:: On the Two Short Axiomatizations of Ortholattices :: by Wioletta Truszkowska and Adam Grabowski :: :: Received June 28, 2003 :: Copyright (c) 2003-2012 Association of Mizar Users begin definition let L be non empty ComplLLattStr ; attrL is satisfying_DN_1 means :Def1: :: ROBBINS2:def 1 for x, y, z, u being Element of L holds (((((x + y) `) + z) `) + ((x + (((z `) + ((z + u) `)) `)) `)) ` = z; end; :: deftheorem Def1 defines satisfying_DN_1 ROBBINS2:def_1_:_ for L being non empty ComplLLattStr holds ( L is satisfying_DN_1 iff for x, y, z, u being Element of L holds (((((x + y) `) + z) `) + ((x + (((z `) + ((z + u) `)) `)) `)) ` = z ); registration cluster TrivComplLat -> satisfying_DN_1 ; coherence TrivComplLat is satisfying_DN_1 proofend; cluster TrivOrtLat -> satisfying_DN_1 ; coherence TrivOrtLat is satisfying_DN_1 proofend; end; registration cluster non empty join-commutative join-associative satisfying_DN_1 for ComplLLattStr ; existence ex b1 being non empty ComplLLattStr st ( b1 is join-commutative & b1 is join-associative & b1 is satisfying_DN_1 ) proofend; end; theorem Th1: :: ROBBINS2:1 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z, u, v being Element of L holds (((x + y) `) + ((((((z + u) `) + x) `) + (((y `) + ((y + v) `)) `)) `)) ` = y proofend; theorem Th2: :: ROBBINS2:2 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z, u being Element of L holds (((x + y) `) + ((((z + x) `) + (((y `) + ((y + u) `)) `)) `)) ` = y proofend; theorem Th3: :: ROBBINS2:3 for L being non empty satisfying_DN_1 ComplLLattStr for x being Element of L holds (((x + (x `)) `) + x) ` = x ` proofend; theorem Th4: :: ROBBINS2:4 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z, u being Element of L holds (((x + y) `) + ((((z + x) `) + ((((((y + (y `)) `) + y) `) + ((y + u) `)) `)) `)) ` = y proofend; theorem Th5: :: ROBBINS2:5 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((x + y) `) + ((((z + x) `) + y) `)) ` = y proofend; theorem Th6: :: ROBBINS2:6 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (((x + y) `) + (((x `) + y) `)) ` = y proofend; theorem Th7: :: ROBBINS2:7 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (((((x + y) `) + x) `) + ((x + y) `)) ` = x proofend; theorem Th8: :: ROBBINS2:8 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (x + ((((x + y) `) + x) `)) ` = (x + y) ` proofend; theorem Th9: :: ROBBINS2:9 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((((x + y) `) + z) `) + ((x + z) `)) ` = z proofend; theorem Th10: :: ROBBINS2:10 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (x + ((((y + z) `) + ((y + x) `)) `)) ` = (y + x) ` proofend; theorem Th11: :: ROBBINS2:11 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((((((x + y) `) + z) `) + (((x `) + y) `)) `) + y) ` = ((x `) + y) ` proofend; theorem Th12: :: ROBBINS2:12 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (x + ((((y + z) `) + ((z + x) `)) `)) ` = (z + x) ` proofend; theorem Th13: :: ROBBINS2:13 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z, u being Element of L holds (((x + y) `) + ((((z + x) `) + (((y `) + ((u + y) `)) `)) `)) ` = y proofend; theorem Th14: :: ROBBINS2:14 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (x + y) ` = (y + x) ` proofend; theorem Th15: :: ROBBINS2:15 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((((x + y) `) + ((y + z) `)) `) + z) ` = (y + z) ` proofend; theorem Th16: :: ROBBINS2:16 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((x + ((((x + y) `) + z) `)) `) + z) ` = (((x + y) `) + z) ` proofend; theorem Th17: :: ROBBINS2:17 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (((((x + y) `) + x) `) + y) ` = (y + y) ` proofend; theorem Th18: :: ROBBINS2:18 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((x `) + ((y + x) `)) ` = x proofend; theorem Th19: :: ROBBINS2:19 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (((x + y) `) + (y `)) ` = y proofend; theorem Th20: :: ROBBINS2:20 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (x + ((y + (x `)) `)) ` = x ` proofend; theorem Th21: :: ROBBINS2:21 for L being non empty satisfying_DN_1 ComplLLattStr for x being Element of L holds (x + x) ` = x ` proofend; theorem Th22: :: ROBBINS2:22 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (((((x + y) `) + x) `) + y) ` = y ` proofend; theorem Th23: :: ROBBINS2:23 for L being non empty satisfying_DN_1 ComplLLattStr for x being Element of L holds (x `) ` = x proofend; theorem Th24: :: ROBBINS2:24 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((((x + y) `) + x) `) + y = (y `) ` proofend; theorem Th25: :: ROBBINS2:25 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((x + y) `) ` = y + x proofend; theorem Th26: :: ROBBINS2:26 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds x + ((((y + z) `) + ((y + x) `)) `) = ((y + x) `) ` proofend; theorem Th27: :: ROBBINS2:27 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds x + y = y + x proofend; Lm1: for L being non empty satisfying_DN_1 ComplLLattStr holds L is join-commutative proofend; registration cluster non empty satisfying_DN_1 -> non empty join-commutative for ComplLLattStr ; coherence for b1 being non empty ComplLLattStr st b1 is satisfying_DN_1 holds b1 is join-commutative by Lm1; end; theorem Th28: :: ROBBINS2:28 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((((x + y) `) + x) `) + y = y proofend; theorem :: ROBBINS2:29 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((((x + y) `) + y) `) + x = x by Th28; theorem :: ROBBINS2:30 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds x + ((((y + x) `) + y) `) = x by Th28; theorem Th31: :: ROBBINS2:31 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((x + (y `)) `) + (((y `) + y) `) = (x + (y `)) ` proofend; theorem Th32: :: ROBBINS2:32 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((x + y) `) + ((y + (y `)) `) = (x + y) ` proofend; theorem :: ROBBINS2:33 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((x + y) `) + (((y `) + y) `) = (x + y) ` by Th32; theorem Th34: :: ROBBINS2:34 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((((x + (y `)) `) `) + y) ` = ((y `) + y) ` proofend; theorem Th35: :: ROBBINS2:35 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((x + (y `)) + y) ` = ((y `) + y) ` proofend; theorem Th36: :: ROBBINS2:36 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds ((((((x + (y `)) + z) `) + y) `) + (((y `) + y) `)) ` = y proofend; theorem Th37: :: ROBBINS2:37 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds x + ((((y + z) `) + ((y + x) `)) `) = y + x proofend; theorem Th38: :: ROBBINS2:38 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds x + ((y + ((((z + y) `) + x) `)) `) = ((z + y) `) + x proofend; theorem :: ROBBINS2:39 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds x + ((((y + x) `) + ((y + z) `)) `) = y + x by Th37; theorem Th40: :: ROBBINS2:40 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds ((((x + y) `) + ((((x + y) `) + ((x + z) `)) `)) `) + y = y proofend; theorem Th41: :: ROBBINS2:41 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((((x + (y `)) + z) `) + y) `) ` = y proofend; theorem Th42: :: ROBBINS2:42 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds x + (((y + (x `)) + z) `) = x proofend; theorem Th43: :: ROBBINS2:43 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (x `) + (((y + x) + z) `) = x ` proofend; theorem Th44: :: ROBBINS2:44 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds ((x + y) `) + x = x + (y `) proofend; theorem Th45: :: ROBBINS2:45 for L being non empty satisfying_DN_1 ComplLLattStr for x, y being Element of L holds (x + ((x + (y `)) `)) ` = (x + y) ` proofend; theorem Th46: :: ROBBINS2:46 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds ((((x + y) `) + (x + z)) `) + y = y proofend; theorem Th47: :: ROBBINS2:47 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds ((((((x + y) `) + z) `) + (((x `) + y) `)) `) + y = (((x `) + y) `) ` proofend; theorem Th48: :: ROBBINS2:48 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds ((((((x + y) `) + z) `) + (((x `) + y) `)) `) + y = (x `) + y proofend; theorem Th49: :: ROBBINS2:49 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((x `) + (((((y + x) `) `) + (y + z)) `)) `) + (y + z) = (((y + x) `) `) + (y + z) proofend; theorem Th50: :: ROBBINS2:50 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((x `) + (((y + x) + (y + z)) `)) `) + (y + z) = (((y + x) `) `) + (y + z) proofend; theorem Th51: :: ROBBINS2:51 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (((x `) + (((y + x) + (y + z)) `)) `) + (y + z) = (y + x) + (y + z) proofend; theorem Th52: :: ROBBINS2:52 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds ((x `) `) + (y + z) = (y + x) + (y + z) proofend; theorem Th53: :: ROBBINS2:53 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (x + y) + (x + z) = y + (x + z) proofend; theorem :: ROBBINS2:54 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (x + y) + (x + z) = z + (x + y) by Th53; theorem Th55: :: ROBBINS2:55 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds x + (y + z) = z + (y + x) proofend; theorem :: ROBBINS2:56 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds x + (y + z) = y + (z + x) by Th55; theorem :: ROBBINS2:57 for L being non empty satisfying_DN_1 ComplLLattStr for x, y, z being Element of L holds (x + y) + z = x + (y + z) by Th55; Lm2: for L being non empty satisfying_DN_1 ComplLLattStr holds L is join-associative proofend; Lm3: for L being non empty satisfying_DN_1 ComplLLattStr holds L is Robbins proofend; registration cluster non empty satisfying_DN_1 -> non empty join-associative for ComplLLattStr ; coherence for b1 being non empty ComplLLattStr st b1 is satisfying_DN_1 holds b1 is join-associative by Lm2; cluster non empty satisfying_DN_1 -> non empty Robbins for ComplLLattStr ; coherence for b1 being non empty ComplLLattStr st b1 is satisfying_DN_1 holds b1 is Robbins by Lm3; end; theorem Th58: :: ROBBINS2:58 for L being non empty ComplLLattStr for x, z being Element of L st L is join-commutative & L is join-associative & L is Huntington holds (z + x) *' (z + (x `)) = z proofend; theorem Th59: :: ROBBINS2:59 for L being non empty join-commutative join-associative ComplLLattStr st L is Robbins holds L is satisfying_DN_1 proofend; registration cluster non empty join-commutative join-associative Robbins -> non empty satisfying_DN_1 for ComplLLattStr ; coherence for b1 being non empty ComplLLattStr st b1 is join-commutative & b1 is join-associative & b1 is Robbins holds b1 is satisfying_DN_1 by Th59; end; registration