:: POLYEQ_5 semantic presentation

REAL is set

K6(REAL) is set

K7(NAT,REAL) is set
K6(K7(NAT,REAL)) is set
K7(NAT,COMPLEX) is set
K6(K7(NAT,COMPLEX)) is set
K7(COMPLEX,COMPLEX) is set
K6(K7(COMPLEX,COMPLEX)) is set
K7(REAL,REAL) is set
K6(K7(REAL,REAL)) is set

K6(NAT) is set
K6(NAT) is set
RAT is set
INT is set
K7(K7(COMPLEX,COMPLEX),COMPLEX) is set
K6(K7(K7(COMPLEX,COMPLEX),COMPLEX)) is set
K7(K7(REAL,REAL),REAL) is set
K6(K7(K7(REAL,REAL),REAL)) is set
K7(RAT,RAT) is set
K6(K7(RAT,RAT)) is set
K7(K7(RAT,RAT),RAT) is set
K6(K7(K7(RAT,RAT),RAT)) is set
K7(INT,INT) is set
K6(K7(INT,INT)) is set
K7(K7(INT,INT),INT) is set
K6(K7(K7(INT,INT),INT)) is set
K7(NAT,NAT) is set
K7(K7(NAT,NAT),NAT) is set
K6(K7(K7(NAT,NAT),NAT)) is set

K320(2,PI) is complex real ext-real Element of REAL

z is complex set
z * z is complex set
z |^ 2 is complex set
z |^ 1 is complex set
(z |^ 1) * z is complex set

z |^ (1 + 1) is complex set

z is complex set
z * z is complex set
(z * z) * z is complex set
z |^ 3 is complex set
z |^ 2 is complex set
(z |^ 2) * z is complex set

z |^ (2 + 1) is complex set

z is complex set
z * z is complex set
(z * z) * z is complex set
((z * z) * z) * z is complex set
z |^ 4 is complex set
z |^ 3 is complex set
(z |^ 3) * z is complex set

z |^ (3 + 1) is complex set
z is complex set
z |^ 2 is complex set
2 * z is complex set
a2 is complex set
z - a2 is complex set
(z - a2) |^ 2 is complex set
(2 * z) * a2 is complex set
(z |^ 2) - ((2 * z) * a2) is complex set
a2 |^ 2 is complex set
((z |^ 2) - ((2 * z) * a2)) + (a2 |^ 2) is complex set
(z - a2) * (z - a2) is complex set
z ^2 is complex set
z * z is complex set
(z ^2) - ((2 * z) * a2) is complex set
a2 ^2 is complex set
a2 * a2 is complex set
((z ^2) - ((2 * z) * a2)) + (a2 ^2) is complex set
((z |^ 2) - ((2 * z) * a2)) + (a2 * a2) is complex set
z is complex set
z |^ 3 is complex set
z |^ 2 is complex set
3 * (z |^ 2) is complex set
a2 is complex set
z - a2 is complex set
(z - a2) |^ 3 is complex set
(3 * (z |^ 2)) * a2 is complex set
(z |^ 3) - ((3 * (z |^ 2)) * a2) is complex set
a2 |^ 2 is complex set
3 * (a2 |^ 2) is complex set
(3 * (a2 |^ 2)) * z is complex set
((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((3 * (a2 |^ 2)) * z) is complex set
a2 |^ 3 is complex set
(((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((3 * (a2 |^ 2)) * z)) - (a2 |^ 3) is complex set

(z - a2) |^ (2 + 1) is complex set
(z - a2) |^ 2 is complex set
((z - a2) |^ 2) * (z - a2) is complex set
2 * z is complex set
(2 * z) * a2 is complex set
(z |^ 2) - ((2 * z) * a2) is complex set
((z |^ 2) - ((2 * z) * a2)) + (a2 |^ 2) is complex set
(((z |^ 2) - ((2 * z) * a2)) + (a2 |^ 2)) * (z - a2) is complex set
(z |^ 2) * z is complex set
(z |^ 2) * a2 is complex set
((z |^ 2) * z) - ((z |^ 2) * a2) is complex set
((2 * z) * a2) * z is complex set
((2 * z) * a2) * a2 is complex set
(((2 * z) * a2) * z) - (((2 * z) * a2) * a2) is complex set
(((z |^ 2) * z) - ((z |^ 2) * a2)) - ((((2 * z) * a2) * z) - (((2 * z) * a2) * a2)) is complex set
(a2 |^ 2) * z is complex set
(a2 |^ 2) * a2 is complex set
((a2 |^ 2) * z) - ((a2 |^ 2) * a2) is complex set
((((z |^ 2) * z) - ((z |^ 2) * a2)) - ((((2 * z) * a2) * z) - (((2 * z) * a2) * a2))) + (((a2 |^ 2) * z) - ((a2 |^ 2) * a2)) is complex set
a2 |^ (2 + 1) is complex set
((a2 |^ 2) * z) - (a2 |^ (2 + 1)) is complex set
((((z |^ 2) * z) - ((z |^ 2) * a2)) - ((((2 * z) * a2) * z) - (((2 * z) * a2) * a2))) + (((a2 |^ 2) * z) - (a2 |^ (2 + 1))) is complex set
(z |^ 3) - ((z |^ 2) * a2) is complex set
z * z is complex set
2 * (z * z) is complex set
(2 * (z * z)) * a2 is complex set
((2 * (z * z)) * a2) - (((2 * z) * a2) * a2) is complex set
((z |^ 3) - ((z |^ 2) * a2)) - (((2 * (z * z)) * a2) - (((2 * z) * a2) * a2)) is complex set
((a2 |^ 2) * z) - (a2 |^ 3) is complex set
(((z |^ 3) - ((z |^ 2) * a2)) - (((2 * (z * z)) * a2) - (((2 * z) * a2) * a2))) + (((a2 |^ 2) * z) - (a2 |^ 3)) is complex set
z |^ 1 is complex set
(z |^ 1) * z is complex set
2 * ((z |^ 1) * z) is complex set
(2 * ((z |^ 1) * z)) * a2 is complex set
((2 * ((z |^ 1) * z)) * a2) - (((2 * z) * a2) * a2) is complex set
((z |^ 3) - ((z |^ 2) * a2)) - (((2 * ((z |^ 1) * z)) * a2) - (((2 * z) * a2) * a2)) is complex set
(((z |^ 3) - ((z |^ 2) * a2)) - (((2 * ((z |^ 1) * z)) * a2) - (((2 * z) * a2) * a2))) + (((a2 |^ 2) * z) - (a2 |^ 3)) is complex set

