n = 0. L by Th38; ::_thesis: verum end; suppose n > 1 ; ::_thesis: <%(0. L),(0. L)%> . n = 0. L then n >= 1 + 1 by NAT_1:13; hence <%(0. L),(0. L)%> . n = 0. L by Th38; ::_thesis: verum end; end; end; hence <%(0. L),(0. L)%> . n = 0. L ; ::_thesis: verum end; end; end; then len <%(0. L),(0. L)%> = 0 by ALGSEQ_1:def_3; hence <%(0. L),(0. L)%> = 0_. L by POLYNOM4:5; ::_thesis: verum end; theorem :: POLYNOM5:43 for L being non empty ZeroStr for z0 being Element of L holds <%z0,(0. L)%> = <%z0%> proof let L be non empty ZeroStr ; ::_thesis: for z0 being Element of L holds <%z0,(0. L)%> = <%z0%> let z0 be Element of L; ::_thesis: <%z0,(0. L)%> = <%z0%> percases ( z0 = 0. L or z0 <> 0. L ) ; supposeA1: z0 = 0. L ; ::_thesis: <%z0,(0. L)%> = <%z0%> hence <%z0,(0. L)%> = 0_. L by Th42 .= <%z0%> by A1, Th34 ; ::_thesis: verum end; supposeA2: z0 <> 0. L ; ::_thesis: <%z0,(0. L)%> = <%z0%> then A3: len <%z0%> = 0 + 1 by Th33; A4: now__::_thesis:_for_n_being_Nat_st_n_<_len_<%z0%>_holds_ <%z0,(0._L)%>_._n_=_<%z0%>_._n let n be Nat; ::_thesis: ( n < len <%z0%> implies <%z0,(0. L)%> . n = <%z0%> . n ) assume n < len <%z0%> ; ::_thesis: <%z0,(0. L)%> . n = <%z0%> . n then A5: n = 0 by A3, NAT_1:13; hence <%z0,(0. L)%> . n = z0 by Th38 .= <%z0%> . n by A5, ALGSEQ_1:def_5 ; ::_thesis: verum end; len <%z0,(0. L)%> = 1 by A2, Th41; hence <%z0,(0. L)%> = <%z0%> by A2, A4, Th33, ALGSEQ_1:12; ::_thesis: verum end; end; end; theorem Th44: :: POLYNOM5:44 for L being non empty right_complementable add-associative right_zeroed unital left-distributive doubleLoopStr for z0, z1, x being Element of L holds eval (<%z0,z1%>,x) = z0 + (z1 * x) proof let L be non empty right_complementable add-associative right_zeroed unital left-distributive doubleLoopStr ; ::_thesis: for z0, z1, x being Element of L holds eval (<%z0,z1%>,x) = z0 + (z1 * x) let z0, z1, x be Element of L; ::_thesis: eval (<%z0,z1%>,x) = z0 + (z1 * x) consider F being FinSequence of the carrier of L such that A1: eval (<%z0,z1%>,x) = Sum F and A2: len F = len <%z0,z1%> and A3: for n being Element of NAT st n in dom F holds F . n = (<%z0,z1%> . (n -' 1)) * ((power L) . (x,(n -' 1))) by POLYNOM4:def_2; percases ( len F = 0 or len F = 1 or len F = 2 ) by A2, Th39, NAT_1:26; suppose len F = 0 ; ::_thesis: eval (<%z0,z1%>,x) = z0 + (z1 * x) then A4: <%z0,z1%> = 0_. L by A2, POLYNOM4:5; hence eval (<%z0,z1%>,x) = 0. L by POLYNOM4:17 .= (0_. L) . 0 by FUNCOP_1:7 .= z0 by A4, Th38 .= z0 + (0. L) by RLVECT_1:def_4 .= z0 + ((0. L) * x) by VECTSP_1:7 .= z0 + (((0_. L) . 1) * x) by FUNCOP_1:7 .= z0 + (z1 * x) by A4, Th38 ; ::_thesis: verum end; supposeA5: len F = 1 ; ::_thesis: eval (<%z0,z1%>,x) = z0 + (z1 * x) then 0 + 1 in Seg (len F) by FINSEQ_1:4; then 1 in dom F by FINSEQ_1:def_3; then F . 1 = (<%z0,z1%> . (1 -' 1)) * ((power L) . (x,(1 -' 1))) by A3 .= (<%z0,z1%> . 0) * ((power L) . (x,(1 -' 1))) by XREAL_1:232 .= (<%z0,z1%> . 0) * ((power L) . (x,0)) by XREAL_1:232 .= z0 * ((power L) . (x,0)) by Th38 .= z0 * (1_ L) by GROUP_1:def_7 .= z0 by GROUP_1:def_4 ; then F = <*z0*> by A5, FINSEQ_1:40; hence eval (<%z0,z1%>,x) = z0 by A1, RLVECT_1:44 .= z0 + (0. L) by RLVECT_1:def_4 .= z0 + ((0. L) * x) by VECTSP_1:7 .= z0 + ((<%z0,z1%> . 1) * x) by A2, A5, ALGSEQ_1:8 .= z0 + (z1 * x) by Th38 ; ::_thesis: verum end; supposeA6: len F = 2 ; ::_thesis: eval (<%z0,z1%>,x) = z0 + (z1 * x) then 1 in dom F by FINSEQ_3:25; then A7: F . 1 = (<%z0,z1%> . (1 -' 1)) * ((power L) . (x,(1 -' 1))) by A3 .= (<%z0,z1%> . 0) * ((power L) . (x,(1 -' 1))) by XREAL_1:232 .= (<%z0,z1%> . 0) * ((power L) . (x,0)) by XREAL_1:232 .= z0 * ((power L) . (x,0)) by Th38 .= z0 * (1_ L) by GROUP_1:def_7 .= z0 by GROUP_1:def_4 ; A8: 2 -' 1 = 2 - 1 by XREAL_0:def_2; 2 in dom F by A6, FINSEQ_3:25; then F . 2 = (<%z0,z1%> . (2 -' 1)) * ((power L) . (x,(2 -' 1))) by A3 .= z1 * ((power L) . (x,1)) by A8, Th38 .= z1 * x by GROUP_1:50 ; then F = <*z0,(z1 * x)*> by A6, A7, FINSEQ_1:44; hence eval (<%z0,z1%>,x) = z0 + (z1 * x) by A1, RLVECT_1:45; ::_thesis: verum end; end; end; theorem :: POLYNOM5:45 for L being non empty right_complementable add-associative right_zeroed left-distributive well-unital doubleLoopStr for z0, z1, x being Element of L holds eval (<%z0,(0. L)%>,x) = z0 proof let L be non empty right_complementable add-associative right_zeroed left-distributive well-unital doubleLoopStr ; ::_thesis: for z0, z1, x being Element of L holds eval (<%z0,(0. L)%>,x) = z0 let z0, z1, x be Element of L; ::_thesis: eval (<%z0,(0. L)%>,x) = z0 thus eval (<%z0,(0. L)%>,x) = z0 + ((0. L) * x) by Th44 .= z0 + (0. L) by VECTSP_1:7 .= z0 by RLVECT_1:def_4 ; ::_thesis: verum end; theorem :: POLYNOM5:46 for L being non empty right_complementable add-associative right_zeroed unital left-distributive doubleLoopStr for z0, z1, x being Element of L holds eval (<%(0. L),z1%>,x) = z1 * x proof let L be non empty right_complementable add-associative right_zeroed unital left-distributive doubleLoopStr ; ::_thesis: for z0, z1, x being Element of L holds eval (<%(0. L),z1%>,x) = z1 * x let z0, z1, x be Element of L; ::_thesis: eval (<%(0. L),z1%>,x) = z1 * x thus eval (<%(0. L),z1%>,x) = (0. L) + (z1 * x) by Th44 .= z1 * x by RLVECT_1:4 ; ::_thesis: verum end; theorem Th47: :: POLYNOM5:47 for L being non empty right_complementable add-associative right_zeroed left-distributive well-unital doubleLoopStr for z0, z1, x being Element of L holds eval (<%z0,(1. L)%>,x) = z0 + x proof let L be non empty right_complementable add-associative right_zeroed left-distributive well-unital doubleLoopStr ; ::_thesis: for z0, z1, x being Element of L holds eval (<%z0,(1. L)%>,x) = z0 + x let z0, z1, x be Element of L; ::_thesis: eval (<%z0,(1. L)%>,x) = z0 + x thus eval (<%z0,(1. L)%>,x) = z0 + ((1. L) * x) by Th44 .= z0 + x by VECTSP_1:def_6 ; ::_thesis: verum end; theorem :: POLYNOM5:48 for L being non empty right_complementable add-associative right_zeroed left-distributive well-unital doubleLoopStr for z0, z1, x being Element of L holds eval (<%(0. L),(1. L)%>,x) = x proof let L be non empty right_complementable add-associative right_zeroed left-distributive well-unital doubleLoopStr ; ::_thesis: for z0, z1, x being Element of L holds eval (<%(0. L),(1. L)%>,x) = x let z0, z1, x be Element of L; ::_thesis: eval (<%(0. L),(1. L)%>,x) = x thus eval (<%(0. L),(1. L)%>,x) = (0. L) + ((1. L) * x) by Th44 .= (0. L) + x by VECTSP_1:def_8 .= x by RLVECT_1:4 ; ::_thesis: verum end; begin definition let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; let p, q be Polynomial of L; func Subst (p,q) -> Polynomial of L means :Def5: :: POLYNOM5:def 5 ex F being FinSequence of the carrier of (Polynom-Ring L) st ( it = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ); existence ex b1 being Polynomial of L ex F being FinSequence of the carrier of (Polynom-Ring L) st ( b1 = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) proof defpred S1[ Nat, set ] means $2 = (p . ($1 -' 1)) * (q `^ ($1 -' 1)); set k = len p; A1: now__::_thesis:_for_n_being_Nat_st_n_in_Seg_(len_p)_holds_ ex_x_being_Element_of_(Polynom-Ring_L)_st_S1[n,x] let n be Nat; ::_thesis: ( n in Seg (len p) implies ex x being Element of (Polynom-Ring L) st S1[n,x] ) assume n in Seg (len p) ; ::_thesis: ex x being Element of (Polynom-Ring L) st S1[n,x] reconsider x = (p . (n -' 1)) * (q `^ (n -' 1)) as Element of (Polynom-Ring L) by POLYNOM3:def_10; take x = x; ::_thesis: S1[n,x] thus S1[n,x] ; ::_thesis: verum end; consider F being FinSequence of the carrier of (Polynom-Ring L) such that A2: ( dom F = Seg (len p) & ( for n being Nat st n in Seg (len p) holds S1[n,F . n] ) ) from FINSEQ_1:sch_5(A1); reconsider r = Sum F as Polynomial of L by POLYNOM3:def_10; take r ; ::_thesis: ex F being FinSequence of the carrier of (Polynom-Ring L) st ( r = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) take F ; ::_thesis: ( r = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) thus ( r = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) by A2, FINSEQ_1:def_3; ::_thesis: verum end; uniqueness for b1, b2 being Polynomial of L st ex F being FinSequence of the carrier of (Polynom-Ring L) st ( b1 = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) & ex F being FinSequence of the carrier of (Polynom-Ring L) st ( b2 = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) holds b1 = b2 proof let y1, y2 be Polynomial of L; ::_thesis: ( ex F being FinSequence of the carrier of (Polynom-Ring L) st ( y1 = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) & ex F being FinSequence of the carrier of (Polynom-Ring L) st ( y2 = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) implies y1 = y2 ) given F1 being FinSequence of the carrier of (Polynom-Ring L) such that A3: y1 = Sum F1 and A4: len F1 = len p and A5: for n being Element of NAT st n in dom F1 holds F1 . n = (p . (n -' 1)) * (q `^ (n -' 1)) ; ::_thesis: ( for F being FinSequence of the carrier of (Polynom-Ring L) holds ( not y2 = Sum F or not len F = len p or ex n being Element of NAT st ( n in dom F & not F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) or y1 = y2 ) given F2 being FinSequence of the carrier of (Polynom-Ring L) such that A6: y2 = Sum F2 and A7: len F2 = len p and A8: for n being Element of NAT st n in dom F2 holds F2 . n = (p . (n -' 1)) * (q `^ (n -' 1)) ; ::_thesis: y1 = y2 A9: dom F1 = Seg (len F1) by FINSEQ_1:def_3; now__::_thesis:_for_n_being_Nat_st_n_in_dom_F1_holds_ F1_._n_=_F2_._n let n be Nat; ::_thesis: ( n in dom F1 implies F1 . n = F2 . n ) assume A10: n in dom F1 ; ::_thesis: F1 . n = F2 . n then A11: n in dom F2 by A4, A7, A9, FINSEQ_1:def_3; thus F1 . n = (p . (n -' 1)) * (q `^ (n -' 1)) by A5, A10 .= F2 . n by A8, A11 ; ::_thesis: verum end; hence y1 = y2 by A3, A4, A6, A7, FINSEQ_2:9; ::_thesis: verum end; end; :: deftheorem Def5 defines Subst POLYNOM5:def_5_:_ for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for p, q, b4 being Polynomial of L holds ( b4 = Subst (p,q) iff ex F being FinSequence of the carrier of (Polynom-Ring L) st ( b4 = Sum F & len F = len p & ( for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) ) ) ); theorem Th49: :: POLYNOM5:49 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for p being Polynomial of L holds Subst ((0_. L),p) = 0_. L proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L holds Subst ((0_. L),p) = 0_. L let p be Polynomial of L; ::_thesis: Subst ((0_. L),p) = 0_. L consider F being FinSequence of the carrier of (Polynom-Ring L) such that A1: Subst ((0_. L),p) = Sum F and len F = len (0_. L) and A2: for n being Element of NAT st n in dom F holds F . n = ((0_. L) . (n -' 1)) * (p `^ (n -' 1)) by Def5; now__::_thesis:_for_n_being_Element_of_NAT_st_n_in_dom_F_holds_ F_._n_=_0._(Polynom-Ring_L) let n be Element of NAT ; ::_thesis: ( n in dom F implies F . n = 0. (Polynom-Ring L) ) assume n in dom F ; ::_thesis: F . n = 0. (Polynom-Ring L) hence F . n = ((0_. L) . (n -' 1)) * (p `^ (n -' 1)) by A2 .= (0. L) * (p `^ (n -' 1)) by FUNCOP_1:7 .= 0_. L by Th26 .= 0. (Polynom-Ring L) by POLYNOM3:def_10 ; ::_thesis: verum end; hence Subst ((0_. L),p) = 0. (Polynom-Ring L) by A1, POLYNOM3:1 .= 0_. L by POLYNOM3:def_10 ; ::_thesis: verum end; theorem :: POLYNOM5:50 for L being non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr for p being Polynomial of L holds Subst (p,(0_. L)) = <%(p . 0)%> proof let L be non empty right_complementable Abelian add-associative right_zeroed commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L holds Subst (p,(0_. L)) = <%(p . 0)%> let p be Polynomial of L; ::_thesis: Subst (p,(0_. L)) = <%(p . 0)%> consider F being FinSequence of the carrier of (Polynom-Ring L) such that A1: Subst (p,(0_. L)) = Sum F and A2: len F = len p and A3: for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * ((0_. L) `^ (n -' 1)) by Def5; percases ( len F <> 0 or len F = 0 ) ; suppose len F <> 0 ; ::_thesis: Subst (p,(0_. L)) = <%(p . 0)%> then 0 + 1 <= len F by NAT_1:13; then A4: 1 in dom F by FINSEQ_3:25; now__::_thesis:_for_n_being_Element_of_NAT_st_n_in_dom_F_&_n_<>_1_holds_ F_/._n_=_0._(Polynom-Ring_L) let n be Element of NAT ; ::_thesis: ( n in dom F & n <> 1 implies F /. n = 0. (Polynom-Ring L) ) assume that A5: n in dom F and A6: n <> 1 ; ::_thesis: F /. n = 0. (Polynom-Ring L) n >= 1 by A5, FINSEQ_3:25; then A7: n > 0 + 1 by A6, XXREAL_0:1; then n >= 1 + 1 by NAT_1:13; then A8: n - 2 >= (1 + 1) - 2 by XREAL_1:9; n - 1 >= 0 by A7, XREAL_1:19; then A9: n -' 1 = (n - (1 + 1)) + 1 by XREAL_0:def_2 .= (n -' 2) + 1 by A8, XREAL_0:def_2 ; thus F /. n = F . n by A5, PARTFUN1:def_6 .= (p . (n -' 1)) * ((0_. L) `^ (n -' 1)) by A3, A5 .= (p . (n -' 1)) * (0_. L) by A9, Th20 .= 0_. L by Th28 .= 0. (Polynom-Ring L) by POLYNOM3:def_10 ; ::_thesis: verum end; hence Subst (p,(0_. L)) = F /. 1 by A1, A4, POLYNOM2:3 .= F . 1 by A4, PARTFUN1:def_6 .= (p . (1 -' 1)) * ((0_. L) `^ (1 -' 1)) by A3, A4 .= (p . (1 -' 1)) * ((0_. L) `^ 0) by XREAL_1:232 .= (p . 0) * ((0_. L) `^ 0) by XREAL_1:232 .= (p . 0) * (1_. L) by Th15 .= <%(p . 0)%> by Th29 ; ::_thesis: verum end; suppose len F = 0 ; ::_thesis: Subst (p,(0_. L)) = <%(p . 0)%> then A10: p = 0_. L by A2, POLYNOM4:5; hence Subst (p,(0_. L)) = 0_. L by Th49 .= <%(0. L)%> by Th34 .= <%(p . 0)%> by A10, FUNCOP_1:7 ; ::_thesis: verum end; end; end; theorem :: POLYNOM5:51 for L being non empty right_complementable almost_left_invertible Abelian add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr for p being Polynomial of L for x being Element of L holds len (Subst (p,<%x%>)) <= 1 proof let L be non empty right_complementable almost_left_invertible Abelian add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L for x being Element of L holds len (Subst (p,<%x%>)) <= 1 let p be Polynomial of L; ::_thesis: for x being Element of L holds len (Subst (p,<%x%>)) <= 1 let x be Element of L; ::_thesis: len (Subst (p,<%x%>)) <= 1 now__::_thesis:_len_(Subst_(p,<%x%>))_<=_1 now__::_thesis:_len_(Subst_(p,<%x%>))_<=_1 consider F being FinSequence of the carrier of (Polynom-Ring L) such that A1: Subst (p,<%x%>) = Sum F and len F = len p and A2: for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (<%x%> `^ (n -' 1)) by Def5; defpred S1[ Nat] means for p being Polynomial of L st p = Sum (F | $1) holds len p <= 1; A3: for n being Element of NAT st S1[n] holds S1[n + 1] proof let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) reconsider F1 = Sum (F | n) as Polynomial of L by POLYNOM3:def_10; reconsider maxFq = max ((len F1),(len ((p . n) * (<%x%> `^ n)))) as Element of NAT by FINSEQ_2:1; A4: len ((p . n) * (<%x%> `^ n)) <= 1 proof percases ( p . n <> 0. L or p . n = 0. L ) ; suppose p . n <> 0. L ; ::_thesis: len ((p . n) * (<%x%> `^ n)) <= 1 then len ((p . n) * (<%x%> `^ n)) = len (<%x%> `^ n) by Th25 .