:: The {M}aclaurin Expansions :: by Akira Nishino and Yasunari Shidama :: :: Received July 6, 2005 :: Copyright (c) 2005-2012 Association of Mizar Users begin theorem Th1: :: TAYLOR_2:1 for x being Real for n being Element of NAT holds abs (x |^ n) = (abs x) |^ n proofend; definition let f be PartFunc of REAL,REAL; let Z be Subset of REAL; let a be real number ; func Maclaurin (f,Z,a) -> Real_Sequence equals :: TAYLOR_2:def 1 Taylor (f,Z,0,a); coherence Taylor (f,Z,0,a) is Real_Sequence ; end; :: deftheorem defines Maclaurin TAYLOR_2:def_1_:_ for f being PartFunc of REAL,REAL for Z being Subset of REAL for a being real number holds Maclaurin (f,Z,a) = Taylor (f,Z,0,a); theorem Th2: :: TAYLOR_2:2 for n being Element of NAT for f being PartFunc of REAL,REAL for r being Real st 0 < r & ].(- r),r.[ c= dom f & f is_differentiable_on n + 1,].(- r),r.[ holds for x being Real st x in ].(- r),r.[ holds ex s being Real st ( 0 < s & s < 1 & f . x = ((Partial_Sums (Maclaurin (f,].(- r),r.[,x))) . n) + (((((diff (f,].(- r),r.[)) . (n + 1)) . (s * x)) * (x |^ (n + 1))) / ((n + 1) !)) ) proofend; theorem :: TAYLOR_2:3 for n being Element of NAT for f being PartFunc of REAL,REAL for x0, r being Real st 0 < r & ].(x0 - r),(x0 + r).[ c= dom f & f is_differentiable_on n + 1,].(x0 - r),(x0 + r).[ holds for x being Real st x in ].(x0 - r),(x0 + r).[ holds ex s being Real st ( 0 < s & s < 1 & abs ((f . x) - ((Partial_Sums (Taylor (f,].(x0 - r),(x0 + r).[,x0,x))) . n)) = abs (((((diff (f,].(x0 - r),(x0 + r).[)) . (n + 1)) . (x0 + (s * (x - x0)))) * ((x - x0) |^ (n + 1))) / ((n + 1) !)) ) proofend; theorem Th4: :: TAYLOR_2:4 for n being Element of NAT for f being PartFunc of REAL,REAL for r being Real st 0 < r & ].(- r),r.[ c= dom f & f is_differentiable_on n + 1,].(- r),r.[ holds for x being Real st x in ].(- r),r.[ holds ex s being Real st ( 0 < s & s < 1 & abs ((f . x) - ((Partial_Sums (Maclaurin (f,].(- r),r.[,x))) . n)) = abs (((((diff (f,].(- r),r.[)) . (n + 1)) . (s * x)) * (x |^ (n + 1))) / ((n + 1) !)) ) proofend; Lm1: for Z being open Subset of REAL for f being Function of REAL,REAL holds dom (f | Z) = Z proofend; theorem Th5: :: TAYLOR_2:5 for Z being open Subset of REAL holds ( exp_R `| Z = exp_R | Z & dom (exp_R | Z) = Z ) proofend; theorem Th6: :: TAYLOR_2:6 for Z being open Subset of REAL for n being Element of NAT holds (diff (exp_R,Z)) . n = exp_R | Z proofend; theorem Th7: :: TAYLOR_2:7 for Z being open Subset of REAL for n being Element of NAT for x being Real st x in Z holds ((diff (exp_R,Z)) . n) . x = exp_R . x proofend; theorem :: TAYLOR_2:8 for n being Element of NAT for r, x being Real st 0 < r holds (Maclaurin (exp_R,].(- r),r.[,x)) . n = (x |^ n) / (n !) proofend; theorem :: TAYLOR_2:9 for n being Element of NAT for r, x, s being Real st x in ].(- r),r.[ & 0 < s & s < 1 holds abs (((((diff (exp_R,].(- r),r.[)) . (n + 1)) . (s * x)) * (x |^ (n + 1))) / ((n + 1) !)) <= ((abs (exp_R . (s * x))) * ((abs x) |^ (n + 1))) / ((n + 1) !) proofend; theorem Th10: :: TAYLOR_2:10 for Z being open Subset of REAL for n being Element of NAT holds exp_R is_differentiable_on n,Z proofend; theorem Th11: :: TAYLOR_2:11 for r being Real st 0 < r holds ex M, L being Real st ( 0 <= M & 0 <= L & ( for n being Element of NAT for x, s being Real st x in ].(- r),r.[ & 0 < s & s < 1 holds abs (((((diff (exp_R,].(- r),r.[)) . n) . (s * x)) * (x |^ n)) / (n !)) <= (M * (L |^ n)) / (n !) ) ) proofend; theorem Th12: :: TAYLOR_2:12 for M, L being Real st M >= 0 & L >= 0 holds for e being Real st e > 0 holds ex n being Element of NAT st for m being Element of NAT st n <= m holds (M * (L |^ m)) / (m !) < e proofend; theorem Th13: :: TAYLOR_2:13 for r, e being Real st 0 < r & 0 < e holds ex n being Element of NAT st for m being Element of NAT st n <= m holds for x, s being Real st x in ].(- r),r.[ & 0 < s & s < 1 holds abs (((((diff (exp_R,].(- r),r.