z |^ (1 + 1) is complex set
2 * (z |^ (1 + 1)) is complex set
(2 * (z |^ (1 + 1))) * a2 is complex set
((2 * (z |^ (1 + 1))) * a2) - (((2 * z) * a2) * a2) is complex set
((z |^ 3) - ((z |^ 2) * a2)) - (((2 * (z |^ (1 + 1))) * a2) - (((2 * z) * a2) * a2)) is complex set
(((z |^ 3) - ((z |^ 2) * a2)) - (((2 * (z |^ (1 + 1))) * a2) - (((2 * z) * a2) * a2))) + (((a2 |^ 2) * z) - (a2 |^ 3)) is complex set
a2 * a2 is complex set
2 * (a2 * a2) is complex set
(2 * (a2 * a2)) * z is complex set
((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * (a2 * a2)) * z) is complex set
(((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * (a2 * a2)) * z)) + ((a2 |^ 2) * z) is complex set
((((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * (a2 * a2)) * z)) + ((a2 |^ 2) * z)) - (a2 |^ 3) is complex set
a2 |^ 1 is complex set
(a2 |^ 1) * a2 is complex set
2 * ((a2 |^ 1) * a2) is complex set
(2 * ((a2 |^ 1) * a2)) * z is complex set
((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * ((a2 |^ 1) * a2)) * z) is complex set
(((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * ((a2 |^ 1) * a2)) * z)) + ((a2 |^ 2) * z) is complex set
((((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * ((a2 |^ 1) * a2)) * z)) + ((a2 |^ 2) * z)) - (a2 |^ 3) is complex set
a2 |^ (1 + 1) is complex set
2 * (a2 |^ (1 + 1)) is complex set
(2 * (a2 |^ (1 + 1))) * z is complex set
((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * (a2 |^ (1 + 1))) * z) is complex set
(((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * (a2 |^ (1 + 1))) * z)) + ((a2 |^ 2) * z) is complex set
((((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((2 * (a2 |^ (1 + 1))) * z)) + ((a2 |^ 2) * z)) - (a2 |^ 3) is complex set

z is complex set
z |^ 4 is complex set
z |^ 3 is complex set
4 * (z |^ 3) is complex set
z |^ 2 is complex set
6 * (z |^ 2) is complex set
a2 is complex set
z - a2 is complex set
(z - a2) |^ 4 is complex set
(4 * (z |^ 3)) * a2 is complex set
(z |^ 4) - ((4 * (z |^ 3)) * a2) is complex set
a2 |^ 2 is complex set
(6 * (z |^ 2)) * (a2 |^ 2) is complex set
((z |^ 4) - ((4 * (z |^ 3)) * a2)) + ((6 * (z |^ 2)) * (a2 |^ 2)) is complex set
a2 |^ 3 is complex set
4 * (a2 |^ 3) is complex set
(4 * (a2 |^ 3)) * z is complex set
(((z |^ 4) - ((4 * (z |^ 3)) * a2)) + ((6 * (z |^ 2)) * (a2 |^ 2))) - ((4 * (a2 |^ 3)) * z) is complex set
a2 |^ 4 is complex set
((((z |^ 4) - ((4 * (z |^ 3)) * a2)) + ((6 * (z |^ 2)) * (a2 |^ 2))) - ((4 * (a2 |^ 3)) * z)) + (a2 |^ 4) is complex set

(z - a2) |^ (3 + 1) is complex set
(z - a2) |^ 3 is complex set
((z - a2) |^ 3) * (z - a2) is complex set
3 * (z |^ 2) is complex set
(3 * (z |^ 2)) * a2 is complex set
(z |^ 3) - ((3 * (z |^ 2)) * a2) is complex set
3 * (a2 |^ 2) is complex set
(3 * (a2 |^ 2)) * z is complex set
((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((3 * (a2 |^ 2)) * z) is complex set
(((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((3 * (a2 |^ 2)) * z)) - (a2 |^ 3) is complex set
((((z |^ 3) - ((3 * (z |^ 2)) * a2)) + ((3 * (a2 |^ 2)) * z)) - (a2 |^ 3)) * (z - a2) is complex set
(z |^ 3) * z is complex set
(z |^ 3) * a2 is complex set
((z |^ 3) * z) - ((z |^ 3) * a2) is complex set
((3 * (z |^ 2)) * a2) * z is complex set
- (((3 * (z |^ 2)) * a2) * z) is complex set
((3 * (z |^ 2)) * a2) * a2 is complex set
(- (((3 * (z |^ 2)) * a2) * z)) + (((3 * (z |^ 2)) * a2) * a2) is complex set
(((z |^ 3) * z) - ((z |^ 3) * a2)) + ((- (((3 * (z |^ 2)) * a2) * z)) + (((3 * (z |^ 2)) * a2) * a2)) is complex set
((3 * (a2 |^ 2)) * z) * z is complex set
((3 * (a2 |^ 2)) * z) * a2 is complex set
(((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2) is complex set
((((z |^ 3) * z) - ((z |^ 3) * a2)) + ((- (((3 * (z |^ 2)) * a2) * z)) + (((3 * (z |^ 2)) * a2) * a2))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2)) is complex set
(a2 |^ 3) * z is complex set
- ((a2 |^ 3) * z) is complex set
(a2 |^ 3) * a2 is complex set
(- ((a2 |^ 3) * z)) + ((a2 |^ 3) * a2) is complex set
(((((z |^ 3) * z) - ((z |^ 3) * a2)) + ((- (((3 * (z |^ 2)) * a2) * z)) + (((3 * (z |^ 2)) * a2) * a2))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2))) + ((- ((a2 |^ 3) * z)) + ((a2 |^ 3) * a2)) is complex set
a2 |^ (3 + 1) is complex set
(- ((a2 |^ 3) * z)) + (a2 |^ (3 + 1)) is complex set
(((((z |^ 3) * z) - ((z |^ 3) * a2)) + ((- (((3 * (z |^ 2)) * a2) * z)) + (((3 * (z |^ 2)) * a2) * a2))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2))) + ((- ((a2 |^ 3) * z)) + (a2 |^ (3 + 1))) is complex set
(z |^ 4) - ((z |^ 3) * a2) is complex set
(z |^ 2) * z is complex set
3 * ((z |^ 2) * z) is complex set
(3 * ((z |^ 2) * z)) * a2 is complex set
- ((3 * ((z |^ 2) * z)) * a2) is complex set
(- ((3 * ((z |^ 2) * z)) * a2)) + (((3 * (z |^ 2)) * a2) * a2) is complex set
((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * ((z |^ 2) * z)) * a2)) + (((3 * (z |^ 2)) * a2) * a2)) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * ((z |^ 2) * z)) * a2)) + (((3 * (z |^ 2)) * a2) * a2))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2)) is complex set
(- ((a2 |^ 3) * z)) + (a2 |^ 4) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * ((z |^ 2) * z)) * a2)) + (((3 * (z |^ 2)) * a2) * a2))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set