= len <%((power L) . (x,n))%> by Th36 ; hence len ((p . n) * (<%x%> `^ n)) <= 1 by ALGSEQ_1:def_5; ::_thesis: verum end; suppose p . n = 0. L ; ::_thesis: len ((p . n) * (<%x%> `^ n)) <= 1 hence len ((p . n) * (<%x%> `^ n)) <= 1 by Th24; ::_thesis: verum end; end; end; assume A5: for q being Polynomial of L st q = Sum (F | n) holds len q <= 1 ; ::_thesis: S1[n + 1] then len F1 <= 1 ; then A6: maxFq <= 1 by A4, XXREAL_0:28; let q be Polynomial of L; ::_thesis: ( q = Sum (F | (n + 1)) implies len q <= 1 ) assume A7: q = Sum (F | (n + 1)) ; ::_thesis: len q <= 1 A8: ( maxFq >= len F1 & maxFq >= len ((p . n) * (<%x%> `^ n)) ) by XXREAL_0:25; now__::_thesis:_len_q_<=_1 percases ( n + 1 <= len F or n + 1 > len F ) ; supposeA9: n + 1 <= len F ; ::_thesis: len q <= 1 n + 1 >= 1 by NAT_1:11; then A10: n + 1 in dom F by A9, FINSEQ_3:25; then A11: F /. (n + 1) = F . (n + 1) by PARTFUN1:def_6 .= (p . ((n + 1) -' 1)) * (<%x%> `^ ((n + 1) -' 1)) by A2, A10 .= (p . n) * (<%x%> `^ ((n + 1) -' 1)) by NAT_D:34 .= (p . n) * (<%x%> `^ n) by NAT_D:34 ; F | (n + 1) = (F | n) ^ <*(F /. (n + 1))*> by A9, FINSEQ_5:82; then q = (Sum (F | n)) + (F /. (n + 1)) by A7, FVSUM_1:71 .= F1 + ((p . n) * (<%x%> `^ n)) by A11, POLYNOM3:def_10 ; then len q <= maxFq by A8, POLYNOM4:6; hence len q <= 1 by A6, XXREAL_0:2; ::_thesis: verum end; supposeA12: n + 1 > len F ; ::_thesis: len q <= 1 then n >= len F by NAT_1:13; then A13: F | n = F by FINSEQ_1:58; F | (n + 1) = F by A12, FINSEQ_1:58; hence len q <= 1 by A5, A7, A13; ::_thesis: verum end; end; end; hence len q <= 1 ; ::_thesis: verum end; A14: F | (len F) = F by FINSEQ_1:58; A15: S1[ 0 ] proof let p be Polynomial of L; ::_thesis: ( p = Sum (F | 0) implies len p <= 1 ) A16: F | 0 = <*> the carrier of (Polynom-Ring L) ; assume p = Sum (F | 0) ; ::_thesis: len p <= 1 then p = 0. (Polynom-Ring L) by A16, RLVECT_1:43 .= 0_. L by POLYNOM3:def_10 ; hence len p <= 1 by POLYNOM4:3; ::_thesis: verum end; for n being Element of NAT holds S1[n] from NAT_1:sch_1(A15, A3); hence len (Subst (p,<%x%>)) <= 1 by A1, A14; ::_thesis: verum end; hence len (Subst (p,<%x%>)) <= 1 ; ::_thesis: verum end; hence len (Subst (p,<%x%>)) <= 1 ; ::_thesis: verum end; theorem Th52: :: POLYNOM5:52 for L being Field for p, q being Polynomial of L st len p <> 0 & len q > 1 holds len (Subst (p,q)) = ((((len p) * (len q)) - (len p)) - (len q)) + 2 proof let L be Field; ::_thesis: for p, q being Polynomial of L st len p <> 0 & len q > 1 holds len (Subst (p,q)) = ((((len p) * (len q)) - (len p)) - (len q)) + 2 let p, q be Polynomial of L; ::_thesis: ( len p <> 0 & len q > 1 implies len (Subst (p,q)) = ((((len p) * (len q)) - (len p)) - (len q)) + 2 ) assume that A1: len p <> 0 and A2: len q > 1 ; ::_thesis: len (Subst (p,q)) = ((((len p) * (len q)) - (len p)) - (len q)) + 2 consider F being FinSequence of the carrier of (Polynom-Ring L) such that A3: Subst (p,q) = Sum F and A4: len F = len p and A5: for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) by Def5; A6: 0 + 1 <= len F by A1, A4, NAT_1:13; then A7: 1 in dom F by FINSEQ_3:25; reconsider k = ((((len p) * (len q)) - (len p)) - (len q)) + 1 as Element of NAT by A1, A2, Th1, INT_1:3; len p >= 0 + 1 by A1, NAT_1:13; then A8: (len p) - 1 >= 0 by XREAL_1:19; A9: len (q `^ ((len F) -' 1)) = ((((len p) -' 1) * (len q)) - ((len p) -' 1)) + 1 by A2, A4, Th23 .= ((((len p) -' 1) * (len q)) - ((len p) - 1)) + 1 by A8, XREAL_0:def_2 .= ((((len p) - 1) * (len q)) - ((len p) - 1)) + 1 by A8, XREAL_0:def_2 .= ((((len p) * (len q)) - (len p)) - (len q)) + (1 + 1) ; A10: len (Subst (p,q)) >= ((((len p) * (len q)) - (len p)) - (len q)) + (1 + 1) proof set lF1 = (len F) -' 1; set F1 = F | ((len F) -' 1); reconsider sF1 = Sum (F | ((len F) -' 1)) as Polynomial of L by POLYNOM3:def_10; A11: len F = ((len F) -' 1) + 1 by A6, XREAL_1:235; then A12: F = (F | ((len F) -' 1)) ^ <*(F /. (len F))*> by FINSEQ_5:21; then A13: Sum F = (Sum (F | ((len F) -' 1))) + (F /. (len F)) by FVSUM_1:71; A14: len F = (len (F | ((len F) -' 1))) + 1 by A12, FINSEQ_2:16; assume A15: len (Subst (p,q)) < ((((len p) * (len q)) - (len p)) - (len q)) + (1 + 1) ; ::_thesis: contradiction then len (Subst (p,q)) < k + 1 ; then len (Subst (p,q)) <= k by NAT_1:13; then A16: (Subst (p,q)) . k = 0. L by ALGSEQ_1:8; now__::_thesis:_contradiction percases ( len (F | ((len F) -' 1)) <> {} or len (F | ((len F) -' 1)) = {} ) ; supposeA17: len (F | ((len F) -' 1)) <> {} ; ::_thesis: contradiction defpred S1[ Nat] means for F2 being Polynomial of L st F2 = Sum ((F | ((len F) -' 1)) | $1) holds len F2 <= ((($1 * (len q)) - (len q)) - $1) + 2; A18: (F | ((len F) -' 1)) | (len (F | ((len F) -' 1))) = F | ((len F) -' 1) by FINSEQ_1:58; A19: for n being non empty Nat st S1[n] holds S1[n + 1] proof let n be non empty Nat; ::_thesis: ( S1[n] implies S1[n + 1] ) assume A20: for F2 being Polynomial of L st F2 = Sum ((F | ((len F) -' 1)) | n) holds len F2 <= (((n * (len q)) - (len q)) - n) + 2 ; ::_thesis: S1[n + 1] len q >= 0 + (1 + 1) by A2, NAT_1:13; then (len q) - 2 >= 0 by XREAL_1:19; then (((n * (len q)) - n) + 1) + 0 <= (((n * (len q)) - n) + 1) + ((len q) - 2) by XREAL_1:7; then ( ((((n * (len q)) - (len q)) - n) + 2) + 0 <= ((((n * (len q)) - (len q)) - n) + 2) + 1 & (((n * (len q)) - n) + 1) - ((len q) - 2) <= ((n * (len q)) - n) + 1 ) by XREAL_1:6, XREAL_1:20; then A21: (((n * (len q)) - (len q)) - n) + 2 <= ((n * (len q)) - n) + 1 by XXREAL_0:2; reconsider F3 = Sum ((F | ((len F) -' 1)) | n) as Polynomial of L by POLYNOM3:def_10; let F2 be Polynomial of L; ::_thesis: ( F2 = Sum ((F | ((len F) -' 1)) | (n + 1)) implies len F2 <= ((((n + 1) * (len q)) - (len q)) - (n + 1)) + 2 ) assume A22: F2 = Sum ((F | ((len F) -' 1)) | (n + 1)) ; ::_thesis: len F2 <= ((((n + 1) * (len q)) - (len q)) - (n + 1)) + 2 len F3 <= (((n * (len q)) - (len q)) - n) + 2 by A20; then A23: len F3 <= ((n * (len q)) - n) + 1 by A21, XXREAL_0:2; now__::_thesis:_len_F2_<=_((((n_+_1)_*_(len_q))_-_(len_q))_-_(n_+_1))_+_2 percases ( n + 1 <= len (F | ((len F) -' 1)) or n + 1 > len (F | ((len F) -' 1)) ) ; supposeA24: n + 1 <= len (F | ((len F) -' 1)) ; ::_thesis: len F2 <= ((((n + 1) * (len q)) - (len q)) - (n + 1)) + 2 reconsider nn = n as Element of NAT by ORDINAL1:def_12; A25: n + 1 >= 1 by NAT_1:11; reconsider maxFq = max ((len F3),(len ((p . nn) * (q `^ nn)))) as Element of NAT by FINSEQ_2:1; A26: ( maxFq >= len F3 & maxFq >= len ((p . nn) * (q `^ nn)) ) by XXREAL_0:25; len ((p . nn) * (q `^ nn)) <= ((n * (len q)) - n) + 1 proof percases ( p . n <> 0. L or p . n = 0. L ) ; suppose p . n <> 0. L ; ::_thesis: len ((p . nn) * (q `^ nn)) <= ((n * (len q)) - n) + 1 then len ((p . nn) * (q `^ nn)) = len (q `^ nn) by Th25; hence len ((p . nn) * (q `^ nn)) <= ((n * (len q)) - n) + 1 by A2, Th23; ::_thesis: verum end; supposeA27: p . n = 0. L ; ::_thesis: len ((p . nn) * (q `^ nn)) <= ((n * (len q)) - n) + 1 len q >= 0 + 1 by A2; then (len q) - 1 >= 0 by XREAL_1:19; then A28: n * ((len q) - 1) >= 0 ; n * (len q) <= (n * (len q)) + 1 by NAT_1:11; then (n * (len q)) - n <= ((n * (len q)) + 1) - n by XREAL_1:9; hence len ((p . nn) * (q `^ nn)) <= ((n * (len q)) - n) + 1 by A27, A28, Th24; ::_thesis: verum end; end; end; then A29: maxFq <= ((n * (len q)) - n) + 1 by A23, XXREAL_0:28; len (F | ((len F) -' 1)) <= len F by A14, NAT_1:11; then n + 1 <= len F by A24, XXREAL_0:2; then A30: n + 1 in dom F by A25, FINSEQ_3:25; A31: n + 1 in dom (F | ((len F) -' 1)) by A24, A25, FINSEQ_3:25; then A32: (F | ((len F) -' 1)) /. (n + 1) = (F | ((len F) -' 1)) . (n + 1) by PARTFUN1:def_6 .= F . (n + 1) by A12, A31, FINSEQ_1:def_7 .= (p . ((n + 1) -' 1)) * (q `^ ((n + 1) -' 1)) by A5, A30 .= (p . nn) * (q `^ ((n + 1) -' 1)) by NAT_D:34 .= (p . nn) * (q `^ nn) by NAT_D:34 ; (F | ((len F) -' 1)) | (nn + 1) = ((F | ((len F) -' 1)) | nn) ^ <*((F | ((len F) -' 1)) /. (nn + 1))*> by A24, FINSEQ_5:82; then F2 = (Sum ((F | ((len F) -' 1)) | n)) + ((F | ((len F) -' 1)) /. (n + 1)) by A22, FVSUM_1:71 .= F3 + ((p . nn) * (q `^ nn)) by A32, POLYNOM3:def_10 ; then len F2 <= maxFq by A26, POLYNOM4:6; hence len F2 <= ((((n + 1) * (len q)) - (len q)) - (n + 1)) + 2 by A29, XXREAL_0:2; ::_thesis: verum end; supposeA33: n + 1 > len (F | ((len F) -' 1)) ; ::_thesis: len F2 <= ((((n + 1) * (len q)) - (len q)) - (n + 1)) + 2 - (len q) <= - 1 by A2, XREAL_1:24; then ((n * (len q)) - n) + (- (len q)) <= ((n * (len q)) - n) + (- 1) by XREAL_1:6; then A34: (((n * (len q)) - (len q)) - n) + 2 <= ((((n + 1) * (len q)) - (len q)) - (n + 1)) + 2 by XREAL_1:6; n >= len (F | ((len F) -' 1)) by A33, NAT_1:13; then A35: (F | ((len F) -' 1)) | n = F | ((len F) -' 1) by FINSEQ_1:58; (F | ((len F) -' 1)) | (n + 1) = F | ((len F) -' 1) by A33, FINSEQ_1:58; then len F2 <= (((n * (len q)) - (len q)) - n) + 2 by A20, A22, A35; hence len F2 <= ((((n + 1) * (len q)) - (len q)) - (n + 1)) + 2 by A34, XXREAL_0:2; ::_thesis: verum end; end; end; hence len F2 <= ((((n + 1) * (len q)) - (len q)) - (n + 1)) + 2 ; ::_thesis: verum end; 0 + (len q) >= 1 + 1 by A2, NAT_1:13; then 2 - (len q) <= 0 by XREAL_1:20; then A36: (2 - (len q)) + k <= 0 + k by XREAL_1:6; 0 + 1 <= len (F | ((len F) -' 1)) by A17, NAT_1:13; then A37: 1 in dom (F | ((len F) -' 1)) by FINSEQ_3:25; A38: S1[1] proof let F2 be Polynomial of L; ::_thesis: ( F2 = Sum ((F | ((len F) -' 1)) | 1) implies len F2 <= (((1 * (len q)) - (len q)) - 1) + 2 ) (F | ((len F) -' 1)) | 1 = <*((F | ((len F) -' 1)) /. 1)*> by A17, CARD_1:27, FINSEQ_5:20; then A39: Sum ((F | ((len F) -' 1)) | 1) = (F | ((len F) -' 1)) /. 1 by RLVECT_1:44 .= (F | ((len F) -' 1)) . 1 by A37, PARTFUN1:def_6 .= F . 1 by A12, A37, FINSEQ_1:def_7 .= (p . (1 -' 1)) * (q `^ (1 -' 1)) by A5, A7 .= (p . 0) * (q `^ (1 -' 1)) by XREAL_1:232 .= (p . 0) * (q `^ 0) by XREAL_1:232 .= (p . 0) * (1_. L) by Th15 .= <%(p . 0)%> by Th29 ; assume F2 = Sum ((F | ((len F) -' 1)) | 1) ; ::_thesis: len F2 <= (((1 * (len q)) - (len q)) - 1) + 2 hence len F2 <= (((1 * (len q)) - (len q)) - 1) + 2 by A39, ALGSEQ_1:def_5; ::_thesis: verum end; for n being non empty Nat holds S1[n] from NAT_1:sch_10(A38, A19); then len sF1 <= ((((len (F | ((len F) -' 1))) * (len q)) - (len q)) - (len (F | ((len F) -' 1)))) + 2 by A17, A18; then A40: sF1 . k = 0. L by A4, A14, A36, ALGSEQ_1:8, XXREAL_0:2; A41: len F in dom F by A6, FINSEQ_3:25; then F /. (len F) = F . (len F) by PARTFUN1:def_6 .= (p . ((len F) -' 1)) * (q `^ ((len F) -' 1)) by A5, A41 ; then Subst (p,q) = sF1 + ((p . ((len F) -' 1)) * (q `^ ((len F) -' 1))) by A3, A13, POLYNOM3:def_10; then A42: (Subst (p,q)) . k = (sF1 . k) + (((p . ((len F) -' 1)) * (q `^ ((len F) -' 1))) . k) by NORMSP_1:def_2 .= ((p . ((len F) -' 1)) * (q `^ ((len F) -' 1))) . k by A40, RLVECT_1:def_4 .= (p . ((len F) -' 1)) * ((q `^ ((len F) -' 1)) . k) by Def3 ; len (q `^ ((len F) -' 1)) = k + 1 by A9; then A43: (q `^ ((len F) -' 1)) . k <> 0. L by ALGSEQ_1:10; p . ((len F) -' 1) <> 0. L by A4, A11, ALGSEQ_1:10; hence contradiction by A16, A42, A43, VECTSP_1:12; ::_thesis: verum end; supposeA44: len (F | ((len F) -' 1)) = {} ; ::_thesis: contradiction A45: F /. 1 = F . 1 by A7, PARTFUN1:def_6 .= (p . (1 -' 1)) * (q `^ (1 -' 1)) by A5, A7 .= (p . 0) * (q `^ (1 -' 1)) by XREAL_1:232 .= (p . 0) * (q `^ 0) by XREAL_1:232 .= (p . 0) * (1_. L) by Th15 .= <%(p . 0)%> by Th29 ; A46: 0. (Polynom-Ring L) = 0_. L by POLYNOM3:def_10; A47: len F = 0 + 1 by A12, A44, FINSEQ_2:16; then A48: p . 0 <> 0. L by A4, ALGSEQ_1:10; F | ((len F) -' 1) = <*> the carrier of (Polynom-Ring L) by A44; then Sum F = (0. (Polynom-Ring L)) + (F /. 1) by A13, A47, RLVECT_1:43 .= (0_. L) + <%(p . 0)%> by A45, A46, POLYNOM3:def_10 .= <%(p . 0)%> by POLYNOM3:28 ; hence contradiction by A3, A4, A15, A47, A48, Th33; ::_thesis: verum end; end; end; hence contradiction ; ::_thesis: verum end; defpred S1[ Nat] means for F1 being Polynomial of L st F1 = Sum (F | $1) holds len F1 <= len (q `^ ($1 -' 1)); A49: for n being non empty Nat st S1[n] holds S1[n + 1] proof let n be non empty Nat; ::_thesis: ( S1[n] implies S1[n + 1] ) assume A50: for F1 being Polynomial of L st F1 = Sum (F | n) holds len F1 <= len (q `^ (n -' 1)) ; ::_thesis: S1[n + 1] reconsider nn = n as Element of NAT by ORDINAL1:def_12; reconsider F2 = Sum (F | n) as Polynomial of L by POLYNOM3:def_10; let F1 be Polynomial of L; ::_thesis: ( F1 = Sum (F | (n + 1)) implies len F1 <= len (q `^ ((n + 1) -' 1)) ) assume A51: F1 = Sum (F | (n + 1)) ; ::_thesis: len F1 <= len (q `^ ((n + 1) -' 1)) (n * (len q)) + ((len q) -' 1) >= n * (len q) by NAT_1:11; then A52: (n * (len q)) - ((len q) -' 1) <= n * (len q) by XREAL_1:20; len q >= 0 + 1 by A2; then (len q) - 1 >= 0 by XREAL_1:19; then (n * (len q)) - ((len q) - 1) <= n * (len q) by A52, XREAL_0:def_2; then (((n * (len q)) - (len q)) + 1) - n <= (n * (len q)) - n by XREAL_1:9; then A53: ((((n * (len q)) - (len q)) - n) + 1) + 1 <= ((n * (len q)) - n) + 1 by XREAL_1:6; n >= 0 + 1 by NAT_1:13; then A54: n - 1 >= 0 by XREAL_1:19; len (q `^ (n -' 1)) = (((n -' 1) * (len q)) - (n -' 1)) + 1 by A2, Th23 .= (((n - 1) * (len q)) - (n -' 1)) + 1 by A54, XREAL_0:def_2 .= (((n * (len q)) - (1 * (len q))) - (n - 1)) + 1 by A54, XREAL_0:def_2 .= ((((n * (len q)) - (len q)) - n) + 1) + 1 ; then A55: len (q `^ (n -' 1)) <= len (q `^ nn) by A2, A53, Th23; percases ( n + 1 <= len F or n + 1 > len F ) ; supposeA56: n + 1 <= len F ; ::_thesis: len F1 <= len (q `^ ((n + 1) -' 1)) reconsider maxFq = max ((len F2),(len ((p . nn) * (q `^ nn)))) as Element of NAT by FINSEQ_2:1; A57: len ((p . nn) * (q `^ nn)) <= len (q `^ nn) proof percases ( p . n <> 0. L or p . n = 0. L ) ; suppose p . n <> 0. L ; ::_thesis: len ((p . nn) * (q `^ nn)) <= len (q `^ nn) hence len ((p . nn) * (q `^ nn)) <= len (q `^ nn) by Th25; ::_thesis: verum end; suppose p . n = 0. L ; ::_thesis: len ((p . nn) * (q `^ nn)) <= len (q `^ nn) hence len ((p . nn) * (q `^ nn)) <= len (q `^ nn) by Th24; ::_thesis: verum end; end; end; len F2 <= len (q `^ (n -' 1)) by A50; then len F2 <= len (q `^ nn) by A55, XXREAL_0:2; then A58: maxFq <= len (q `^ nn) by A57, XXREAL_0:28; F | (n + 1) = (F | n) ^ <*(F /. (nn + 1))*> by A56, FINSEQ_5:82; then A59: F1 = (Sum (F | n)) + (F /. (n + 1)) by A51, FVSUM_1:71; n + 1 >= 1 by NAT_1:11; then A60: n + 1 in dom F by A56, FINSEQ_3:25; then F /. (n + 1) = F . (n + 1) by PARTFUN1:def_6 .= (p . ((n + 1) -' 1)) * (q `^ ((n + 1) -' 1)) by A5, A60 .= (p . nn) * (q `^ ((n + 1) -' 1)) by NAT_D:34 .= (p . nn) * (q `^ nn) by NAT_D:34 ; then A61: F1 = F2 + ((p . nn) * (q `^ nn)) by A59, POLYNOM3:def_10; ( maxFq >= len F2 & maxFq >= len ((p . nn) * (q `^ nn)) ) by XXREAL_0:25; then len F1 <= maxFq by A61, POLYNOM4:6; then len F1 <= len (q `^ nn) by A58, XXREAL_0:2; hence len F1 <= len (q `^ ((n + 1) -' 1)) by NAT_D:34; ::_thesis: verum end; supposeA62: n + 1 > len F ; ::_thesis: len F1 <= len (q `^ ((n + 1) -' 1)) then n >= len F by NAT_1:13; then A63: F | n = F by FINSEQ_1:58; F | (n + 1) = F by A62, FINSEQ_1:58; then len F1 <= len (q `^ (n -' 1)) by A50, A51, A63; then len F1 <= len (q `^ nn) by A55, XXREAL_0:2; hence len F1 <= len (q `^ ((n + 1) -' 1)) by NAT_D:34; ::_thesis: verum end; end; end; A64: F | (len F) = F by FINSEQ_1:58; A65: S1[1] proof let F1 be Polynomial of L; ::_thesis: ( F1 = Sum (F | 1) implies len F1 <= len (q `^ (1 -' 1)) ) F | 1 = <*(F /. 1)*> by A1, A4, CARD_1:27, FINSEQ_5:20; then A66: Sum (F | 1) = F /. 1 by RLVECT_1:44 .= F . 1 by A7, PARTFUN1:def_6 .