[)) . m) . (s * x)) * (x |^ m)) / (m !)) < e proofend; theorem :: TAYLOR_2:14 for r, e being Real st 0 < r & 0 < e holds ex n being Element of NAT st for m being Element of NAT st n <= m holds for x being real number st x in ].(- r),r.[ holds abs ((exp_R . x) - ((Partial_Sums (Maclaurin (exp_R,].(- r),r.[,x))) . m)) < e proofend; theorem Th15: :: TAYLOR_2:15 for x being Real holds x rExpSeq is absolutely_summable proofend; theorem :: TAYLOR_2:16 for r, x being Real st 0 < r holds ( Maclaurin (exp_R,].(- r),r.[,x) = x rExpSeq & Maclaurin (exp_R,].(- r),r.[,x) is absolutely_summable & exp_R . x = Sum (Maclaurin (exp_R,].(- r),r.[,x)) ) proofend; theorem Th17: :: TAYLOR_2:17 for Z being open Subset of REAL holds ( sin `| Z = cos | Z & cos `| Z = (- sin) | Z & dom (sin | Z) = Z & dom (cos | Z) = Z ) proofend; theorem :: TAYLOR_2:18 for f being PartFunc of REAL,REAL for Z being Subset of REAL st f is_differentiable_on Z holds (- f) `| Z = - (f `| Z) proofend; theorem Th19: :: TAYLOR_2:19 for Z being open Subset of REAL for n being Element of NAT holds ( (diff (sin,Z)) . (2 * n) = ((- 1) |^ n) (#) (sin | Z) & (diff (sin,Z)) . ((2 * n) + 1) = ((- 1) |^ n) (#) (cos | Z) & (diff (cos,Z)) . (2 * n) = ((- 1) |^ n) (#) (cos | Z) & (diff (cos,Z)) . ((2 * n) + 1) = ((- 1) |^ (n + 1)) (#) (sin | Z) ) proofend; theorem Th20: :: TAYLOR_2:20 for n being Element of NAT for r, x being Real st r > 0 holds ( (Maclaurin (sin,].(- r),r.[,x)) . (2 * n) = 0 & (Maclaurin (sin,].(- r),r.[,x)) . ((2 * n) + 1) = (((- 1) |^ n) * (x |^ ((2 * n) + 1))) / (((2 * n) + 1) !) & (Maclaurin (cos,].(- r),r.[,x)) . (2 * n) = (((- 1) |^ n) * (x |^ (2 * n))) / ((2 * n) !) & (Maclaurin (cos,].(- r),r.[,x)) . ((2 * n) + 1) = 0 ) proofend; theorem Th21: :: TAYLOR_2:21 for Z being open Subset of REAL for n being Element of NAT holds ( sin is_differentiable_on n,Z & cos is_differentiable_on n,Z ) proofend; theorem Th22: :: TAYLOR_2:22 for r being Real st r > 0 holds ex r1, r2 being Real st ( r1 >= 0 & r2 >= 0 & ( for n being Element of NAT for x, s being Real st x in ].(- r),r.[ & 0 < s & s < 1 holds ( abs (((((diff (sin,].(- r),r.[)) . n) . (s * x)) * (x |^ n)) / (n !)) <= (r1 * (r2 |^ n)) / (n !) & abs (((((diff (cos,].(- r),r.[)) . n) . (s * x)) * (x |^ n)) / (n !)) <= (r1 * (r2 |^ n)) / (n !) ) ) ) proofend; theorem Th23: :: TAYLOR_2:23 for r, e being Real st 0 < r & 0 < e holds ex n being Element of NAT st for m being Element of NAT st n <= m holds for x, s being Real st x in ].(- r),r.[ & 0 < s & s < 1 holds ( abs (((((diff (sin,].(- r),r.[)) . m) . (s * x)) * (x |^ m)) / (m !)) < e & abs (((((diff (cos,].(- r),r.[)) . m) . (s * x)) * (x |^ m)) / (m !)) < e ) proofend; theorem :: TAYLOR_2:24 for r, e being Real st 0 < r & 0 < e holds ex n being Element of NAT st for m being Element of NAT st n <= m holds for x being real number st x in ].(- r),r.[ holds ( abs ((sin . x) - ((Partial_Sums (Maclaurin (sin,].(- r),r.[,x))) . m)) < e & abs ((cos . x) - ((Partial_Sums (Maclaurin (cos,].(- r),r.[,x))) . m)) < e ) proofend; theorem Th25: :: TAYLOR_2:25 for r, x being Real for m being Element of NAT st 0 < r holds ( (Partial_Sums (Maclaurin (sin,].(- r),r.[,x))) . ((2 * m) + 1) = (Partial_Sums (x P_sin)) . m & (Partial_Sums (Maclaurin (cos,].(- r),r.[,x))) . ((2 * m) + 1) = (Partial_Sums (x P_cos)) . m ) proofend; theorem Th26: :: TAYLOR_2:26 for r, x being Real for m being Element of NAT st 0 < r & m > 0 holds ( (Partial_Sums (Maclaurin (sin,].(- r),r.[,x))) . (2 * m) = (Partial_Sums (x P_sin)) . (m - 1) & (Partial_Sums (Maclaurin (cos,].(- r),r.[,x))) . (2 * m) = (Partial_Sums (x P_cos)) . m ) proofend; theorem Th27: :: TAYLOR_2:27 for r, x being Real for m being Element of NAT st 0 < r holds (Partial_Sums (Maclaurin (cos,].(- r),r.[,x))) . (2 * m) = (Partial_Sums (x P_cos)) . m proofend; theorem :: TAYLOR_2:28 for r, x being Real st r > 0 holds ( Partial_Sums (Maclaurin (sin,].(- r),r.[,x)) is convergent & sin . x = Sum (Maclaurin (sin,].(- r),r.[,x)) & Partial_Sums (Maclaurin (cos,].(- r),r.[,x)) is convergent & cos . x = Sum (Maclaurin (cos,].(- r),r.[,x)) ) proofend;