:: Propositional Calculus for Boolean Valued Functions, {VII } :: by Shunichi Kobayashi :: :: Received February 6, 2003 :: Copyright (c) 2003-2012 Association of Mizar Users begin theorem :: BVFUNC25:1 for Y being non empty set for a, b being Function of Y,BOOLEAN holds 'not' (a 'imp' b) = a '&' ('not' b) proofend; theorem Th2: :: BVFUNC25:2 for Y being non empty set for b, a being Function of Y,BOOLEAN holds (('not' b) 'imp' ('not' a)) 'imp' (a 'imp' b) = I_el Y proofend; theorem Th3: :: BVFUNC25:3 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'imp' b = ('not' b) 'imp' ('not' a) proofend; theorem :: BVFUNC25:4 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'eqv' b = ('not' a) 'eqv' ('not' b) proofend; theorem Th5: :: BVFUNC25:5 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'imp' b = a 'imp' (a '&' b) proofend; theorem :: BVFUNC25:6 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'eqv' b = (a 'or' b) 'imp' (a '&' b) proofend; theorem :: BVFUNC25:7 for Y being non empty set for a being Function of Y,BOOLEAN holds a 'eqv' ('not' a) = O_el Y proofend; theorem :: BVFUNC25:8 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'imp' (b 'imp' c) = b 'imp' (a 'imp' c) proofend; theorem :: BVFUNC25:9 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'imp' (b 'imp' c) = (a 'imp' b) 'imp' (a 'imp' c) proofend; theorem :: BVFUNC25:10 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'eqv' b = a 'xor' ('not' b) proofend; theorem :: BVFUNC25:11 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a '&' (b 'xor' c) = (a '&' b) 'xor' (a '&' c) proofend; theorem :: BVFUNC25:12 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'eqv' b = 'not' (a 'xor' b) proofend; theorem :: BVFUNC25:13 for Y being non empty set for a being Function of Y,BOOLEAN holds a 'xor' a = O_el Y proofend; theorem :: BVFUNC25:14 for Y being non empty set for a being Function of Y,BOOLEAN holds a 'xor' ('not' a) = I_el Y proofend; theorem :: BVFUNC25:15 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) 'imp' (b 'imp' a) = b 'imp' a proofend; theorem Th16: :: BVFUNC25:16 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'or' b) '&' (('not' a) 'or' ('not' b)) = (('not' a) '&' b) 'or' (a '&' ('not' b)) proofend; theorem Th17: :: BVFUNC25:17 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a '&' b) 'or' (('not' a) '&' ('not' b)) = (('not' a) 'or' b) '&' (a 'or' ('not' b)) proofend; theorem :: BVFUNC25:18 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'xor' (b 'xor' c) = (a 'xor' b) 'xor' c proofend; theorem :: BVFUNC25:19 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'eqv' (b 'eqv' c) = (a 'eqv' b) 'eqv' c proofend; theorem :: BVFUNC25:20 for Y being non empty set for a being Function of Y,BOOLEAN holds ('not' ('not' a)) 'imp' a = I_el Y by BVFUNC_5:7; theorem :: BVFUNC25:21 for Y being non empty set for a, b being Function of Y,BOOLEAN holds ((a 'imp' b) '&' a) 'imp' b = I_el Y proofend; theorem Th22: :: BVFUNC25:22 for Y being non empty set for a being Function of Y,BOOLEAN holds a 'imp' (('not' a) 'imp' a) = I_el Y proofend; theorem :: BVFUNC25:23 for Y being non empty set for a being Function of Y,BOOLEAN holds (('not' a) 'imp' a) 'eqv' a = I_el Y proofend; theorem :: BVFUNC25:24 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'or' (a 'imp' b) = I_el Y proofend; theorem :: BVFUNC25:25 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) 'or' (c 'imp' a) = I_el Y proofend; theorem :: BVFUNC25:26 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) 'or' (('not' a) 'imp' b) = I_el Y proofend; theorem :: BVFUNC25:27 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) 'or' (a 'imp' ('not' b)) = I_el Y proofend; theorem :: BVFUNC25:28 for Y being non empty set for a, b being Function of Y,BOOLEAN holds ('not' a) 'imp' (('not' b) 'eqv' (b 'imp' a)) = I_el Y proofend; theorem :: BVFUNC25:29 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) 'imp' (((a 'imp' c) 'imp' b) 'imp' b) = I_el Y proofend; theorem :: BVFUNC25:30 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'imp' b = a 'eqv' (a '&' b) proofend; theorem :: BVFUNC25:31 for Y being non empty set for a, b being Function of Y,BOOLEAN holds ( ( a 'imp' b = I_el Y & b 'imp' a = I_el Y ) iff a = b ) proofend; theorem :: BVFUNC25:32 for Y being non empty set for a being Function of Y,BOOLEAN holds a = ('not' a) 'imp' a proofend; theorem Th33: :: BVFUNC25:33 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'imp' ((a 'imp' b) 'imp' a) = I_el Y proofend; theorem :: BVFUNC25:34 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a = (a 'imp' b) 'imp' a proofend; theorem :: BVFUNC25:35 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a = (b 'imp' a) '&' (('not' b) 'imp' a) proofend; theorem :: BVFUNC25:36 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a '&' b = 'not' (a 'imp' ('not' b)) proofend; theorem :: BVFUNC25:37 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'or' b = ('not' a) 'imp' b proofend; theorem :: BVFUNC25:38 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'or' b = (a 'imp' b) 'imp' b proofend; theorem :: BVFUNC25:39 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) 'imp' (a 'imp' a) = I_el Y proofend; theorem :: BVFUNC25:40 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN holds (a 'imp' (b 'imp' c)) 'imp' ((d 'imp' b) 'imp' (a 'imp' (d 'imp' c))) = I_el Y proofend; theorem :: BVFUNC25:41 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (((a 'imp' b) '&' a) '&' c) 'imp' b = I_el Y proofend; theorem :: BVFUNC25:42 for Y being non empty set for b, c, a being Function of Y,BOOLEAN holds (b 'imp' c) 'imp' ((a '&' b) 'imp' c) = I_el Y proofend; theorem :: BVFUNC25:43 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a '&' b) 'imp' c) 'imp' ((a '&' b) 'imp' (c '&' b)) = I_el Y proofend; theorem :: BVFUNC25:44 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) 'imp' ((a '&' c) 'imp' (b '&' c)) = I_el Y proofend; theorem :: BVFUNC25:45 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a 'imp' b) '&' (a '&' c)) 'imp' (b '&' c) = I_el Y proofend; theorem :: BVFUNC25:46 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a '&' (a 'imp' b)) '&' (b 'imp' c) '<' c proofend; theorem :: BVFUNC25:47 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a 'or' b) '&' (a 'imp' c)) '&' (b 'imp' c) '<' ('not' a) 'imp' (b 'or' c) proofend;