= (p . (1 -' 1)) * (q `^ (1 -' 1)) by A5, A7 .= (p . 0) * (q `^ (1 -' 1)) by XREAL_1:232 .= (p . 0) * (q `^ 0) by XREAL_1:232 .= (p . 0) * (1_. L) by Th15 .= <%(p . 0)%> by Th29 ; assume F1 = Sum (F | 1) ; ::_thesis: len F1 <= len (q `^ (1 -' 1)) then len F1 <= 1 by A66, ALGSEQ_1:def_5; then len F1 <= len (1_. L) by POLYNOM4:4; then len F1 <= len (q `^ 0) by Th15; hence len F1 <= len (q `^ (1 -' 1)) by XREAL_1:232; ::_thesis: verum end; for n being non empty Nat holds S1[n] from NAT_1:sch_10(A65, A49); then len (Subst (p,q)) <= len (q `^ ((len F) -' 1)) by A1, A3, A4, A64; hence len (Subst (p,q)) = ((((len p) * (len q)) - (len p)) - (len q)) + 2 by A9, A10, XXREAL_0:1; ::_thesis: verum end; theorem Th53: :: POLYNOM5:53 for L being Field for p, q being Polynomial of L for x being Element of L holds eval ((Subst (p,q)),x) = eval (p,(eval (q,x))) proof let L be Field; ::_thesis: for p, q being Polynomial of L for x being Element of L holds eval ((Subst (p,q)),x) = eval (p,(eval (q,x))) let p, q be Polynomial of L; ::_thesis: for x being Element of L holds eval ((Subst (p,q)),x) = eval (p,(eval (q,x))) let x be Element of L; ::_thesis: eval ((Subst (p,q)),x) = eval (p,(eval (q,x))) consider F1 being FinSequence of the carrier of L such that A1: eval (p,(eval (q,x))) = Sum F1 and A2: len F1 = len p and A3: for n being Element of NAT st n in dom F1 holds F1 . n = (p . (n -' 1)) * ((power L) . ((eval (q,x)),(n -' 1))) by POLYNOM4:def_2; consider F being FinSequence of the carrier of (Polynom-Ring L) such that A4: Subst (p,q) = Sum F and A5: len F = len p and A6: for n being Element of NAT st n in dom F holds F . n = (p . (n -' 1)) * (q `^ (n -' 1)) by Def5; defpred S1[ Element of NAT ] means for r being Polynomial of L st r = Sum (F | $1) holds eval (r,x) = Sum (F1 | $1); A7: for n being Element of NAT st S1[n] holds S1[n + 1] proof let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) assume A8: for r being Polynomial of L st r = Sum (F | n) holds eval (r,x) = Sum (F1 | n) ; ::_thesis: S1[n + 1] let r be Polynomial of L; ::_thesis: ( r = Sum (F | (n + 1)) implies eval (r,x) = Sum (F1 | (n + 1)) ) assume A9: r = Sum (F | (n + 1)) ; ::_thesis: eval (r,x) = Sum (F1 | (n + 1)) percases ( n + 1 <= len F or n + 1 > len F ) ; supposeA10: n + 1 <= len F ; ::_thesis: eval (r,x) = Sum (F1 | (n + 1)) then A11: F1 | (n + 1) = (F1 | n) ^ <*(F1 /. (n + 1))*> by A5, A2, FINSEQ_5:82; F | (n + 1) = (F | n) ^ <*(F /. (n + 1))*> by A10, FINSEQ_5:82; then A12: r = (Sum (F | n)) + (F /. (n + 1)) by A9, FVSUM_1:71; reconsider r1 = Sum (F | n) as Polynomial of L by POLYNOM3:def_10; n + 1 >= 1 by NAT_1:11; then A13: n + 1 in dom F by A10, FINSEQ_3:25; A14: dom F = dom F1 by A5, A2, FINSEQ_3:29; then A15: (p . ((n + 1) -' 1)) * ((power L) . ((eval (q,x)),((n + 1) -' 1))) = F1 . (n + 1) by A3, A13 .= F1 /. (n + 1) by A13, A14, PARTFUN1:def_6 ; F /. (n + 1) = F . (n + 1) by A13, PARTFUN1:def_6 .= (p . ((n + 1) -' 1)) * (q `^ ((n + 1) -' 1)) by A6, A13 .= (p . n) * (q `^ ((n + 1) -' 1)) by NAT_D:34 .= (p . n) * (q `^ n) by NAT_D:34 ; then r = r1 + ((p . n) * (q `^ n)) by A12, POLYNOM3:def_10; hence eval (r,x) = (eval (r1,x)) + (eval (((p . n) * (q `^ n)),x)) by POLYNOM4:19 .= (Sum (F1 | n)) + (eval (((p . n) * (q `^ n)),x)) by A8 .= (Sum (F1 | n)) + ((p . n) * (eval ((q `^ n),x))) by Th30 .= (Sum (F1 | n)) + ((p . n) * ((power L) . ((eval (q,x)),n))) by Th22 .= (Sum (F1 | n)) + ((p . ((n + 1) -' 1)) * ((power L) . ((eval (q,x)),n))) by NAT_D:34 .= (Sum (F1 | n)) + (F1 /. (n + 1)) by A15, NAT_D:34 .= Sum (F1 | (n + 1)) by A11, FVSUM_1:71 ; ::_thesis: verum end; supposeA16: n + 1 > len F ; ::_thesis: eval (r,x) = Sum (F1 | (n + 1)) then n >= len F by NAT_1:13; then A17: ( F | n = F & F1 | n = F1 ) by A5, A2, FINSEQ_1:58; ( F | (n + 1) = F & F1 | (n + 1) = F1 ) by A5, A2, A16, FINSEQ_1:58; hence eval (r,x) = Sum (F1 | (n + 1)) by A8, A9, A17; ::_thesis: verum end; end; end; A18: ( F | (len F) = F & F1 | (len F1) = F1 ) by FINSEQ_1:58; A19: S1[ 0 ] proof let r be Polynomial of L; ::_thesis: ( r = Sum (F | 0) implies eval (r,x) = Sum (F1 | 0) ) A20: F | 0 = <*> the carrier of (Polynom-Ring L) ; A21: F1 | 0 = <*> the carrier of L ; assume r = Sum (F | 0) ; ::_thesis: eval (r,x) = Sum (F1 | 0) then r = 0. (Polynom-Ring L) by A20, RLVECT_1:43 .= 0_. L by POLYNOM3:def_10 ; hence eval (r,x) = 0. L by POLYNOM4:17 .= Sum (F1 | 0) by A21, RLVECT_1:43 ; ::_thesis: verum end; for n being Element of NAT holds S1[n] from NAT_1:sch_1(A19, A7); hence eval ((Subst (p,q)),x) = eval (p,(eval (q,x))) by A4, A5, A1, A2, A18; ::_thesis: verum end; begin definition let L be non empty unital doubleLoopStr ; let p be Polynomial of L; let x be Element of L; predx is_a_root_of p means :Def6: :: POLYNOM5:def 6 eval (p,x) = 0. L; end; :: deftheorem Def6 defines is_a_root_of POLYNOM5:def_6_:_ for L being non empty unital doubleLoopStr for p being Polynomial of L for x being Element of L holds ( x is_a_root_of p iff eval (p,x) = 0. L ); definition let L be non empty unital doubleLoopStr ; let p be Polynomial of L; attrp is with_roots means :Def7: :: POLYNOM5:def 7 ex x being Element of L st x is_a_root_of p; end; :: deftheorem Def7 defines with_roots POLYNOM5:def_7_:_ for L being non empty unital doubleLoopStr for p being Polynomial of L holds ( p is with_roots iff ex x being Element of L st x is_a_root_of p ); theorem Th54: :: POLYNOM5:54 for L being non empty unital doubleLoopStr holds 0_. L is with_roots proof let L be non empty unital doubleLoopStr ; ::_thesis: 0_. L is with_roots set x = the Element of L; take the Element of L ; :: according to POLYNOM5:def_7 ::_thesis: the Element of L is_a_root_of 0_. L thus eval ((0_. L), the Element of L) = 0. L by POLYNOM4:17; :: according to POLYNOM5:def_6 ::_thesis: verum end; registration let L be non empty unital doubleLoopStr ; cluster 0_. L -> with_roots ; coherence 0_. L is with_roots by Th54; end; theorem :: POLYNOM5:55 for L being non empty unital doubleLoopStr for x being Element of L holds x is_a_root_of 0_. L proof let L be non empty unital doubleLoopStr ; ::_thesis: for x being Element of L holds x is_a_root_of 0_. L let x be Element of L; ::_thesis: x is_a_root_of 0_. L thus eval ((0_. L),x) = 0. L by POLYNOM4:17; :: according to POLYNOM5:def_6 ::_thesis: verum end; registration let L be non empty unital doubleLoopStr ; cluster Relation-like NAT -defined the carrier of L -valued Function-like non empty total quasi_total finite-Support with_roots for Element of K27(K28(NAT, the carrier of L)); existence ex b1 being Polynomial of L st b1 is with_roots proof take 0_. L ; ::_thesis: 0_. L is with_roots thus 0_. L is with_roots ; ::_thesis: verum end; end; definition let L be non empty unital doubleLoopStr ; attrL is algebraic-closed means :Def8: :: POLYNOM5:def 8 for p being Polynomial of L st len p > 1 holds p is with_roots ; end; :: deftheorem Def8 defines algebraic-closed POLYNOM5:def_8_:_ for L being non empty unital doubleLoopStr holds ( L is algebraic-closed iff for p being Polynomial of L st len p > 1 holds p is with_roots ); definition let L be non empty unital doubleLoopStr ; let p be Polynomial of L; func Roots p -> Subset of L means :Def9: :: POLYNOM5:def 9 for x being Element of L holds ( x in it iff x is_a_root_of p ); existence ex b1 being Subset of L st for x being Element of L holds ( x in b1 iff x is_a_root_of p ) proof { x where x is Element of L : x is_a_root_of p } c= the carrier of L proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in { x where x is Element of L : x is_a_root_of p } or y in the carrier of L ) assume y in { x where x is Element of L : x is_a_root_of p } ; ::_thesis: y in the carrier of L then ex x being Element of L st ( x = y & x is_a_root_of p ) ; hence y in the carrier of L ; ::_thesis: verum end; then reconsider X = { x where x is Element of L : x is_a_root_of p } as Subset of L ; take X ; ::_thesis: for x being Element of L holds ( x in X iff x is_a_root_of p ) let x be Element of L; ::_thesis: ( x in X iff x is_a_root_of p ) thus ( x in X implies x is_a_root_of p ) ::_thesis: ( x is_a_root_of p implies x in X ) proof assume x in X ; ::_thesis: x is_a_root_of p then ex y being Element of L st ( x = y & y is_a_root_of p ) ; hence x is_a_root_of p ; ::_thesis: verum end; assume x is_a_root_of p ; ::_thesis: x in X hence x in X ; ::_thesis: verum end; uniqueness for b1, b2 being Subset of L st ( for x being Element of L holds ( x in b1 iff x is_a_root_of p ) ) & ( for x being Element of L holds ( x in b2 iff x is_a_root_of p ) ) holds b1 = b2 proof let X1, X2 be Subset of L; ::_thesis: ( ( for x being Element of L holds ( x in X1 iff x is_a_root_of p ) ) & ( for x being Element of L holds ( x in X2 iff x is_a_root_of p ) ) implies X1 = X2 ) assume that A1: for x being Element of L holds ( x in X1 iff x is_a_root_of p ) and A2: for x being Element of L holds ( x in X2 iff x is_a_root_of p ) ; ::_thesis: X1 = X2 thus X1 c= X2 :: according to XBOOLE_0:def_10 ::_thesis: X2 c= X1 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in X1 or x in X2 ) assume A3: x in X1 ; ::_thesis: x in X2 then reconsider y = x as Element of L ; y is_a_root_of p by A1, A3; hence x in X2 by A2; ::_thesis: verum end; let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in X2 or x in X1 ) assume A4: x in X2 ; ::_thesis: x in X1 then reconsider y = x as Element of L ; y is_a_root_of p by A2, A4; hence x in X1 by A1; ::_thesis: verum end; end; :: deftheorem Def9 defines Roots POLYNOM5:def_9_:_ for L being non empty unital doubleLoopStr for p being Polynomial of L for b3 being Subset of L holds ( b3 = Roots p iff for x being Element of L holds ( x in b3 iff x is_a_root_of p ) ); definition let L be non empty almost_left_invertible associative commutative well-unital distributive doubleLoopStr ; let p be Polynomial of L; func NormPolynomial p -> sequence of L means :Def10: :: POLYNOM5:def 10 for n being Element of NAT holds it . n = (p . n) / (p . ((len p) -' 1)); existence ex b1 being sequence of L st for n being Element of NAT holds b1 . n = (p . n) / (p . ((len p) -' 1)) proof deffunc H1( Element of NAT ) -> Element of the carrier of L = (p . $1) / (p . ((len p) -' 1)); consider q being sequence of L such that A1: for n being Element of NAT holds q . n = H1(n) from FUNCT_2:sch_4(); take q ; ::_thesis: for n being Element of NAT holds q . n = (p . n) / (p . ((len p) -' 1)) thus for n being Element of NAT holds q . n = (p . n) / (p . ((len p) -' 1)) by A1; ::_thesis: verum end; uniqueness for b1, b2 being sequence of L st ( for n being Element of NAT holds b1 . n = (p . n) / (p . ((len p) -' 1)) ) & ( for n being Element of NAT holds b2 . n = (p . n) / (p . ((len p) -' 1)) ) holds b1 = b2 proof let p1, p2 be sequence of L; ::_thesis: ( ( for n being Element of NAT holds p1 . n = (p . n) / (p . ((len p) -' 1)) ) & ( for n being Element of NAT holds p2 . n = (p . n) / (p . ((len p) -' 1)) ) implies p1 = p2 ) assume that A2: for n being Element of NAT holds p1 . n = (p . n) / (p . ((len p) -' 1)) and A3: for n being Element of NAT holds p2 . n = (p . n) / (p . ((len p) -' 1)) ; ::_thesis: p1 = p2 now__::_thesis:_for_n_being_Element_of_NAT_holds_p1_._n_=_p2_._n let n be Element of NAT ; ::_thesis: p1 . n = p2 . n thus p1 . n = (p . n) / (p . ((len p) -' 1)) by A2 .= p2 . n by A3 ; ::_thesis: verum end; hence p1 = p2 by FUNCT_2:63; ::_thesis: verum end; end; :: deftheorem Def10 defines NormPolynomial POLYNOM5:def_10_:_ for L being non empty almost_left_invertible associative commutative well-unital distributive doubleLoopStr for p being Polynomial of L for b3 being sequence of L holds ( b3 = NormPolynomial p iff for n being Element of NAT holds b3 . n = (p . n) / (p . ((len p) -' 1)) ); registration let L be non empty right_complementable almost_left_invertible add-associative right_zeroed associative commutative well-unital distributive doubleLoopStr ; let p be Polynomial of L; cluster NormPolynomial p -> finite-Support ; coherence NormPolynomial p is finite-Support proof now__::_thesis:_for_n_being_Nat_st_n_>=_len_p_holds_ (NormPolynomial_p)_._n_=_0._L let n be Nat; ::_thesis: ( n >= len p implies (NormPolynomial p) . n = 0. L ) assume A1: n >= len p ; ::_thesis: (NormPolynomial p) . n = 0. L reconsider nn = n as Element of NAT by ORDINAL1:def_12; thus (NormPolynomial p) . n = (p . nn) / (p . ((len p) -' 1)) by Def10 .= (0. L) / (p . ((len p) -' 1)) by A1, ALGSEQ_1:8 .= (0. L) * ((p . ((len p) -' 1)) ") by VECTSP_1:def_11 .= 0. L by VECTSP_1:7 ; ::_thesis: verum end; hence NormPolynomial p is finite-Support by ALGSEQ_1:def_1; ::_thesis: verum end; end; theorem Th56: :: POLYNOM5:56 for L being non empty almost_left_invertible associative commutative well-unital distributive doubleLoopStr for p being Polynomial of L st len p <> 0 holds (NormPolynomial p) . ((len p) -' 1) = 1. L proof let L be non empty almost_left_invertible associative commutative well-unital distributive doubleLoopStr ; ::_thesis: for p being Polynomial of L st len p <> 0 holds (NormPolynomial p) . ((len p) -' 1) = 1. L let p be Polynomial of L; ::_thesis: ( len p <> 0 implies (NormPolynomial p) . ((len p) -' 1) = 1. L ) assume len p <> 0 ; ::_thesis: (NormPolynomial p) . ((len p) -' 1) = 1. L then len p >= 0 + 1 by NAT_1:13; then len p = ((len p) -' 1) + 1 by XREAL_1:235; then A1: p . ((len p) -' 1) <> 0. L by ALGSEQ_1:10; thus (NormPolynomial p) . ((len p) -' 1) = (p . ((len p) -' 1)) / (p . ((len p) -' 1)) by Def10 .= (p . ((len p) -' 1)) * ((p . ((len p) -' 1)) ") by VECTSP_1:def_11 .= 1. L by A1, VECTSP_1:def_10 ; ::_thesis: verum end; theorem Th57: :: POLYNOM5:57 for L being Field for p being Polynomial of L st len p <> 0 holds len (NormPolynomial p) = len p proof let L be Field; ::_thesis: for p being Polynomial of L st len p <> 0 holds len (NormPolynomial p) = len p let p be Polynomial of L; ::_thesis: ( len p <> 0 implies len (NormPolynomial p) = len p ) assume len p <> 0 ; ::_thesis: len (NormPolynomial p) = len p then len p >= 0 + 1 by NAT_1:13; then len p = ((len p) -' 1) + 1 by XREAL_1:235; then p . ((len p) -' 1) <> 0. L by ALGSEQ_1:10; then A1: (p . ((len p) -' 1)) " <> 0. L by VECTSP_1:25; A2: now__::_thesis:_for_n_being_Nat_st_n_is_at_least_length_of_NormPolynomial_p_holds_ len_p_<=_n let n be Nat; ::_thesis: ( n is_at_least_length_of NormPolynomial p implies len p <= n ) assume A3: n is_at_least_length_of NormPolynomial p ; ::_thesis: len p <= n n is_at_least_length_of p proof let i be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not n <= i or p . i = 0. L ) reconsider ii = i as Element of NAT by ORDINAL1:def_12; assume i >= n ; ::_thesis: p . i = 0. L then (NormPolynomial p) . i = 0. L by A3, ALGSEQ_1:def_2; then (p . ii) / (p . ((len p) -' 1)) = 0. L by Def10; then (p . ii) * ((p . ((len p) -' 1)) ") = 0. L by VECTSP_1:def_11; hence p . i = 0. L by A1, VECTSP_1:12; ::_thesis: verum end; hence len p <= n by ALGSEQ_1:def_3; ::_thesis: verum end; len p is_at_least_length_of NormPolynomial p proof let n be Nat; :: according to ALGSEQ_1:def_2 ::_thesis: ( not len p <= n or (NormPolynomial p) . n = 0. L ) assume A4: n >= len p ; ::_thesis: (NormPolynomial p) . n = 0. L reconsider nn = n as Element of NAT by ORDINAL1:def_12; thus (NormPolynomial p) . n = (p . nn) / (p . ((len p) -' 1)) by Def10 .