:: More on Segments on a Go Board :: by Andrzej Trybulec :: :: Received October 17, 1995 :: Copyright (c) 1995-2012 Association of Mizar Users begin theorem :: GOBOARD8:1 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i, j being Element of NAT st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * ((i + 1),j) & f /. (k + 2) = (GoB f) * ((i + 1),(j + 2)) ) or ( f /. (k + 2) = (GoB f) * ((i + 1),j) & f /. k = (GoB f) * ((i + 1),(j + 2)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:2 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i, j being Element of NAT st 1 <= i & i + 2 <= len (GoB f) & 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * ((i + 2),(j + 1)) & f /. (k + 2) = (GoB f) * ((i + 1),(j + 2)) ) or ( f /. (k + 2) = (GoB f) * ((i + 2),(j + 1)) & f /. k = (GoB f) * ((i + 1),(j + 2)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:3 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i, j being Element of NAT st 1 <= i & i + 2 <= len (GoB f) & 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * ((i + 2),(j + 1)) & f /. (k + 2) = (GoB f) * ((i + 1),j) ) or ( f /. (k + 2) = (GoB f) * ((i + 2),(j + 1)) & f /. k = (GoB f) * ((i + 1),j) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:4 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i, j being Element of NAT st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * (i,(j + 1)) & ( ( f /. k = (GoB f) * (i,j) & f /. (k + 2) = (GoB f) * (i,(j + 2)) ) or ( f /. (k + 2) = (GoB f) * (i,j) & f /. k = (GoB f) * (i,(j + 2)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:5 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i, j being Element of NAT st 1 <= i & i + 2 <= len (GoB f) & 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * (i,(j + 1)) & f /. (k + 2) = (GoB f) * ((i + 1),(j + 2)) ) or ( f /. (k + 2) = (GoB f) * (i,(j + 1)) & f /. k = (GoB f) * ((i + 1),(j + 2)) ) ) holds LSeg (((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1))))),((1 / 2) * (((GoB f) * ((i + 1),(j + 1))) + ((GoB f) * ((i + 2),(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:6 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i, j being Element of NAT st 1 <= i & i + 2 <= len (GoB f) & 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * (i,(j + 1)) & f /. (k + 2) = (GoB f) * ((i + 1),j) ) or ( f /. (k + 2) = (GoB f) * (i,(j + 1)) & f /. k = (GoB f) * ((i + 1),j) ) ) holds LSeg (((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1))))),((1 / 2) * (((GoB f) * ((i + 1),(j + 1))) + ((GoB f) * ((i + 2),(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:7 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i being Element of NAT st 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),1) & ( ( f /. k = (GoB f) * ((i + 2),1) & f /. (k + 2) = (GoB f) * ((i + 1),2) ) or ( f /. (k + 2) = (GoB f) * ((i + 2),1) & f /. k = (GoB f) * ((i + 1),2) ) ) holds LSeg ((((1 / 2) * (((GoB f) * (i,1)) + ((GoB f) * ((i + 1),1)))) - |[0,1]|),((1 / 2) * (((GoB f) * (i,1)) + ((GoB f) * ((i + 1),2))))) misses L~ f proofend; theorem :: GOBOARD8:8 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i being Element of NAT st 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),1) & ( ( f /. k = (GoB f) * (i,1) & f /. (k + 2) = (GoB f) * ((i + 1),2) ) or ( f /. (k + 2) = (GoB f) * (i,1) & f /. k = (GoB f) * ((i + 1),2) ) ) holds LSeg ((((1 / 2) * (((GoB f) * ((i + 1),1)) + ((GoB f) * ((i + 2),1)))) - |[0,1]|),((1 / 2) * (((GoB f) * ((i + 1),1)) + ((GoB f) * ((i + 2),2))))) misses L~ f proofend; theorem :: GOBOARD8:9 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i