:: Propositional Calculus for Boolean Valued Functions, II :: by Shunichi Kobayashi and Yatsuka Nakamura :: :: Received March 13, 1999 :: Copyright (c) 1999-2012 Association of Mizar Users begin theorem :: BVFUNC_6:1 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'imp' (b 'imp' (a '&' b)) = I_el Y proofend; theorem :: BVFUNC_6:2 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) 'imp' ((b 'imp' a) 'imp' (a 'eqv' b)) = I_el Y proofend; theorem :: BVFUNC_6:3 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'or' b) 'eqv' (b 'or' a) = I_el Y proofend; theorem :: BVFUNC_6:4 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a '&' b) 'imp' c) 'imp' (a 'imp' (b 'imp' c)) = I_el Y proofend; theorem :: BVFUNC_6:5 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'imp' (b 'imp' c)) 'imp' ((a '&' b) 'imp' c) = I_el Y proofend; theorem :: BVFUNC_6:6 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (c 'imp' a) 'imp' ((c 'imp' b) 'imp' (c 'imp' (a '&' b))) = I_el Y proofend; theorem :: BVFUNC_6:7 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a 'or' b) 'imp' c) 'imp' ((a 'imp' c) 'or' (b 'imp' c)) = I_el Y proofend; theorem :: BVFUNC_6:8 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'imp' c) 'imp' ((b 'imp' c) 'imp' ((a 'or' b) 'imp' c)) = I_el Y proofend; theorem :: BVFUNC_6:9 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a 'imp' c) '&' (b 'imp' c)) 'imp' ((a 'or' b) 'imp' c) = I_el Y proofend; theorem :: BVFUNC_6:10 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' (b '&' ('not' b))) 'imp' ('not' a) = I_el Y proofend; theorem :: BVFUNC_6:11 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a 'or' b) '&' (a 'or' c)) 'imp' (a 'or' (b '&' c)) = I_el Y proofend; theorem :: BVFUNC_6:12 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a '&' (b 'or' c)) 'imp' ((a '&' b) 'or' (a '&' c)) = I_el Y proofend; theorem :: BVFUNC_6:13 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a 'or' c) '&' (b 'or' c)) 'imp' ((a '&' b) 'or' c) = I_el Y proofend; theorem :: BVFUNC_6:14 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a 'or' b) '&' c) 'imp' ((a '&' c) 'or' (b '&' c)) = I_el Y proofend; theorem :: BVFUNC_6:15 for Y being non empty set for a, b being Function of Y,BOOLEAN st a '&' b = I_el Y holds a 'or' b = I_el Y proofend; theorem :: BVFUNC_6:16 for Y being non empty set for a, b, c being Function of Y,BOOLEAN st a 'imp' b = I_el Y holds (a 'or' c) 'imp' (b 'or' c) = I_el Y proofend; theorem :: BVFUNC_6:17 for Y being non empty set for a, b, c being Function of Y,BOOLEAN st a 'imp' b = I_el Y holds (a '&' c) 'imp' (b '&' c) = I_el Y proofend; theorem :: BVFUNC_6:18 for Y being non empty set for a, b, c being Function of Y,BOOLEAN st c 'imp' a = I_el Y & c 'imp' b = I_el Y holds c 'imp' (a '&' b) = I_el Y proofend; theorem :: BVFUNC_6:19 for Y being non empty set for a, b, c being Function of Y,BOOLEAN st a 'imp' c = I_el Y & b 'imp' c = I_el Y holds (a 'or' b) 'imp' c = I_el Y proofend; theorem :: BVFUNC_6:20 for Y being non empty set for a, b being Function of Y,BOOLEAN st a 'or' b = I_el Y & 'not' a = I_el Y holds b = I_el Y proofend; theorem :: BVFUNC_6:21 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN st a 'imp' b = I_el Y & c 'imp' d = I_el Y holds (a '&' c) 'imp' (b '&' d) = I_el Y proofend; theorem :: BVFUNC_6:22 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN st a 