= (0. L) / (p . ((len p) -' 1)) by A4, ALGSEQ_1:8 .= (0. L) * ((p . ((len p) -' 1)) ") by VECTSP_1:def_11 .= 0. L by VECTSP_1:7 ; ::_thesis: verum end; hence len (NormPolynomial p) = len p by A2, ALGSEQ_1:def_3; ::_thesis: verum end; theorem Th58: :: POLYNOM5:58 for L being Field for p being Polynomial of L st len p <> 0 holds for x being Element of L holds eval ((NormPolynomial p),x) = (eval (p,x)) / (p . ((len p) -' 1)) proof let L be Field; ::_thesis: for p being Polynomial of L st len p <> 0 holds for x being Element of L holds eval ((NormPolynomial p),x) = (eval (p,x)) / (p . ((len p) -' 1)) let p be Polynomial of L; ::_thesis: ( len p <> 0 implies for x being Element of L holds eval ((NormPolynomial p),x) = (eval (p,x)) / (p . ((len p) -' 1)) ) assume A1: len p <> 0 ; ::_thesis: for x being Element of L holds eval ((NormPolynomial p),x) = (eval (p,x)) / (p . ((len p) -' 1)) set NPp = NormPolynomial p; let x be Element of L; ::_thesis: eval ((NormPolynomial p),x) = (eval (p,x)) / (p . ((len p) -' 1)) consider F1 being FinSequence of the carrier of L such that A2: eval (p,x) = Sum F1 and A3: len F1 = len p and A4: for n being Element of NAT st n in dom F1 holds F1 . n = (p . (n -' 1)) * ((power L) . (x,(n -' 1))) by POLYNOM4:def_2; consider F2 being FinSequence of the carrier of L such that A5: eval ((NormPolynomial p),x) = Sum F2 and A6: len F2 = len (NormPolynomial p) and A7: for n being Element of NAT st n in dom F2 holds F2 . n = ((NormPolynomial p) . (n -' 1)) * ((power L) . (x,(n -' 1))) by POLYNOM4:def_2; len F1 = len F2 by A1, A3, A6, Th57; then A8: dom F1 = dom F2 by FINSEQ_3:29; now__::_thesis:_for_i_being_set_st_i_in_dom_F1_holds_ F2_/._i_=_(F1_/._i)_*_((p_._((len_p)_-'_1))_") let i be set ; ::_thesis: ( i in dom F1 implies F2 /. i = (F1 /. i) * ((p . ((len p) -' 1)) ") ) assume A9: i in dom F1 ; ::_thesis: F2 /. i = (F1 /. i) * ((p . ((len p) -' 1)) ") then reconsider i1 = i as Element of NAT ; A10: (p . (i1 -' 1)) * ((power L) . (x,(i1 -' 1))) = F1 . i by A4, A9 .= F1 /. i by A9, PARTFUN1:def_6 ; thus F2 /. i = F2 . i by A8, A9, PARTFUN1:def_6 .= ((NormPolynomial p) . (i1 -' 1)) * ((power L) . (x,(i1 -' 1))) by A7, A8, A9 .= ((p . (i1 -' 1)) / (p . ((len p) -' 1))) * ((power L) . (x,(i1 -' 1))) by Def10 .= ((p . (i1 -' 1)) * ((p . ((len p) -' 1)) ")) * ((power L) . (x,(i1 -' 1))) by VECTSP_1:def_11 .= (F1 /. i) * ((p . ((len p) -' 1)) ") by A10, GROUP_1:def_3 ; ::_thesis: verum end; then F2 = F1 * ((p . ((len p) -' 1)) ") by A8, POLYNOM1:def_2; then eval ((NormPolynomial p),x) = (eval (p,x)) * ((p . ((len p) -' 1)) ") by A2, A5, POLYNOM1:13; hence eval ((NormPolynomial p),x) = (eval (p,x)) / (p . ((len p) -' 1)) by VECTSP_1:def_11; ::_thesis: verum end; theorem Th59: :: POLYNOM5:59 for L being Field for p being Polynomial of L st len p <> 0 holds for x being Element of L holds ( x is_a_root_of p iff x is_a_root_of NormPolynomial p ) proof let L be Field; ::_thesis: for p being Polynomial of L st len p <> 0 holds for x being Element of L holds ( x is_a_root_of p iff x is_a_root_of NormPolynomial p ) let p be Polynomial of L; ::_thesis: ( len p <> 0 implies for x being Element of L holds ( x is_a_root_of p iff x is_a_root_of NormPolynomial p ) ) assume A1: len p <> 0 ; ::_thesis: for x being Element of L holds ( x is_a_root_of p iff x is_a_root_of NormPolynomial p ) then len p >= 0 + 1 by NAT_1:13; then len p = ((len p) -' 1) + 1 by XREAL_1:235; then p . ((len p) -' 1) <> 0. L by ALGSEQ_1:10; then A2: (p . ((len p) -' 1)) " <> 0. L by VECTSP_1:25; let x be Element of L; ::_thesis: ( x is_a_root_of p iff x is_a_root_of NormPolynomial p ) thus ( x is_a_root_of p implies x is_a_root_of NormPolynomial p ) ::_thesis: ( x is_a_root_of NormPolynomial p implies x is_a_root_of p ) proof assume x is_a_root_of p ; ::_thesis: x is_a_root_of NormPolynomial p then eval (p,x) = 0. L by Def6; then eval ((NormPolynomial p),x) = (0. L) / (p . ((len p) -' 1)) by A1, Th58 .= (0. L) * ((p . ((len p) -' 1)) ") by VECTSP_1:def_11 .= 0. L by VECTSP_1:7 ; hence x is_a_root_of NormPolynomial p by Def6; ::_thesis: verum end; assume x is_a_root_of NormPolynomial p ; ::_thesis: x is_a_root_of p then 0. L = eval ((NormPolynomial p),x) by Def6 .= (eval (p,x)) / (p . ((len p) -' 1)) by A1, Th58 .= (eval (p,x)) * ((p . ((len p) -' 1)) ") by VECTSP_1:def_11 ; then eval (p,x) = 0. L by A2, VECTSP_1:12; hence x is_a_root_of p by Def6; ::_thesis: verum end; theorem Th60: :: POLYNOM5:60 for L being Field for p being Polynomial of L st len p <> 0 holds ( p is with_roots iff NormPolynomial p is with_roots ) proof let L be Field; ::_thesis: for p being Polynomial of L st len p <> 0 holds ( p is with_roots iff NormPolynomial p is with_roots ) let p be Polynomial of L; ::_thesis: ( len p <> 0 implies ( p is with_roots iff NormPolynomial p is with_roots ) ) assume A1: len p <> 0 ; ::_thesis: ( p is with_roots iff NormPolynomial p is with_roots ) thus ( p is with_roots implies NormPolynomial p is with_roots ) ::_thesis: ( NormPolynomial p is with_roots implies p is with_roots ) proof assume p is with_roots ; ::_thesis: NormPolynomial p is with_roots then consider x being Element of L such that A2: x is_a_root_of p by Def7; x is_a_root_of NormPolynomial p by A1, A2, Th59; hence NormPolynomial p is with_roots by Def7; ::_thesis: verum end; assume NormPolynomial p is with_roots ; ::_thesis: p is with_roots then consider x being Element of L such that A3: x is_a_root_of NormPolynomial p by Def7; x is_a_root_of p by A1, A3, Th59; hence p is with_roots by Def7; ::_thesis: verum end; theorem :: POLYNOM5:61 for L being Field for p being Polynomial of L st len p <> 0 holds Roots p = Roots (NormPolynomial p) proof let L be Field; ::_thesis: for p being Polynomial of L st len p <> 0 holds Roots p = Roots (NormPolynomial p) let p be Polynomial of L; ::_thesis: ( len p <> 0 implies Roots p = Roots (NormPolynomial p) ) assume A1: len p <> 0 ; ::_thesis: Roots p = Roots (NormPolynomial p) thus Roots p c= Roots (NormPolynomial p) :: according to XBOOLE_0:def_10 ::_thesis: Roots (NormPolynomial p) c= Roots p proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in Roots p or x in Roots (NormPolynomial p) ) assume A2: x in Roots p ; ::_thesis: x in Roots (NormPolynomial p) then reconsider x1 = x as Element of L ; x1 is_a_root_of p by A2, Def9; then x1 is_a_root_of NormPolynomial p by A1, Th59; hence x in Roots (NormPolynomial p) by Def9; ::_thesis: verum end; thus Roots (NormPolynomial p) c= Roots p ::_thesis: verum proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in Roots (NormPolynomial p) or x in Roots p ) assume A3: x in Roots (NormPolynomial p) ; ::_thesis: x in Roots p then reconsider x1 = x as Element of L ; x1 is_a_root_of NormPolynomial p by A3, Def9; then x1 is_a_root_of p by A1, Th59; hence x in Roots p by Def9; ::_thesis: verum end; end; theorem Th62: :: POLYNOM5:62 id COMPLEX is_continuous_on COMPLEX proof A1: now__::_thesis:_for_x_being_Element_of_COMPLEX_ for_r_being_Real_st_x_in_COMPLEX_&_0_<_r_holds_ ex_s_being_Real_st_ (_0_<_s_&_(_for_y_being_Element_of_COMPLEX_st_y_in_COMPLEX_&_|.(y_-_x).|_<_s_holds_ |.(((id_COMPLEX)_/._y)_-_((id_COMPLEX)_/._x)).|_<_r_)_) let x be Element of COMPLEX ; ::_thesis: for r being Real st x in COMPLEX & 0 < r holds ex s being Real st ( 0 < s & ( for y being Element of COMPLEX st y in COMPLEX & |.(y - x).| < s holds |.(((id COMPLEX) /. y) - ((id COMPLEX) /. x)).| < r ) ) let r be Real; ::_thesis: ( x in COMPLEX & 0 < r implies ex s being Real st ( 0 < s & ( for y being Element of COMPLEX st y in COMPLEX & |.(y - x).| < s holds |.(((id COMPLEX) /. y) - ((id COMPLEX) /. x)).| < r ) ) ) assume that x in COMPLEX and A2: 0 < r ; ::_thesis: ex s being Real st ( 0 < s & ( for y being Element of COMPLEX st y in COMPLEX & |.(y - x).| < s holds |.(((id COMPLEX) /. y) - ((id COMPLEX) /. x)).| < r ) ) take s = r; ::_thesis: ( 0 < s & ( for y being Element of COMPLEX st y in COMPLEX & |.(y - x).| < s holds |.(((id COMPLEX) /. y) - ((id COMPLEX) /. x)).| < r ) ) thus 0 < s by A2; ::_thesis: for y being Element of COMPLEX st y in COMPLEX & |.(y - x).| < s holds |.(((id COMPLEX) /. y) - ((id COMPLEX) /. x)).| < r let y be Element of COMPLEX ; ::_thesis: ( y in COMPLEX & |.(y - x).| < s implies |.(((id COMPLEX) /. y) - ((id COMPLEX) /. x)).| < r ) assume that y in COMPLEX and A3: |.(y - x).| < s ; ::_thesis: |.(((id COMPLEX) /. y) - ((id COMPLEX) /. x)).| < r (id COMPLEX) /. x = x by FUNCT_1:18; hence |.(((id COMPLEX) /. y) - ((id COMPLEX) /. x)).| < r by A3, FUNCT_1:18; ::_thesis: verum end; dom (id COMPLEX) = COMPLEX by FUNCT_2:def_1; hence id COMPLEX is_continuous_on COMPLEX by A1, CFCONT_1:39; ::_thesis: verum end; theorem Th63: :: POLYNOM5:63 for x being Element of COMPLEX holds COMPLEX --> x is_continuous_on COMPLEX proof let x be Element of COMPLEX ; ::_thesis: COMPLEX --> x is_continuous_on COMPLEX A1: now__::_thesis:_for_x1_being_Element_of_COMPLEX_ for_r_being_Real_st_x1_in_COMPLEX_&_0_<_r_holds_ ex_s_being_Real_st_ (_0_<_s_&_(_for_x2_being_Element_of_COMPLEX_st_x2_in_COMPLEX_&_|.(x2_-_x1).|_<_s_holds_ |.(((COMPLEX_-->_x)_/._x2)_-_((COMPLEX_-->_x)_/._x1)).|_<_r_)_) let x1 be Element of COMPLEX ; ::_thesis: for r being Real st x1 in COMPLEX & 0 < r holds ex s being Real st ( 0 < s & ( for x2 being Element of COMPLEX st x2 in COMPLEX & |.(x2 - x1).| < s holds |.(((COMPLEX --> x) /. x2) - ((COMPLEX --> x) /. x1)).| < r ) ) let r be Real; ::_thesis: ( x1 in COMPLEX & 0 < r implies ex s being Real st ( 0 < s & ( for x2 being Element of COMPLEX st x2 in COMPLEX & |.(x2 - x1).| < s holds |.(((COMPLEX --> x) /. x2) - ((COMPLEX --> x) /. x1)).| < r ) ) ) assume that x1 in COMPLEX and A2: 0 < r ; ::_thesis: ex s being Real st ( 0 < s & ( for x2 being Element of COMPLEX st x2 in COMPLEX & |.(x2 - x1).| < s holds |.(((COMPLEX --> x) /. x2) - ((COMPLEX --> x) /. x1)).| < r ) ) take s = r; ::_thesis: ( 0 < s & ( for x2 being Element of COMPLEX st x2 in COMPLEX & |.(x2 - x1).| < s holds |.(((COMPLEX --> x) /. x2) - ((COMPLEX --> x) /. x1)).| < r ) ) thus 0 < s by A2; ::_thesis: for x2 being Element of COMPLEX st x2 in COMPLEX & |.(x2 - x1).| < s holds |.(((COMPLEX --> x) /. x2) - ((COMPLEX --> x) /. x1)).| < r let x2 be Element of COMPLEX ; ::_thesis: ( x2 in COMPLEX & |.(x2 - x1).| < s implies |.(((COMPLEX --> x) /. x2) - ((COMPLEX --> x) /. x1)).| < r ) assume that x2 in COMPLEX and |.(x2 - x1).| < s ; ::_thesis: |.(((COMPLEX --> x) /. x2) - ((COMPLEX --> x) /. x1)).| < r ( (COMPLEX --> x) /. x1 = x & (COMPLEX --> x) /. x2 = x ) by FUNCOP_1:7; hence |.(((COMPLEX --> x) /. x2) - ((COMPLEX --> x) /. x1)).| < r by A2, COMPLEX1:44; ::_thesis: verum end; dom (COMPLEX --> x) = COMPLEX by FUNCOP_1:13; hence COMPLEX --> x is_continuous_on COMPLEX by A1, CFCONT_1:39; ::_thesis: verum end; definition let L be non empty unital multMagma ; let x be Element of L; let n be Element of NAT ; func FPower (x,n) -> Function of L,L means :Def11: :: POLYNOM5:def 11 for y being Element of L holds it . y = x * ((power L) . (y,n)); existence ex b1 being Function of L,L st for y being Element of L holds b1 . y = x * ((power L) . (y,n)) proof deffunc H1( Element of L) -> Element of the carrier of L = x * ((power L) . ($1,n)); consider f being Function of the carrier of L, the carrier of L such that A1: for y being Element of L holds f . y = H1(y) from FUNCT_2:sch_4(); reconsider f = f as Function of L,L ; take f ; ::_thesis: for y being Element of L holds f . y = x * ((power L) . (y,n)) thus for y being Element of L holds f . y = x * ((power L) . (y,n)) by A1; ::_thesis: verum end; uniqueness for b1, b2 being Function of L,L st ( for y being Element of L holds b1 . y = x * ((power L) . (y,n)) ) & ( for y being Element of L holds b2 . y = x * ((power L) . (y,n)) ) holds b1 = b2 proof let f1, f2 be Function of L,L; ::_thesis: ( ( for y being Element of L holds f1 . y = x * ((power L) . (y,n)) ) & ( for y being Element of L holds f2 . y = x * ((power L) . (y,n)) ) implies f1 = f2 ) assume that A2: for y being Element of L holds f1 . y = x * ((power L) . (y,n)) and A3: for y being Element of L holds f2 . y = x * ((power L) . (y,n)) ; ::_thesis: f1 = f2 now__::_thesis:_for_y_being_Element_of_L_holds_f1_._y_=_f2_._y let y be Element of L; ::_thesis: f1 . y = f2 . y thus f1 . y = x * ((power L) . (y,n)) by A2 .= f2 . y by A3 ; ::_thesis: verum end; hence f1 = f2 by FUNCT_2:63; ::_thesis: verum end; end; :: deftheorem Def11 defines FPower POLYNOM5:def_11_:_ for L being non empty unital multMagma for x being Element of L for n being Element of NAT for b4 being Function of L,L holds ( b4 = FPower (x,n) iff for y being Element of L holds b4 . y = x * ((power L) . (y,n)) ); theorem :: POLYNOM5:64 for L being non empty unital multMagma holds FPower ((1_ L),1) = id the carrier of L proof let L be non empty unital multMagma ; ::_thesis: FPower ((1_ L),1) = id the carrier of L A1: now__::_thesis:_for_x_being_set_st_x_in_the_carrier_of_L_holds_ (FPower_((1__L),1))_._x_=_x let x be set ; ::_thesis: ( x in the carrier of L implies (FPower ((1_ L),1)) . x = x ) assume x in the carrier of L ; ::_thesis: (FPower ((1_ L),1)) . x = x then reconsider x1 = x as Element of L ; (FPower ((1_ L),1)) . x1 = (1_ L) * ((power L) . (x1,1)) by Def11 .= (power L) . (x1,1) by GROUP_1:def_4 ; hence (FPower ((1_ L),1)) . x = x by GROUP_1:50; ::_thesis: verum end; dom (FPower ((1_ L),1)) = the carrier of L by FUNCT_2:def_1; hence FPower ((1_ L),1) = id the carrier of L by A1, FUNCT_1:17; ::_thesis: verum end; theorem :: POLYNOM5:65 FPower ((1_ F_Complex),2) = (id COMPLEX) (#) (id COMPLEX) proof the carrier of F_Complex = COMPLEX by COMPLFLD:def_1; then reconsider f = (id COMPLEX) (#) (id COMPLEX) as Function of F_Complex,F_Complex ; now__::_thesis:_for_x_being_Element_of_F_Complex_holds_f_._x_=_(1__F_Complex)_*_((power_F_Complex)_._(x,2)) let x be Element of F_Complex; ::_thesis: f . x = (1_ F_Complex) * ((power F_Complex) . (x,2)) reconsider x1 = x as Element of COMPLEX by COMPLFLD:def_1; ( (id COMPLEX) /. x1 = x1 & dom ((id COMPLEX) (#) (id COMPLEX)) = COMPLEX ) by FUNCT_1:18, FUNCT_2:def_1; hence f . x = x * x by VALUED_1:def_4 .= (power F_Complex) . (x,2) by GROUP_1:51 .= (1_ F_Complex) * ((power F_Complex) . (x,2)) by VECTSP_1:def_8 ; ::_thesis: verum end; hence FPower ((1_ F_Complex),2) = (id COMPLEX) (#) (id COMPLEX) by Def11; ::_thesis: verum end; theorem Th66: :: POLYNOM5:66 for L being non empty unital multMagma for x being Element of L holds FPower (x,0) = the carrier of L --> x proof let L be non empty unital multMagma ; ::_thesis: for x being Element of L holds FPower (x,0) = the carrier of L --> x let x be Element of L; ::_thesis: FPower (x,0) = the carrier of L --> x reconsider f = the carrier of L --> x as Function of L,L ; now__::_thesis:_for_y_being_Element_of_L_holds_f_._y_=_x_*_((power_L)_._(y,0)) let y be Element of L; ::_thesis: f . y = x * ((power L) . (y,0)) thus f . y = x by FUNCOP_1:7 .