being Element of NAT st 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(width (GoB f))) & ( ( f /. k = (GoB f) * ((i + 2),(width (GoB f))) & f /. (k + 2) = (GoB f) * ((i + 1),((width (GoB f)) -' 1)) ) or ( f /. (k + 2) = (GoB f) * ((i + 2),(width (GoB f))) & f /. k = (GoB f) * ((i + 1),((width (GoB f)) -' 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))) + |[0,1]|)) misses L~ f proofend; theorem :: GOBOARD8:10 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i being Element of NAT st 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(width (GoB f))) & ( ( f /. k = (GoB f) * (i,(width (GoB f))) & f /. (k + 2) = (GoB f) * ((i + 1),((width (GoB f)) -' 1)) ) or ( f /. (k + 2) = (GoB f) * (i,(width (GoB f))) & f /. k = (GoB f) * ((i + 1),((width (GoB f)) -' 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) + ((GoB f) * ((i + 2),(width (GoB f)))))),(((1 / 2) * (((GoB f) * ((i + 1),(width (GoB f)))) + ((GoB f) * ((i + 2),(width (GoB f)))))) + |[0,1]|)) misses L~ f proofend; theorem :: GOBOARD8:11 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for i, j being Element of NAT st 1 <= j & j + 1 <= width (GoB f) & 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * (i,(j + 1)) & f /. (k + 2) = (GoB f) * ((i + 2),(j + 1)) ) or ( f /. (k + 2) = (GoB f) * (i,(j + 1)) & f /. k = (GoB f) * ((i + 2),(j + 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1)))))) misses L~ f proofend; theorem :: GOBOARD8:12 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j, i being Element of NAT st 1 <= j & j + 2 <= width (GoB f) & 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * ((i + 1),(j + 2)) & f /. (k + 2) = (GoB f) * ((i + 2),(j + 1)) ) or ( f /. (k + 2) = (GoB f) * ((i + 1),(j + 2)) & f /. k = (GoB f) * ((i + 2),(j + 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1)))))) misses L~ f proofend; theorem :: GOBOARD8:13 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j, i being Element of NAT st 1 <= j & j + 2 <= width (GoB f) & 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * ((i + 1),(j + 2)) & f /. (k + 2) = (GoB f) * (i,(j + 1)) ) or ( f /. (k + 2) = (GoB f) * ((i + 1),(j + 2)) & f /. k = (GoB f) * (i,(j + 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1)))))) misses L~ f proofend; theorem :: GOBOARD8:14 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j, i being Element of NAT st 1 <= j & j + 1 <= width (GoB f) & 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),j) & ( ( f /. k = (GoB f) * (i,j) & f /. (k + 2) = (GoB f) * ((i + 2),j) ) or ( f /. (k + 2) = (GoB f) * (i,j) & f /. k = (GoB f) * ((i + 2),j) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1)))))) misses L~ f proofend; theorem :: GOBOARD8:15 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j, i being Element of NAT st 1 <= j & j + 2 <= width (GoB f) & 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * ((i + 1),j) & f /. (k + 2) = (GoB f) * ((i + 2),(j + 1)) ) or ( f /. (k + 2) = (GoB f) * ((i + 1),j) & f /. k = (GoB f) * ((i + 2),(j + 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2))))),((1 / 2) * (((GoB f) * ((i + 1),(j + 1))) + ((GoB f) * ((i + 2),(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:16 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j, i being Element of NAT st 1 <= j & j + 2 <= width (GoB f) & 1 <= i & i + 2 <= len (GoB f) & f /. (k + 1) = (GoB f) * ((i + 1),(j + 1)) & ( ( f /. k = (GoB f) * ((i + 1),j) & f /. (k + 2) = (GoB f) * (i,(j + 1)) ) or ( f /. (k + 2) = (GoB f) * ((i + 1),j) & f /. k = (GoB f) * (i,(j + 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2))))),((1 / 2) * (((GoB f) * ((i + 1),(j + 1))) + ((GoB f) * ((i + 2),(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:17 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j being Element of NAT st 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * (1,(j + 1)) & ( ( f /. k = (GoB f) * (1,(j + 2)) & f /. (k + 2) = (GoB f) * (2,(j + 1)) ) or ( f /. (k + 2) = (GoB f) * (1,(j + 2)) & f /. k = (GoB f) * (2,(j + 1)) ) ) holds LSeg ((((1 / 2) * (((GoB f) * (1,j)) + ((GoB f) * (1,(j + 1))))) - |[1,0]|),((1 / 2) * (((GoB f) * (1,j)) + ((GoB f) * (2,(j + 1)))))) misses L~ f proofend; theorem :: GOBOARD8:18 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j being Element of NAT st 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * (1,(j + 1)) & ( ( f /. k = (GoB f) * (1,j) & f /. (k + 2) = (GoB f) * (2,(j + 1)) ) or ( f /. (k + 2) = (GoB f) * (1,j) & f /. k = (GoB f) * (2,(j + 1)) ) ) holds LSeg ((((1 / 2) * (((GoB f) * (1,(j + 1))) + ((GoB f) * (1,(j + 2))))) - |[1,0]|),((1 / 2) * (((GoB f) * (1,(j + 1))) + ((GoB f) * (2,(j + 2)))))) misses L~ f proofend; theorem :: GOBOARD8:19 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j being Element of NAT st 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * ((len (GoB f)),(j + 1)) & ( ( f /. k = (GoB f) * ((len (GoB f)),(j + 2)) & f /. (k + 2) = (GoB f) * (((len (GoB f)) -' 1),(j + 1)) ) or ( f /. (k + 2) = (GoB f) * ((len (GoB f)),(j + 2)) & f /. k = (GoB f) * (((len (GoB f)) -' 1),(j + 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (((len (GoB f)) -' 1),j)) + ((GoB f) * ((len (GoB f)),(j + 1))))),(((1 / 2) * (((GoB f) * ((len (GoB f)),j)) + ((GoB f) * ((len (GoB f)),(j + 1))))) + |[1,0]|)) misses L~ f proofend; theorem :: GOBOARD8:20 for f being non constant standard special_circular_sequence for k being Element of NAT st 1 <= k & k + 2 <= len f holds for j being Element of NAT st 1 <= j & j + 2 <= width (GoB f) & f /. (k + 1) = (GoB f) * ((len (GoB f)),(j + 1)) & ( ( f /. k = (GoB f) * ((len (GoB f)),j) & f /. (k + 2) = (GoB f) * (((len (GoB f)) -' 1),(j + 1)) ) or ( f /. (k + 2) = (GoB f) * ((len (GoB f)),j) & f /. k = (GoB f) * (((len (GoB f)) -' 1),(j + 1)) ) ) holds LSeg (((1 / 2) * (((GoB f) * (((len (GoB f)) -' 1),(j + 1))) + ((GoB f) * ((len (GoB f)),(j + 2))))),(((1 / 2) * (((GoB f) * ((len (GoB f)),(j + 1))) + ((GoB f) * ((len (GoB f)),(j + 2))))) + |[1,0]|)) misses L~ f proofend; theorem Th21: :: GOBOARD8:21 for f being non constant standard special_circular_sequence for P being Subset of (TOP-REAL 2) st ( for p being Point of (TOP-REAL 2) st p in P holds p `1 < ((GoB f) * (1,1)) `1 ) holds P misses L~ f proofend; theorem Th22: :: GOBOARD8:22 for f being non constant standard special_circular_sequence for P being Subset of (TOP-REAL 2) st ( for p being Point of (TOP-REAL 2) st p in P holds p `1 > ((GoB f) * ((len (GoB f)),1)) `1 ) holds P misses L~ f proofend; theorem Th23: :: GOBOARD8:23 for f being non constant standard special_circular_sequence for P being Subset of (TOP-REAL 2) st ( for p being Point of (TOP-REAL 2) st p in P holds p `2 < ((GoB f) * (1,1)) `2 ) holds P misses L~ f proofend; theorem Th24: :: GOBOARD8:24 for f being non constant standard special_circular_sequence for P being Subset of (TOP-REAL 2) st ( for p being Point of (TOP-REAL 2) st p in P holds p `2 > ((GoB f) * (1,(width (GoB f)))) `2 ) holds P misses L~ f proofend; theorem :: GOBOARD8:25 for f being non constant standard special_circular_sequence for i being Element of NAT st 1 <= i & i + 2 <= len (GoB f) holds LSeg ((((1 / 2) * (((GoB f) * (i,1)) + ((GoB f) * ((i + 