z |^ (2 + 1) is complex set
3 * (z |^ (2 + 1)) is complex set
(3 * (z |^ (2 + 1))) * a2 is complex set
- ((3 * (z |^ (2 + 1))) * a2) is complex set
(- ((3 * (z |^ (2 + 1))) * a2)) + (((3 * (z |^ 2)) * a2) * a2) is complex set
((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ (2 + 1))) * a2)) + (((3 * (z |^ 2)) * a2) * a2)) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ (2 + 1))) * a2)) + (((3 * (z |^ 2)) * a2) * a2))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2)) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ (2 + 1))) * a2)) + (((3 * (z |^ 2)) * a2) * a2))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set
3 * (z |^ 3) is complex set
(3 * (z |^ 3)) * a2 is complex set
- ((3 * (z |^ 3)) * a2) is complex set
a2 * a2 is complex set
(3 * (z |^ 2)) * (a2 * a2) is complex set
(- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 * a2)) is complex set
((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 * a2))) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 * a2)))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2)) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 * a2)))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set
a2 |^ 1 is complex set
(a2 |^ 1) * a2 is complex set
(3 * (z |^ 2)) * ((a2 |^ 1) * a2) is complex set
(- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * ((a2 |^ 1) * a2)) is complex set
((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * ((a2 |^ 1) * a2))) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * ((a2 |^ 1) * a2)))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2)) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * ((a2 |^ 1) * a2)))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set

a2 |^ (1 + 1) is complex set
(3 * (z |^ 2)) * (a2 |^ (1 + 1)) is complex set
(- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ (1 + 1))) is complex set
((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ (1 + 1)))) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ (1 + 1))))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2)) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ (1 + 1))))) + ((((3 * (a2 |^ 2)) * z) * z) - (((3 * (a2 |^ 2)) * z) * a2))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set
(3 * (z |^ 2)) * (a2 |^ 2) is complex set
(- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)) is complex set
((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2))) is complex set
z * z is complex set
(3 * (a2 |^ 2)) * (z * z) is complex set
((3 * (a2 |^ 2)) * (z * z)) - (((3 * (a2 |^ 2)) * z) * a2) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)))) + (((3 * (a2 |^ 2)) * (z * z)) - (((3 * (a2 |^ 2)) * z) * a2)) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)))) + (((3 * (a2 |^ 2)) * (z * z)) - (((3 * (a2 |^ 2)) * z) * a2))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set
z |^ 1 is complex set
(z |^ 1) * z is complex set
(3 * (a2 |^ 2)) * ((z |^ 1) * z) is complex set
(3 * (a2 |^ 2)) * a2 is complex set
((3 * (a2 |^ 2)) * a2) * z is complex set
((3 * (a2 |^ 2)) * ((z |^ 1) * z)) - (((3 * (a2 |^ 2)) * a2) * z) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)))) + (((3 * (a2 |^ 2)) * ((z |^ 1) * z)) - (((3 * (a2 |^ 2)) * a2) * z)) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)))) + (((3 * (a2 |^ 2)) * ((z |^ 1) * z)) - (((3 * (a2 |^ 2)) * a2) * z))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set
z |^ (1 + 1) is complex set
(3 * (a2 |^ 2)) * (z |^ (1 + 1)) is complex set
(a2 |^ 2) * a2 is complex set
3 * ((a2 |^ 2) * a2) is complex set
(3 * ((a2 |^ 2) * a2)) * z is complex set
((3 * (a2 |^ 2)) * (z |^ (1 + 1))) - ((3 * ((a2 |^ 2) * a2)) * z) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)))) + (((3 * (a2 |^ 2)) * (z |^ (1 + 1))) - ((3 * ((a2 |^ 2) * a2)) * z)) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)))) + (((3 * (a2 |^ 2)) * (z |^ (1 + 1))) - ((3 * ((a2 |^ 2) * a2)) * z))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set
(3 * (a2 |^ 2)) * (z |^ 2) is complex set
a2 |^ (2 + 1) is complex set
3 * (a2 |^ (2 + 1)) is complex set
(3 * (a2 |^ (2 + 1))) * z is complex set
((3 * (a2 |^ 2)) * (z |^ 2)) - ((3 * (a2 |^ (2 + 1))) * z) is complex set
(((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)))) + (((3 * (a2 |^ 2)) * (z |^ 2)) - ((3 * (a2 |^ (2 + 1))) * z)) is complex set
((((z |^ 4) - ((z |^ 3) * a2)) + ((- ((3 * (z |^ 3)) * a2)) + ((3 * (z |^ 2)) * (a2 |^ 2)))) + (((3 * (a2 |^ 2)) * (z |^ 2)) - ((3 * (a2 |^ (2 + 1))) * z))) + ((- ((a2 |^ 3) * z)) + (a2 |^ 4)) is complex set

a2 is complex set

(Arg a2) / z is complex real ext-real Element of COMPLEX
cos ((Arg a2) / z) is complex real ext-real set
sin ((Arg a2) / z) is complex real ext-real set
(sin ((Arg a2) / z)) * <i> is complex set
(cos ((Arg a2) / z)) + ((sin ((Arg a2) / z)) * <i>) is complex set
(z -root |.a2.|) * ((cos ((Arg a2) / z)) + ((sin ((Arg a2) / z)) * <i>)) is complex set
z is complex set

(a2,z) is complex set

(Arg z) / a2 is complex real ext-real Element of COMPLEX
cos ((Arg z) / a2) is complex real ext-real set
sin ((Arg z) / a2) is complex real ext-real set
(sin ((Arg z) / a2)) * <i> is complex set
(cos ((Arg z) / a2)) + ((sin ((Arg z) / a2)) * <i>) is complex set
(a2 -root |.z.|) * ((cos ((Arg z) / a2)) + ((sin ((Arg z) / a2)) * <i>)) is complex set
(a2,z) |^ a2 is complex set

(2 * PI) * 0 is complex real ext-real Element of REAL
(Arg z) + ((2 * PI) * 0) is complex real ext-real Element of REAL
((Arg z) + ((2 * PI) * 0)) / a1 is complex real ext-real Element of COMPLEX
cos (((Arg z) + ((2 * PI) * 0)) / a1) is complex real ext-real set
(a1 -root |.z.|) * (cos (((Arg z) + ((2 * PI) * 0)) / a1)) is complex real ext-real set
sin (((Arg z) + ((2 * PI) * 0)) / a1) is complex real ext-real set
(a1 -root |.z.|) * (sin (((Arg z) + ((2 * PI) * 0)) / a1)) is complex real ext-real set
((a1 -root |.z.|) * (sin (((Arg z) + ((2 * PI) * 0)) / a1))) * <i> is complex set
((a1 -root |.z.|) * (cos (((Arg z) + ((2 * PI) * 0)) / a1))) + (((a1 -root |.z.|) * (sin (((Arg z) + ((2 * PI) * 0)) / a1))) * <i>) is complex set
(((a1 -root |.z.|) * (cos (((Arg z) + ((2 * PI) * 0)) / a1))) + (((a1 -root |.z.|) * (sin (((Arg z) + ((2 * PI) * 0)) / a1))) * <i>)) |^ a1 is complex set

