:: ROBBINS2 semantic presentation

K87() is set
K19(K87()) is set
1 is set
K14() is set
TrivComplLat is non empty V42() V43() V48(1) join-commutative join-associative upper-bounded strict Robbins Huntington join-idempotent with_idempotent_element ComplLLattStr
the U1 of TrivComplLat is V11() V12() V28() set
c1 is M2( the U1 of TrivComplLat)
L9 is M2( the U1 of TrivComplLat)
c1 + L9 is M2( the U1 of TrivComplLat)
(c1 + L9) ` is M2( the U1 of TrivComplLat)
x is M2( the U1 of TrivComplLat)
((c1 + L9) `) + x is M2( the U1 of TrivComplLat)
(((c1 + L9) `) + x) ` is M2( the U1 of TrivComplLat)
x ` is M2( the U1 of TrivComplLat)
y is M2( the U1 of TrivComplLat)
x + y is M2( the U1 of TrivComplLat)
(x + y) ` is M2( the U1 of TrivComplLat)
(x `) + ((x + y) `) is M2( the U1 of TrivComplLat)
((x `) + ((x + y) `)) ` is M2( the U1 of TrivComplLat)
c1 + (((x `) + ((x + y) `)) `) is M2( the U1 of TrivComplLat)
(c1 + (((x `) + ((x + y) `)) `)) ` is M2( the U1 of TrivComplLat)
((((c1 + L9) `) + x) `) + ((c1 + (((x `) + ((x + y) `)) `)) `) is M2( the U1 of TrivComplLat)
(((((c1 + L9) `) + x) `) + ((c1 + (((x `) + ((x + y) `)) `)) `)) ` is M2( the U1 of TrivComplLat)
TrivOrtLat is non empty V42() V43() V48(1) join-commutative join-associative meet-commutative meet-associative meet-absorbing join-absorbing Lattice-like distributive modular lower-bounded upper-bounded V65() complemented Boolean strict Robbins Huntington join-idempotent well-complemented de_Morgan OrthoLattStr
the U1 of TrivOrtLat is V11() V12() V28() set
c1 is M2( the U1 of TrivOrtLat)
L9 is M2( the U1 of TrivOrtLat)
c1 + L9 is M2( the U1 of TrivOrtLat)
(c1 + L9) ` is M2( the U1 of TrivOrtLat)
x is M2( the U1 of TrivOrtLat)
((c1 + L9) `) + x is M2( the U1 of TrivOrtLat)
(((c1 + L9) `) + x) ` is M2( the U1 of TrivOrtLat)
x ` is M2( the U1 of TrivOrtLat)
y is M2( the U1 of TrivOrtLat)
x + y is M2( the U1 of TrivOrtLat)
(x + y) ` is M2( the U1 of TrivOrtLat)
(x `) + ((x + y) `) is M2( the U1 of TrivOrtLat)
((x `) + ((x + y) `)) ` is M2( the U1 of TrivOrtLat)
c1 + (((x `) + ((x + y) `)) `) is M2( the U1 of TrivOrtLat)
(c1 + (((x `) + ((x + y) `)) `)) ` is M2( the U1 of TrivOrtLat)
((((c1 + L9) `) + x) `) + ((c1 + (((x `) + ((x + y) `)) `)) `) is M2( the U1 of TrivOrtLat)
(((((c1 + L9) `) + x) `) + ((c1 + (((x `) + ((x + y) `)) `)) `)) ` is M2( the U1 of TrivOrtLat)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
z is M2( the U1 of c1)
y + z is M2( the U1 of c1)
(y + z) ` is M2( the U1 of c1)
((y + z) `) + L9 is M2( the U1 of c1)
(((y + z) `) + L9) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
Z is M2( the U1 of c1)
x + Z is M2( the U1 of c1)
(x + Z) ` is M2( the U1 of c1)
(x `) + ((x + Z) `) is M2( the U1 of c1)
((x `) + ((x + Z) `)) ` is M2( the U1 of c1)
((((y + z) `) + L9) `) + (((x `) + ((x + Z) `)) `) is M2( the U1 of c1)
(((((y + z) `) + L9) `) + (((x `) + ((x + Z) `)) `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((((((y + z) `) + L9) `) + (((x `) + ((x + Z) `)) `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((((y + z) `) + L9) `) + (((x `) + ((x + Z) `)) `)) `)) ` is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
