:: Predicate Calculus for Boolean Valued Functions, { VI } :: by Shunichi Kobayashi :: :: Received October 19, 1999 :: Copyright (c) 1999-2012 Association of Mizar Users begin theorem Th1: :: BVFUNC14:1 for Y being non empty set for z being Element of Y for PA, PB being a_partition of Y holds EqClass (z,(PA '/\' PB)) = (EqClass (z,PA)) /\ (EqClass (z,PB)) proofend; theorem :: BVFUNC14:2 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B being a_partition of Y st G = {A,B} & A <> B holds '/\' G = A '/\' B proofend; Lm1: for B, C, D, b, c, d being set holds dom (((B .--> b) +* (C .--> c)) +* (D .--> d)) = {B,C,D} proofend; Lm2: for f being Function for C, D, c, d being set st C <> D holds ((f +* (C .--> c)) +* (D .--> d)) . C = c proofend; Lm3: for B, C, D, b, c, d being set st B <> C & D <> B holds (((B .--> b) +* (C .--> c)) +* (D .--> d)) . B = b proofend; Lm4: for B, C, D, b, c, d being set for h being Function st h = ((B .--> b) +* (C .--> c)) +* (D .--> d) holds rng h = {(h . B),(h . C),(h . D)} proofend; theorem :: BVFUNC14:3 for Y being non empty set for G being Subset of (PARTITIONS Y) for B, C, D being a_partition of Y st G = {B,C,D} & B <> C & C <> D & D <> B holds '/\' G = (B '/\' C) '/\' D proofend; theorem Th4: :: BVFUNC14:4 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C being a_partition of Y st G = {A,B,C} & A <> B & C <> A holds CompF (A,G) = B '/\' C proofend; theorem Th5: :: BVFUNC14:5 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C being a_partition of Y st G = {A,B,C} & A <> B & B <> C holds CompF (B,G) = C '/\' A proofend; theorem :: BVFUNC14:6 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C being a_partition of Y st G = {A,B,C} & B <> C & C <> A holds CompF (C,G) = A '/\' B proofend; theorem Th7: :: BVFUNC14:7 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> B & A <> C & A <> D holds CompF (A,G) = (B '/\' C) '/\' D proofend; theorem Th8: :: BVFUNC14:8 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> B & B <> C & B <> D holds CompF (B,G) = (A '/\' C) '/\' D proofend; theorem :: BVFUNC14:9 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> C & B <> C & C <> D holds CompF (C,G) = (A '/\' B) '/\' D proofend; theorem :: BVFUNC14:10 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> D & B <> D & C <> D holds CompF (D,G) = (A '/\' C) '/\' B proofend; theorem :: BVFUNC14:11 for B, C, D, b, c, d being set holds dom (((B .--> b) +* (C .--> c)) +* (D .--> d)) = {B,C,D} by Lm1; theorem :: BVFUNC14:12 for f being Function for C, D, c, d being set st C <> D holds ((f +* (C .--> c)) +* (D .--> d)) . C = c by Lm2; theorem :: BVFUNC14:13 for B, C, D, b, c, d being set st B <> C & D <> B holds (((B .--> b) +* (C .--> c)) +* (D .--> d)) . B = b by Lm3; theorem :: BVFUNC14:14 for B, C, D, b, c, d being set for h being Function st h = ((B .--> b) +* (C .--> c)) +* (D .--> d) holds rng h = {(h . B),(h . C),(h . D)} by Lm4; :: from BVFUNC20 theorem Th15: :: BVFUNC14:15 for Y being non empty set for A, B, C, D being a_partition of Y for h being Function for A9, B9, C9, D9 being set st A <> B & A <> C & A <> D & B <> C & B <> D & C <> D & h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds ( h . B = B9 & h . C = C9 & h . D = D9 ) proofend; theorem Th16: :: BVFUNC14:16 for A, B, C, D being set for h being Function for A9, B9, C9, D9 being set st h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds dom h = {A,B,C,D} proofend; theorem Th17: :: BVFUNC14:17 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D being a_partition of Y for h being Function for A9, B9, C9, D9 being set st G = {A,B,C,D} & h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds rng h = {(h . A),(h . B),(h . C),(h . D)} proofend; theorem :: BVFUNC14:18 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D being a_partition of Y for z, u being Element of Y for h being Function st G is independent & G = {A,B,C,D} & A <> B & A <> C & A <> D & B <> C & B <> D & C <> D holds EqClass (u,((B '/\' C) '/\' D)) meets EqClass (z,A) proofend; theorem :: BVFUNC14:19 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C,D} & A <> B & A <> C & A <> D & B <> C & B <> D & C <> D & EqClass (z,(C '/\' D)) = EqClass (u,(C '/\' D)) holds EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G))) proofend; theorem :: BVFUNC14:20 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C} & A <> B & B <> C & C <> A & EqClass (z,C) = EqClass (u,C) holds EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G))) proofend; theorem Th21: :: BVFUNC14:21 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E holds CompF (A,G) = ((B '/\' C) '/\' D) '/\' E proofend; theorem Th22: :: BVFUNC14:22 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> B & B <> C & B <> D & B <> E holds CompF (B,G) = ((A '/\' C) '/\' D) '/\' E proofend; theorem Th23: :: BVFUNC14:23 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> C & B <> C & C <> D & C <> E holds CompF (C,G) = ((A '/\' B) '/\' D) '/\' E proofend; theorem Th24: :: BVFUNC14:24 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> D & B <> D & C <> D & D <> E holds CompF (D,G) = ((A '/\' B) '/\' C) '/\' E proofend; theorem :: BVFUNC14:25 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> E & B <> E & C <> E & D <> E holds CompF (E,G) = ((A '/\' B) '/\' C) '/\' D proofend; theorem Th26: :: BVFUNC14:26 for A, B, C, D, E being set for h being Function for A9, B9, C9, D9, E9 being set st