(z,a2) is complex set

(Arg a2) / z is complex real ext-real Element of COMPLEX
cos ((Arg a2) / z) is complex real ext-real set
sin ((Arg a2) / z) is complex real ext-real set
(sin ((Arg a2) / z)) * <i> is complex set
(cos ((Arg a2) / z)) + ((sin ((Arg a2) / z)) * <i>) is complex set
(z -root |.a2.|) * ((cos ((Arg a2) / z)) + ((sin ((Arg a2) / z)) * <i>)) is complex set

z is complex set

(a2,z) is complex set

(Arg z) / a2 is complex real ext-real Element of COMPLEX
cos ((Arg z) / a2) is complex real ext-real set
sin ((Arg z) / a2) is complex real ext-real set
(sin ((Arg z) / a2)) * <i> is complex set
(cos ((Arg z) / a2)) + ((sin ((Arg z) / a2)) * <i>) is complex set
(a2 -root |.z.|) * ((cos ((Arg z) / a2)) + ((sin ((Arg z) / a2)) * <i>)) is complex set

z / a1 is complex Element of COMPLEX
(a2,(z / a1)) is complex set
|.(z / a1).| is complex real ext-real Element of REAL
a2 -root |.(z / a1).| is complex real ext-real set
Arg (z / a1) is complex real ext-real Element of REAL
(Arg (z / a1)) / a2 is complex real ext-real Element of COMPLEX
cos ((Arg (z / a1)) / a2) is complex real ext-real set
sin ((Arg (z / a1)) / a2) is complex real ext-real set
(sin ((Arg (z / a1)) / a2)) * <i> is complex set
(cos ((Arg (z / a1)) / a2)) + ((sin ((Arg (z / a1)) / a2)) * <i>) is complex set
(a2 -root |.(z / a1).|) * ((cos ((Arg (z / a1)) / a2)) + ((sin ((Arg (z / a1)) / a2)) * <i>)) is complex set
(a2,a1) is complex set

(Arg a1) / a2 is complex real ext-real Element of COMPLEX
cos ((Arg a1) / a2) is complex real ext-real set
sin ((Arg a1) / a2) is complex real ext-real set
(sin ((Arg a1) / a2)) * <i> is complex set
(cos ((Arg a1) / a2)) + ((sin ((Arg a1) / a2)) * <i>) is complex set
(a2 -root |.a1.|) * ((cos ((Arg a1) / a2)) + ((sin ((Arg a1) / a2)) * <i>)) is complex set
(a2,z) / (a2,a1) is complex Element of COMPLEX

z * (1 / a1) is complex set

z * a0 is complex set
Arg (z * a0) is complex real ext-real Element of REAL

a3 -root (|.z.| / |.a1.|) is complex real ext-real set
(Arg z) / a3 is complex real ext-real Element of COMPLEX
cos ((Arg z) / a3) is complex real ext-real set
sin ((Arg z) / a3) is complex real ext-real set
(sin ((Arg z) / a3)) * <i> is complex set
(cos ((Arg z) / a3)) + ((sin ((Arg z) / a3)) * <i>) is complex set
(a3 -root (|.z.| / |.a1.|)) * ((cos ((Arg z) / a3)) + ((sin ((Arg z) / a3)) * <i>)) is complex set

(a3 -root |.z.|) / (a3 -root |.a1.|) is complex real ext-real Element of COMPLEX
((a3 -root |.z.|) / (a3 -root |.a1.|)) * ((cos ((Arg z) / a3)) + ((sin ((Arg z) / a3)) * <i>)) is complex set
(a3 -root |.a1.|) / (a3 -root |.z.|) is complex real ext-real Element of COMPLEX
((cos ((Arg z) / a3)) + ((sin ((Arg z) / a3)) * <i>)) / ((a3 -root |.a1.|) / (a3 -root |.z.|)) is complex Element of COMPLEX
(a3 -root |.z.|) * ((cos ((Arg z) / a3)) + ((sin ((Arg z) / a3)) * <i>)) is complex set
((a3 -root |.z.|) * ((cos ((Arg z) / a3)) + ((sin ((Arg z) / a3)) * <i>))) / (a3 -root |.a1.|) is complex Element of COMPLEX

(a2,z) / (a3 -root a1) is complex Element of COMPLEX
z is complex set
(2,z) is complex set

