:: Calculation of Matrices of Field Elements. Part {I} :: by Yatsuka Nakamura and Hiroshi Yamazaki :: :: Received August 8, 2003 :: Copyright (c) 2003-2012 Association of Mizar Users begin definition let K be Field; let M1, M2 be Matrix of K; funcM1 - M2 -> Matrix of K equals :: MATRIX_4:def 1 M1 + (- M2); coherence M1 + (- M2) is Matrix of K ; end; :: deftheorem defines - MATRIX_4:def_1_:_ for K being Field for M1, M2 being Matrix of K holds M1 - M2 = M1 + (- M2); theorem Th1: :: MATRIX_4:1 for K being Field for M being Matrix of K holds - (- M) = M proofend; theorem Th2: :: MATRIX_4:2 for K being Field for M being Matrix of K holds M + (- M) = 0. (K,(len M),(width M)) proofend; theorem :: MATRIX_4:3 for K being Field for M being Matrix of K holds M - M = 0. (K,(len M),(width M)) by Th2; theorem :: MATRIX_4:4 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 & M1 + M3 = M2 + M3 holds M1 = M2 proofend; theorem :: MATRIX_4:5 for K being Field for M1, M2 being Matrix of K holds M1 - (- M2) = M1 + M2 by Th1; theorem :: MATRIX_4:6 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 & M1 = M1 + M2 holds M2 = 0. (K,(len M1),(width M1)) proofend; theorem Th7: :: MATRIX_4:7 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 & M1 - M2 = 0. (K,(len M1),(width M1)) holds M1 = M2 proofend; theorem Th8: :: MATRIX_4:8 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 & M1 + M2 = 0. (K,(len M1),(width M1)) holds M2 = - M1 proofend; theorem Th9: :: MATRIX_4:9 for n, m being Element of NAT for K being Field holds - (0. (K,n,m)) = 0. (K,n,m) proofend; theorem :: MATRIX_4:10 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 & M2 - M1 = M2 holds M1 = 0. (K,(len M1),(width M1)) proofend; theorem Th11: :: MATRIX_4:11 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = M1 - (M2 - M2) proofend; theorem Th12: :: MATRIX_4:12 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds - (M1 + M2) = (- M1) + (- M2) proofend; theorem :: MATRIX_4:13 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 - (M1 - M2) = M2 proofend; theorem Th14: :: MATRIX_4:14 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 & M1 - M3 = M2 - M3 holds M1 = M2 proofend; theorem Th15: :: MATRIX_4:15 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 & M3 - M1 = M3 - M2 holds M1 = M2 proofend; theorem Th16: :: MATRIX_4:16 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds (M1 - M2) - M3 = (M1 - M3) - M2 proofend; theorem :: MATRIX_4:17 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds M1 - M3 = (M1 - M2) - (M3 - M2) proofend; theorem Th18: :: MATRIX_4:18 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds (M3 - M1) - (M3 - M2) = M2 - M1 proofend; theorem :: MATRIX_4:19 for K being Field for M1, M2, M3, M4 being Matrix of K st len M1 = len M2 & len M2 = len M3 & len M3 = len M4 & width M1 = width M2 & width M2 = width M3 & width M3 = width M4 & M1 - M2 = M3 - M4 holds M1 - M3 = M2 - M4 proofend; theorem Th20: :: MATRIX_4:20 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = M1 + (M2 - M2) proofend; theorem Th21: :: MATRIX_4:21 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = (M1 + M2) - M2 proofend; theorem Th22: :: MATRIX_4:22 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = (M1 - M2) + M2 proofend; theorem :: MATRIX_4:23 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds M1 + M3 = (M1 + M2) + (M3 - M2) proofend; theorem :: MATRIX_4:24 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds (M1 + M2) - M3 = (M1 - M3) + M2 proofend; theorem :: MATRIX_4:25 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds (M1 - M2) + M3 = (M3 - M2) + M1 proofend; theorem Th26: :: MATRIX_4:26 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds M1 + M3 = (M1 + M2) - (M2 - M3) proofend; theorem :: MATRIX_4:27 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds M1 - M3 = (M1 + M2) - (M3 + M2) proofend; theorem Th28: :: MATRIX_4:28 for K being Field for M1, M2, M3, M4 being Matrix of K st len M1 = len M2 & len M2 = len M3 & len M3 = len M4 & width M1 = width M2 & width M2 = width M3 & width M3 = width M4 & M1 + M2 = M3 + M4 holds M1 - M3 = M4 - M2 proofend; theorem :: MATRIX_4:29 for K being Field for M1, M2, M3, M4 being Matrix of K st len M1 = len M2 & len M2 = len M3 & len M3 = len M4 & width M1 = width M2 & width M2 = width M3 & width M3 = width M4 & M1 - M3 = M4 - M2 holds M1 + M2 = M3 + M4 proofend; theorem :: MATRIX_4:30 for K being Field for M1, M2, M3, M4 being Matrix of K st len M1 = len M2 & len M2 = len M3 & len M3 = len M4 & width M1 = width M2 & width M2 = width M3 & width M3 = width M4 & M1 + M2 = M3 - M4 holds M1 + M4 = M3 - M2 proofend; theorem Th31: :: MATRIX_4:31 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds M1 - (M2 + M3) = (M1 - M2) - M3 