A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E & h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds ( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 ) proofend; theorem Th27: :: BVFUNC14:27 for A, B, C, D, E being set for h being Function for A9, B9, C9, D9, E9 being set st h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds dom h = {A,B,C,D,E} proofend; theorem Th28: :: BVFUNC14:28 for A, B, C, D, E being set for h being Function for A9, B9, C9, D9, E9 being set st h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds rng h = {(h . A),(h . B),(h . C),(h . D),(h . E)} proofend; theorem :: BVFUNC14:29 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E being a_partition of Y for z, u being Element of Y for h being Function st G is independent & G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E holds EqClass (u,(((B '/\' C) '/\' D) '/\' E)) meets EqClass (z,A) proofend; theorem :: BVFUNC14:30 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E & EqClass (z,((C '/\' D) '/\' E)) = EqClass (u,((C '/\' D) '/\' E)) holds EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G))) proofend; :: moved from BVFUNC23, AG 4.01.2006 theorem Th31: :: BVFUNC14:31 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds CompF (A,G) = (((B '/\' C) '/\' D) '/\' E) '/\' F proofend; theorem Th32: :: BVFUNC14:32 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds CompF (B,G) = (((A '/\' C) '/\' D) '/\' E) '/\' F proofend; theorem Th33: :: BVFUNC14:33 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds CompF (C,G) = (((A '/\' B) '/\' D) '/\' E) '/\' F proofend; theorem Th34: :: BVFUNC14:34 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds CompF (D,G) = (((A '/\' B) '/\' C) '/\' E) '/\' F proofend; theorem Th35: :: BVFUNC14:35 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds CompF (E,G) = (((A '/\' B) '/\' C) '/\' D) '/\' F proofend; theorem :: BVFUNC14:36 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds CompF (F,G) = (((A '/\' B) '/\' C) '/\' D) '/\' E proofend; theorem Th37: :: BVFUNC14:37 for A, B, C, D, E, F being set for h being Function for A9, B9, C9, D9, E9, F9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F & h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds ( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 ) proofend; theorem Th38: :: BVFUNC14:38 for A, B, C, D, E, F being set for h being Function for A9, B9, C9, D9, E9, F9 being set st h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds dom h = {A,B,C,D,E,F} proofend; theorem Th39: :: BVFUNC14:39 for A, B, C, D, E, F being set for h being Function for A9, B9, C9, D9, E9, F9 being set st h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F)} proofend; theorem :: BVFUNC14:40 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F being a_partition of Y for z, u being Element of Y for h being Function st G is independent & G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F)) meets EqClass (z,A) proofend; theorem :: BVFUNC14:41 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F being a_partition of Y for z, u being Element of Y for h being Function st G is independent & G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F & EqClass (z,(((C '/\' D) '/\' E) '/\' F)) = EqClass (u,(((C '/\' D) '/\' E) '/\' F)) holds EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G))) proofend; begin theorem Th42: :: BVFUNC14:42 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds CompF (A,G) = ((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J proofend; theorem Th43: :: BVFUNC14:43 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds CompF (B,G) = ((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J proofend; theorem Th44: :: BVFUNC14:44 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds CompF (C,G) = ((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J proofend; theorem Th45: :: BVFUNC14:45 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds CompF (D,G) = ((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J proofend; theorem Th46: :: BVFUNC14:46 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds CompF (E,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J proofend; theorem Th47: :: BVFUNC14:47 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds CompF (F,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J proofend; theorem :: BVFUNC14:48 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds CompF (J,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F proofend; theorem Th49: :: BVFUNC14:49 for A, B, C, D, E, F, J being set for h being Function for A9, B9, C9, D9, E9, F9, J9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J & h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds ( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 ) proofend; theorem Th50: :: BVFUNC14:50 for A, B, C, D, E, F, J being set for h being Function for A9, B9, C9, D9, E9, F9, J9 being set st h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds dom h = {A,B,C,D,E,F,J} proofend; theorem Th51: :: BVFUNC14:51 for A, B, C, D, E, F, J being set for h being Function for A9, B9, C9, D9, E9, F9, J9 being set st h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J)} proofend; theorem :: BVFUNC14:52 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J)) meets EqClass (z,A) proofend; theorem :: BVFUNC14:53 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J & EqClass (z,((((C '/\' D) '/\' E) '/\' F) '/\' J)) = EqClass (u,((((C '/\' D) '/\' E) '/\' F) '/\' J)) holds EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G))) proofend; theorem Th54: :: BVFUNC14:54 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds CompF (A,G) = (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M proofend; theorem Th55: :: BVFUNC14:55 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds CompF (B,G) = (((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M proofend; theorem Th56: :: BVFUNC14:56 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds CompF (C,G) = (((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M proofend; theorem Th57: :: BVFUNC14:57 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds CompF (D,G) = (((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M proofend; theorem Th58: :: BVFUNC14:58 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds CompF (E,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M proofend; theorem Th59: :: BVFUNC14:59 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds CompF (F,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M proofend; theorem Th60: :: BVFUNC14:60 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds CompF (J,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M proofend; theorem :: BVFUNC14:61 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds CompF (M,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J proofend; theorem Th62: :: BVFUNC14:62 for A, B, C, D, E, F, J, M being set for h being Function for A9, B9, C9, D9, E9, F9, J9, M9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M & h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds ( h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 ) proofend; theorem Th63: :: BVFUNC14:63 for A, B, C, D, E, F, J, M being set for h being Function for A9, B9, C9, D9, E9, F9, J9, M9 being set st h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds dom h = {A,B,C,D,E,F,J,M} proofend; theorem Th64: :: BVFUNC14:64 for A, B, C, D, E, F, J, M being set for h being Function for A9, B9, C9, D9, E9, F9, J9, M9 being set st h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M)} proofend; theorem :: BVFUNC14:65 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds (EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) /\ (EqClass (z,A)) <> {} proofend; theorem :: BVFUNC14:66 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M & EqClass (z,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) = EqClass (u,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) holds EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G))) proofend; Lm5: for x1, x2, x3, x4, x5, x6, x7, x8, x9 being set holds {x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4} \/ {x5,x6,x7,x8,x9} proofend; theorem Th67: :: BVFUNC14:67 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (A,G) = ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N proofend; theorem Th68: :: BVFUNC14:68 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (B,G) = ((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N proofend; theorem Th69: :: BVFUNC14:69 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (C,G) = ((((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N proofend; theorem Th70: :: BVFUNC14:70 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (D,G) = ((((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N proofend; theorem Th71: :: BVFUNC14:71 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (E,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M) '/\' N proofend; theorem Th72: :: BVFUNC14:72 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (F,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M) '/\' N proofend; theorem Th73: :: BVFUNC14:73 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (J,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M) '/\' N proofend; theorem Th74: :: BVFUNC14:74 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (M,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' N proofend; theorem :: BVFUNC14:75 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds CompF (N,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M proofend; theorem Th76: :: BVFUNC14:76 for A, B, C, D, E, F, J, M, N being set for h being Function for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N & h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds ( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 & h . M = M9 & h . N = N9 ) proofend; theorem Th77: :: BVFUNC14:77 for A, B, C, D, E, F, J, M, N being set for h being Function for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds dom h = {A,B,C,D,E,F,J,M,N} proofend; theorem Th78: :: BVFUNC14:78 for A, B, C, D, E, F, J, M, N being set for h being Function for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M),(h . N)} proofend; theorem :: BVFUNC14:79 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds (EqClass (u,(((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) /\ (EqClass (z,A)) <> {} proofend; theorem :: BVFUNC14:80 for Y being non empty set for G being Subset of (PARTITIONS Y) for A, B, C, D, E, F, J, M, N being a_partition of Y for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N & EqClass (z,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) = EqClass (u,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) holds EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G))) proofend;