= x * (1_ L) by GROUP_1:def_4 .= x * ((power L) . (y,0)) by GROUP_1:def_7 ; ::_thesis: verum end; hence FPower (x,0) = the carrier of L --> x by Def11; ::_thesis: verum end; theorem :: POLYNOM5:67 for x being Element of F_Complex ex x1 being Element of COMPLEX st ( x = x1 & FPower (x,1) = x1 (#) (id COMPLEX) ) proof let x be Element of F_Complex; ::_thesis: ex x1 being Element of COMPLEX st ( x = x1 & FPower (x,1) = x1 (#) (id COMPLEX) ) reconsider x1 = x as Element of COMPLEX by COMPLFLD:def_1; take x1 ; ::_thesis: ( x = x1 & FPower (x,1) = x1 (#) (id COMPLEX) ) thus x = x1 ; ::_thesis: FPower (x,1) = x1 (#) (id COMPLEX) the carrier of F_Complex = COMPLEX by COMPLFLD:def_1; then reconsider f = x1 (#) (id COMPLEX) as Function of F_Complex,F_Complex ; now__::_thesis:_for_y_being_Element_of_F_Complex_holds_f_._y_=_x_*_((power_F_Complex)_._(y,1)) let y be Element of F_Complex; ::_thesis: f . y = x * ((power F_Complex) . (y,1)) reconsider y1 = y as Element of COMPLEX by COMPLFLD:def_1; thus f . y = x1 * ((id COMPLEX) . y1) by VALUED_1:6 .= x * y by FUNCT_1:18 .= x * ((power F_Complex) . (y,1)) by GROUP_1:50 ; ::_thesis: verum end; hence FPower (x,1) = x1 (#) (id COMPLEX) by Def11; ::_thesis: verum end; theorem :: POLYNOM5:68 for x being Element of F_Complex ex x1 being Element of COMPLEX st ( x = x1 & FPower (x,2) = x1 (#) ((id COMPLEX) (#) (id COMPLEX)) ) proof let x be Element of F_Complex; ::_thesis: ex x1 being Element of COMPLEX st ( x = x1 & FPower (x,2) = x1 (#) ((id COMPLEX) (#) (id COMPLEX)) ) reconsider x1 = x as Element of COMPLEX by COMPLFLD:def_1; take x1 ; ::_thesis: ( x = x1 & FPower (x,2) = x1 (#) ((id COMPLEX) (#) (id COMPLEX)) ) thus x = x1 ; ::_thesis: FPower (x,2) = x1 (#) ((id COMPLEX) (#) (id COMPLEX)) the carrier of F_Complex = COMPLEX by COMPLFLD:def_1; then reconsider f = x1 (#) ((id COMPLEX) (#) (id COMPLEX)) as Function of F_Complex,F_Complex ; now__::_thesis:_for_y_being_Element_of_F_Complex_holds_f_._y_=_x_*_((power_F_Complex)_._(y,2)) let y be Element of F_Complex; ::_thesis: f . y = x * ((power F_Complex) . (y,2)) reconsider y1 = y as Element of COMPLEX by COMPLFLD:def_1; thus f . y = x1 * (((id COMPLEX) (#) (id COMPLEX)) . y1) by VALUED_1:6 .= x1 * (((id COMPLEX) . y1) * ((id COMPLEX) . y1)) by VALUED_1:5 .= x1 * (y1 * ((id COMPLEX) . y1)) by FUNCT_1:18 .= x * (y * y) by FUNCT_1:18 .= x * ((power F_Complex) . (y,2)) by GROUP_1:51 ; ::_thesis: verum end; hence FPower (x,2) = x1 (#) ((id COMPLEX) (#) (id COMPLEX)) by Def11; ::_thesis: verum end; theorem Th69: :: POLYNOM5:69 for x being Element of F_Complex for n being Element of NAT ex f being Function of COMPLEX,COMPLEX st ( f = FPower (x,n) & FPower (x,(n + 1)) = f (#) (id COMPLEX) ) proof let x be Element of F_Complex; ::_thesis: for n being Element of NAT ex f being Function of COMPLEX,COMPLEX st ( f = FPower (x,n) & FPower (x,(n + 1)) = f (#) (id COMPLEX) ) let n be Element of NAT ; ::_thesis: ex f being Function of COMPLEX,COMPLEX st ( f = FPower (x,n) & FPower (x,(n + 1)) = f (#) (id COMPLEX) ) A1: the carrier of F_Complex = COMPLEX by COMPLFLD:def_1; then reconsider f = FPower (x,n) as Function of COMPLEX,COMPLEX ; reconsider g = f (#) (id COMPLEX) as Function of F_Complex,F_Complex by A1; take f ; ::_thesis: ( f = FPower (x,n) & FPower (x,(n + 1)) = f (#) (id COMPLEX) ) thus f = FPower (x,n) ; ::_thesis: FPower (x,(n + 1)) = f (#) (id COMPLEX) now__::_thesis:_for_y_being_Element_of_F_Complex_holds_g_._y_=_x_*_((power_F_Complex)_._(y,(n_+_1))) let y be Element of F_Complex; ::_thesis: g . y = x * ((power F_Complex) . (y,(n + 1))) reconsider y1 = y as Element of COMPLEX by COMPLFLD:def_1; thus g . y = (f . y1) * ((id COMPLEX) . y1) by VALUED_1:5 .= ((FPower (x,n)) . y) * y by FUNCT_1:18 .= (x * ((power F_Complex) . (y,n))) * y by Def11 .= x * (((power F_Complex) . (y,n)) * y) .= x * ((power F_Complex) . (y,(n + 1))) by GROUP_1:def_7 ; ::_thesis: verum end; hence FPower (x,(n + 1)) = f (#) (id COMPLEX) by Def11; ::_thesis: verum end; theorem Th70: :: POLYNOM5:70 for x being Element of F_Complex for n being Element of NAT ex f being Function of COMPLEX,COMPLEX st ( f = FPower (x,n) & f is_continuous_on COMPLEX ) proof let x be Element of F_Complex; ::_thesis: for n being Element of NAT ex f being Function of COMPLEX,COMPLEX st ( f = FPower (x,n) & f is_continuous_on COMPLEX ) defpred S1[ Element of NAT ] means ex f being Function of COMPLEX,COMPLEX st ( f = FPower (x,$1) & f is_continuous_on COMPLEX ); A1: the carrier of F_Complex = COMPLEX by COMPLFLD:def_1; A2: for n being Element of NAT st S1[n] holds S1[n + 1] proof let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) reconsider g = FPower (x,(n + 1)) as Function of COMPLEX,COMPLEX by A1; given f being Function of COMPLEX,COMPLEX such that A3: ( f = FPower (x,n) & f is_continuous_on COMPLEX ) ; ::_thesis: S1[n + 1] take g ; ::_thesis: ( g = FPower (x,(n + 1)) & g is_continuous_on COMPLEX ) thus g = FPower (x,(n + 1)) ; ::_thesis: g is_continuous_on COMPLEX ex f1 being Function of COMPLEX,COMPLEX st ( f1 = FPower (x,n) & FPower (x,(n + 1)) = f1 (#) (id COMPLEX) ) by Th69; hence g is_continuous_on COMPLEX by A3, Th62, CFCONT_1:43; ::_thesis: verum end; A4: S1[ 0 ] proof reconsider f = FPower (x,0) as Function of COMPLEX,COMPLEX by A1; take f ; ::_thesis: ( f = FPower (x,0) & f is_continuous_on COMPLEX ) thus f = FPower (x,0) ; ::_thesis: f is_continuous_on COMPLEX f = the carrier of F_Complex --> x by Th66; hence f is_continuous_on COMPLEX by A1, Th63; ::_thesis: verum end; thus for n being Element of NAT holds S1[n] from NAT_1:sch_1(A4, A2); ::_thesis: verum end; definition let L be non empty well-unital doubleLoopStr ; let p be Polynomial of L; func Polynomial-Function (L,p) -> Function of L,L means :Def12: :: POLYNOM5:def 12 for x being Element of L holds it . x = eval (p,x); existence ex b1 being Function of L,L st for x being Element of L holds b1 . x = eval (p,x) proof deffunc H1( Element of L) -> Element of the carrier of L = eval (p,$1); consider f being Function of the carrier of L, the carrier of L such that A1: for x being Element of L holds f . x = H1(x) from FUNCT_2:sch_4(); reconsider f = f as Function of L,L ; take f ; ::_thesis: for x being Element of L holds f . x = eval (p,x) thus for x being Element of L holds f . x = eval (p,x) by A1; ::_thesis: verum end; uniqueness for b1, b2 being Function of L,L st ( for x being Element of L holds b1 . x = eval (p,x) ) & ( for x being Element of L holds b2 . x = eval (p,x) ) holds b1 = b2 proof let f1, f2 be Function of L,L; ::_thesis: ( ( for x being Element of L holds f1 . x = eval (p,x) ) & ( for x being Element of L holds f2 . x = eval (p,x) ) implies f1 = f2 ) assume that A2: for x being Element of L holds f1 . x = eval (p,x) and A3: for x being Element of L holds f2 . x = eval (p,x) ; ::_thesis: f1 = f2 now__::_thesis:_for_x_being_Element_of_L_holds_f1_._x_=_f2_._x let x be Element of L; ::_thesis: f1 . x = f2 . x thus f1 . x = eval (p,x) by A2 .= f2 . x by A3 ; ::_thesis: verum end; hence f1 = f2 by FUNCT_2:63; ::_thesis: verum end; end; :: deftheorem Def12 defines Polynomial-Function POLYNOM5:def_12_:_ for L being non empty well-unital doubleLoopStr for p being Polynomial of L for b3 being Function of L,L holds ( b3 = Polynomial-Function (L,p) iff for x being Element of L holds b3 . x = eval (p,x) ); theorem Th71: :: POLYNOM5:71 for p being Polynomial of F_Complex ex f being Function of COMPLEX,COMPLEX st ( f = Polynomial-Function (F_Complex,p) & f is_continuous_on COMPLEX ) proof set FuFF = Funcs (COMPLEX,COMPLEX); let p be Polynomial of F_Complex; ::_thesis: ex f being Function of COMPLEX,COMPLEX st ( f = Polynomial-Function (F_Complex,p) & f is_continuous_on COMPLEX ) reconsider fzero = COMPLEX --> 0c as Element of Funcs (COMPLEX,COMPLEX) by FUNCT_2:9; defpred S1[ Nat, set ] means $2 = FPower ((p . ($1 -' 1)),($1 -' 1)); A1: the carrier of F_Complex = COMPLEX by COMPLFLD:def_1; then reconsider f = Polynomial-Function (F_Complex,p) as Function of COMPLEX,COMPLEX ; deffunc H1( Element of Funcs (COMPLEX,COMPLEX), Element of Funcs (COMPLEX,COMPLEX)) -> Element of K27(K28(COMPLEX,COMPLEX)) = $1 + $2; take f ; ::_thesis: ( f = Polynomial-Function (F_Complex,p) & f is_continuous_on COMPLEX ) thus f = Polynomial-Function (F_Complex,p) ; ::_thesis: f is_continuous_on COMPLEX A2: for x, y being Element of Funcs (COMPLEX,COMPLEX) holds H1(x,y) in Funcs (COMPLEX,COMPLEX) by FUNCT_2:8; consider fadd being BinOp of (Funcs (COMPLEX,COMPLEX)) such that A3: for x, y being Element of Funcs (COMPLEX,COMPLEX) holds fadd . (x,y) = H1(x,y) from FUNCT_7:sch_1(A2); reconsider L = addLoopStr(# (Funcs (COMPLEX,COMPLEX)),fadd,fzero #) as non empty addLoopStr ; A4: now__::_thesis:_for_u,_v,_w_being_Element_of_L_holds_(u_+_v)_+_w_=_u_+_(v_+_w) let u, v, w be Element of L; ::_thesis: (u + v) + w = u + (v + w) reconsider u1 = u, v1 = v, w1 = w as Function of COMPLEX,COMPLEX by FUNCT_2:66; A5: u1 + v1 in Funcs (COMPLEX,COMPLEX) by FUNCT_2:9; A6: v1 + w1 in Funcs (COMPLEX,COMPLEX) by FUNCT_2:9; thus (u + v) + w = fadd . ((u1 + v1),w) by A3 .= (u1 + v1) + w1 by A3, A5 .= u1 + (v1 + w1) by CFUNCT_1:13 .= fadd . (u,(v1 + w1)) by A3, A6 .= u + (v + w) by A3 ; ::_thesis: verum end; A7: now__::_thesis:_for_v_being_Element_of_L_holds_v_+_(0._L)_=_v let v be Element of L; ::_thesis: v + (0. L) = v reconsider v1 = v as Function of COMPLEX,COMPLEX by FUNCT_2:66; A8: now__::_thesis:_for_x_being_Element_of_COMPLEX_holds_(v1_+_fzero)_._x_=_v1_._x let x be Element of COMPLEX ; ::_thesis: (v1 + fzero) . x = v1 . x thus (v1 + fzero) . x = (v1 . x) + (fzero . x) by VALUED_1:1 .= (v1 . x) + 0c by FUNCOP_1:7 .= v1 . x ; ::_thesis: verum end; thus v + (0. L) = v1 + fzero by A3 .= v by A8, FUNCT_2:63 ; ::_thesis: verum end; L is right_complementable proof let v be Element of L; :: according to ALGSTR_0:def_16 ::_thesis: v is right_complementable reconsider v1 = v as Function of COMPLEX,COMPLEX by FUNCT_2:66; reconsider w = - v1 as Element of L by FUNCT_2:9; take w ; :: according to ALGSTR_0:def_11 ::_thesis: v + w = 0. L A9: now__::_thesis:_for_x_being_Element_of_COMPLEX_holds_(v1_+_(-_v1))_._x_=_fzero_._x let x be Element of COMPLEX ; ::_thesis: (v1 + (- v1)) . x = fzero . x thus (v1 + (- v1)) . x = (v1 . x) + ((- v1) . x) by VALUED_1:1 .= (v1 . x) + (- (v1 . x)) by VALUED_1:8 .= fzero . x by FUNCOP_1:7 ; ::_thesis: verum end; thus v + w = v1 + (- v1) by A3 .= 0. L by A9, FUNCT_2:63 ; ::_thesis: verum end; then reconsider L = L as non empty right_complementable add-associative right_zeroed addLoopStr by A4, A7, RLVECT_1:def_3, RLVECT_1:def_4; A10: now__::_thesis:_for_n_being_Nat_st_n_in_Seg_(len_p)_holds_ ex_x_being_Element_of_L_st_S1[n,x] let n be Nat; ::_thesis: ( n in Seg (len p) implies ex x being Element of L st S1[n,x] ) reconsider x = FPower ((p . (n -' 1)),(n -' 1)) as Element of L by A1, FUNCT_2:9; assume n in Seg (len p) ; ::_thesis: ex x being Element of L st S1[n,x] take x = x; ::_thesis: S1[n,x] thus S1[n,x] ; ::_thesis: verum end; consider F being FinSequence of the carrier of L such that A11: dom F = Seg (len p) and A12: for n being Nat st n in Seg (len p) holds S1[n,F . n] from FINSEQ_1:sch_5(A10); A13: F | (len F) = F by FINSEQ_1:58; reconsider SF = Sum F as Function of COMPLEX,COMPLEX by FUNCT_2:66; A14: now__::_thesis:_for_x_being_Element_of_COMPLEX_holds_f_._x_=_SF_._x let x be Element of COMPLEX ; ::_thesis: f . x = SF . x reconsider x1 = x as Element of F_Complex by COMPLFLD:def_1; consider H being FinSequence of the carrier of F_Complex such that A15: eval (p,x1) = Sum H and A16: len H = len p and A17: for n being Element of NAT st n in dom H holds H . n = (p . (n -' 1)) * ((power F_Complex) . (x1,(n -' 1))) by POLYNOM4:def_2; defpred S2[ Element of NAT ] means for SFk being Function of COMPLEX,COMPLEX st SFk = Sum (F | $1) holds Sum (H | $1) = SFk . x; A18: len F = len p by A11, FINSEQ_1:def_3; A19: for k being Element of NAT st S2[k] holds S2[k + 1] proof let k be Element of NAT ; ::_thesis: ( S2[k] implies S2[k + 1] ) assume A20: for SFk being Function of COMPLEX,COMPLEX st SFk = Sum (F | k) holds Sum (H | k) = SFk . x ; ::_thesis: S2[k + 1] reconsider SFk1 = Sum (F | k) as Function of COMPLEX,COMPLEX by FUNCT_2:66; let SFk be Function of COMPLEX,COMPLEX; ::_thesis: ( SFk = Sum (F | (k + 1)) implies Sum (H | (k + 1)) = SFk . x ) assume A21: SFk = Sum (F | (k + 1)) ; ::_thesis: Sum (H | (k + 1)) = SFk . x percases ( len F > k or len F <= k ) ; supposeA22: len F > k ; ::_thesis: Sum (H | (k + 1)) = SFk . x reconsider g2 = FPower ((p . k),k) as Function of COMPLEX,COMPLEX by A1; A23: k + 1 >= 1 by NAT_1:11; k + 1 <= len F by A22, NAT_1:13; then A24: k + 1 in dom F by A23, FINSEQ_3:25; then A25: F /. (k + 1) = F . (k + 1) by PARTFUN1:def_6 .= FPower ((p . ((k + 1) -' 1)),((k + 1) -' 1)) by A11, A12, A24 .= FPower ((p . k),((k + 1) -' 1)) by NAT_D:34 .= FPower ((p . k),k) by NAT_D:34 ; F | (k + 1) = (F | k) ^ <*(F . (k + 1))*> by A22, POLYNOM3:19 .= (F | k) ^ <*(F /. (k + 1))*> by A24, PARTFUN1:def_6 ; then A26: SFk = (Sum (F | k)) + (F /. (k + 1)) by A21, FVSUM_1:71 .= SFk1 + g2 by A3, A25 ; A27: Sum (H | k) = SFk1 . x by A20; A28: dom F = dom H by A11, A16, FINSEQ_1:def_3; then A29: H /. (k + 1) = H . (k + 1) by A24, PARTFUN1:def_6 .= (p . ((k + 1) -' 1)) * ((power F_Complex) . (x1,((k + 1) -' 1))) by A17, A28, A24 .= (p . k) * ((power F_Complex) . (x1,((k + 1) -' 1))) by NAT_D:34 .= (p . k) * ((power F_Complex) . (x1,k)) by NAT_D:34 .= (FPower ((p . k),k)) . x by Def11 ; H | (k + 1) = (H | k) ^ <*(H . (k + 1))*> by A16, A18, A22, POLYNOM3:19 .= (H | k) ^ <*(H /. (k + 1))*> by A28, A24, PARTFUN1:def_6 ; hence Sum (H | (k + 1)) = (Sum (H | k)) + (H /. (k + 1)) by FVSUM_1:71 .= SFk . x by A29, A26, A27, VALUED_1:1 ; ::_thesis: verum end; supposeA30: len F <= k ; ::_thesis: Sum (H | (k + 1)) = SFk . x k <= k + 1 by NAT_1:11; then A31: ( F | (k + 1) = F & H | (k + 1) = H ) by A16, A18, A30, FINSEQ_1:58, XXREAL_0:2; ( F | k = F & H | k = H ) by A16, A18, A30, FINSEQ_1:58; hence Sum (H | (k + 1)) = SFk . x by A20, A21, A31; ::_thesis: verum end; end; end; A32: S2[ 0 ] proof let SFk be Function of COMPLEX,COMPLEX; ::_thesis: ( SFk = Sum (F | 0) implies Sum (H | 0) = SFk . x ) A33: F | 0 = <*> the carrier of L ; assume SFk = Sum (F | 0) ; ::_thesis: Sum (H | 0) = SFk . x then A34: SFk = 0. L by A33, RLVECT_1:43 .= COMPLEX --> 0c ; H | 0 = <*> the carrier of F_Complex ; hence Sum (H | 0) = 0. F_Complex by RLVECT_1:43 .= SFk . x by A34, COMPLFLD:7, FUNCOP_1:7 ; ::_thesis: verum end; A35: for k being Element of NAT holds S2[k] from NAT_1:sch_1(A32, A19); A36: Sum (F | (len F)) = SF by FINSEQ_1:58; thus f . x = Sum H by A15, Def12 .= Sum (H | (len H)) by FINSEQ_1:58 .