cluster non empty join-commutative join-associative meet-commutative meet-associative meet-absorbing join-absorbing Lattice-like de_Morgan satisfying_DN_1 for OrthoLattStr ; existence ex b1 being preOrthoLattice st ( b1 is satisfying_DN_1 & b1 is de_Morgan ) proofend; end; registration cluster non empty Lattice-like de_Morgan satisfying_DN_1 -> Boolean for OrthoLattStr ; coherence for b1 being preOrthoLattice st b1 is satisfying_DN_1 & b1 is de_Morgan holds b1 is Boolean ; cluster non empty Lattice-like Boolean well-complemented -> well-complemented satisfying_DN_1 for OrthoLattStr ; coherence for b1 being well-complemented preOrthoLattice st b1 is Boolean holds b1 is satisfying_DN_1 ; end; begin definition let L be non empty ComplLLattStr ; attrL is satisfying_MD_1 means :Def2: :: ROBBINS2:def 2 for x, y being Element of L holds (((x `) + y) `) + x = x; attrL is satisfying_MD_2 means :Def3: :: ROBBINS2:def 3 for x, y, z being Element of L holds (((x `) + y) `) + (z + y) = y + (z + x); end; :: deftheorem Def2 defines satisfying_MD_1 ROBBINS2:def_2_:_ for L being non empty ComplLLattStr holds ( L is satisfying_MD_1 iff for x, y being Element of L holds (((x `) + y) `) + x = x ); :: deftheorem Def3 defines satisfying_MD_2 ROBBINS2:def_3_:_ for L being non empty ComplLLattStr holds ( L is satisfying_MD_2 iff for x, y, z being Element of L holds (((x `) + y) `) + (z + y) = y + (z + x) ); Lm4: now__::_thesis:_for_L_being_non_empty_ComplLLattStr_st_L_is_satisfying_MD_1_&_L_is_satisfying_MD_2_holds_ (_L_is_join-commutative_&_L_is_Huntington_&_L_is_join-associative_) let L be non empty ComplLLattStr ; ::_thesis: ( L is satisfying_MD_1 & L is satisfying_MD_2 implies ( L is join-commutative & L is Huntington & L is join-associative ) ) assume A1: ( L is satisfying_MD_1 & L is satisfying_MD_2 ) ; ::_thesis: ( L is join-commutative & L is Huntington & L is join-associative ) A2: for x, y being Element of L holds (x `) + ((x `) + y) = (x `) + y proof let x, y be Element of L; ::_thesis: (x `) + ((x `) + y) = (x `) + y set X = (x `) + y; (((x `) + y) `) + x = x by A1, Def2; hence (x `) + ((x `) + y) = (x `) + y by A1, Def2; ::_thesis: verum end; A3: for x, y being Element of L holds (((x `) + y) `) + y = y + x proof let x, y be Element of L; ::_thesis: (((x `) + y) `) + y = y + x set X = (x `) + y; A4: (((x `) + y) `) + ((((x `) + y) `) + y) = y + ((((x `) + y) `) + x) by A1, Def3; (((x `) + y) `) + y = (((x `) + y) `) + ((((x `) + y) `) + y) by A2 .= y + x by A1, A4, Def2 ; hence (((x `) + y) `) + y = y + x ; ::_thesis: verum end; A5: for x being Element of L holds x + x = x proof let x be Element of L; ::_thesis: x + x = x x + x = (((x `) + x) `) + x by A3 .= x by A1, Def2 ; hence x + x = x ; ::_thesis: verum end; A6: for x, y being Element of L holds x + (x + y) = x + y proof let x, y be Element of L; ::_thesis: x + (x + y) = x + y x + (x + y) = (((y `) + x) `) + (x + x) by A1, Def3 .= (((y `) + x) `) + x by A5 .= x + y by A3 ; hence x + (x + y) = x + y ; ::_thesis: verum end; A7: for x, y being Element of L holds (x + y) + y = x + y proof let x, y be Element of L; ::_thesis: (x + y) + y = x + y set Y = x + y; (x + y) + y = (((y `) + (x + y)) `) + (x + y) by A3 .= (((y `) + (x + y)) `) + (x + (x + y)) by A6 .= (x + y) + (x + y) by A1, Def3 .= x + y by A5 ; hence (x + y) + y = x + y ; ::_thesis: verum end; A8: for x, y being Element of L holds (x + y) + x = x + y proof let x, y be Element of L; ::_thesis: (x + y) + x = x + y (x + y) + x = ((((y `) + x) `) + x) + x by A3 .