L9 + z is M2( the U1 of c1)
(L9 + z) ` is M2( the U1 of c1)
(L9 `) + ((L9 + z) `) is M2( the U1 of c1)
((L9 `) + ((L9 + z) `)) ` is M2( the U1 of c1)
y + (((L9 `) + ((L9 + z) `)) `) is M2( the U1 of c1)
(y + (((L9 `) + ((L9 + z) `)) `)) ` is M2( the U1 of c1)
((((y + z) `) + L9) `) + ((y + (((L9 `) + ((L9 + z) `)) `)) `) is M2( the U1 of c1)
(((((y + z) `) + L9) `) + ((y + (((L9 `) + ((L9 + z) `)) `)) `)) ` is M2( the U1 of c1)
((((((y + z) `) + L9) `) + ((y + (((L9 `) + ((L9 + z) `)) `)) `)) `) + x is M2( the U1 of c1)
(((((((y + z) `) + L9) `) + ((y + (((L9 `) + ((L9 + z) `)) `)) `)) `) + x) ` is M2( the U1 of c1)
((((((((y + z) `) + L9) `) + ((y + (((L9 `) + ((L9 + z) `)) `)) `)) `) + x) `) + ((((((y + z) `) + L9) `) + (((x `) + ((x + Z) `)) `)) `) is M2( the U1 of c1)
(((((((((y + z) `) + L9) `) + ((y + (((L9 `) + ((L9 + z) `)) `)) `)) `) + x) `) + ((((((y + z) `) + L9) `) + (((x `) + ((x + Z) `)) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
y + L9 is M2( the U1 of c1)
(y + L9) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
z is M2( the U1 of c1)
x + z is M2( the U1 of c1)
(x + z) ` is M2( the U1 of c1)
(x `) + ((x + z) `) is M2( the U1 of c1)
((x `) + ((x + z) `)) ` is M2( the U1 of c1)
((y + L9) `) + (((x `) + ((x + z) `)) `) is M2( the U1 of c1)
(((y + L9) `) + (((x `) + ((x + z) `)) `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((((y + L9) `) + (((x `) + ((x + z) `)) `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((y + L9) `) + (((x `) + ((x + z) `)) `)) `)) ` is M2( the U1 of c1)
the M2( the U1 of c1) is M2( the U1 of c1)
L9 + y is M2( the U1 of c1)
(L9 + y) ` is M2( the U1 of c1)
((x + z) `) + L9 is M2( the U1 of c1)
(((x + z) `) + L9) ` is M2( the U1 of c1)
y ` is M2( the U1 of c1)
y + the M2( the U1 of c1) is M2( the U1 of c1)
(y + the M2( the U1 of c1)) ` is M2( the U1 of c1)
(y `) + ((y + the M2( the U1 of c1)) `) is M2( the U1 of c1)
((y `) + ((y + the M2( the U1 of c1)) `)) ` is M2( the U1 of c1)
((((x + z) `) + L9) `) + (((y `) + ((y + the M2( the U1 of c1)) `)) `) is M2( the U1 of c1)
(((((x + z) `) + L9) `) + (((y `) + ((y + the M2( the U1 of c1)) `)) `)) ` is M2( the U1 of c1)
((L9 + y) `) + ((((((x + z) `) + L9) `) + (((y `) + ((y + the M2( the U1 of c1)) `)) `)) `) is M2( the U1 of c1)
(((L9 + y) `) + ((((((x + z) `) + L9) `) + (((y `) + ((y + the M2( the U1 of c1)) `)) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
L9 + (L9 `) is M2( the U1 of c1)
(L9 + (L9 `)) ` is M2( the U1 of c1)
((L9 + (L9 `)) `) + L9 is M2( the U1 of c1)
(((L9 + (L9 `)) `) + L9) ` is M2( the U1 of c1)
the M2( the U1 of c1) is M2( the U1 of c1)
L9 + the M2( the U1 of c1) is M2( the U1 of c1)
(L9 + the M2( the U1 of c1)) ` is M2( the U1 of c1)
(L9 `) ` is M2( the U1 of c1)
((L9 `) `) + the M2( the U1 of c1) is M2( the U1 of c1)
(((L9 `) `) + the M2( the U1 of c1)) ` is M2( the U1 of c1)
((((L9 `) `) + the M2( the U1 of c1)) `) + L9 is M2( the U1 of c1)
(((((L9 `) `) + the M2( the U1 of c1)) `) + L9) ` is M2( the U1 of c1)