= SF . x by A16, A18, A35, A36 ; ::_thesis: verum end; defpred S2[ Element of NAT ] means for g being PartFunc of COMPLEX,COMPLEX st g = Sum (F | $1) holds g is_continuous_on COMPLEX ; A37: for k being Element of NAT st S2[k] holds S2[k + 1] proof let k be Element of NAT ; ::_thesis: ( S2[k] implies S2[k + 1] ) reconsider g1 = Sum (F | k) as Function of COMPLEX,COMPLEX by FUNCT_2:66; assume A38: for g being PartFunc of COMPLEX,COMPLEX st g = Sum (F | k) holds g is_continuous_on COMPLEX ; ::_thesis: S2[k + 1] then A39: g1 is_continuous_on COMPLEX ; let g be PartFunc of COMPLEX,COMPLEX; ::_thesis: ( g = Sum (F | (k + 1)) implies g is_continuous_on COMPLEX ) assume A40: g = Sum (F | (k + 1)) ; ::_thesis: g is_continuous_on COMPLEX percases ( len F > k or len F <= k ) ; supposeA41: len F > k ; ::_thesis: g is_continuous_on COMPLEX A42: k + 1 >= 1 by NAT_1:11; k + 1 <= len F by A41, NAT_1:13; then A43: k + 1 in dom F by A42, FINSEQ_3:25; then A44: F /. (k + 1) = F . (k + 1) by PARTFUN1:def_6 .= FPower ((p . ((k + 1) -' 1)),((k + 1) -' 1)) by A11, A12, A43 .= FPower ((p . k),((k + 1) -' 1)) by NAT_D:34 .= FPower ((p . k),k) by NAT_D:34 ; consider g2 being Function of COMPLEX,COMPLEX such that A45: g2 = FPower ((p . k),k) and A46: g2 is_continuous_on COMPLEX by Th70; F | (k + 1) = (F | k) ^ <*(F . (k + 1))*> by A41, POLYNOM3:19 .= (F | k) ^ <*(F /. (k + 1))*> by A43, PARTFUN1:def_6 ; then g = (Sum (F | k)) + (F /. (k + 1)) by A40, FVSUM_1:71 .= g1 + g2 by A3, A44, A45 ; hence g is_continuous_on COMPLEX by A39, A46, CFCONT_1:43; ::_thesis: verum end; supposeA47: len F <= k ; ::_thesis: g is_continuous_on COMPLEX k <= k + 1 by NAT_1:11; then F | (k + 1) = F by A47, FINSEQ_1:58, XXREAL_0:2 .= F | k by A47, FINSEQ_1:58 ; hence g is_continuous_on COMPLEX by A38, A40; ::_thesis: verum end; end; end; A48: S2[ 0 ] proof let g be PartFunc of COMPLEX,COMPLEX; ::_thesis: ( g = Sum (F | 0) implies g is_continuous_on COMPLEX ) A49: F | 0 = <*> the carrier of L ; assume g = Sum (F | 0) ; ::_thesis: g is_continuous_on COMPLEX then g = 0. L by A49, RLVECT_1:43 .= COMPLEX --> 0c ; hence g is_continuous_on COMPLEX by Th63; ::_thesis: verum end; for k being Element of NAT holds S2[k] from NAT_1:sch_1(A48, A37); hence f is_continuous_on COMPLEX by A13, A14, FUNCT_2:63; ::_thesis: verum end; theorem Th72: :: POLYNOM5:72 for p being Polynomial of F_Complex st len p > 2 & |.(p . ((len p) -' 1)).| = 1 holds for F being FinSequence of REAL st len F = len p & ( for n being Element of NAT st n in dom F holds F . n = |.(p . (n -' 1)).| ) holds for z being Element of F_Complex st |.z.| > Sum F holds |.(eval (p,z)).| > |.(p . 0).| + 1 proof let p be Polynomial of F_Complex; ::_thesis: ( len p > 2 & |.(p . ((len p) -' 1)).| = 1 implies for F being FinSequence of REAL st len F = len p & ( for n being Element of NAT st n in dom F holds F . n = |.(p . (n -' 1)).| ) holds for z being Element of F_Complex st |.z.| > Sum F holds |.(eval (p,z)).| > |.(p . 0).| + 1 ) assume that A1: len p > 2 and A2: |.(p . ((len p) -' 1)).| = 1 ; ::_thesis: for F being FinSequence of REAL st len F = len p & ( for n being Element of NAT st n in dom F holds F . n = |.(p . (n -' 1)).| ) holds for z being Element of F_Complex st |.z.| > Sum F holds |.(eval (p,z)).| > |.(p . 0).| + 1 let F be FinSequence of REAL ; ::_thesis: ( len F = len p & ( for n being Element of NAT st n in dom F holds F . n = |.(p . (n -' 1)).| ) implies for z being Element of F_Complex st |.z.| > Sum F holds |.(eval (p,z)).| > |.(p . 0).| + 1 ) assume that A3: len F = len p and A4: for n being Element of NAT st n in dom F holds F . n = |.(p . (n -' 1)).| ; ::_thesis: for z being Element of F_Complex st |.z.| > Sum F holds |.(eval (p,z)).| > |.(p . 0).| + 1 set lF1 = (len F) -' 1; A5: ((len F) -' 1) + 1 = len F by A1, A3, XREAL_1:235, XXREAL_0:2; then A6: F = F | (((len F) -' 1) + 1) by FINSEQ_1:58 .= (F | ((len F) -' 1)) ^ <*(F /. (((len F) -' 1) + 1))*> by A5, FINSEQ_5:82 ; A7: len p > 1 by A1, XXREAL_0:2; then A8: 1 in dom F by A3, FINSEQ_3:25; A9: now__::_thesis:_for_n_being_Element_of_NAT_st_n_in_dom_(F_|_((len_F)_-'_1))_holds_ (F_|_((len_F)_-'_1))_._n_>=_0 let n be Element of NAT ; ::_thesis: ( n in dom (F | ((len F) -' 1)) implies (F | ((len F) -' 1)) . n >= 0 ) A10: dom (F | ((len F) -' 1)) c= dom F by FINSEQ_5:18; assume A11: n in dom (F | ((len F) -' 1)) ; ::_thesis: (F | ((len F) -' 1)) . n >= 0 then (F | ((len F) -' 1)) . n = (F | ((len F) -' 1)) /. n by PARTFUN1:def_6 .= F /. n by A11, FINSEQ_4:70 .= F . n by A11, A10, PARTFUN1:def_6 .= |.(p . (n -' 1)).| by A4, A11, A10 ; hence (F | ((len F) -' 1)) . n >= 0 by COMPLEX1:46; ::_thesis: verum end; A12: len (F | ((len F) -' 1)) = (len F) -' 1 by A5, FINSEQ_1:59, NAT_1:11; |.(p . 0).| >= 0 by COMPLEX1:46; then A13: |.(p . 0).| + 1 >= 0 + 1 by XREAL_1:6; let z be Element of F_Complex; ::_thesis: ( |.z.| > Sum F implies |.(eval (p,z)).| > |.(p . 0).| + 1 ) consider G being FinSequence of the carrier of F_Complex such that A14: eval (p,z) = Sum G and A15: len G = len p and A16: for n being Element of NAT st n in dom G holds G . n = (p . (n -' 1)) * ((power F_Complex) . (z,(n -' 1))) by POLYNOM4:def_2; set lF2 = (len F) -' 2; assume A17: |.z.| > Sum F ; ::_thesis: |.(eval (p,z)).| > |.(p . 0).| + 1 A18: len F in dom F by A7, A3, FINSEQ_3:25; then F /. (((len F) -' 1) + 1) = F . (((len F) -' 1) + 1) by A5, PARTFUN1:def_6 .= 1 by A2, A3, A4, A5, A18 ; then A19: Sum F = (Sum (F | ((len F) -' 1))) + 1 by A6, RVSUM_1:74; A20: len F >= (1 + 1) + 0 by A1, A3; then (len F) -' 1 >= 1 by A5, XREAL_1:6; then A21: 1 in dom (F | ((len F) -' 1)) by A12, FINSEQ_3:25; then (F | ((len F) -' 1)) . 1 = (F | ((len F) -' 1)) /. 1 by PARTFUN1:def_6 .= F /. 1 by A21, FINSEQ_4:70 .= F . 1 by A8, PARTFUN1:def_6 .= |.(p . (1 -' 1)).| by A4, A8 .= |.(p . 0).| by XREAL_1:232 ; then Sum (F | ((len F) -' 1)) >= |.(p . 0).| by A21, A9, Th4; then A22: Sum F >= |.(p . 0).| + 1 by A19, XREAL_1:6; then A23: z <> 0. F_Complex by A17, A13, COMPLFLD:59; G = G | (((len F) -' 1) + 1) by A3, A15, A5, FINSEQ_1:58 .= (G | ((len F) -' 1)) ^ <*(G /. (((len F) -' 1) + 1))*> by A3, A15, A5, FINSEQ_5:82 ; then A24: Sum G = (Sum (G | ((len F) -' 1))) + (G /. (((len F) -' 1) + 1)) by FVSUM_1:71; A25: dom F = dom G by A3, A15, FINSEQ_3:29; then G /. (((len F) -' 1) + 1) = G . (((len F) -' 1) + 1) by A5, A18, PARTFUN1:def_6 .= (p . ((len F) -' 1)) * ((power F_Complex) . (z,((len F) -' 1))) by A16, A5, A18, A25 ; then |.(G /. (((len F) -' 1) + 1)).| = 1 * |.((power F_Complex) . (z,((len F) -' 1))).| by A2, A3, COMPLFLD:71; then A26: |.(eval (p,z)).| >= |.((power F_Complex) . (z,((len F) -' 1))).| - |.(Sum (G | ((len F) -' 1))).| by A14, A24, COMPLFLD:64; 1 = 1 + 0 ; then A27: (len F) - 1 >= 0 by A7, A3, XREAL_1:19; A28: len (F | ((len F) -' 1)) = (len F) -' 1 by A5, FINSEQ_1:59, NAT_1:11 .= len (G | ((len F) -' 1)) by A3, A15, A5, FINSEQ_1:59, NAT_1:11 ; then A29: ( (F | ((len F) -' 1)) | (len (F | ((len F) -' 1))) = F | ((len F) -' 1) & (G | ((len F) -' 1)) | (len (F | ((len F) -' 1))) = G | ((len F) -' 1) ) by FINSEQ_1:58; defpred S1[ Element of NAT ] means |.(Sum ((G | ((len F) -' 1)) | $1)).| <= (Sum ((F | ((len F) -' 1)) | $1)) * |.((power F_Complex) . (z,((len F) -' 2))).|; (len F) - 2 >= 0 by A20, XREAL_1:19; then A30: ((len F) -' 2) + 1 = ((len F) - 2) + 1 by XREAL_0:def_2 .= (len F) -' 1 by A27, XREAL_0:def_2 ; then (power F_Complex) . (z,((len F) -' 1)) = ((power F_Complex) . (z,((len F) -' 2))) * z by GROUP_1:def_7; then A31: |.((power F_Complex) . (z,((len F) -' 1))).| - (|.((power F_Complex) . (z,((len F) -' 2))).| * (Sum (F | ((len F) -' 1)))) = (|.((power F_Complex) . (z,((len F) -' 2))).| * |.z.|) - (|.((power F_Complex) . (z,((len F) -' 2))).| * (Sum (F | ((len F) -' 1)))) by COMPLFLD:71 .= |.((power F_Complex) . (z,((len F) -' 2))).| * (|.z.| - (Sum (F | ((len F) -' 1)))) ; A32: |.z.| > |.(p . 0).| + 1 by A17, A22, XXREAL_0:2; then A33: |.z.| > 1 by A13, XXREAL_0:2; A34: dom (F | ((len F) -' 1)) = dom (G | ((len F) -' 1)) by A28, FINSEQ_3:29; A35: for n being Element of NAT st S1[n] holds S1[n + 1] proof let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) assume A36: |.(Sum ((G | ((len F) -' 1)) | n)).| <= (Sum ((F | ((len F) -' 1)) | n)) * |.((power F_Complex) . (z,((len F) -' 2))).| ; ::_thesis: S1[n + 1] then A37: |.(Sum ((G | ((len F) -' 1)) | n)).| + |.((G | ((len F) -' 1)) /. (n + 1)).| <= ((Sum ((F | ((len F) -' 1)) | n)) * |.((power F_Complex) . (z,((len F) -' 2))).|) + |.((G | ((len F) -' 1)) /. (n + 1)).| by XREAL_1:6; percases ( n + 1 <= len (G | ((len F) -' 1)) or n + 1 > len (G | ((len F) -' 1)) ) ; supposeA38: n + 1 <= len (G | ((len F) -' 1)) ; ::_thesis: S1[n + 1] then n + 1 <= ((len F) -' 2) + 1 by A3, A15, A5, A30, FINSEQ_1:59, NAT_1:11; then n <= (len F) -' 2 by XREAL_1:6; then |.z.| to_power n <= |.z.| to_power ((len F) -' 2) by A33, PRE_FF:8; then |.z.| to_power n <= |.((power F_Complex) . (z,((len F) -' 2))).| by A23, Th7; then A39: ( |.(p . n).| >= 0 & |.((power F_Complex) . (z,n)).| <= |.((power F_Complex) . (z,((len F) -' 2))).| ) by A23, Th7, COMPLEX1:46; (G | ((len F) -' 1)) | (n + 1) = ((G | ((len F) -' 1)) | n) ^ <*((G | ((len F) -' 1)) /. (n + 1))*> by A38, FINSEQ_5:82; then Sum ((G | ((len F) -' 1)) | (n + 1)) = (Sum ((G | ((len F) -' 1)) | n)) + ((G | ((len F) -' 1)) /. (n + 1)) by FVSUM_1:71; then |.(Sum ((G | ((len F) -' 1)) | (n + 1))).| <= |.(Sum ((G | ((len F) -' 1)) | n)).| + |.((G | ((len F) -' 1)) /. (n + 1)).| by COMPLFLD:62; then A40: |.(Sum ((G | ((len F) -' 1)) | (n + 1))).| <= ((Sum ((F | ((len F) -' 1)) | n)) * |.((power F_Complex) . (z,((len F) -' 2))).|) + |.((G | ((len F) -' 1)) /. (n + 1)).| by A37, XXREAL_0:2; A41: dom (G | ((len F) -' 1)) c= dom G by FINSEQ_5:18; n + 1 >= 1 by NAT_1:11; then A42: n + 1 in dom (G | ((len F) -' 1)) by A38, FINSEQ_3:25; then A43: (F | ((len F) -' 1)) /. (n + 1) = F /. (n + 1) by A34, FINSEQ_4:70 .= F . (n + 1) by A25, A42, A41, PARTFUN1:def_6 .= |.(p . ((n + 1) -' 1)).| by A4, A25, A42, A41 .= |.(p . n).| by NAT_D:34 ; (G | ((len F) -' 1)) /. (n + 1) = G /. (n + 1) by A42, FINSEQ_4:70 .= G . (n + 1) by A42, A41, PARTFUN1:def_6 .= (p . ((n + 1) -' 1)) * ((power F_Complex) . (z,((n + 1) -' 1))) by A16, A42, A41 .= (p . n) * ((power F_Complex) . (z,((n + 1) -' 1))) by NAT_D:34 .= (p . n) * ((power F_Complex) . (z,n)) by NAT_D:34 ; then |.((G | ((len F) -' 1)) /. (n + 1)).| = ((F | ((len F) -' 1)) /. (n + 1)) * |.((power F_Complex) . (z,n)).| by A43, COMPLFLD:71; then |.((G | ((len F) -' 1)) /. (n + 1)).| <= ((F | ((len F) -' 1)) /. (n + 1)) * |.((power F_Complex) . (z,((len F) -' 2))).| by A43, A39, XREAL_1:64; then A44: ((Sum ((F | ((len F) -' 1)) | n)) * |.((power F_Complex) . (z,((len F) -' 2))).|) + |.((G | ((len F) -' 1)) /. (n + 1)).| <= ((Sum ((F | ((len F) -' 1)) | n)) * |.((power F_Complex) . (z,((len F) -' 2))).|) + (((F | ((len F) -' 1)) /. (n + 1)) * |.((power F_Complex) . (z,((len F) -' 2))).|) by XREAL_1:6; (F | ((len F) -' 1)) | (n + 1) = ((F | ((len F) -' 1)) | n) ^ <*((F | ((len F) -' 1)) /. (n + 1))*> by A28, A38, FINSEQ_5:82; then Sum ((F | ((len F) -' 1)) | (n + 1)) = (Sum ((F | ((len F) -' 1)) | n)) + ((F | ((len F) -' 1)) /. (n + 1)) by RVSUM_1:74; hence S1[n + 1] by A40, A44, XXREAL_0:2; ::_thesis: verum end; supposeA45: n + 1 > len (G | ((len F) -' 1)) ; ::_thesis: S1[n + 1] then n >= len (G | ((len F) -' 1)) by NAT_1:13; then A46: ( (G | ((len F) -' 1)) | n = G | ((len F) -' 1) & (F | ((len F) -' 1)) | n = F | ((len F) -' 1) ) by A28, FINSEQ_1:58; (G | ((len F) -' 1)) | (n + 1) = G | ((len F) -' 1) by A45, FINSEQ_1:58; hence S1[n + 1] by A28, A36, A45, A46, FINSEQ_1:58; ::_thesis: verum end; end; end; (G | ((len F) -' 1)) | 0 = <*> the carrier of F_Complex ; then A47: S1[ 0 ] by COMPLFLD:57, RLVECT_1:43, RVSUM_1:72; for n being Element of NAT holds S1[n] from NAT_1:sch_1(A47, A35); then |.(Sum (G | ((len F) -' 1))).| <= (Sum (F | ((len F) -' 1))) * |.((power F_Complex) . (z,((len F) -' 2))).| by A29; then |.((power F_Complex) . (z,((len F) -' 1))).| - |.(Sum (G | ((len F) -' 1))).| >= |.((power F_Complex) . (z,((len F) -' 1))).| - ((Sum (F | ((len F) -' 1))) * |.((power F_Complex) . (z,((len F) -' 2))).|) by XREAL_1:13; then A48: |.(eval (p,z)).| >= |.((power F_Complex) . (z,((len F) -' 1))).| - (|.((power F_Complex) . (z,((len F) -' 2))).| * (Sum (F | ((len F) -' 1)))) by A26, XXREAL_0:2; len F >= 2 + 1 by A1, A3, NAT_1:13; then (len F) - 2 >= 1 by XREAL_1:19; then (len F) -' 2 >= 1 by XREAL_0:def_2; then |.z.| to_power ((len F) -' 2) >= |.z.| to_power 1 by A33, PRE_FF:8; then |.((power F_Complex) . (z,((len F) -' 2))).| >= |.z.| to_power 1 by A23, Th7; then |.((power F_Complex) . (z,((len F) -' 2))).| >= |.((power F_Complex) . (z,1)).| by A23, Th7; then A49: |.((power F_Complex) . (z,((len F) -' 2))).| >= |.z.| by GROUP_1:50; ( |.((power F_Complex) . (z,((len F) -' 2))).| >= 0 & |.z.| - (Sum (F | ((len F) -' 1))) > 1 ) by A17, A19, COMPLEX1:46, XREAL_1:20; then |.((power F_Complex) . (z,((len F) -' 2))).| * (|.z.| - (Sum (F | ((len F) -' 1)))) >= |.((power F_Complex) . (z,((len F) -' 2))).| * 1 by XREAL_1:64; then |.(eval (p,z)).| >= |.((power F_Complex) . (z,((len F) -' 2))).| by A48, A31, XXREAL_0:2; then |.(eval (p,z)).| >= |.z.| by A49, XXREAL_0:2; hence |.(eval (p,z)).| > |.(p . 0).| + 1 by A32, XXREAL_0:2; ::_thesis: verum end; theorem Th73: :: POLYNOM5:73 for p being Polynomial of F_Complex st len p > 2 holds ex z0 being Element of F_Complex st for z being Element of F_Complex holds |.(eval (p,z)).| >= |.(eval (p,z0)).| proof defpred S1[ set ] means verum; let p be Polynomial of F_Complex; ::_thesis: ( len p > 2 implies ex z0 being Element of F_Complex st for z being Element of F_Complex holds |.(eval (p,z)).| >= |.(eval (p,z0)).| ) set np = NormPolynomial p; deffunc H1( Element of F_Complex) -> Element of REAL = |.(eval ((NormPolynomial p),$1)).|; reconsider D = { H1(z) where z is Element of F_Complex : S1[z] } as Subset of REAL from DOMAIN_1:sch_8(); set q = lower_bound D; A1: D is bounded_below proof take 0 ; :: according to XXREAL_2:def_9 ::_thesis: 0 is LowerBound of D let b be ext-real number ; :: according to XXREAL_2:def_2 ::_thesis: ( not b in D or 0 <= b ) assume b in D ; ::_thesis: 0 <= b then ex z being Element of F_Complex st b = |.(eval ((NormPolynomial p),z)).| ; hence 0 <= b by COMPLEX1:46; ::_thesis: verum end; defpred S2[ Element of NAT , set ] means ex g1 being Element of F_Complex st ( g1 = $2 & |.(eval ((NormPolynomial p),g1)).| < (lower_bound D) + (1 / ($1 + 1)) ); A2: |.(eval ((NormPolynomial p),(0. F_Complex))).| in D ; A3: for n being Element of NAT ex g being Element of COMPLEX st S2[n,g] proof let n be Element of NAT ; ::_thesis: ex g being Element of COMPLEX st S2[n,g] consider r being real number such that A4: r in D and A5: r < (lower_bound D) + (1 / (n + 1)) by A2, A1, SEQ_4:def_2; consider g1 being Element of F_Complex such that A6: r = |.(eval ((NormPolynomial p),g1)).| by A4; reconsider g = g1 as Element of COMPLEX by COMPLFLD:def_1; take g ; ::_thesis: S2[n,g] take g1 ; ::_thesis: ( g1 = g & |.(eval ((NormPolynomial p),g1)).| < (lower_bound D) + (1 / (n + 1)) ) thus g1 = g ; ::_thesis: |.(eval ((NormPolynomial p),g1)).| < (lower_bound D) + (1 / (n + 1)) thus |.(eval ((NormPolynomial p),g1)).| < (lower_bound D) + (1 / (n + 1)) by A5, A6; ::_thesis: verum end; consider G being Complex_Sequence such that A7: for n being Element of NAT holds S2[n,G . n] from CFCONT_1:sch_1(A3); deffunc H2( Nat) -> Element of REAL = |.