= (((y `) + x) `) + x by A7 .= x + y by A3 ; hence (x + y) + x = x + y ; ::_thesis: verum end; A9: for x, y being Element of L holds x + (y + (y + x)) = y + x proof let x, y be Element of L; ::_thesis: x + (y + (y + x)) = y + x set Z = y + x; x + (y + (y + x)) = ((((y + x) `) + x) `) + (y + x) by A1, Def3 .= y + x by A1, Def2 ; hence x + (y + (y + x)) = y + x ; ::_thesis: verum end; A10: for x, y being Element of L holds x + (y + x) = y + x proof let x, y be Element of L; ::_thesis: x + (y + x) = y + x x + (y + x) = x + (y + (y + x)) by A6 .= y + x by A9 ; hence x + (y + x) = y + x ; ::_thesis: verum end; A11: for x, y being Element of L holds ((x + (y `)) `) + y = y proof let x, y be Element of L; ::_thesis: ((x + (y `)) `) + y = y ((x + (y `)) `) + y = (((y `) + (x + (y `))) `) + y by A10 .= y by A1, Def2 ; hence ((x + (y `)) `) + y = y ; ::_thesis: verum end; A12: for x being Element of L holds ((x `) `) + x = x proof let x be Element of L; ::_thesis: ((x `) `) + x = x (((x `) + (x `)) `) + x = x by A1, Def2; hence ((x `) `) + x = x by A5; ::_thesis: verum end; A13: for x being Element of L holds x + ((x `) `) = x proof let x be Element of L; ::_thesis: x + ((x `) `) = x x + ((x `) `) = (((x `) `) + x) + ((x `) `) by A12 .= ((x `) `) + x by A8 .= x by A12 ; hence x + ((x `) `) = x ; ::_thesis: verum end; A14: for x, y being Element of L holds x + (((x `) `) + y) = x + y proof let x, y be Element of L; ::_thesis: x + (((x `) `) + y) = x + y x + (((x `) `) + y) = (((y `) + x) `) + (((x `) `) + x) by A1, Def3 .= (((y `) + x) `) + x by A12 .= x + y by A3 ; hence x + (((x `) `) + y) = x + y ; ::_thesis: verum end; A15: for x being Element of L holds x + ((((x `) `) `) `) = x proof let x be Element of L; ::_thesis: x + ((((x `) `) `) `) = x x + ((((x `) `) `) `) = x + (((x `) `) + ((((x `) `) `) `)) by A14 .= x + ((x `) `) by A13 .= x by A13 ; hence x + ((((x `) `) `) `) = x ; ::_thesis: verum end; A16: for x being Element of L holds ((x `) `) ` = x ` proof let x be Element of L; ::_thesis: ((x `) `) ` = x ` ((x `) `) ` = ((x + ((((x `) `) `) `)) `) + (((x `) `) `) by A11 .= (x `) + (((x `) `) `) by A15 .= x ` by A13 ; hence ((x `) `) ` = x ` ; ::_thesis: verum end; A17: for x, y, z being Element of L holds (((x `) + y) `) + ((((x `) + z) `) + y) = y + x proof let x, y, z be Element of L; ::_thesis: (((x `) + y) `) + ((((x `) + z) `) + y) = y + x (((x `) + y) `) + ((((x `) + z) `) + y) = y + ((((x `) + z) `) + x) by A1, Def3 .= y + x by A1, Def2 ; hence (((x `) + y) `) + ((((x `) + z) `) + y) = y + x ; ::_thesis: verum end; A18: for x, y being Element of L holds x + ((y `) `) = x + y proof let x, y be Element of L; ::_thesis: x + ((y `) `) = x + y x + y = (((y `) + x) `) + ((((y `) + x) `) + x) by A17 .= (((y `) + x) `) + ((((((y `) `) `) + x) `) + x) by A16 .= (((((y `) `) `) + x) `) + ((((((y `) `) `) + x) `) + x) by A16 .= x + ((y `) `) by A17 ; hence x + ((y `) `) = x + y ; ::_thesis: verum end; A19: for x being Element of L holds (x `) ` = x proof let x be Element of L; ::_thesis: (x `) ` = x (x `) ` = (((((x `) `) `) + ((x `) `)) `) + ((x `) `) by A1, Def2 .= (((x `) + ((x `) `)) `) + ((x `) `) by A16 .= (((x `) + ((x `) `)) `) + x by A18 .= x by A1, Def2 ; hence (x `) ` = x ; ::_thesis: verum end; A20: for x, y, z being Element of L holds (((x `) + ((((y + x) `) + z) `)) `) + (y + ((((y + x) `) + z) `)) = y + x proof let x, y, z be Element of L; ::_thesis: (((x `) + ((((y + x) `) + z) `)) `) + (y + ((((y + x) `) + z) `)) = y + x set P = (((y + x) `) + z) ` ; (((x `) + ((((y + x) `) + z) `)) `) + (y + ((((y + x) `) + z) `)) = ((((y + x) `) + z) `) + (y + x) by A1, Def3 .