(L9 `) + ((L9 + the M2( the U1 of c1)) `) is M2( the U1 of c1)
((L9 `) + ((L9 + the M2( the U1 of c1)) `)) ` is M2( the U1 of c1)
((L9 `) `) + (((L9 `) + ((L9 + the M2( the U1 of c1)) `)) `) is M2( the U1 of c1)
(((L9 `) `) + (((L9 `) + ((L9 + the M2( the U1 of c1)) `)) `)) ` is M2( the U1 of c1)
((((((L9 `) `) + the M2( the U1 of c1)) `) + L9) `) + ((((L9 `) `) + (((L9 `) + ((L9 + the M2( the U1 of c1)) `)) `)) `) is M2( the U1 of c1)
(((((((L9 `) `) + the M2( the U1 of c1)) `) + L9) `) + ((((L9 `) `) + (((L9 `) + ((L9 + the M2( the U1 of c1)) `)) `)) `)) ` is M2( the U1 of c1)
((L9 + (L9 `)) `) + ((((((((L9 `) `) + the M2( the U1 of c1)) `) + L9) `) + ((((L9 `) `) + (((L9 `) + ((L9 + the M2( the U1 of c1)) `)) `)) `)) `) is M2( the U1 of c1)
(((L9 + (L9 `)) `) + ((((((((L9 `) `) + the M2( the U1 of c1)) `) + L9) `) + ((((L9 `) `) + (((L9 `) + ((L9 + the M2( the U1 of c1)) `)) `)) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
y + L9 is M2( the U1 of c1)
(y + L9) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
x + (x `) is M2( the U1 of c1)
(x + (x `)) ` is M2( the U1 of c1)
((x + (x `)) `) + x is M2( the U1 of c1)
(((x + (x `)) `) + x) ` is M2( the U1 of c1)
z is M2( the U1 of c1)
x + z is M2( the U1 of c1)
(x + z) ` is M2( the U1 of c1)
((((x + (x `)) `) + x) `) + ((x + z) `) is M2( the U1 of c1)
(((((x + (x `)) `) + x) `) + ((x + z) `)) ` is M2( the U1 of c1)
((y + L9) `) + ((((((x + (x `)) `) + x) `) + ((x + z) `)) `) is M2( the U1 of c1)
(((y + L9) `) + ((((((x + (x `)) `) + x) `) + ((x + z) `)) `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((((y + L9) `) + ((((((x + (x `)) `) + x) `) + ((x + z) `)) `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((y + L9) `) + ((((((x + (x `)) `) + x) `) + ((x + z) `)) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
y + L9 is M2( the U1 of c1)
(y + L9) ` is M2( the U1 of c1)
((y + L9) `) + x is M2( the U1 of c1)
(((y + L9) `) + x) ` is M2( the U1 of c1)
((L9 + x) `) + ((((y + L9) `) + x) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((y + L9) `) + x) `)) ` is M2( the U1 of c1)
the M2( the U1 of c1) is M2( the U1 of c1)
x ` is M2( the U1 of c1)
x + the M2( the U1 of c1) is M2( the U1 of c1)
(x + the M2( the U1 of c1)) ` is M2( the U1 of c1)
(x `) + ((x + the M2( the U1 of c1)) `) is M2( the U1 of c1)
((x `) + ((x + the M2( the U1 of c1)) `)) ` is M2( the U1 of c1)
x + (x `) is M2( the U1 of c1)
(x + (x `)) ` is M2( the U1 of c1)
((x + (x `)) `) + x is M2( the U1 of c1)
(((x + (x `)) `) + x) ` is M2( the U1 of c1)
x + (((x `) + ((x + the M2( the U1 of c1)) `)) `) is M2( the U1 of c1)
(x + (((x `) + ((x + the M2( the U1 of c1)) `)) `)) ` is M2( the U1 of c1)
((((x + (x `)) `) + x) `) + ((x + (((x `) + ((x + the M2( the U1 of c1)) `)) `)) `) is M2( the U1 of c1)
(((((x + (x `)) `) + x) `) + ((x + (((x `) + ((x + the M2( the U1 of c1)) `)) `)) `)) ` is M2( the U1 of c1)
((y + L9) `) + ((((((x + (x `)) `) + x) `) + ((x + (((x `) + ((x + the M2( the U1 of c1)) `)) `)) `)) `) is M2( the U1 of c1)