((NormPolynomial p) . ($1 -' 1)).|; consider F being FinSequence of REAL such that A8: len F = len (NormPolynomial p) and A9: for n being Nat st n in dom F holds F . n = H2(n) from FINSEQ_2:sch_1(); dom F = Seg (len (NormPolynomial p)) by A8, FINSEQ_1:def_3; then A10: for n being Element of NAT st n in Seg (len (NormPolynomial p)) holds F . n = H2(n) by A9; assume A11: len p > 2 ; ::_thesis: ex z0 being Element of F_Complex st for z being Element of F_Complex holds |.(eval (p,z)).| >= |.(eval (p,z0)).| then A12: len p = ((len p) -' 1) + 1 by XREAL_1:235, XXREAL_0:2; then p . ((len p) -' 1) <> 0. F_Complex by ALGSEQ_1:10; then A13: |.(p . ((len p) -' 1)).| > 0 by COMPLFLD:59; A14: Seg (len (NormPolynomial p)) = dom F by A8, FINSEQ_1:def_3; G is bounded proof take r = (Sum F) + 1; :: according to COMSEQ_2:def_4 ::_thesis: for b1 being Element of NAT holds not r <= |.(G . b1).| let n be Element of NAT ; ::_thesis: not r <= |.(G . n).| consider Gn being Element of F_Complex such that A15: Gn = G . n and A16: |.(eval ((NormPolynomial p),Gn)).| < (lower_bound D) + (1 / (n + 1)) by A7; n + 1 >= 0 + 1 by XREAL_1:6; then A17: 1 / (n + 1) <= 1 by XREAL_1:211; A18: len (NormPolynomial p) = len p by A11, Th57; then A19: (NormPolynomial p) . ((len (NormPolynomial p)) -' 1) = 1_ F_Complex by A11, Th56; |.(G . n).| <= Sum F proof eval ((NormPolynomial p),(0. F_Complex)) = (NormPolynomial p) . 0 by Th31; then |.((NormPolynomial p) . 0).| in D ; then |.((NormPolynomial p) . 0).| >= lower_bound D by A1, SEQ_4:def_2; then A20: |.((NormPolynomial p) . 0).| + 1 >= (lower_bound D) + (1 / (n + 1)) by A17, XREAL_1:7; assume |.(G . n).| > Sum F ; ::_thesis: contradiction then |.(eval ((NormPolynomial p),Gn)).| > |.((NormPolynomial p) . 0).| + 1 by A11, A8, A10, A14, A15, A18, A19, Th72, COMPLFLD:60; hence contradiction by A16, A20, XXREAL_0:2; ::_thesis: verum end; then |.(G . n).| + 0 < r by XREAL_1:8; hence not r <= |.(G . n).| ; ::_thesis: verum end; then consider G1 being Complex_Sequence such that A21: G1 is subsequence of G and A22: G1 is convergent by COMSEQ_3:50; defpred S3[ Element of NAT , set ] means ex G1n being Element of F_Complex st ( G1n = G1 . $1 & $2 = eval ((NormPolynomial p),G1n) ); reconsider z0 = lim G1 as Element of F_Complex by COMPLFLD:def_1; A23: for n being Element of NAT ex g being Element of COMPLEX st S3[n,g] proof let n be Element of NAT ; ::_thesis: ex g being Element of COMPLEX st S3[n,g] reconsider G1n = G1 . n as Element of F_Complex by COMPLFLD:def_1; reconsider g = eval ((NormPolynomial p),G1n) as Element of COMPLEX by COMPLFLD:def_1; take g ; ::_thesis: S3[n,g] take G1n ; ::_thesis: ( G1n = G1 . n & g = eval ((NormPolynomial p),G1n) ) thus G1n = G1 . n ; ::_thesis: g = eval ((NormPolynomial p),G1n) thus g = eval ((NormPolynomial p),G1n) ; ::_thesis: verum end; consider H being Complex_Sequence such that A24: for n being Element of NAT holds S3[n,H . n] from CFCONT_1:sch_1(A23); reconsider enp0 = eval ((NormPolynomial p),z0) as Element of COMPLEX by COMPLFLD:def_1; consider g being Element of COMPLEX such that A25: for p being Real st 0 < p holds ex n being Element of NAT st for m being Element of NAT st n <= m holds |.((G1 . m) - g).| < p by A22, COMSEQ_2:def_5; reconsider g1 = g as Element of F_Complex by COMPLFLD:def_1; reconsider eg = eval ((NormPolynomial p),g1) as Element of COMPLEX by COMPLFLD:def_1; now__::_thesis:_for_p_being_Real_st_0_<_p_holds_ ex_n_being_Element_of_NAT_st_ for_m_being_Element_of_NAT_st_n_<=_m_holds_ |.((H_._m)_-_eg).|_<_p let p be Real; ::_thesis: ( 0 < p implies ex n being Element of NAT st for m being Element of NAT st n <= m holds |.((H . m) - eg).| < p ) consider fPF being Function of COMPLEX,COMPLEX such that A26: fPF = Polynomial-Function (F_Complex,(NormPolynomial p)) and A27: fPF is_continuous_on COMPLEX by Th71; assume 0 < p ; ::_thesis: ex n being Element of NAT st for m being Element of NAT st n <= m holds |.((H . m) - eg).| < p then consider p1 being Real such that A28: 0 < p1 and A29: for x1 being Element of COMPLEX st x1 in COMPLEX & |.(x1 - g).| < p1 holds |.((fPF /. x1) - (fPF /. g)).| < p by A27, CFCONT_1:39; consider n being Element of NAT such that A30: for m being Element of NAT st n <= m holds |.((G1 . m) - g).| < p1 by A25, A28; take n = n; ::_thesis: for m being Element of NAT st n <= m holds |.((H . m) - eg).| < p let m be Element of NAT ; ::_thesis: ( n <= m implies |.((H . m) - eg).| < p ) assume n <= m ; ::_thesis: |.((H . m) - eg).| < p then A31: |.((G1 . m) - g).| < p1 by A30; ex G1m being Element of F_Complex st ( G1m = G1 . m & H . m = eval ((NormPolynomial p),G1m) ) by A24; then A32: H . m = fPF /. (G1 . m) by A26, Def12; eg = fPF /. g by A26, Def12; hence |.((H . m) - eg).| < p by A29, A31, A32; ::_thesis: verum end; then A33: H is convergent by COMSEQ_2:def_5; consider PF being Function of COMPLEX,COMPLEX such that A34: PF = Polynomial-Function (F_Complex,(NormPolynomial p)) and A35: PF is_continuous_on COMPLEX by Th71; now__::_thesis:_for_a_being_Real_st_0_<_a_holds_ ex_n_being_Element_of_NAT_st_ for_m_being_Element_of_NAT_st_n_<=_m_holds_ |.((H_._m)_-_enp0).|_<_a let a be Real; ::_thesis: ( 0 < a implies ex n being Element of NAT st for m being Element of NAT st n <= m holds |.((H . m) - enp0).| < a ) assume 0 < a ; ::_thesis: ex n being Element of NAT st for m being Element of NAT st n <= m holds |.((H . m) - enp0).| < a then consider s being Real such that A36: 0 < s and A37: for x1 being Element of COMPLEX st x1 in COMPLEX & |.(x1 - (lim G1)).| < s holds |.((PF /. x1) - (PF /. (lim G1))).| < a by A35, CFCONT_1:39; consider n being Element of NAT such that A38: for m being Element of NAT st n <= m holds |.((G1 . m) - (lim G1)).| < s by A22, A36, COMSEQ_2:def_6; take n = n; ::_thesis: for m being Element of NAT st n <= m holds |.((H . m) - enp0).| < a let m be Element of NAT ; ::_thesis: ( n <= m implies |.((H . m) - enp0).| < a ) assume n <= m ; ::_thesis: |.((H . m) - enp0).| < a then A39: |.((G1 . m) - (lim G1)).| < s by A38; ex G1m being Element of F_Complex st ( G1m = G1 . m & H . m = eval ((NormPolynomial p),G1m) ) by A24; then A40: PF /. (G1 . m) = H . m by A34, Def12; PF /. (lim G1) = eval ((NormPolynomial p),z0) by A34, Def12; hence |.((H . m) - enp0).| < a by A37, A39, A40; ::_thesis: verum end; then A41: enp0 = lim H by A33, COMSEQ_2:def_6; deffunc H3( Element of NAT ) -> Element of REAL = 1 / ($1 + 1); consider R being Real_Sequence such that A42: for n being Element of NAT holds R . n = H3(n) from SEQ_1:sch_1(); take z0 ; ::_thesis: for z being Element of F_Complex holds |.(eval (p,z)).| >= |.(eval (p,z0)).| let z be Element of F_Complex; ::_thesis: |.(eval (p,z)).| >= |.(eval (p,z0)).| reconsider Rcons = NAT --> |.(eval ((NormPolynomial p),z)).| as Real_Sequence ; consider Nseq being V48() sequence of NAT such that A43: G1 = G * Nseq by A21, VALUED_0:def_17; |.(eval ((NormPolynomial p),z)).| in D ; then A44: |.(eval ((NormPolynomial p),z)).| >= lower_bound D by A1, SEQ_4:def_2; A45: now__::_thesis:_for_n_being_Element_of_NAT_holds_Rcons_._n_>=_(|.H.|_-_R)_._n let n be Element of NAT ; ::_thesis: Rcons . n >= (|.H.| - R) . n consider G1n being Element of F_Complex such that A46: G1n = G1 . n and A47: H . n = eval ((NormPolynomial p),G1n) by A24; consider gNn being Element of F_Complex such that A48: gNn = G . (Nseq . n) and A49: |.(eval ((NormPolynomial p),gNn)).| < (lower_bound D) + (1 / ((Nseq . n) + 1)) by A7; Nseq . n >= n by SEQM_3:14; then (Nseq . n) + 1 >= n + 1 by XREAL_1:6; then 1 / ((Nseq . n) + 1) <= 1 / (n + 1) by XREAL_1:85; then (lower_bound D) + (1 / ((Nseq . n) + 1)) <= (lower_bound D) + (1 / (n + 1)) by XREAL_1:6; then |.(eval ((NormPolynomial p),gNn)).| < (lower_bound D) + (1 / (n + 1)) by A49, XXREAL_0:2; then lower_bound D > |.(eval ((NormPolynomial p),gNn)).| - (1 / (n + 1)) by XREAL_1:19; then A50: ( Rcons . n = |.(eval ((NormPolynomial p),z)).| & |.(eval ((NormPolynomial p),z)).| > |.(eval ((NormPolynomial p),gNn)).| - (1 / (n + 1)) ) by A44, FUNCOP_1:7, XXREAL_0:2; dom (|.H.| - R) = NAT by FUNCT_2:def_1; then (|.H.| - R) . n = (|.H.| . n) - (R . n) by VALUED_1:13 .= (|.H.| . n) - (1 / (n + 1)) by A42 .= |.(eval ((NormPolynomial p),G1n)).| - (1 / (n + 1)) by A47, VALUED_1:18 ; hence Rcons . n >= (|.H.| - R) . n by A43, A46, A48, A50, FUNCT_2:15; ::_thesis: verum end; A51: R is convergent by A42, SEQ_4:28; then |.H.| - R is convergent by A33; then ( Rcons . 0 = |.(eval ((NormPolynomial p),z)).| & lim (|.H.| - R) <= lim Rcons ) by A45, FUNCOP_1:7, SEQ_2:18; then A52: lim (|.H.| - R) <= |.(eval ((NormPolynomial p),z)).| by SEQ_4:25; lim (|.H.| - R) = (lim |.H.|) - (lim R) by A33, A51, SEQ_2:12 .= |.(lim H).| - (lim R) by A33, SEQ_2:27 .= |.(lim H).| - 0 by A42, SEQ_4:29 ; then |.((eval (p,z)) / (p . ((len p) -' 1))).| >= |.(eval ((NormPolynomial p),z0)).| by A11, A52, A41, Th58; then |.((eval (p,z)) / (p . ((len p) -' 1))).| >= |.((eval (p,z0)) / (p . ((len p) -' 1))).| by A11, Th58; then |.(eval (p,z)).| / |.(p . ((len p) -' 1)).| >= |.((eval (p,z0)) / (p . ((len p) -' 1))).| by A12, ALGSEQ_1:10, COMPLFLD:73; then |.(eval (p,z)).| / |.(p . ((len p) -' 1)).| >= |.(eval (p,z0)).| / |.(p . ((len p) -' 1)).| by A12, ALGSEQ_1:10, COMPLFLD:73; hence |.(eval (p,z)).| >= |.(eval (p,z0)).| by A13, XREAL_1:74; ::_thesis: verum end; theorem Th74: :: POLYNOM5:74 for p being Polynomial of F_Complex st len p > 1 holds p is with_roots proof let p be Polynomial of F_Complex; ::_thesis: ( len p > 1 implies p is with_roots ) assume A1: len p > 1 ; ::_thesis: p is with_roots then A2: len p >= 1 + 1 by NAT_1:13; percases ( len p > 2 or len p = 2 ) by A2, XXREAL_0:1; suppose len p > 2 ; ::_thesis: p is with_roots then consider z0 being Element of F_Complex such that A3: for z being Element of F_Complex holds |.(eval (p,z)).| >= |.(eval (p,z0)).| by Th73; set q = Subst (p,<%z0,(1_ F_Complex)%>); defpred S1[ Nat] means ( $1 >= 1 & (Subst (p,<%z0,(1_ F_Complex)%>)) . $1 <> 0. F_Complex ); len <%z0,(1_ F_Complex)%> = 2 by Th40; then A4: len (Subst (p,<%z0,(1_ F_Complex)%>)) = (((2 * (len p)) - (len p)) - 2) + 2 by A1, Th52 .= len p ; A5: ex k being Nat st S1[k] proof (len (Subst (p,<%z0,(1_ F_Complex)%>))) - 1 >= 1 - 1 by A1, A4, XREAL_1:9; then (len (Subst (p,<%z0,(1_ F_Complex)%>))) - 1 = (len (Subst (p,<%z0,(1_ F_Complex)%>))) -' 1 by XREAL_0:def_2; then reconsider k = (len (Subst (p,<%z0,(1_ F_Complex)%>))) - 1 as Element of NAT ; take k ; ::_thesis: S1[k] len (Subst (p,<%z0,(1_ F_Complex)%>)) >= 1 + 1 by A1, A4, NAT_1:13; hence k >= 1 by XREAL_1:19; ::_thesis: (Subst (p,<%z0,(1_ F_Complex)%>)) . k <> 0. F_Complex len (Subst (p,<%z0,(1_ F_Complex)%>)) = k + 1 ; hence (Subst (p,<%z0,(1_ F_Complex)%>)) . k <> 0. F_Complex by ALGSEQ_1:10; ::_thesis: verum end; consider k being Nat such that A6: S1[k] and A7: for n being Nat st S1[n] holds k <= n from NAT_1:sch_5(A5); A8: k + 1 > 1 by A6, NAT_1:13; reconsider k1 = k as non empty Element of NAT by A6, ORDINAL1:def_12; set sq = the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)); deffunc H1( Nat) -> Element of the carrier of F_Complex = ((Subst (p,<%z0,(1_ F_Complex)%>)) . (k1 + $1)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k1 + $1))); consider F2 being FinSequence of the carrier of F_Complex such that A9: len F2 = (len (Subst (p,<%z0,(1_ F_Complex)%>))) -' (k1 + 1) and A10: for n being Nat st n in dom F2 holds F2 . n = H1(n) from FINSEQ_2:sch_1(); k1 < len (Subst (p,<%z0,(1_ F_Complex)%>)) by A6, ALGSEQ_1:8; then A11: (k + 1) + 0 <= len (Subst (p,<%z0,(1_ F_Complex)%>)) by NAT_1:13; then (len (Subst (p,<%z0,(1_ F_Complex)%>))) - (k + 1) >= 0 by XREAL_1:19; then A12: len F2 = (len (Subst (p,<%z0,(1_ F_Complex)%>))) - (k + 1) by A9, XREAL_0:def_2; A13: eval (p,z0) = eval (p,(z0 + (0. F_Complex))) by RLVECT_1:def_4 .= eval (p,(eval (<%z0,(1_ F_Complex)%>,(0. F_Complex)))) by Th47 .= eval ((Subst (p,<%z0,(1_ F_Complex)%>)),(0. F_Complex)) by Th53 ; A14: now__::_thesis:_for_z_being_Element_of_F_Complex_holds_|.(eval_((Subst_(p,<%z0,(1__F_Complex)%>)),z)).|_>=_|.((Subst_(p,<%z0,(1__F_Complex)%>))_._0).| let z be Element of F_Complex; ::_thesis: |.(eval ((Subst (p,<%z0,(1_ F_Complex)%>)),z)).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| eval ((Subst (p,<%z0,(1_ F_Complex)%>)),z) = eval (p,(eval (<%z0,(1_ F_Complex)%>,z))) by Th53 .= eval (p,(z0 + z)) by Th47 ; then |.(eval ((Subst (p,<%z0,(1_ F_Complex)%>)),z)).| >= |.(eval (p,z0)).| by A3; hence |.(eval ((Subst (p,<%z0,(1_ F_Complex)%>)),z)).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by A13, Th31; ::_thesis: verum end; now__::_thesis:_for_c_being_Real_st_0_<_c_&_c_<_1_holds_ c_*_(Sum_|.F2.|)_>=_|.((Subst_(p,<%z0,(1__F_Complex)%>))_._0).| let c be Real; ::_thesis: ( 0 < c & c < 1 implies c * (Sum |.F2.|) >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| ) assume that A15: 0 < c and A16: c < 1 ; ::_thesis: c * (Sum |.F2.|) >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| set z1 = [**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)); consider F1 being FinSequence of the carrier of F_Complex such that A17: eval ((Subst (p,<%z0,(1_ F_Complex)%>)),([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)))) = Sum F1 and A18: len F1 = len (Subst (p,<%z0,(1_ F_Complex)%>)) and A19: for n being Element of NAT st n in dom F1 holds F1 . n = ((Subst (p,<%z0,(1_ F_Complex)%>)) . (n -' 1)) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),(n -' 1))) by POLYNOM4:def_2; A20: dom ((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")) = dom (F1 /^ (k + 1)) by POLYNOM1:def_2; A21: k1 < len F1 by A6, A18, ALGSEQ_1:8; 1 in Seg k by A6, FINSEQ_1:1; then 1 in Seg (len (F1 | k)) by A21, FINSEQ_1:59; then A22: 1 in dom (F1 | k) by FINSEQ_1:def_3; A23: dom (F1 | k) c= dom F1 by FINSEQ_5:18; now__::_thesis:_for_i_being_Element_of_NAT_st_i_in_dom_(F1_|_k)_&_i_<>_1_holds_ (F1_|_k1)_/._i_=_0._F_Complex let i be Element of NAT ; ::_thesis: ( i in dom (F1 | k) & i <> 1 implies (F1 | k1) /. i = 0. F_Complex ) assume that A24: i in dom (F1 | k) and A25: i <> 1 ; ::_thesis: (F1 | k1) /. i = 0. F_Complex A26: 0 + 1 <= i by A24, FINSEQ_3:25; then i > 1 by A25, XXREAL_0:1; then i >= 1 + 1 by NAT_1:13; then i - 1 >= (1 + 1) - 1 by XREAL_1:9; then A27: i -' 1 >= 1 by XREAL_0:def_2; i <= len (F1 | k) by A24, FINSEQ_3:25; then i <= k by A21, FINSEQ_1:59; then i < k + 1 by NAT_1:13; then A28: i - 1 < k by XREAL_1:19; i - 1 >= 0 by A26, XREAL_1:19; then A29: i -' 1 < k by A28, XREAL_0:def_2; thus (F1 | k1) /. i = F1 /. i by A24, FINSEQ_4:70 .= F1 . i by A23, A24, PARTFUN1:def_6 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . (i -' 1)) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),(i -' 1))) by A19, A23, A24 .= (0. F_Complex) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),(i -' 1))) by A7, A27, A29 .= 0. F_Complex by VECTSP_1:7 ; ::_thesis: verum end; then A30: Sum (F1 | k) = (F1 | k1) /. 1 by A22, POLYNOM2:3 .= F1 /. 1 by A22, FINSEQ_4:70 .= F1 . 