= y + x by A1, Def2 ; hence (((x `) + ((((y + x) `) + z) `)) `) + (y + ((((y + x) `) + z) `)) = y + x ; ::_thesis: verum end; A21: for x, y being Element of L holds (((x `) + ((x + y) `)) `) + ((y `) + ((x + y) `)) = (y `) + x proof let x, y be Element of L; ::_thesis: (((x `) + ((x + y) `)) `) + ((y `) + ((x + y) `)) = (y `) + x (((x `) + ((x + y) `)) `) + ((y `) + ((x + y) `)) = (((x `) + ((x + y) `)) `) + ((y `) + (((((y `) + x) `) + x) `)) by A3 .= (((x `) + (((((y `) + x) `) + x) `)) `) + ((y `) + (((((y `) + x) `) + x) `)) by A3 .= (y `) + x by A20 ; hence (((x `) + ((x + y) `)) `) + ((y `) + ((x + y) `)) = (y `) + x ; ::_thesis: verum end; A22: for x, y being Element of L holds x + (((x `) + y) `) = x proof let x, y be Element of L; ::_thesis: x + (((x `) + y) `) = x x + (((x `) + y) `) = ((((x `) + y) `) + x) + (((x `) + y) `) by A1, Def2 .= (((x `) + y) `) + x by A8 .= x by A1, Def2 ; hence x + (((x `) + y) `) = x ; ::_thesis: verum end; A23: for x, y being Element of L holds (x `) + ((x + y) `) = x ` proof let x, y be Element of L; ::_thesis: (x `) + ((x + y) `) = x ` x ` = (x `) + ((((x `) `) + y) `) by A22 .= (x `) + ((x + y) `) by A19 ; hence (x `) + ((x + y) `) = x ` ; ::_thesis: verum end; A24: for x, y being Element of L holds x + ((y + (x `)) `) = x proof let x, y be Element of L; ::_thesis: x + ((y + (x `)) `) = x x + ((y + (x `)) `) = (((y + (x `)) `) + x) + ((y + (x `)) `) by A11 .= ((y + (x `)) `) + x by A8 .= x by A11 ; hence x + ((y + (x `)) `) = x ; ::_thesis: verum end; A25: for x, y being Element of L holds (x `) + ((y + x) `) = x ` proof let x, y be Element of L; ::_thesis: (x `) + ((y + x) `) = x ` x ` = (x `) + ((y + ((x `) `)) `) by A24 .= (x `) + ((y + x) `) by A19 ; hence (x `) + ((y + x) `) = x ` ; ::_thesis: verum end; A26: for x, y being Element of L holds x + (y `) = (y `) + x proof let x, y be Element of L; ::_thesis: x + (y `) = (y `) + x (y `) + x = (((x `) + ((x + y) `)) `) + ((y `) + ((x + y) `)) by A21 .= ((x `) `) + ((y `) + ((x + y) `)) by A23 .= ((x `) `) + (y `) by A25 .= x + (y `) by A19 ; hence x + (y `) = (y `) + x ; ::_thesis: verum end; A27: for x, y being Element of L holds x + y = y + x proof let x, y be Element of L; ::_thesis: x + y = y + x (y `) ` = y by A19; hence x + y = y + x by A26; ::_thesis: verum end; hence L is join-commutative by LATTICES:def_4; ::_thesis: ( L is Huntington & L is join-associative ) A28: for x, y, z being Element of L holds (((((x `) + y) `) + z) `) + ((x `) + z) = z + ((x `) + y) proof let x, y, z be Element of L; ::_thesis: (((((x `) + y) `) + z) `) + ((x `) + z) = z + ((x `) + y) (((((x `) + y) `) + z) `) + ((x `) + z) = z + ((x `) + ((x `) + y)) by A1, Def3 .= z + ((x `) + y) by A2 ; hence (((((x `) + y) `) + z) `) + ((x `) + z) = z + ((x `) + y) ; ::_thesis: verum end; A29: for x, y being Element of L holds x + ((y `) + x) = (y `) + x proof let x, y be Element of L; ::_thesis: x + ((y `) + x) = (y `) + x x + ((y `) + x) = (((((y `) + x) `) + x) `) + ((y `) + x) by A28 .= (y `) + x by A1, Def2 ; hence x + ((y `) + x) = (y `) + x ; ::_thesis: verum end; A30: for x, y being Element of L holds ((x + y) `) + x = (y `) + x proof let x, y be Element of L; ::_thesis: ((x + y) `) + x = (y `) + x set Y = (y `) + x; (y `) + x = x + ((y `) + x) by A29 .= (((((y `) + x) `) + x) `) + x by A3 .