(((y + L9) `) + ((((((x + (x `)) `) + x) `) + ((x + (((x `) + ((x + the M2( the U1 of c1)) `)) `)) `)) `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((((y + L9) `) + ((((((x + (x `)) `) + x) `) + ((x + (((x `) + ((x + the M2( the U1 of c1)) `)) `)) `)) `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((y + L9) `) + ((((((x + (x `)) `) + x) `) + ((x + (((x `) + ((x + the M2( the U1 of c1)) `)) `)) `)) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
(L9 `) + x is M2( the U1 of c1)
((L9 `) + x) ` is M2( the U1 of c1)
((L9 + x) `) + (((L9 `) + x) `) is M2( the U1 of c1)
(((L9 + x) `) + (((L9 `) + x) `)) ` is M2( the U1 of c1)
L9 + (L9 `) is M2( the U1 of c1)
(L9 + (L9 `)) ` is M2( the U1 of c1)
((L9 + (L9 `)) `) + L9 is M2( the U1 of c1)
(((L9 + (L9 `)) `) + L9) ` is M2( the U1 of c1)
((((L9 + (L9 `)) `) + L9) `) + x is M2( the U1 of c1)
(((((L9 + (L9 `)) `) + L9) `) + x) ` is M2( the U1 of c1)
((L9 + x) `) + ((((((L9 + (L9 `)) `) + L9) `) + x) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((((L9 + (L9 `)) `) + L9) `) + x) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + ((L9 + x) `) is M2( the U1 of c1)
(((((L9 + x) `) + L9) `) + ((L9 + x) `)) ` is M2( the U1 of c1)
L9 + ((L9 + x) `) is M2( the U1 of c1)
(L9 + ((L9 + x) `)) ` is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
L9 + (L9 `) is M2( the U1 of c1)
(L9 + (L9 `)) ` is M2( the U1 of c1)
((L9 + (L9 `)) `) + L9 is M2( the U1 of c1)
(((L9 + (L9 `)) `) + L9) ` is M2( the U1 of c1)
((((L9 + (L9 `)) `) + L9) `) + ((L9 + x) `) is M2( the U1 of c1)
(((((L9 + (L9 `)) `) + L9) `) + ((L9 + x) `)) ` is M2( the U1 of c1)
((L9 + ((L9 + x) `)) `) + ((((((L9 + (L9 `)) `) + L9) `) + ((L9 + x) `)) `) is M2( the U1 of c1)
(((L9 + ((L9 + x) `)) `) + ((((((L9 + (L9 `)) `) + L9) `) + ((L9 + x) `)) `)) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + ((((L9 + ((L9 + x) `)) `) + ((((((L9 + (L9 `)) `) + L9) `) + ((L9 + x) `)) `)) `) is M2( the U1 of c1)
(((((L9 + x) `) + L9) `) + ((((L9 + ((L9 + x) `)) `) + ((((((L9 + (L9 `)) `) + L9) `) + ((L9 + x) `)) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
L9 + ((((L9 + x) `) + L9) `) is M2( the U1 of c1)
(L9 + ((((L9 + x) `) + L9) `)) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + ((L9 + x) `) is M2( the U1 of c1)
(((((L9 + x) `) + L9) `) + ((L9 + x) `)) ` is M2( the U1 of c1)
((((((L9 + x) `) + L9) `) + ((L9 + x) `)) `) + ((((L9 + x) `) + L9) `) is M2( the U1 of c1)
(((((((L9 + x) `) + L9) `) + ((L9 + x) `)) `) + ((((L9 + x) `) + L9) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
((L9 + x) `) + y is M2( the U1 of c1)
(((L9 + x) `) + y) ` is M2( the U1 of c1)
L9 + y is M2( the U1 of c1)
(L9 + y) ` is M2( the U1 of c1)
((((L9 + x) `) + y) `) + ((L9 + y) `) is M2( the U1 of c1)
(((((L9 + x) `) + y) `) + ((L9 + y) `)) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + ((L9 + x) `) is M2( the U1 of c1)
(((((L9 + x) `) + L9) `) + ((L9 + x) `)) ` is M2( the U1 of c1)
((((((L9 + x) `) + L9) `) + ((L9 + x) `)) `) + y is M2( the U1 of c1)
(((((((L9 + x) `) + L9) `) + ((L9 + x) `)) `) + y) ` is M2( the U1 of c1)
((((L9 + x) `) + y) `) + ((((((((L9 + x) `) + L9) `) + ((L9 + x) `)) `) + y) `) is M2( the U1 of c1)
