:: Classical and Non--classical Pasch Configurations in Ordered Affine Planes :: by Henryk Oryszczyszyn, Krzysztof Pra\.zmowski and :: :: Received May 16, 1990 :: Copyright (c) 1990-2012 Association of Mizar Users begin definition let OAS be OAffinSpace; attrOAS is satisfying_Int_Par_Pasch means :: PASCH:def 1 for a, b, c, d, p being Element of OAS st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a holds Mid c,p,d; end; :: deftheorem defines satisfying_Int_Par_Pasch PASCH:def_1_:_ for OAS being OAffinSpace holds ( OAS is satisfying_Int_Par_Pasch iff for a, b, c, d, p being Element of OAS st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a holds Mid c,p,d ); definition let OAS be OAffinSpace; attrOAS is satisfying_Ext_Par_Pasch means :: PASCH:def 2 for a, b, c, d, p being Element of OAS st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b holds Mid p,a,d; end; :: deftheorem defines satisfying_Ext_Par_Pasch PASCH:def_2_:_ for OAS being OAffinSpace holds ( OAS is satisfying_Ext_Par_Pasch iff for a, b, c, d, p being Element of OAS st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b holds Mid p,a,d ); definition let OAS be OAffinSpace; attrOAS is satisfying_Gen_Par_Pasch means :: PASCH:def 3 for a, b, c, a9, b9, c9 being Element of OAS st not LIN a,b,a9 & a,a9 '||' b,b9 & a,a9 '||' c,c9 & Mid a,b,c & LIN a9,b9,c9 holds Mid a9,b9,c9; end; :: deftheorem defines satisfying_Gen_Par_Pasch PASCH:def_3_:_ for OAS being OAffinSpace holds ( OAS is satisfying_Gen_Par_Pasch iff for a, b, c, a9, b9, c9 being Element of OAS st not LIN a,b,a9 & a,a9 '||' b,b9 & a,a9 '||' c,c9 & Mid a,b,c & LIN a9,b9,c9 holds Mid a9,b9,c9 ); definition let OAS be OAffinSpace; attrOAS is satisfying_Ext_Bet_Pasch means :: PASCH:def 4 for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid b,x,c & not LIN a,b,c holds ex y being Element of OAS st ( Mid a,y,c & Mid y,x,d ); end; :: deftheorem defines satisfying_Ext_Bet_Pasch PASCH:def_4_:_ for OAS being OAffinSpace holds ( OAS is satisfying_Ext_Bet_Pasch iff for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid b,x,c & not LIN a,b,c holds ex y being Element of OAS st ( Mid a,y,c & Mid y,x,d ) ); definition let OAS be OAffinSpace; attrOAS is satisfying_Int_Bet_Pasch means :: PASCH:def 5 for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid a,x,c & not LIN a,b,c holds ex y being Element of OAS st ( Mid b,y,c & Mid x,y,d ); end; :: deftheorem defines satisfying_Int_Bet_Pasch PASCH:def_5_:_ for OAS being OAffinSpace holds ( OAS is satisfying_Int_Bet_Pasch iff for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid a,x,c & not LIN a,b,c holds ex y being Element of OAS st ( Mid b,y,c & Mid x,y,d ) ); definition let OAS be OAffinSpace; attrOAS is Fanoian means :: PASCH:def 6 for a, b, c, d being Element of OAS st a,b // c,d & a,c // b,d & not LIN a,b,c holds ex x being Element of OAS st ( Mid a,x,d & Mid b,x,c ); end; :: deftheorem defines Fanoian PASCH:def_6_:_ for OAS being OAffinSpace holds ( OAS is Fanoian iff for a, b, c, d being Element of OAS st a,b // c,d & a,c // b,d & not LIN a,b,c holds ex x being Element of OAS st ( Mid a,x,d & Mid b,x,c ) ); theorem Th1: :: PASCH:1 for OAS being OAffinSpace for b, p, c, a being Element of OAS st b,p // p,c & p <> c & b <> p holds ex d being Element of OAS st ( a,p // p,d & a,b '||' c,d & c <> d & p <> d ) proofend; theorem Th2: :: PASCH:2 for OAS being OAffinSpace for p, b, c, a being Element of OAS st p,b // p,c & p <> c & b <> p holds ex d being Element of OAS st ( p,a // p,d & a,b '||' c,d & c <> d ) proofend; theorem :: PASCH:3 for OAS being OAffinSpace for p, b, c, a being Element of OAS st p,b '||' p,c & p <> b holds ex d being Element of OAS st ( p,a '||' p,d & a,b '||' c,d ) proofend; theorem Th4: :: PASCH:4 for OAS being OAffinSpace for p, a, b, c, d1, d2 being Element of OAS st not LIN p,a,b & LIN p,b,c & LIN p,a,d1 & LIN p,a,d2 & a,b '||' c,d1 & a,b '||' c,d2 holds d1 = d2 proofend; theorem Th5: :: PASCH:5 for OAS being OAffinSpace for a, b, c, d1, d2 being Element of OAS st not LIN a,b,c & a,b '||' c,d1 & a,b '||' c,d2 & a,c '||' b,d1 & a,c '||' b,d2 holds d1 = d2 proofend; theorem Th6: :: PASCH:6 for OAS