(Arg z) / 2 is complex real ext-real Element of COMPLEX
cos ((Arg z) / 2) is complex real ext-real set
sin ((Arg z) / 2) is complex real ext-real set
(sin ((Arg z) / 2)) * <i> is complex set
(cos ((Arg z) / 2)) + ((sin ((Arg z) / 2)) * <i>) is complex set
() * ((cos ((Arg z) / 2)) + ((sin ((Arg z) / 2)) * <i>)) is complex set
- (2,z) is complex set
a2 is complex set
a2 |^ 2 is complex set
(2,z) |^ 2 is complex set
(2,z) * (2,z) is complex set
a2 * a2 is complex set
a2 - (2,z) is complex set
a2 + (2,z) is complex set
(a2 - (2,z)) * (a2 + (2,z)) is complex set
(a2 * a2) - ((2,z) * (2,z)) is complex set
z is complex set
z |^ 2 is complex set
a2 is complex set
a2 * z is complex set
(z |^ 2) + (a2 * z) is complex set
a1 is complex set
a0 is complex set
a1 + a0 is complex set
- (a1 + a0) is complex set
a1 * a0 is complex set
a3 is complex set
((z |^ 2) + (a2 * z)) + a3 is complex set
z - a1 is complex set
z - a0 is complex set
(z - a1) * (z - a0) is complex set
z * z is complex set
(z * z) + (a2 * z) is complex set
((z * z) + (a2 * z)) + a3 is complex set
z is complex set
z |^ 2 is complex set
a2 is complex set
a2 * (z |^ 2) is complex set
2 * a2 is complex set
a1 is complex set
a1 * z is complex set
(a2 * (z |^ 2)) + (a1 * z) is complex set
a1 / (2 * a2) is complex Element of COMPLEX
- (a1 / (2 * a2)) is complex Element of COMPLEX
a0 is complex set
((a2 * (z |^ 2)) + (a1 * z)) + a0 is complex set
delta (a0,a1,a2) is complex set
a1 ^2 is complex set
a1 * a1 is complex set
4 * a0 is complex set
(4 * a0) * a2 is complex set
(a1 ^2) - ((4 * a0) * a2) is complex set
(2,(delta (a0,a1,a2))) is complex set
|.(delta (a0,a1,a2)).| is complex real ext-real Element of REAL
2 -root |.(delta (a0,a1,a2)).| is complex real ext-real set
Arg (delta (a0,a1,a2)) is complex real ext-real Element of REAL
(Arg (delta (a0,a1,a2))) / 2 is complex real ext-real Element of COMPLEX
cos ((Arg (delta (a0,a1,a2))) / 2) is complex real ext-real set
sin ((Arg (delta (a0,a1,a2))) / 2) is complex real ext-real set
(sin ((Arg (delta (a0,a1,a2))) / 2)) * <i> is complex set
(cos ((Arg (delta (a0,a1,a2))) / 2)) + ((sin ((Arg (delta (a0,a1,a2))) / 2)) * <i>) is complex set
(2 -root |.(delta (a0,a1,a2)).|) * ((cos ((Arg (delta (a0,a1,a2))) / 2)) + ((sin ((Arg (delta (a0,a1,a2))) / 2)) * <i>)) is complex set
(2,(delta (a0,a1,a2))) / (2 * a2) is complex Element of COMPLEX
(- (a1 / (2 * a2))) + ((2,(delta (a0,a1,a2))) / (2 * a2)) is complex Element of COMPLEX
(- (a1 / (2 * a2))) - ((2,(delta (a0,a1,a2))) / (2 * a2)) is complex Element of COMPLEX
((- (a1 / (2 * a2))) + ((2,(delta (a0,a1,a2))) / (2 * a2))) + ((- (a1 / (2 * a2))) - ((2,(delta (a0,a1,a2))) / (2 * a2))) is complex Element of COMPLEX
- (((- (a1 / (2 * a2))) + ((2,(delta (a0,a1,a2))) / (2 * a2))) + ((- (a1 / (2 * a2))) - ((2,(delta (a0,a1,a2))) / (2 * a2)))) is complex Element of COMPLEX
(a1 / (2 * a2)) + (a1 / (2 * a2)) is complex Element of COMPLEX
1 / 2 is non zero complex real ext-real positive non negative Element of COMPLEX
a1 / a2 is complex Element of COMPLEX
(1 / 2) * (a1 / a2) is complex Element of COMPLEX
((1 / 2) * (a1 / a2)) + (a1 / (2 * a2)) is complex Element of COMPLEX
((1 / 2) * (a1 / a2)) + ((1 / 2) * (a1 / a2)) is complex Element of COMPLEX
(((a2 * (z |^ 2)) + (a1 * z)) + a0) / a2 is complex Element of COMPLEX
((((a2 * (z |^ 2)) + (a1 * z)) + a0) / a2) * a2 is complex set
(a2 * (z |^ 2)) / a2 is complex Element of COMPLEX
(a1 * z) / a2 is complex Element of COMPLEX
((a2 * (z |^ 2)) / a2) + ((a1 * z) / a2) is complex Element of COMPLEX
a0 / a2 is complex Element of COMPLEX
(((a2 * (z |^ 2)) / a2) + ((a1 * z) / a2)) + (a0 / a2) is complex Element of COMPLEX
((((a2 * (z |^ 2)) / a2) + ((a1 * z) / a2)) + (a0 / a2)) * a2 is complex set
(z |^ 2) + ((a1 * z) / a2) is complex set
((z |^ 2) + ((a1 * z) / a2)) + (a0 / a2) is complex set
(((z |^ 2) + ((a1 * z) / a2)) + (a0 / a2)) * a2 is complex set
z / a2 is complex Element of COMPLEX
a1 * (z / a2) is complex set
(z |^ 2) + (a1 * (z / a2)) is complex set
((z |^ 2) + (a1 * (z / a2))) + (a0 / a2) is complex set
(((z |^ 2) + (a1 * (z / a2))) + (a0 / a2)) * a2 is complex set
a2 / a1 is complex Element of COMPLEX
z / (a2 / a1) is complex Element of COMPLEX
(z |^ 2) + (z / (a2 / a1)) is complex set
((z |^ 2) + (z / (a2 / a1))) + (a0 / a2) is complex set
(((z |^ 2) + (z / (a2 / a1))) + (a0 / a2)) * a2 is complex set
(a1 / a2) * z is complex set
(z |^ 2) + ((a1 / a2) * z) is complex set
((z |^ 2) + ((a1 / a2) * z)) + (a0 / a2) is complex set
(((z |^ 2) + ((a1 / a2) * z)) + (a0 / a2)) * a2 is complex set
((- (a1 / (2 * a2))) + ((2,(delta (a0,a1,a2))) / (2 * a2))) * ((- (a1 / (2 * a2))) - ((2,(delta (a0,a1,a2))) / (2 * a2))) is complex Element of COMPLEX
(a1 / (2 * a2)) * (a1 / (2 * a2)) is complex Element of COMPLEX
((2,(delta (a0,a1,a2))) / (2 * a2)) * ((2,(delta (a0,a1,a2))) / (2 * a2)) is complex Element of COMPLEX
((a1 / (2 * a2)) * (a1 / (2 * a2))) - (((2,(delta (a0,a1,a2))) / (2 * a2)) * ((2,(delta (a0,a1,a2))) / (2 * a2))) is complex Element of COMPLEX
(2 * a2) * (2 * a2) is complex set
(a1 * a1) / ((2 * a2) * (2 * a2)) is complex Element of COMPLEX
((a1 * a1) / ((2 * a2) * (2 * a2))) - (((2,(delta (a0,a1,a2))) / (2 * a2)) * ((2,(delta (a0,a1,a2))) / (2 * a2))) is complex Element of COMPLEX
4 * a2 is complex set
(4 * a2) * a2 is complex set
(a1 * a1) / ((4 * a2) * a2) is complex Element of COMPLEX
(2,(delta (a0,a1,a2))) * (2,(delta (a0,a1,a2))) is complex set
((2,(delta (a0,a1,a2))) * (2,(delta (a0,a1,a2)))) / ((2 * a2) * (2 * a2)) is complex Element of COMPLEX
((a1 * a1) / ((4 * a2) * a2)) - (((2,(delta (a0,a1,a2))) * (2,(delta (a0,a1,a2)))) / ((2 * a2) * (2 * a2))) is complex Element of COMPLEX
(2,(delta (a0,a1,a2))) |^ 2 is complex set
((2,(delta (a0,a1,a2))) |^ 2) / ((2 * a2) * (2 * a2)) is complex Element of COMPLEX
((a1 * a1) / ((4 * a2) * a2)) - (((2,(delta (a0,a1,a2))) |^ 2) / ((2 * a2) * (2 * a2))) is complex Element of COMPLEX
(delta (a0,a1,a2)) / ((2 * a2) * (2 * a2)) is complex Element of COMPLEX
((a1 * a1) / ((4 * a2) * a2)) - ((delta (a0,a1,a2)) / ((2 * a2) * (2 * a2))) is complex Element of COMPLEX
(a1 * a1) - (delta (a0,a1,a2)) is complex set
((a1 * a1) - (delta (a0,a1,a2))) / ((4 * a2) * a2) is complex Element of COMPLEX
a0 * (4 * a2) is complex set
a2 * (4 * a2) is complex set
(a0 * (4 * a2)) / (a2 * (4 * a2)) is complex Element of COMPLEX
(4 * a2) / (4 * a2) is complex Element of COMPLEX
(a0 / a2) * ((4 * a2) / (4 * a2)) is complex Element of COMPLEX
(a0 / a2) * 1 is complex set