(((((L9 + x) `) + y) `) + ((((((((L9 + x) `) + L9) `) + ((L9 + x) `)) `) + y) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + y) ` is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + y) `) + ((x + L9) `) is M2( the U1 of c1)
(((x + y) `) + ((x + L9) `)) ` is M2( the U1 of c1)
L9 + ((((x + y) `) + ((x + L9) `)) `) is M2( the U1 of c1)
(L9 + ((((x + y) `) + ((x + L9) `)) `)) ` is M2( the U1 of c1)
((x + y) `) + L9 is M2( the U1 of c1)
(((x + y) `) + L9) ` is M2( the U1 of c1)
((((x + y) `) + L9) `) + ((x + L9) `) is M2( the U1 of c1)
(((((x + y) `) + L9) `) + ((x + L9) `)) ` is M2( the U1 of c1)
((((((x + y) `) + L9) `) + ((x + L9) `)) `) + ((((x + y) `) + ((x + L9) `)) `) is M2( the U1 of c1)
(((((((x + y) `) + L9) `) + ((x + L9) `)) `) + ((((x + y) `) + ((x + L9) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
((L9 + x) `) + y is M2( the U1 of c1)
(((L9 + x) `) + y) ` is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
(L9 `) + x is M2( the U1 of c1)
((L9 `) + x) ` is M2( the U1 of c1)
((((L9 + x) `) + y) `) + (((L9 `) + x) `) is M2( the U1 of c1)
(((((L9 + x) `) + y) `) + (((L9 `) + x) `)) ` is M2( the U1 of c1)
((((((L9 + x) `) + y) `) + (((L9 `) + x) `)) `) + x is M2( the U1 of c1)
(((((((L9 + x) `) + y) `) + (((L9 `) + x) `)) `) + x) ` is M2( the U1 of c1)
((L9 + x) `) + (((L9 `) + x) `) is M2( the U1 of c1)
(((L9 + x) `) + (((L9 `) + x) `)) ` is M2( the U1 of c1)
((((((L9 + x) `) + y) `) + (((L9 `) + x) `)) `) + ((((L9 + x) `) + (((L9 `) + x) `)) `) is M2( the U1 of c1)
(((((((L9 + x) `) + y) `) + (((L9 `) + x) `)) `) + ((((L9 + x) `) + (((L9 `) + x) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + y) ` is M2( the U1 of c1)
y + L9 is M2( the U1 of c1)
(y + L9) ` is M2( the U1 of c1)
((x + y) `) + ((y + L9) `) is M2( the U1 of c1)
(((x + y) `) + ((y + L9) `)) ` is M2( the U1 of c1)
L9 + ((((x + y) `) + ((y + L9) `)) `) is M2( the U1 of c1)
(L9 + ((((x + y) `) + ((y + L9) `)) `)) ` is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + L9) `) + ((x + y) `) is M2( the U1 of c1)
(((x + L9) `) + ((x + y) `)) ` is M2( the U1 of c1)
y + ((((x + L9) `) + ((x + y) `)) `) is M2( the U1 of c1)
(y + ((((x + L9) `) + ((x + y) `)) `)) ` is M2( the U1 of c1)
((y + ((((x + L9) `) + ((x + y) `)) `)) `) + ((y + L9) `) is M2( the U1 of c1)
(((y + ((((x + L9) `) + ((x + y) `)) `)) `) + ((y + L9) `)) ` is M2( the U1 of c1)
L9 + ((((y + ((((x + L9) `) + ((x + y) `)) `)) `) + ((y + L9) `)) `) is M2( the U1 of c1)
(L9 + ((((y + ((((x + L9) `) + ((x + y) `)) `)) `) + ((y + L9) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
y + L9 is M2( the U1 of c1)
(y + L9) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
z is M2( the U1 of c1)
z + x is M2( the U1 of c1)
(z + x) ` is M2( the U1 of c1)
(x `) + ((z + x) `) is M2( the U1 of c1)
((x `) + ((z + x) `)) ` is M2( the U1 of c1)
((y + L9) `) + (((x `) + ((z + x) `)) `) is M2( the U1 of c1)
(((y + L9) `) + (((x `) + ((z + x) `)) `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((((y + L9) `) + (((x `) + ((z + x) `)) `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((y + L9) `) + (((x `) + ((z + x) `)) `)) `)) ` is M2( the U1 of c1)