being OAffinSpace for p, b, c, a, d being Element of OAS st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a holds Mid c,p,d proofend; theorem :: PASCH:7 for OAS being OAffinSpace holds OAS is satisfying_Int_Par_Pasch proofend; theorem Th8: :: PASCH:8 for OAS being OAffinSpace for p, b, c, a, d being Element of OAS st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b holds Mid p,a,d proofend; theorem :: PASCH:9 for OAS being OAffinSpace holds OAS is satisfying_Ext_Par_Pasch proofend; theorem Th10: :: PASCH:10 for OAS being OAffinSpace for a, b, a9, b9, c, c9 being Element of OAS st not LIN a,b,a9 & a,a9 '||' b,b9 & a,a9 '||' c,c9 & Mid a,b,c & LIN a9,b9,c9 holds Mid a9,b9,c9 proofend; theorem :: PASCH:11 for OAS being OAffinSpace holds OAS is satisfying_Gen_Par_Pasch proofend; theorem :: PASCH:12 for OAS being OAffinSpace for p, a, b, a9, b9 being Element of OAS st not LIN p,a,b & a,p // p,a9 & b,p // p,b9 & a,b '||' a9,b9 holds a,b // b9,a9 proofend; theorem :: PASCH:13 for OAS being OAffinSpace for p, a, a9, b, b9 being Element of OAS st not LIN p,a,a9 & p,a // p,b & p,a9 // p,b9 & a,a9 '||' b,b9 holds a,a9 // b,b9 proofend; theorem Th14: :: PASCH:14 for OAS being OAffinSpace for p, a, b, c being Element of OAS st not LIN p,a,b & p,a '||' b,c & p,b '||' a,c holds ( p,a // b,c & p,b // a,c ) proofend; theorem Th15: :: PASCH:15 for OAS being OAffinSpace for p, c, b, d, a being Element of OAS st Mid p,c,b & c,d // b,a & p,d // p,a & not LIN p,a,b & p <> c holds Mid p,d,a proofend; theorem Th16: :: PASCH:16 for OAS being OAffinSpace for p, d, a, c, b being Element of OAS st Mid p,d,a & c,d // b,a & p,c // p,b & not LIN p,a,b & p <> c holds Mid p,c,b proofend; theorem Th17: :: PASCH:17 for OAS being OAffinSpace for p, a, b, c, d being Element of OAS st not LIN p,a,b & p,b // p,c & b,a // c,d & p <> d holds not Mid a,p,d proofend; theorem Th18: :: PASCH:18 for OAS being OAffinSpace for p, b, c, a being Element of OAS st p,b // p,c & b <> p holds ex x being Element of OAS st ( p,a // p,x & b,a // c,x ) proofend; theorem Th19: :: PASCH:19 for OAS being OAffinSpace for p, c, b, a being Element of OAS st Mid p,c,b holds ex x being Element of OAS st ( Mid p,x,a & b,a // c,x ) proofend; theorem Th20: :: PASCH:20 for OAS being OAffinSpace for p, b, c, a being Element of OAS st p <> b & Mid p,b,c holds ex x being Element of OAS st ( Mid p,a,x & b,a // c,x ) proofend; theorem Th21: :: PASCH:21 for OAS being OAffinSpace for p, a, b, c being Element of OAS st not LIN p,a,b & Mid p,c,b holds ex x being Element of OAS st ( Mid p,x,a & a,b // x,c ) proofend; theorem :: PASCH:22 for OAS being OAffinSpace for a, b, c being Element of OAS ex x being Element of OAS st ( a,x // b,c & a,b // x,c ) proofend; theorem Th23: :: PASCH:23 for OAS being OAffinSpace for a, b, c, d being Element of OAS st a,b // c,d & not LIN a,b,c holds ex x being Element of OAS st ( Mid a,x,d & Mid b,x,c ) proofend; theorem :: PASCH:24 for OAS being OAffinSpace holds OAS is Fanoian proofend; theorem :: PASCH:25 for OAS being OAffinSpace for a, b, c, d being Element of OAS st a,b '||' c,d & a,c '||' b,d & not LIN a,b,c holds ex x being Element of OAS st ( LIN x,a,d & LIN x,b,c ) proofend; theorem :: PASCH:26 for OAS being OAffinSpace for a, b, c, d, p being Element of OAS st a,b '||' c,d & not LIN a,b,c & LIN p,a,d & LIN p,b,c holds not LIN p,a,b proofend; theorem Th27: :: PASCH:27 for OAS being OAffinSpace for a, b, d, x, c being Element of OAS st Mid a,b,d & Mid b,x,c & not LIN a,b,c holds ex y being Element of OAS st ( Mid a,y,c & Mid y,x,d ) proofend; theorem :: PASCH:28 for OAS being OAffinSpace holds OAS is satisfying_Ext_Bet_Pasch proofend; theorem Th29: :: PASCH:29 for OAS being OAffinSpace for a, b, d, x, c being Element of OAS st Mid a,b,d & Mid a,x,c & not LIN a,b,c holds ex y being Element of OAS st ( Mid b,y,c & Mid x,y,d ) proofend; theorem :: PASCH:30 for OAS being OAffinSpace holds OAS is satisfying_Int_Bet_Pasch proofend; theorem :: PASCH:31 for OAS being OAffinSpace for p, a, b, p9, a9, b9 being Element of OAS st Mid p,a,b & p,a // p9,a9 & not LIN p,a,p9 & LIN p9,a9,b9 & p,p9 // a,a9 & p,p9 // b,b9 holds Mid p9,a9,b9 proofend;