:: Several Differentiation Formulas of Special Functions -- Part {V} :: by Bo Li and Pan Wang :: :: Received September 19, 2007 :: Copyright (c) 2007-2012 Association of Mizar Users begin ::f.x=tan.(cot.x) theorem :: FDIFF_10:1 for Z being open Subset of REAL st Z c= dom (tan * cot) holds ( tan * cot is_differentiable_on Z & ( for x being Real st x in Z holds ((tan * cot) `| Z) . x = (1 / ((cos . (cot . x)) ^2)) * (- (1 / ((sin . x) ^2))) ) ) proofend; ::f.x=tan.(tan.x) theorem :: FDIFF_10:2 for Z being open Subset of REAL st Z c= dom (tan * tan) holds ( tan * tan is_differentiable_on Z & ( for x being Real st x in Z holds ((tan * tan) `| Z) . x = (1 / ((cos . (tan . x)) ^2)) * (1 / ((cos . x) ^2)) ) ) proofend; ::f.x=cot.(cot.x) theorem :: FDIFF_10:3 for Z being open Subset of REAL st Z c= dom (cot * cot) holds ( cot * cot is_differentiable_on Z & ( for x being Real st x in Z holds ((cot * cot) `| Z) . x = (1 / ((sin . (cot . x)) ^2)) * (1 / ((sin . x) ^2)) ) ) proofend; ::f.x=cot.(tan.x) theorem :: FDIFF_10:4 for Z being open Subset of REAL st Z c= dom (cot * tan) holds ( cot * tan is_differentiable_on Z & ( for x being Real st x in Z holds ((cot * tan) `| Z) . x = (- (1 / ((sin . (tan . x)) ^2))) * (1 / ((cos . x) ^2)) ) ) proofend; ::f.x= tan.x - cot.x theorem Th5: :: FDIFF_10:5 for Z being open Subset of REAL st Z c= dom (tan - cot) holds ( tan - cot is_differentiable_on Z & ( for x being Real st x in Z holds ((tan - cot) `| Z) . x = (1 / ((cos . x) ^2)) + (1 / ((sin . x) ^2)) ) ) proofend; ::f.x= tan.x + cot.x theorem Th6: :: FDIFF_10:6 for Z being open Subset of REAL st Z c= dom (tan + cot) holds ( tan + cot is_differentiable_on Z & ( for x being Real st x in Z holds ((tan + cot) `| Z) . x = (1 / ((cos . x) ^2)) - (1 / ((sin . x) ^2)) ) ) proofend; ::f.x=sin.(sin.x) theorem :: FDIFF_10:7 for Z being open Subset of REAL holds ( sin * sin is_differentiable_on Z & ( for x being Real st x in Z holds ((sin * sin) `| Z) . x = (cos . (sin . x)) * (cos . x) ) ) proofend; ::f.x=sin.(cos.x) theorem :: FDIFF_10:8 for Z being open Subset of REAL holds ( sin * cos is_differentiable_on Z & ( for x being Real st x in Z holds ((sin * cos) `| Z) . x = - ((cos . (cos . x)) * (sin . x)) ) ) proofend; ::f.x=cos.(sin.x) theorem :: FDIFF_10:9 for Z being open Subset of REAL holds ( cos * sin is_differentiable_on Z & ( for x being Real st x in Z holds ((cos * sin) `| Z) . x = - ((sin . (sin . x)) * (cos . x)) ) ) proofend; ::f.x=cos.(cos.x) theorem :: FDIFF_10:10 for Z being open Subset of REAL holds ( cos * cos is_differentiable_on Z & ( for x being Real st x in Z holds ((cos * cos) `| Z) . x = (sin . (cos . x)) * (sin . x) ) ) proofend; :: f.x=cos.x * cot.x theorem :: FDIFF_10:11 for Z being open Subset of REAL st Z c= dom (cos (#) cot) holds ( cos (#) cot is_differentiable_on Z & ( for x being Real st x in Z holds ((cos (#) cot) `| Z) . x = (- (cos . x)) - ((cos . x) / ((sin . x) ^2)) ) ) proofend; :: f.x=sin.x * tan.x theorem :: FDIFF_10:12 for Z being open Subset of REAL st Z c= dom (sin (#) tan) holds ( sin (#) tan is_differentiable_on Z & ( for x being Real st x in Z holds ((sin (#) tan) `| Z) . x = (sin . x) + ((sin . x) / ((cos . x) ^2)) ) ) proofend; :: f.x=sin.x * cot.x theorem :: FDIFF_10:13 for Z being open Subset of REAL st Z c= dom (sin (#) cot) holds ( sin (#) cot is_differentiable_on