z + y is M2( the U1 of c1)
(z + y) ` is M2( the U1 of c1)
((z + y) `) + ((z + x) `) is M2( the U1 of c1)
(((z + y) `) + ((z + x) `)) ` is M2( the U1 of c1)
x + ((((z + y) `) + ((z + x) `)) `) is M2( the U1 of c1)
(x + ((((z + y) `) + ((z + x) `)) `)) ` is M2( the U1 of c1)
(x `) + ((x + ((((z + y) `) + ((z + x) `)) `)) `) is M2( the U1 of c1)
((x `) + ((x + ((((z + y) `) + ((z + x) `)) `)) `)) ` is M2( the U1 of c1)
((y + L9) `) + (((x `) + ((x + ((((z + y) `) + ((z + x) `)) `)) `)) `) is M2( the U1 of c1)
(((y + L9) `) + (((x `) + ((x + ((((z + y) `) + ((z + x) `)) `)) `)) `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((((y + L9) `) + (((x `) + ((x + ((((z + y) `) + ((z + x) `)) `)) `)) `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((y + L9) `) + (((x `) + ((x + ((((z + y) `) + ((z + x) `)) `)) `)) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + L9) `) + x is M2( the U1 of c1)
(((x + L9) `) + x) ` is M2( the U1 of c1)
((((x + L9) `) + x) `) + ((x + L9) `) is M2( the U1 of c1)
(((((x + L9) `) + x) `) + ((x + L9) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + y) ` is M2( the U1 of c1)
((L9 + x) `) + ((x + y) `) is M2( the U1 of c1)
(((L9 + x) `) + ((x + y) `)) ` is M2( the U1 of c1)
((((L9 + x) `) + ((x + y) `)) `) + y is M2( the U1 of c1)
(((((L9 + x) `) + ((x + y) `)) `) + y) ` is M2( the U1 of c1)
y + ((((L9 + x) `) + ((x + y) `)) `) is M2( the U1 of c1)
(y + ((((L9 + x) `) + ((x + y) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
((L9 + x) `) + y is M2( the U1 of c1)
(((L9 + x) `) + y) ` is M2( the U1 of c1)
L9 + ((((L9 + x) `) + y) `) is M2( the U1 of c1)
(L9 + ((((L9 + x) `) + y) `)) ` is M2( the U1 of c1)
((L9 + ((((L9 + x) `) + y) `)) `) + y is M2( the U1 of c1)
(((L9 + ((((L9 + x) `) + y) `)) `) + y) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + ((L9 + x) `) is M2( the U1 of c1)
(((((L9 + x) `) + L9) `) + ((L9 + x) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + x is M2( the U1 of c1)
(((((L9 + x) `) + L9) `) + x) ` is M2( the U1 of c1)
x + x is M2( the U1 of c1)
(x + x) ` is M2( the U1 of c1)
((L9 + x) `) + ((((((L9 + x) `) + L9) `) + x) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((((L9 + x) `) + L9) `) + x) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
(L9 `) + ((x + L9) `) is M2( the U1 of c1)
((L9 `) + ((x + L9) `)) ` is M2( the U1 of c1)
(L9 `) + x is M2( the U1 of c1)
((L9 `) + x) ` is M2( the U1 of c1)
(((L9 `) + x) `) + (((L9 `) + ((x + L9) `)) `) is M2( the U1 of c1)
((((L9 `) + x) `) + (((L9 `) + ((x + L9) `)) `)) ` is M2( the U1 of c1)
((x + L9) `) + (((((L9 `) + x) `) + (((L9 `) + ((x + L9) `)) `)) `) is M2( the U1 of c1)
(((x + L9) `) + (((((L9 `) + x) `) + (((L9 `) + ((x + L9) `)) `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
((L9 + x) `) + (x `) is M2( the U1 of c1)
(((L9 + x) `) + (x `)) ` is M2( the U1 of c1)
(x `) + ((L9 + x) `) is M2( the U1 of c1)
((x `) + ((L9 + x) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