z is complex set
z |^ 3 is complex set
z |^ 2 is complex set
a2 is complex set
a2 / 3 is complex Element of COMPLEX
a2 |^ 2 is complex set
9 * a2 is complex set
a2 |^ 3 is complex set
2 * (a2 |^ 3) is complex set
a2 * (z |^ 2) is complex set
(z |^ 3) + (a2 * (z |^ 2)) is complex set
a1 is complex set
3 * a1 is complex set
(3 * a1) - (a2 |^ 2) is complex set
((3 * a1) - (a2 |^ 2)) / 9 is complex Element of COMPLEX
(9 * a2) * a1 is complex set
((9 * a2) * a1) - (2 * (a2 |^ 3)) is complex set
a1 * z is complex set
((z |^ 3) + (a2 * (z |^ 2))) + (a1 * z) is complex set
a0 is complex set
27 * a0 is complex set
(((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0) is complex set
((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 is complex Element of COMPLEX
(((z |^ 3) + (a2 * (z |^ 2))) + (a1 * z)) + a0 is complex set
a3 is complex set
a3 - (a2 / 3) is complex set
a3 |^ 3 is complex set
a4 is complex set
3 * a4 is complex set
(3 * a4) * a3 is complex set
(a3 |^ 3) + ((3 * a4) * a3) is complex set
s4 is complex set
2 * s4 is complex set
((a3 |^ 3) + ((3 * a4) * a3)) - (2 * s4) is complex set
3 * z is complex set
3 * a3 is complex set
(3 * a3) - a2 is complex set
(3 * a3) |^ 2 is complex set

a3 |^ 2 is complex set
(3 |^ 2) * (a3 |^ 2) is complex set

(3 * 3) * (a3 |^ 2) is complex set
9 * (a3 |^ 2) is complex set
(3 * a3) |^ 3 is complex set

(3 |^ 3) * (a3 |^ 3) is complex set

((3 * 3) * 3) * (a3 |^ 3) is complex set
27 * (a3 |^ 3) is complex set
27 * (z |^ 3) is complex set
((3 * 3) * 3) * (z |^ 3) is complex set
(3 |^ 3) * (z |^ 3) is complex set
((3 * a3) - a2) |^ 3 is complex set
3 * (9 * (a3 |^ 2)) is complex set
(3 * (9 * (a3 |^ 2))) * a2 is complex set
(27 * (a3 |^ 3)) - ((3 * (9 * (a3 |^ 2))) * a2) is complex set
3 * (a2 |^ 2) is complex set
(3 * (a2 |^ 2)) * (3 * a3) is complex set
((27 * (a3 |^ 3)) - ((3 * (9 * (a3 |^ 2))) * a2)) + ((3 * (a2 |^ 2)) * (3 * a3)) is complex set
(((27 * (a3 |^ 3)) - ((3 * (9 * (a3 |^ 2))) * a2)) + ((3 * (a2 |^ 2)) * (3 * a3))) - (a2 |^ 3) is complex set
27 * a2 is complex set
(27 * a2) * (a3 |^ 2) is complex set
(27 * (a3 |^ 3)) - ((27 * a2) * (a3 |^ 2)) is complex set
9 * (a2 |^ 2) is complex set
(9 * (a2 |^ 2)) * a3 is complex set
((27 * (a3 |^ 3)) - ((27 * a2) * (a3 |^ 2))) + ((9 * (a2 |^ 2)) * a3) is complex set
(((27 * (a3 |^ 3)) - ((27 * a2) * (a3 |^ 2))) + ((9 * (a2 |^ 2)) * a3)) - (a2 |^ 3) is complex set
27 * a1 is complex set
(27 * a1) * z is complex set
(27 * a1) * a3 is complex set
((27 * a1) * a3) - ((9 * a2) * a1) is complex set

(27 * 1) * a2 is complex set
((27 * 1) * a2) * (z |^ 2) is complex set
3 * a2 is complex set
(3 * a2) * (3 * 3) is complex set

((3 * a2) * (3 * 3)) * (1 * 1) is complex set
(((3 * a2) * (3 * 3)) * (1 * 1)) * (z |^ 2) is complex set
(3 * a2) * (3 |^ 2) is complex set
((3 * a2) * (3 |^ 2)) * (z |^ 2) is complex set
(3 |^ 2) * (z |^ 2) is complex set
(3 * a2) * ((3 |^ 2) * (z |^ 2)) is complex set
(3 * z) |^ 2 is complex set
(3 * a2) * ((3 * z) |^ 2) is complex set
2 * (3 * a3) is complex set
(2 * (3 * a3)) * a2 is complex set
((3 * a3) |^ 2) - ((2 * (3 * a3)) * a2) is complex set
(((3 * a3) |^ 2) - ((2 * (3 * a3)) * a2)) + (a2 |^ 2) is complex set
(3 * a2) * ((((3 * a3) |^ 2) - ((2 * (3 * a3)) * a2)) + (a2 |^ 2)) is complex set
(3 * a3) * (3 * a3) is complex set
((3 * a3) * (3 * a3)) - ((2 * (3 * a3)) * a2) is complex set
(((3 * a3) * (3 * a3)) - ((2 * (3 * a3)) * a2)) + (a2 |^ 2) is complex set
(3 * a2) * ((((3 * a3) * (3 * a3)) - ((2 * (3 * a3)) * a2)) + (a2 |^ 2)) is complex set
(27 * a2) * a3 is complex set
((27 * a2) * a3) * a3 is complex set
((2 * (3 * a3)) * a2) * (3 * a2) is complex set
(((27 * a2) * a3) * a3) - (((2 * (3 * a3)) * a2) * (3 * a2)) is complex set
(a2 |^ 2) * (3 * a2) is complex set
((((27 * a2) * a3) * a3) - (((2 * (3 * a3)) * a2) * (3 * a2))) + ((a2 |^ 2) * (3 * a2)) is complex set
a3 * a3 is complex set
(27 * a2) * (a3 * a3) is complex set