1),1)))) - |[0,1]|),(((1 / 2) * (((GoB f) * ((i + 1),1)) + ((GoB f) * ((i + 2),1)))) - |[0,1]|)) misses L~ f proofend; theorem :: GOBOARD8:26 for f being non constant standard special_circular_sequence holds LSeg ((((GoB f) * (1,1)) - |[1,1]|),(((1 / 2) * (((GoB f) * (1,1)) + ((GoB f) * (2,1)))) - |[0,1]|)) misses L~ f proofend; theorem :: GOBOARD8:27 for f being non constant standard special_circular_sequence holds LSeg ((((1 / 2) * (((GoB f) * (((len (GoB f)) -' 1),1)) + ((GoB f) * ((len (GoB f)),1)))) - |[0,1]|),(((GoB f) * ((len (GoB f)),1)) + |[1,(- 1)]|)) misses L~ f proofend; theorem :: GOBOARD8:28 for f being non constant standard special_circular_sequence for i being Element of NAT st 1 <= i & i + 2 <= len (GoB f) holds LSeg ((((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))) + |[0,1]|),(((1 / 2) * (((GoB f) * ((i + 1),(width (GoB f)))) + ((GoB f) * ((i + 2),(width (GoB f)))))) + |[0,1]|)) misses L~ f proofend; theorem :: GOBOARD8:29 for f being non constant standard special_circular_sequence holds LSeg ((((GoB f) * (1,(width (GoB f)))) + |[(- 1),1]|),(((1 / 2) * (((GoB f) * (1,(width (GoB f)))) + ((GoB f) * (2,(width (GoB f)))))) + |[0,1]|)) misses L~ f proofend; theorem :: GOBOARD8:30 for f being non constant standard special_circular_sequence holds LSeg ((((1 / 2) * (((GoB f) * (((len (GoB f)) -' 1),(width (GoB f)))) + ((GoB f) * ((len (GoB f)),(width (GoB f)))))) + |[0,1]|),(((GoB f) * ((len (GoB f)),(width (GoB f)))) + |[1,1]|)) misses L~ f proofend; theorem :: GOBOARD8:31 for f being non constant standard special_circular_sequence for j being Element of NAT st 1 <= j & j + 2 <= width (GoB f) holds LSeg ((((1 / 2) * (((GoB f) * (1,j)) + ((GoB f) * (1,(j + 1))))) - |[1,0]|),(((1 / 2) * (((GoB f) * (1,(j + 1))) + ((GoB f) * (1,(j + 2))))) - |[1,0]|)) misses L~ f proofend; theorem :: GOBOARD8:32 for f being non constant standard special_circular_sequence holds LSeg ((((GoB f) * (1,1)) - |[1,1]|),(((1 / 2) * (((GoB f) * (1,1)) + ((GoB f) * (1,2)))) - |[1,0]|)) misses L~ f proofend; theorem :: GOBOARD8:33 for f being non constant standard special_circular_sequence holds LSeg ((((1 / 2) * (((GoB f) * (1,((width (GoB f)) -' 1))) + ((GoB f) * (1,(width (GoB f)))))) - |[1,0]|),(((GoB f) * (1,(width (GoB f)))) + |[(- 1),1]|)) misses L~ f proofend; theorem :: GOBOARD8:34 for f being non constant standard special_circular_sequence for j being Element of NAT st 1 <= j & j + 2 <= width (GoB f) holds LSeg ((((1 / 2) * (((GoB f) * ((len (GoB f)),j)) + ((GoB f) * ((len (GoB f)),(j + 1))))) + |[1,0]|),(((1 / 2) * (((GoB f) * ((len (GoB f)),(j + 1))) + ((GoB f) * ((len (GoB f)),(j + 2))))) + |[1,0]|)) misses L~ f proofend; theorem :: GOBOARD8:35 for f being non constant standard special_circular_sequence holds LSeg ((((GoB f) * ((len (GoB f)),1)) + |[1,(- 1)]|),(((1 / 2) * (((GoB f) * ((len (GoB f)),1)) + ((GoB f) * ((len (GoB f)),2)))) + |[1,0]|)) misses L~ f proofend; theorem :: GOBOARD8:36 for f being non constant standard special_circular_sequence holds LSeg ((((1 / 2) * (((GoB f) * ((len (GoB f)),((width (GoB f)) -' 1))) + ((GoB f) * ((len (GoB f)),(width (GoB f)))))) + |[1,0]|),(((GoB f) * ((len (GoB f)),(width (GoB f)))) + |[1,1]|)) misses L~ f proofend; theorem :: GOBOARD8:37 for k being Element of NAT for f being non constant standard special_circular_sequence st 1 <= k & k + 1 <= len f holds Int (left_cell (f,k)) misses L~ f proofend; theorem :: GOBOARD8:38 for k being Element of NAT for f being non constant standard special_circular_sequence st 1 <= k & k + 1 <= len f holds Int (right_cell (f,k)) misses L~ f proofend;