Z & ( for x being Real st x in Z holds ((sin (#) cot) `| Z) . x = ((cos . x) * (cot . x)) - (1 / (sin . x)) ) ) proofend; :: f.x=cos.x * tan.x theorem :: FDIFF_10:14 for Z being open Subset of REAL st Z c= dom (cos (#) tan) holds ( cos (#) tan is_differentiable_on Z & ( for x being Real st x in Z holds ((cos (#) tan) `| Z) . x = (- (((sin . x) ^2) / (cos . x))) + (1 / (cos . x)) ) ) proofend; :: f.x=sin.x * cos.x theorem :: FDIFF_10:15 for Z being open Subset of REAL st Z c= dom (sin (#) cos) holds ( sin (#) cos is_differentiable_on Z & ( for x being Real st x in Z holds ((sin (#) cos) `| Z) . x = ((cos . x) ^2) - ((sin . x) ^2) ) ) proofend; :: f.x=ln.x * sin.x theorem :: FDIFF_10:16 for Z being open Subset of REAL st Z c= dom (ln (#) sin) holds ( ln (#) sin is_differentiable_on Z & ( for x being Real st x in Z holds ((ln (#) sin) `| Z) . x = ((sin . x) / x) + ((ln . x) * (cos . x)) ) ) proofend; :: f.x=ln.x * cos.x theorem :: FDIFF_10:17 for Z being open Subset of REAL st Z c= dom (ln (#) cos) holds ( ln (#) cos is_differentiable_on Z & ( for x being Real st x in Z holds ((ln (#) cos) `| Z) . x = ((cos . x) / x) - ((ln . x) * (sin . x)) ) ) proofend; :: f.x=ln.x * exp_R.x theorem :: FDIFF_10:18 for Z being open Subset of REAL st Z c= dom (ln (#) exp_R) holds ( ln (#) exp_R is_differentiable_on Z & ( for x being Real st x in Z holds ((ln (#) exp_R) `| Z) . x = ((exp_R . x) / x) + ((ln . x) * (exp_R . x)) ) ) proofend; ::f.x=ln.(ln.x) theorem :: FDIFF_10:19 for Z being open Subset of REAL st Z c= dom (ln * ln) & ( for x being Real st x in Z holds x > 0 ) holds ( ln * ln is_differentiable_on Z & ( for x being Real st x in Z holds ((ln * ln) `| Z) . x = 1 / ((ln . x) * x) ) ) proofend; ::f.x=exp_R.(exp_R.x) theorem :: FDIFF_10:20 for Z being open Subset of REAL st Z c= dom (exp_R * exp_R) holds ( exp_R * exp_R is_differentiable_on Z & ( for x being Real st x in Z holds ((exp_R * exp_R) `| Z) . x = (exp_R . (exp_R . x)) * (exp_R . x) ) ) proofend; ::f.x=sin.(tan.x) theorem :: FDIFF_10:21 for Z being open Subset of REAL st Z c= dom (sin * tan) holds ( sin * tan is_differentiable_on Z & ( for x being Real st x in Z holds ((sin * tan) `| Z) . x = (cos (tan . x)) / ((cos . x) ^2) ) ) proofend; ::f.x=sin.(cot.x) theorem :: FDIFF_10:22 for Z being open Subset of REAL st Z c= dom (sin * cot) holds ( sin * cot is_differentiable_on Z & ( for x being Real st x in Z holds ((sin * cot) `| Z) . x = - ((cos (cot . x)) / ((sin . x) ^2)) ) ) proofend; ::f.x=cos.(tan.x) theorem :: FDIFF_10:23 for Z being open Subset of REAL st Z c= dom (cos * tan) holds ( cos * tan is_differentiable_on Z & ( for x being Real st x in Z holds ((cos * tan) `| Z) . x = - ((sin (tan . x)) / ((cos . x) ^2)) ) ) proofend; ::f.x=cos.(cot.x) theorem :: FDIFF_10:24 for Z being open Subset of REAL st Z c= dom (cos * cot) holds ( cos * cot is_differentiable_on Z & ( for x being Real st x in Z holds ((cos * cot) `| Z) . x = (sin (cot . x)) / ((sin . x) ^2) ) ) proofend; ::f.x=sin.x*(tan.x+cot.x) theorem :: FDIFF_10:25 for Z being open Subset of REAL st Z c= dom (sin (#) (tan + cot)) holds ( sin (#) (tan + cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((sin (#) (tan + cot)) `| Z) . x = ((cos . x) * ((tan . x) + (cot . x))) + ((sin . x) * ((1 / ((cos . x) ^2)) - (1 / ((sin . x) ^2)))) ) ) proofend; ::f.x=cos.x*(tan.x+cot.x) theorem :: FDIFF_10:26 for Z being open Subset of REAL st Z c= dom (cos (#) (tan + cot)) holds ( cos (#) (tan + cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((cos (#) (tan + cot)) `| Z) . x = (- ((sin . x) * ((tan . x) + (cot . x)))) + ((cos . x) * ((1 / ((cos . x) ^2)) - (1 / ((sin . x) ^2)))) ) ) proofend; :: f.x=sin.x*(tan.x-cot.x) theorem :: FDIFF_10:27 for Z being open Subset of REAL st Z c= dom (sin (#) (tan - cot)) holds ( sin (#) (tan - cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((sin (#) (tan - cot)) `| Z) . x = ((cos . x) * ((tan . x) - (cot . x))) + ((sin . x) * ((1 / ((cos . x) ^2)) + (1 / ((sin . x) ^2)))) ) ) proofend; :: f.x=cos.x*(tan.x-cot.x) theorem :: FDIFF_10:28 for Z being open Subset of REAL st Z c= dom (cos (#) (tan - cot)) holds ( cos (#) (tan - cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((cos (#) (tan - cot)) `| Z) . x = (- ((sin . x) * ((tan . x) - (cot . x)))) + ((cos . x) * ((1 / ((cos . x) ^2)) + (1 / ((sin . x) ^2)))) ) ) proofend; ::f.x=exp_R.x*(tan.x + cot.x) theorem :: FDIFF_10:29 for Z being open Subset of REAL st Z c= dom (exp_R (#) (tan + cot)) holds ( exp_R (#) (tan + cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((exp_R (#) (tan + cot)) `| Z) . x = ((exp_R . x) * ((tan . x) + (cot . x))) + ((exp_R . x) * ((1 / ((cos . x) ^2)) - (1 / ((sin . x) ^2)))) ) ) proofend; ::f.x=exp_R.x*(tan.x - cot.x) theorem :: FDIFF_10:30 for Z being open Subset of REAL st Z c= dom (exp_R (#) (tan - cot)) holds ( exp_R (#) (tan - cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((exp_R (#) (tan - cot)) `| Z) . x = ((exp_R . x) * ((tan . x) - (cot . x))) + ((exp_R . x) * ((1 / ((cos . x) ^2)) + (1 / ((sin . x) ^2)))) ) ) proofend; ::f.x=sin.x*(sin.x+cos.x) theorem :: FDIFF_10:31 for Z being open Subset of REAL st Z c= dom (sin (#) (sin + cos)) holds ( sin (#) (sin + cos) is_differentiable_on Z & ( for x being Real st x in Z holds ((sin (#) (sin + cos)) `| Z) . x = (((cos . x) ^2) + ((2 * (sin . x)) * (cos . x))) - ((sin . x) ^2) ) ) proofend; ::f.x=sin.x*(sin.x-cos.x) theorem :: FDIFF_10:32 for Z being open Subset of REAL st Z c= dom (sin (#) (sin - cos)) holds ( sin (#) (sin - cos) is_differentiable_on Z & ( for x being Real st x in Z holds ((sin (#) (sin - cos)) `| Z) . x = (((sin . x) ^2) + ((2 * (sin . x)) * (cos . x))) - ((cos . x) ^2) ) ) proofend; :: f.x=cos.x*(sin.x-cos.x) theorem :: FDIFF_10:33 for Z being open Subset of REAL st Z c= dom (cos (#) (sin - cos)) holds ( cos (#) (sin - cos) is_differentiable_on Z & ( for x being Real st x in Z holds ((cos (#) (sin - cos)) `| Z) . x = (((cos . x) ^2) + ((2 * (sin . x)) * (cos . x))) - ((sin . x) ^2) ) ) proofend; :: f.x=cos.x*(sin.x+cos.x) theorem :: FDIFF_10:34 for Z being open Subset of REAL st Z c= dom (cos (#) (sin + cos)) holds ( cos (#) (sin + cos) is_differentiable_on Z & ( for x being Real st x in Z holds ((cos (#) (sin + cos)) `| Z) . x = (((cos . x) ^2) - ((2 * (sin . x)) * (cos . x))) - ((sin . x) ^2) ) ) proofend; ::f.x=sin.(tan.x+cot.x) theorem :: FDIFF_10:35 for Z being open Subset of REAL st Z c= dom (sin * (tan + cot)) holds ( sin * (tan + cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((sin * (tan + cot)) `| Z) . x = (cos . ((tan . x) + (cot . x))) * ((1 / ((cos . x) ^2)) - (1 / ((sin . x) ^2))) ) ) proofend; ::f.x=sin.