= ((x + y) `) + x by A3 ; hence ((x + y) `) + x = (y `) + x ; ::_thesis: verum end; A31: for x, y being Element of L holds ((x + y) `) + (((y `) + x) `) = (x `) + (((y `) + x) `) proof let x, y be Element of L; ::_thesis: ((x + y) `) + (((y `) + x) `) = (x `) + (((y `) + x) `) ((x + y) `) + (((y `) + x) `) = (((((y `) + x) `) + x) `) + (((y `) + x) `) by A3 .= (x `) + (((y `) + x) `) by A30 ; hence ((x + y) `) + (((y `) + x) `) = (x `) + (((y `) + x) `) ; ::_thesis: verum end; for x, y being Element of L holds (((x `) + (y `)) `) + (((x `) + y) `) = x proof let x, y be Element of L; ::_thesis: (((x `) + (y `)) `) + (((x `) + y) `) = x (((x `) + (y `)) `) + (((x `) + y) `) = (((y `) + (x `)) `) + (((x `) + y) `) by A27 .= (((x `) + y) `) + (((y `) + (x `)) `) by A27 .= ((x `) `) + (((y `) + (x `)) `) by A31 .= x + (((y `) + (x `)) `) by A19 .= x by A24 ; hence (((x `) + (y `)) `) + (((x `) + y) `) = x ; ::_thesis: verum end; hence L is Huntington by ROBBINS1:def_6; ::_thesis: L is join-associative A32: for x, y, z being Element of L holds (x + y) + (y + z) = (x + y) + z proof let x, y, z be Element of L; ::_thesis: (x + y) + (y + z) = (x + y) + z set Y = x + y; (x + y) + z = (((z `) + (x + y)) `) + (x + y) by A3 .= (((z `) + (x + y)) `) + (y + (x + y)) by A10 .= (x + y) + (y + z) by A1, Def3 ; hence (x + y) + (y + z) = (x + y) + z ; ::_thesis: verum end; for x, y, z being Element of L holds (x + y) + z = x + (y + z) proof let x, y, z be Element of L; ::_thesis: (x + y) + z = x + (y + z) for x, y, z being Element of L holds (x + y) + (z + x) = y + (x + z) proof let x, y, z be Element of L; ::_thesis: (x + y) + (z + x) = y + (x + z) (x + y) + (z + x) = (z + x) + (x + y) by A27 .= (z + x) + y by A32 .= (x + z) + y by A27 .= y + (x + z) by A27 ; hence (x + y) + (z + x) = y + (x + z) ; ::_thesis: verum end; then (y + x) + (z + y) = x + (y + z) ; then A33: (x + y) + (z + y) = x + (y + z) by A27; (x + y) + z = (x + y) + (y + z) by A32 .= x + (y + z) by A27, A33 ; hence (x + y) + z = x + (y + z) ; ::_thesis: verum end; hence L is join-associative by LATTICES:def_5; ::_thesis: verum end; registration cluster non empty satisfying_MD_1 satisfying_MD_2 -> non empty join-commutative join-associative Huntington for ComplLLattStr ; coherence for b1 being non empty ComplLLattStr st b1 is satisfying_MD_1 & b1 is satisfying_MD_2 holds ( b1 is join-commutative & b1 is join-associative & b1 is Huntington ) by Lm4; cluster non empty join-commutative join-associative Huntington -> non empty satisfying_MD_1 satisfying_MD_2 for ComplLLattStr ; coherence for b1 being non empty ComplLLattStr st b1 is join-commutative & b1 is join-associative & b1 is Huntington holds ( b1 is satisfying_MD_1 & b1 is satisfying_MD_2 ) proofend; end; registration cluster non empty join-commutative join-associative meet-commutative meet-associative meet-absorbing join-absorbing Lattice-like de_Morgan satisfying_DN_1 satisfying_MD_1 satisfying_MD_2 for OrthoLattStr ; existence ex b1 being preOrthoLattice st ( b1 is satisfying_MD_1 & b1 is satisfying_MD_2 & b1 is satisfying_DN_1 & b1 is de_Morgan ) proofend; end; registration cluster non empty Lattice-like de_Morgan satisfying_MD_1 satisfying_MD_2 -> Boolean for OrthoLattStr ; coherence for b1 being preOrthoLattice st b1 is satisfying_MD_1 & b1 is satisfying_MD_2 & b1 is de_Morgan holds b1 is Boolean ; cluster non empty Lattice-like Boolean well-complemented -> well-complemented satisfying_MD_1 satisfying_MD_2 for OrthoLattStr ; coherence for b1 being well-complemented preOrthoLattice st b1 is Boolean holds ( b1 is satisfying_MD_1 & b1 is satisfying_MD_2 ) ; end;