1 by A22, A23, PARTFUN1:def_6 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . (1 -' 1)) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),(1 -' 1))) by A19, A22, A23 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),(1 -' 1))) by XREAL_1:232 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),0)) by XREAL_1:232 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * (1_ F_Complex) by GROUP_1:def_7 .= (Subst (p,<%z0,(1_ F_Complex)%>)) . 0 by GROUP_1:def_4 ; k + 1 in Seg (len F1) by A8, A11, A18, FINSEQ_1:1; then A31: k + 1 in dom F1 by FINSEQ_1:def_3; then A32: F1 . (k + 1) = F1 /. (k + 1) by PARTFUN1:def_6; set gc = (Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]; A33: c to_power (k + 1) > 0 by A15, POWER:34; then A34: Sum (F1 /^ (k + 1)) = ([**(c to_power (k + 1)),0**] * (Sum (F1 /^ (k + 1)))) / [**(c to_power (k + 1)),0**] by COMPLFLD:7, COMPLFLD:30 .= [**(c to_power (k + 1)),0**] * ((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]) by A33, COMPLFLD:7, COMPLFLD:28 ; A35: F1 /. (k + 1) = F1 . (k + 1) by A31, PARTFUN1:def_6 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . ((k + 1) -' 1)) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),((k + 1) -' 1))) by A19, A31 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),((k + 1) -' 1))) by NAT_D:34 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),k1)) by NAT_D:34 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1) * (((power F_Complex) . ([**c,0**],k1)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),k1))) by GROUP_1:52 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1) * (((power F_Complex) . ([**c,0**],k1)) * (- (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)))) by COMPLFLD:def_2 .= (((Subst (p,<%z0,(1_ F_Complex)%>)) . k1) * (- (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)))) * ((power F_Complex) . ([**c,0**],k1)) .= (((Subst (p,<%z0,(1_ F_Complex)%>)) . k1) * ((- ((Subst (p,<%z0,(1_ F_Complex)%>)) . 0)) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))) * ((power F_Complex) . ([**c,0**],k1)) by A6, COMPLFLD:42 .= ((((Subst (p,<%z0,(1_ F_Complex)%>)) . k1) * (- ((Subst (p,<%z0,(1_ F_Complex)%>)) . 0))) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)) * ((power F_Complex) . ([**c,0**],k1)) by A6, COMPLFLD:28 .= (- ((Subst (p,<%z0,(1_ F_Complex)%>)) . 0)) * ((power F_Complex) . ([**c,0**],k1)) by A6, COMPLFLD:30 .= (- ((Subst (p,<%z0,(1_ F_Complex)%>)) . 0)) * [**(c to_power k),0**] by A15, HAHNBAN1:29 ; A36: |.((((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * ((1_ F_Complex) - [**(c to_power k),0**])) + ([**(c to_power (k + 1)),0**] * ((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]))).| <= |.(((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * ((1_ F_Complex) - [**(c to_power k),0**])).| + |.([**(c to_power (k + 1)),0**] * ((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**])).| by COMPLFLD:62; F1 = ((F1 | ((k + 1) -' 1)) ^ <*(F1 . (k + 1))*>) ^ (F1 /^ (k + 1)) by A8, A11, A18, POLYNOM4:1; then Sum F1 = (Sum ((F1 | ((k + 1) -' 1)) ^ <*(F1 /. (k + 1))*>)) + (Sum (F1 /^ (k + 1))) by A32, RLVECT_1:41 .= ((Sum (F1 | ((k + 1) -' 1))) + (Sum <*(F1 /. (k + 1))*>)) + (Sum (F1 /^ (k + 1))) by RLVECT_1:41 .= ((Sum (F1 | k)) + (Sum <*(F1 /. (k + 1))*>)) + (Sum (F1 /^ (k + 1))) by NAT_D:34 .= (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) + ((- ((Subst (p,<%z0,(1_ F_Complex)%>)) . 0)) * [**(c to_power k),0**])) + (Sum (F1 /^ (k + 1))) by A30, A35, RLVECT_1:44 .= (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) + (- (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * [**(c to_power k),0**]))) + (Sum (F1 /^ (k + 1))) by VECTSP_1:9 .= ((((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * (1_ F_Complex)) - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * [**(c to_power k),0**])) + (Sum (F1 /^ (k + 1))) by VECTSP_1:def_4 .= (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * ((1_ F_Complex) - [**(c to_power k),0**])) + ([**(c to_power (k + 1)),0**] * ((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**])) by A34, VECTSP_1:11 ; then |.((((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * ((1_ F_Complex) - [**(c to_power k),0**])) + ([**(c to_power (k + 1)),0**] * ((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]))).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by A14, A17; then |.(((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) * ((1_ F_Complex) - [**(c to_power k),0**])).| + |.([**(c to_power (k + 1)),0**] * ((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**])).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by A36, XXREAL_0:2; then (|.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| * |.((1_ F_Complex) - [**(c to_power k),0**]).|) + |.([**(c to_power (k + 1)),0**] * ((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**])).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by COMPLFLD:71; then A37: (|.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| * |.((1_ F_Complex) - [**(c to_power k),0**]).|) + (|.[**(c to_power (k + 1)),0**].| * |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).|) >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by COMPLFLD:71; 0 + (c to_power k1) <= 1 by A15, A16, TBSP_1:2; then A38: 1 - (c to_power k) >= 0 by XREAL_1:19; A39: c to_power k > 0 by A15, POWER:34; A40: len |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| = len ((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")) by Def1 .= len (F1 /^ (k + 1)) by A20, FINSEQ_3:29 .= (len F1) - (k + 1) by A11, A18, RFINSEQ:def_1 .= len |.F2.| by A12, A18, Def1 ; now__::_thesis:_for_i_being_Element_of_NAT_st_i_in_dom_|.((F1_/^_(k_+_1))_*_([**(c_to_power_(k_+_1)),0**]_")).|_holds_ |.((F1_/^_(k_+_1))_*_([**(c_to_power_(k_+_1)),0**]_")).|_._i_<=_|.F2.|_._i let i be Element of NAT ; ::_thesis: ( i in dom |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| implies |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| . i <= |.F2.| . i ) A41: ((k + 1) + i) -' 1 = ((k + i) + 1) - 1 by XREAL_0:def_2 .= k + i ; assume A42: i in dom |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| ; ::_thesis: |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| . i <= |.F2.| . i then A43: i in Seg (len |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).|) by FINSEQ_1:def_3; then i <= len |.F2.| by A40, FINSEQ_1:1; then i <= (len F1) - (k + 1) by A12, A18, Def1; then ( (k + i) + 1 >= 0 + 1 & (k + 1) + i <= len F1 ) by XREAL_1:6, XREAL_1:19; then A44: (k + 1) + i in dom F1 by FINSEQ_3:25; i >= 0 + 1 by A43, FINSEQ_1:1; then A45: i - 1 >= 0 by XREAL_1:19; c to_power (i -' 1) <= 1 by A15, A16, TBSP_1:2; then A46: c to_power (i - 1) <= 1 by A45, XREAL_0:def_2; A47: c to_power (k + i) > 0 by A15, POWER:34; A48: (k + i) - (k + 1) = i - 1 ; i in Seg (len ((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] "))) by A43, Def1; then A49: i in dom ((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")) by FINSEQ_1:def_3; then A50: (F1 /^ (k + 1)) /. i = (F1 /^ (k + 1)) . i by A20, PARTFUN1:def_6 .= F1 . ((k + 1) + i) by A11, A18, A20, A49, RFINSEQ:def_1 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . (((k + 1) + i) -' 1)) * ((power F_Complex) . (([**c,0**] * the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1))),(((k + 1) + i) -' 1))) by A19, A44 .= ((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * (((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i))) * ((power F_Complex) . ([**c,0**],(k + i)))) by A41, GROUP_1:52 .= (((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))) * ((power F_Complex) . ([**c,0**],(k + i))) ; A51: len F2 = len |.F2.| by Def1; then A52: dom F2 = dom |.F2.| by FINSEQ_3:29; A53: |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| . i = |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| /. i by A42, PARTFUN1:def_6 .= |.(((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")) /. i).| by A49, Def1 .= |.(((F1 /^ (k + 1)) /. i) * ([**(c to_power (k + 1)),0**] ")).| by A20, A49, POLYNOM1:def_2 .= |.((F1 /^ (k + 1)) /. i).| * |.([**(c to_power (k + 1)),0**] ").| by COMPLFLD:71 .= |.((((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))) * ((power F_Complex) . ([**c,0**],(k + i)))).| * ((abs (c to_power (k + 1))) ") by A33, A50, COMPLFLD:7, COMPLFLD:72 .= (|.(((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))).| * |.((power F_Complex) . ([**c,0**],(k + i))).|) * ((abs (c to_power (k + 1))) ") by COMPLFLD:71 .= (|.(((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))).| * |.[**(c to_power (k + i)),0**].|) * ((abs (c to_power (k + 1))) ") by A15, HAHNBAN1:29 .= (|.(((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))).| * (c to_power (k + i))) * ((abs (c to_power (k + 1))) ") by A47, ABSVALUE:def_1 .= (|.(((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))).| * (c to_power (k + i))) * ((c to_power (k + 1)) ") by A33, ABSVALUE:def_1 .= |.(((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))).| * ((c to_power (k + i)) * ((c to_power (k + 1)) ")) .= |.(((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))).| * ((c to_power (k + i)) / (c to_power (k + 1))) .= |.(((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i)))).| * (c to_power (i - 1)) by A15, A48, POWER:29 ; A54: i in dom F2 by A40, A43, A51, FINSEQ_1:def_3; then ((Subst (p,<%z0,(1_ F_Complex)%>)) . (k + i)) * ((power F_Complex) . ( the CRoot of k1, - (((Subst (p,<%z0,(1_ F_Complex)%>)) . 0) / ((Subst (p,<%z0,(1_ F_Complex)%>)) . k1)),(k + i))) = F2 . i by A10 .= F2 /. i by A54, PARTFUN1:def_6 ; then |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| . i <= |.(F2 /. i).| by A46, A53, COMPLEX1:46, XREAL_1:153; then |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| . i <= |.F2.| /. i by A54, Def1; hence |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| . i <= |.F2.| . i by A52, A54, PARTFUN1:def_6; ::_thesis: verum end; then A55: Sum |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| <= Sum |.F2.| by A40, INTEGRA5:3; |.((1_ F_Complex) - [**(c to_power k),0**]).| = |.([**1,0**] - [**(c to_power k),0**]).| by COMPLEX1:def_4, COMPLFLD:8 .= |.[**(1 - (c to_power k1)),(0 - 0)**].| by Th6 .= 1 - (c to_power k) by A38, ABSVALUE:def_1 ; then |.[**(c to_power (k + 1)),0**].| * |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).| >= (|.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| * 1) - (|.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| * (1 - (c to_power k))) by A37, XREAL_1:20; then (c to_power (k + 1)) * |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| * (c to_power k) by A33, ABSVALUE:def_1; then ((c to_power (k + 1)) * |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).|) / (c to_power k) >= (|.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| * (c to_power k)) / (c to_power k) by A39, XREAL_1:72; then ((c to_power (k + 1)) / (c to_power k)) * |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by A39, XCMPLX_1:89; then (c to_power ((k + 1) - k)) * |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by A15, POWER:29; then A56: c * |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).| >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by POWER:25; (Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**] = (Sum (F1 /^ (k + 1))) * ([**(c to_power (k + 1)),0**] ") by VECTSP_1:def_11 .= Sum ((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")) by POLYNOM1:13 ; then |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).| <= Sum |.((F1 /^ (k + 1)) * ([**(c to_power (k + 1)),0**] ")).| by Th14; then |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).| <= Sum |.F2.| by A55, XXREAL_0:2; then c * |.((Sum (F1 /^ (k + 1))) / [**(c to_power (k + 1)),0**]).| <= c * (Sum |.F2.|) by A15, XREAL_1:64; hence c * (Sum |.F2.|) >= |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| by A56, XXREAL_0:2; ::_thesis: verum end; then |.((Subst (p,<%z0,(1_ F_Complex)%>)) . 0).| <= 0 by Lm1; then A57: (Subst (p,<%z0,(1_ F_Complex)%>)) . 0 = 0. F_Complex by COMPLFLD:59; ex x being Element of F_Complex st x is_a_root_of p proof take z0 ; ::_thesis: z0 is_a_root_of p eval (p,z0) = 0. F_Complex by A13, A57, Th31; hence z0 is_a_root_of p by Def6; ::_thesis: verum end; hence p is with_roots by Def7; ::_thesis: verum end; supposeA58: len p = 2 ; ::_thesis: p is with_roots set np = NormPolynomial p; A59: (len p) -' 1 = 2 - 1 by A58, XREAL_0:def_2; A60: len (NormPolynomial p) = len p by A58, Th57; A61: now__::_thesis:_for_k_being_Nat_st_k_<_len_(NormPolynomial_p)_holds_ (NormPolynomial_p)_._k_=_<%((NormPolynomial_p)_._0),(1__F_Complex)%>_._k let k be Nat; ::_thesis: ( k < len (NormPolynomial p) implies (NormPolynomial p) . b1 = <%((NormPolynomial p) . 0),(1_ F_Complex)%> . b1 ) assume A62: k < len (NormPolynomial p) ; ::_thesis: (NormPolynomial p) . b1 = <%((NormPolynomial p) . 0),(1_ F_Complex)%> . b1 percases ( k = 0 or k = 1 ) by A58, A60, A62, NAT_1:23; suppose k = 0 ; ::_thesis: (NormPolynomial p) . b1 = <%((NormPolynomial p) . 0),(1_ F_Complex)%> . b1 hence (NormPolynomial p) . k = <%((NormPolynomial p) . 0),(1_ F_Complex)%> . k by Th38; ::_thesis: verum end; supposeA63: k = 1 ; ::_thesis: (NormPolynomial p) . b1 = <%((NormPolynomial p) . 0),(1_ F_Complex)%> . b1 hence (NormPolynomial p) . k = 1_ F_Complex by A58, A59, Th56 .= <%((NormPolynomial p) . 0),(1_ F_Complex)%> . k by A63, Th38 ; ::_thesis: verum end; end; end; len <%((NormPolynomial p) . 0),(1_ F_Complex)%> = 2 by Th40; then A64: NormPolynomial p = <%((NormPolynomial p) . 0),(1_ F_Complex)%> by A58, A61, Th57, ALGSEQ_1:12; ex x being Element of F_Complex st x is_a_root_of NormPolynomial p proof take z0 = - ((NormPolynomial p) . 0); ::_thesis: z0 is_a_root_of NormPolynomial p eval ((NormPolynomial p),z0) = ((NormPolynomial p) . 0) + z0 by A64, Th47 .= 0. F_Complex by RLVECT_1:5 ; hence z0 is_a_root_of NormPolynomial p by Def6; ::_thesis: verum end; then NormPolynomial p is with_roots by Def7; hence p is with_roots by A58, Th60; ::_thesis: verum end; end; end; registration cluster F_Complex -> algebraic-closed ; coherence F_Complex is algebraic-closed by Def8, Th74; end; registration cluster non empty non degenerated right_complementable almost_left_invertible Abelian add-associative right_zeroed unital associative commutative right_unital well-unital distributive left_unital algebraic-closed for doubleLoopStr ; existence ex b1 being non empty well-unital doubleLoopStr st ( b1 is algebraic-closed & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is Abelian & b1 is commutative & b1 is associative & b1 is distributive & b1 is almost_left_invertible & not b1 is degenerated ) proof take F_Complex ; ::_thesis: ( F_Complex is algebraic-closed & F_Complex is add-associative & F_Complex is right_zeroed & F_Complex is right_complementable & F_Complex is Abelian & F_Complex is commutative & F_Complex is associative & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) thus ( F_Complex is algebraic-closed & F_Complex is add-associative & F_Complex is right_zeroed & F_Complex is right_complementable & F_Complex is Abelian & F_Complex is commutative & F_Complex is associative & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) ; ::_thesis: verum end; end;