(tan.x-cot.x) theorem :: FDIFF_10:36 for Z being open Subset of REAL st Z c= dom (sin * (tan - cot)) holds ( sin * (tan - cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((sin * (tan - cot)) `| Z) . x = (cos . ((tan . x) - (cot . x))) * ((1 / ((cos . x) ^2)) + (1 / ((sin . x) ^2))) ) ) proofend; ::f.x=cos.(tan.x-cot.x) theorem :: FDIFF_10:37 for Z being open Subset of REAL st Z c= dom (cos * (tan - cot)) holds ( cos * (tan - cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((cos * (tan - cot)) `| Z) . x = - ((sin . ((tan . x) - (cot . x))) * ((1 / ((cos . x) ^2)) + (1 / ((sin . x) ^2)))) ) ) proofend; ::f.x=cos.(tan.x+cot.x) theorem :: FDIFF_10:38 for Z being open Subset of REAL st Z c= dom (cos * (tan + cot)) holds ( cos * (tan + cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((cos * (tan + cot)) `| Z) . x = - ((sin . ((tan . x) + (cot . x))) * ((1 / ((cos . x) ^2)) - (1 / ((sin . x) ^2)))) ) ) proofend; ::f.x=exp_R.(tan.x + cot.x) theorem :: FDIFF_10:39 for Z being open Subset of REAL st Z c= dom (exp_R * (tan + cot)) holds ( exp_R * (tan + cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((exp_R * (tan + cot)) `| Z) . x = (exp_R . ((tan . x) + (cot . x))) * ((1 / ((cos . x) ^2)) - (1 / ((sin . x) ^2))) ) ) proofend; ::f.x=exp_R.(tan.x - cot.x) theorem :: FDIFF_10:40 for Z being open Subset of REAL st Z c= dom (exp_R * (tan - cot)) holds ( exp_R * (tan - cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((exp_R * (tan - cot)) `| Z) . x = (exp_R . ((tan . x) - (cot . x))) * ((1 / ((cos . x) ^2)) + (1 / ((sin . x) ^2))) ) ) proofend; ::f.x=(tan.x-cot.x)/exp_.x theorem :: FDIFF_10:41 for Z being open Subset of REAL st Z c= dom ((tan - cot) / exp_R) holds ( (tan - cot) / exp_R is_differentiable_on Z & ( for x being Real st x in Z holds (((tan - cot) / exp_R) `| Z) . x = ((((1 / ((cos . x) ^2)) + (1 / ((sin . x) ^2))) - (tan . x)) + (cot . x)) / (exp_R . x) ) ) proofend; ::f.x=(tan.x+cot.x)/exp_.x theorem :: FDIFF_10:42 for Z being open Subset of REAL st Z c= dom ((tan + cot) / exp_R) holds ( (tan + cot) / exp_R is_differentiable_on Z & ( for x being Real st x in Z holds (((tan + cot) / exp_R) `| Z) . x = ((((1 / ((cos . x) ^2)) - (1 / ((sin . x) ^2))) - (tan . x)) - (cot . x)) / (exp_R . x) ) ) proofend; :: f.x = sin.(sec.x) theorem :: FDIFF_10:43 for Z being open Subset of REAL st Z c= dom (sin * sec) holds ( sin * sec is_differentiable_on Z & ( for x being Real st x in Z holds ((sin * sec) `| Z) . x = ((cos . (sec . x)) * (sin . x)) / ((cos . x) ^2) ) ) proofend; :: f.x = cos.(sec.x) theorem :: FDIFF_10:44 for Z being open Subset of REAL st Z c= dom (cos * sec) holds ( cos * sec is_differentiable_on Z & ( for x being Real st x in Z holds ((cos * sec) `| Z) . x = - (((sin . (sec . x)) * (sin . x)) / ((cos . x) ^2)) ) ) proofend; :: f.x = sin.(cosec.x) theorem :: FDIFF_10:45 for Z being open Subset of REAL st Z c= dom (sin * cosec) holds ( sin * cosec is_differentiable_on Z & ( for x being Real st x in Z holds ((sin * cosec) `| Z) . x = - (((cos . (cosec . x)) * (cos . x)) / ((sin . x) ^2)) ) ) proofend; :: f.x = cos.(cose.x) theorem :: FDIFF_10:46 for Z being open Subset of REAL st Z c= dom (cos * cosec) holds ( cos * cosec is_differentiable_on Z & ( for x being Real st x in Z holds ((cos * cosec) `| Z) . x = ((sin . (cosec . x)) * (cos . x)) / ((sin . x) ^2) ) ) proofend;