a2 * a2 is complex set
18 * (a2 * a2) is complex set
(18 * (a2 * a2)) * a3 is complex set
((27 * a2) * (a3 * a3)) - ((18 * (a2 * a2)) * a3) is complex set
(3 * a2) * (a2 * a2) is complex set
(((27 * a2) * (a3 * a3)) - ((18 * (a2 * a2)) * a3)) + ((3 * a2) * (a2 * a2)) is complex set
((27 * a2) * (a3 |^ 2)) - ((18 * (a2 * a2)) * a3) is complex set
(3 * a2) * a2 is complex set
((3 * a2) * a2) * a2 is complex set
(((27 * a2) * (a3 |^ 2)) - ((18 * (a2 * a2)) * a3)) + (((3 * a2) * a2) * a2) is complex set
18 * (a2 |^ 2) is complex set
(18 * (a2 |^ 2)) * a3 is complex set
((27 * a2) * (a3 |^ 2)) - ((18 * (a2 |^ 2)) * a3) is complex set
(a2 * a2) * a2 is complex set
3 * ((a2 * a2) * a2) is complex set
(((27 * a2) * (a3 |^ 2)) - ((18 * (a2 |^ 2)) * a3)) + (3 * ((a2 * a2) * a2)) is complex set
3 * (a2 |^ 3) is complex set
(((27 * a2) * (a3 |^ 2)) - ((18 * (a2 |^ 2)) * a3)) + (3 * (a2 |^ 3)) is complex set
27 * ((((z |^ 3) + (a2 * (z |^ 2))) + (a1 * z)) + a0) is complex set
- (9 * (a2 |^ 2)) is complex set
(- (9 * (a2 |^ 2))) + (27 * a1) is complex set
((- (9 * (a2 |^ 2))) + (27 * a1)) * a3 is complex set
(27 * (a3 |^ 3)) + (((- (9 * (a2 |^ 2))) + (27 * a1)) * a3) is complex set
(2 * (a2 |^ 3)) - ((9 * a2) * a1) is complex set
((2 * (a2 |^ 3)) - ((9 * a2) * a1)) + (27 * a0) is complex set
((27 * (a3 |^ 3)) + (((- (9 * (a2 |^ 2))) + (27 * a1)) * a3)) + (((2 * (a2 |^ 3)) - ((9 * a2) * a1)) + (27 * a0)) is complex set
27 * (((a3 |^ 3) + ((3 * a4) * a3)) - (2 * s4)) is complex set
z is complex set
z |^ 3 is complex set
z |^ 2 is complex set
a2 is complex set
a2 * (z |^ 2) is complex set
(z |^ 3) + (a2 * (z |^ 2)) is complex set
a1 is complex set
a0 is complex set
a1 + a0 is complex set
a1 * a0 is complex set
a3 is complex set
a3 * z is complex set
((z |^ 3) + (a2 * (z |^ 2))) + (a3 * z) is complex set
a4 is complex set
(((z |^ 3) + (a2 * (z |^ 2))) + (a3 * z)) + a4 is complex set
s4 is complex set
(a1 + a0) + s4 is complex set
- ((a1 + a0) + s4) is complex set
a1 * s4 is complex set
(a1 * a0) + (a1 * s4) is complex set
a0 * s4 is complex set
((a1 * a0) + (a1 * s4)) + (a0 * s4) is complex set
(a1 * a0) * s4 is complex set
- ((a1 * a0) * s4) is complex set
z - a1 is complex set
z - a0 is complex set
(z - a1) * (z - a0) is complex set
z - s4 is complex set
((z - a1) * (z - a0)) * (z - s4) is complex set
z * z is complex set
(z * z) * z is complex set
a2 * z is complex set
(a2 * z) * z is complex set
((z * z) * z) + ((a2 * z) * z) is complex set
(((z * z) * z) + ((a2 * z) * z)) + (a3 * z) is complex set
((((z * z) * z) + ((a2 * z) * z)) + (a3 * z)) + a4 is complex set
a2 * (z * z) is complex set
(z |^ 3) + (a2 * (z * z)) is complex set
((z |^ 3) + (a2 * (z * z))) + (a3 * z) is complex set
(((z |^ 3) + (a2 * (z * z))) + (a3 * z)) + a4 is complex set
(2,3) is complex set