'imp' b = I_el Y & c 'imp' d = I_el Y holds (a 'or' c) 'imp' (b 'or' d) = I_el Y proofend; theorem :: BVFUNC_6:23 for Y being non empty set for a, b being Function of Y,BOOLEAN st (a '&' ('not' b)) 'imp' ('not' a) = I_el Y holds a 'imp' b = I_el Y proofend; theorem :: BVFUNC_6:24 for Y being non empty set for a, b being Function of Y,BOOLEAN st a 'imp' ('not' b) = I_el Y holds b 'imp' ('not' a) = I_el Y proofend; theorem :: BVFUNC_6:25 for Y being non empty set for a, b being Function of Y,BOOLEAN st ('not' a) 'imp' b = I_el Y holds ('not' b) 'imp' a = I_el Y proofend; theorem :: BVFUNC_6:26 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a 'imp' (a 'or' b) = I_el Y proofend; theorem :: BVFUNC_6:27 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'or' b) 'imp' (('not' a) 'imp' b) = I_el Y proofend; theorem Th28: :: BVFUNC_6:28 for Y being non empty set for a, b being Function of Y,BOOLEAN holds ('not' (a 'or' b)) 'imp' (('not' a) '&' ('not' b)) = I_el Y proofend; theorem :: BVFUNC_6:29 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (('not' a) '&' ('not' b)) 'imp' ('not' (a 'or' b)) = I_el Y proofend; theorem :: BVFUNC_6:30 for Y being non empty set for a, b being Function of Y,BOOLEAN holds ('not' (a 'or' b)) 'imp' ('not' a) = I_el Y proofend; theorem :: BVFUNC_6:31 for Y being non empty set for a being Function of Y,BOOLEAN holds (a 'or' a) 'imp' a = I_el Y proofend; theorem :: BVFUNC_6:32 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a '&' ('not' a)) 'imp' b = I_el Y proofend; theorem :: BVFUNC_6:33 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) 'imp' (('not' a) 'or' b) = I_el Y proofend; theorem :: BVFUNC_6:34 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a '&' b) 'imp' ('not' (a 'imp' ('not' b))) = I_el Y proofend; theorem :: BVFUNC_6:35 for Y being non empty set for a, b being Function of Y,BOOLEAN holds ('not' (a 'imp' ('not' b))) 'imp' (a '&' b) = I_el Y proofend; theorem Th36: :: BVFUNC_6:36 for Y being non empty set for a, b being Function of Y,BOOLEAN holds ('not' (a '&' b)) 'imp' (('not' a) 'or' ('not' b)) = I_el Y proofend; theorem :: BVFUNC_6:37 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (('not' a) 'or' ('not' b)) 'imp' ('not' (a '&' b)) = I_el Y proofend; theorem :: BVFUNC_6:38 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a '&' b) 'imp' a = I_el Y proofend; theorem :: BVFUNC_6:39 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a '&' b) 'imp' (a 'or' b) = I_el Y proofend; theorem :: BVFUNC_6:40 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a '&' b) 'imp' b = I_el Y proofend; theorem :: BVFUNC_6:41 for Y being non empty set for a being Function of Y,BOOLEAN holds a 'imp' (a '&' a) = I_el Y proofend; theorem Th42: :: BVFUNC_6:42 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'eqv' b) 'imp' (a 'imp' b) = I_el Y proofend; theorem :: BVFUNC_6:43 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'eqv' b) 'imp' (b 'imp' a) = I_el Y by Th42; theorem :: BVFUNC_6:44 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a 'or' b) 'or' c) 'imp' (a 'or' (b 'or' c)) = I_el Y proofend; theorem :: BVFUNC_6:45 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ((a '&' b) '&' c) 'imp' (a '&' (b '&' c)) = I_el Y proofend; theorem :: BVFUNC_6:46 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'or' (b 'or' c)) 'imp' ((a 'or' b) 'or' c) = I_el Y proofend;