proofend; theorem :: MATRIX_4:32 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds M1 - (M2 - M3) = (M1 - M2) + M3 proofend; theorem :: MATRIX_4:33 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds M1 - (M2 - M3) = M1 + (M3 - M2) proofend; theorem :: MATRIX_4:34 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 - M3 = (M1 - M2) + (M2 - M3) proofend; theorem :: MATRIX_4:35 for K being Field for M1, M2, M3 being Matrix of K st - M1 = - M2 holds M1 = M2 proofend; theorem :: MATRIX_4:36 for K being Field for M being Matrix of K st - M = 0. (K,(len M),(width M)) holds M = 0. (K,(len M),(width M)) proofend; theorem :: MATRIX_4:37 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 & M1 + (- M2) = 0. (K,(len M1),(width M1)) holds M1 = M2 proofend; theorem Th38: :: MATRIX_4:38 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = (M1 + M2) + (- M2) proofend; theorem :: MATRIX_4:39 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = M1 + (M2 + (- M2)) proofend; theorem :: MATRIX_4:40 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = ((- M2) + M1) + M2 proofend; theorem :: MATRIX_4:41 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds - ((- M1) + M2) = M1 + (- M2) proofend; theorem :: MATRIX_4:42 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 + M2 = - ((- M1) + (- M2)) proofend; theorem :: MATRIX_4:43 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds - (M1 - M2) = M2 - M1 proofend; theorem Th44: :: MATRIX_4:44 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds (- M1) - M2 = (- M2) - M1 proofend; theorem :: MATRIX_4:45 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = (- M2) - ((- M1) - M2) proofend; theorem Th46: :: MATRIX_4:46 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds ((- M1) - M2) - M3 = ((- M1) - M3) - M2 proofend; theorem Th47: :: MATRIX_4:47 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds ((- M1) - M2) - M3 = ((- M2) - M3) - M1 proofend; theorem :: MATRIX_4:48 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds ((- M1) - M2) - M3 = ((- M3) - M2) - M1 proofend; theorem :: MATRIX_4:49 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds (M3 - M1) - (M3 - M2) = - (M1 - M2) proofend; theorem :: MATRIX_4:50 for K being Field for M being Matrix of K holds (0. (K,(len M),(width M))) - M = - M proofend; theorem :: MATRIX_4:51 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 + M2 = M1 - (- M2) by Th1; theorem :: MATRIX_4:52 for K being Field for M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = M1 - (M2 + (- M2)) proofend; theorem :: MATRIX_4:53 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 & M1 - M3 = M2 + (- M3) holds M1 = M2 proofend; theorem :: MATRIX_4:54 for K being Field for M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 & M3 - M1 = M3 + (- M2) holds M1 = M2 proofend; theorem Th55: :: MATRIX_4:55 for K being set for A, B being Matrix of K st len A = len B & width A = width B holds Indices A = Indices B proofend; theorem Th56: :: MATRIX_4:56 for K being Field for x, y, z being FinSequence of K st len x = len y & len y = len z holds mlt ((x + y),z) = (mlt (x,z)) + (mlt (y,z)) proofend; theorem Th57: :: MATRIX_4:57 for K being Field for x, y, z being FinSequence of K st len x = len y & len y = len z holds mlt (z,(x + y)) = (mlt (z,x)) + (mlt (z,y)) proofend; theorem :: MATRIX_4:58 for D being non empty set for M being Matrix of D st len M > 0 holds for n being Element of NAT holds ( M is Matrix of n, width M,D iff n = len M ) by MATRIX_1:20, MATRIX_1:def_2; theorem Th59: :: MATRIX_4:59 for i being Nat for K being Field for j being Element of NAT for A, B being Matrix of K st width A = width B & ex j being Element of NAT st [i,j] in Indices A holds Line ((A + B),i) = (Line (A,i)) + (Line (B,i)) proofend; theorem Th60: :: MATRIX_4:60 for K being Field for j being Nat for A, B being Matrix of K st len A = len B & ex i being Nat st [i,j] in Indices A holds Col ((A + B),j) = (Col (A,j)) + (Col (B,j)) proofend; theorem Th61: :: MATRIX_4:61 for V1 being Field for P1, P2 being FinSequence of V1 st len P1 = len P2 holds Sum (P1 + P2) = (Sum P1) + (Sum P2) proofend; theorem :: MATRIX_4:62 for K being Field for A, B, C being Matrix of K st len B = len C & width B = width C & width A = len B & len A > 0 & len B > 0 holds A * (B + C) = (A * B) + (A * C) proofend; theorem :: MATRIX_4:63 for K being Field for A, B, C being Matrix of K st len B = len C & width B = width C & len A = width B & len B > 0 & len A > 0 holds (B + C) * A = (B * A) + (C * A) proofend; theorem :: MATRIX_4:64 for K being Field for n, m, k being Element of NAT for M1 being Matrix of n,m,K for M2 being Matrix of m,k,K st width M1 = len M2 & 0 < len M1 & 0 < len M2 holds M1 * M2 is Matrix of n,k,K proofend;