(Arg 3) / 2 is complex real ext-real Element of COMPLEX
cos ((Arg 3) / 2) is complex real ext-real set
sin ((Arg 3) / 2) is complex real ext-real set
(sin ((Arg 3) / 2)) * <i> is complex set
(cos ((Arg 3) / 2)) + ((sin ((Arg 3) / 2)) * <i>) is complex set
() * ((cos ((Arg 3) / 2)) + ((sin ((Arg 3) / 2)) * <i>)) is complex set
z is complex set
z |^ 3 is complex set
z |^ 2 is complex set
a2 is complex set
3 * a2 is complex set
a2 * z is complex set
a1 is complex set
a1 |^ 2 is complex set
(3 * a2) - (a1 |^ 2) is complex set
((3 * a2) - (a1 |^ 2)) / 9 is complex Element of COMPLEX
9 * a1 is complex set
(9 * a1) * a2 is complex set
a1 |^ 3 is complex set
2 * (a1 |^ 3) is complex set
((9 * a1) * a2) - (2 * (a1 |^ 3)) is complex set
a1 * (z |^ 2) is complex set
(z |^ 3) + (a1 * (z |^ 2)) is complex set
((z |^ 3) + (a1 * (z |^ 2))) + (a2 * z) is complex set
a1 / 3 is complex Element of COMPLEX
a0 is complex set
27 * a0 is complex set
(((9 * a1) * a2) - (2 * (a1 |^ 3))) - (27 * a0) is complex set
((((9 * a1) * a2) - (2 * (a1 |^ 3))) - (27 * a0)) / 54 is complex Element of COMPLEX
(((z |^ 3) + (a1 * (z |^ 2))) + (a2 * z)) + a0 is complex set
a3 is complex set
a4 is complex set
a3 + a4 is complex set
(a3 + a4) - (a1 / 3) is complex set
(a3 + a4) / 2 is complex Element of COMPLEX
- ((a3 + a4) / 2) is complex Element of COMPLEX
(- ((a3 + a4) / 2)) - (a1 / 3) is complex Element of COMPLEX
a3 - a4 is complex set
(a3 - a4) * (2,3) is complex set
((a3 - a4) * (2,3)) * <i> is complex set
(((a3 - a4) * (2,3)) * <i>) / 2 is complex Element of COMPLEX
((- ((a3 + a4) / 2)) - (a1 / 3)) + ((((a3 - a4) * (2,3)) * <i>) / 2) is complex Element of COMPLEX
((- ((a3 + a4) / 2)) - (a1 / 3)) - ((((a3 - a4) * (2,3)) * <i>) / 2) is complex Element of COMPLEX
s4 is complex set
s4 |^ 3 is complex set
s4 / a3 is complex Element of COMPLEX
- (s4 / a3) is complex Element of COMPLEX
s3 is complex set
s3 |^ 2 is complex set
(s4 |^ 3) + (s3 |^ 2) is complex set
(2,((s4 |^ 3) + (s3 |^ 2))) is complex set
|.((s4 |^ 3) + (s3 |^ 2)).| is complex real ext-real Element of REAL
2 -root |.((s4 |^ 3) + (s3 |^ 2)).| is complex real ext-real set
Arg ((s4 |^ 3) + (s3 |^ 2)) is complex real ext-real Element of REAL
(Arg ((s4 |^ 3) + (s3 |^ 2))) / 2 is complex real ext-real Element of COMPLEX
cos ((Arg ((s4 |^ 3) + (s3 |^ 2))) / 2) is complex real ext-real set
sin ((Arg ((s4 |^ 3) + (s3 |^ 2))) / 2) is complex real ext-real set
(sin ((Arg ((s4 |^ 3) + (s3 |^ 2))) / 2)) * <i> is complex set
(cos ((Arg ((s4 |^ 3) + (s3 |^ 2))) / 2)) + ((sin ((Arg ((s4 |^ 3) + (s3 |^ 2))) / 2)) * <i>) is complex set
(2 -root |.((s4 |^ 3) + (s3 |^ 2)).|) * ((cos ((Arg ((s4 |^ 3) + (s3 |^ 2))) / 2)) + ((sin ((Arg ((s4 |^ 3) + (s3 |^ 2))) / 2)) * <i>)) is complex set
s2 is complex set
s3 + s2 is complex set
(3,(s3 + s2)) is complex set
|.(s3 + s2).| is complex real ext-real Element of REAL
3 -root |.(s3 + s2).| is complex real ext-real set
Arg (s3 + s2) is complex real ext-real Element of REAL
(Arg (s3 + s2)) / 3 is complex real ext-real Element of COMPLEX
cos ((Arg (s3 + s2)) / 3) is complex real ext-real set
sin ((Arg (s3 + s2)) / 3) is complex real ext-real set
(sin ((Arg (s3 + s2)) / 3)) * <i> is complex set
(cos ((Arg (s3 + s2)) / 3)) + ((sin ((Arg (s3 + s2)) / 3)) * <i>) is complex set
(3 -root |.(s3 + s2).|) * ((cos ((Arg (s3 + s2)) / 3)) + ((sin ((Arg (s3 + s2)) / 3)) * <i>)) is complex set
(a3 - a4) / 2 is complex Element of COMPLEX
z + (a1 / 3) is complex set
2 * ((a3 + a4) / 2) is complex set
((a3 - a4) / 2) * (2,3) is complex set
(((a3 - a4) / 2) * (2,3)) * <i> is complex set
(- ((a3 + a4) / 2)) + ((((a3 - a4) / 2) * (2,3)) * <i>) is complex set
(- ((a3 + a4) / 2)) - ((((a3 - a4) / 2) * (2,3)) * <i>) is complex set
(2 * ((a3 + a4) / 2)) + ((- ((a3 + a4) / 2)) + ((((a3 - a4) / 2) * (2,3)) * <i>)) is complex set
((2 * ((a3 + a4) / 2)) + ((- ((a3 + a4) / 2)) + ((((a3 - a4) / 2) * (2,3)) * <i>))) + ((- ((a3 + a4) / 2)) - ((((a3 - a4) / 2) * (2,3)) * <i>)) is complex set
- (((2 * ((a3 + a4) / 2)) + ((- ((a3 + a4) / 2)) + ((((a3 - a4) / 2) * (2,3)) * <i>))) + ((- ((a3 + a4) / 2)) - ((((a3 - a4) / 2) * (2,3)) * <i>))) is complex set
a3 |^ 3 is complex set
s2 |^ 2 is complex set
s2 * s2 is complex set
- s2 is complex set
(- s2) * (- s2) is complex set
s4 * s4 is complex set
(s4 * s4) * s4 is complex set
a4 * a4 is complex set
(a4 * a4) * a4 is complex set
(s4 / a3) * (s4 / a3) is complex Element of COMPLEX
((s4 / a3) * (s4 / a3)) * (s4 / a3) is complex Element of COMPLEX
- (((s4 / a3) * (s4 / a3)) * (s4 / a3)) is complex Element of COMPLEX
s4 * s4 is complex set
a3 * a3 is complex set
(s4 * s4) / (a3 * a3) is complex Element of COMPLEX
((s4 * s4) / (a3 * a3)) * (s4 / a3) is complex Element of COMPLEX
- (((s4 * s4) / (a3 * a3)) * (s4 / a3)) is complex Element of COMPLEX
(s4 * s4) * s4 is complex set
(a3 * a3) * a3 is complex set
((s4 * s4) * s4) / ((a3 * a3) * a3) is complex Element of COMPLEX
- (((s4 * s4) * s4) / ((a3 * a3) * a3)) is complex Element of COMPLEX
(3,(s3 + s2)) |^ 3 is complex set
((s4 * s4) * s4) / ((3,(s3 + s2)) |^ 3) is complex Element of COMPLEX
- (((s4 * s4) * s4) / ((3,(s3 + s2)) |^ 3)) is complex Element of COMPLEX
((s4 * s4) * s4) / (s3 + s2) is complex Element of COMPLEX
- (((s4 * s4) * s4) / (s3 + s2)) is complex Element of COMPLEX
(s4 |^ 3) / (s3 + s2) is complex Element of COMPLEX
- ((s4 |^ 3) / (s3 + s2)) is complex Element of COMPLEX
a3 |^ 3 is complex set
(2 * ((a3 + a4) / 2)) * ((- ((a3 + a4) / 2)) + ((((a3 - a4) / 2) * (2,3)) * <i>)) is complex set
(2 * ((a3 + a4) / 2)) * ((- ((a3 + a4) / 2)) - ((((a3 - a4) / 2) * (2,3)) * <i>)) is complex set
((2 * ((a3 + a4) / 2)) * ((- ((a3 + a4) / 2)) + ((((a3 - a4) / 2) * (2,3)) * <i>))) + ((2 * ((a3 + a4) / 2)) * ((- ((a3 + a4) / 2)) - ((((a3 - a4) / 2) * (2,3)) * <i>))) is complex set
((- ((a3 + a4) / 2)) + ((((a3 - a4) / 2) * (2,3)) * <i>)) *