x + (L9 `) is M2( the U1 of c1)
(x + (L9 `)) ` is M2( the U1 of c1)
L9 + ((x + (L9 `)) `) is M2( the U1 of c1)
(L9 + ((x + (L9 `)) `)) ` is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + L9) `) + (L9 `) is M2( the U1 of c1)
(((x + L9) `) + (L9 `)) ` is M2( the U1 of c1)
((((x + L9) `) + (L9 `)) `) + ((x + (L9 `)) `) is M2( the U1 of c1)
(((((x + L9) `) + (L9 `)) `) + ((x + (L9 `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 + L9 is M2( the U1 of c1)
(L9 + L9) ` is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
the M2( the U1 of c1) is M2( the U1 of c1)
the M2( the U1 of c1) + L9 is M2( the U1 of c1)
( the M2( the U1 of c1) + L9) ` is M2( the U1 of c1)
(( the M2( the U1 of c1) + L9) `) + (L9 `) is M2( the U1 of c1)
((( the M2( the U1 of c1) + L9) `) + (L9 `)) ` is M2( the U1 of c1)
L9 + (((( the M2( the U1 of c1) + L9) `) + (L9 `)) `) is M2( the U1 of c1)
(L9 + (((( the M2( the U1 of c1) + L9) `) + (L9 `)) `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + x is M2( the U1 of c1)
(((((L9 + x) `) + L9) `) + x) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
x + x is M2( the U1 of c1)
(x + x) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
(L9 `) ` is M2( the U1 of c1)
L9 + (L9 `) is M2( the U1 of c1)
(L9 + (L9 `)) ` is M2( the U1 of c1)
((L9 + (L9 `)) `) + L9 is M2( the U1 of c1)
(((L9 + (L9 `)) `) + L9) ` is M2( the U1 of c1)
((((L9 + (L9 `)) `) + L9) `) + (L9 `) is M2( the U1 of c1)
(((((L9 + (L9 `)) `) + L9) `) + (L9 `)) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + x is M2( the U1 of c1)
x ` is M2( the U1 of c1)
(x `) ` is M2( the U1 of c1)
(((((L9 + x) `) + L9) `) + x) ` is M2( the U1 of c1)
((((((L9 + x) `) + L9) `) + x) `) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) ` is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + L9) `) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + y) ` is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + y) `) + ((x + L9) `) is M2( the U1 of c1)
(((x + y) `) + ((x + L9) `)) ` is M2( the U1 of c1)
L9 + ((((x + y) `) + ((x + L9) `)) `) is M2( the U1 of c1)
((x + L9) `) ` is M2( the U1 of c1)
(L9 + ((((x + y) `) + ((x + L9) `)) `)) ` is M2( the U1 of c1)
((L9 + ((((x + y) `) + ((x + L9) `)) `)) `) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) ` is M2( the U1 of c1)
c1 is non empty () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
c1 is non empty ComplLLattStr
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
((((L9 + x) `) + L9) `) + x is M2( the U1 of c1)
x ` is M2( the U1 of c1)
(x `) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + x is M2( the U1 of c1)
(((L9 + x) `) + x) ` is M2( the U1 of c1)
((((L9 + x) `) + x) `) + L9 is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + L9) `) + x is M2( the U1 of c1)
(((x + L9) `) + x) ` is M2( the U1 of c1)
L9 + ((((x + L9) `) + x) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
x ` is M2( the U1 of c1)
L9 + (x `) is M2( the U1 of c1)
(L9 + (x `)) ` is M2( the U1 of c1)
(x `) + x is M2( the U1 of c1)
((x `) + x) ` is M2( the U1 of c1)
((L9 + (x `)) `) + (((x `) + x) `) is M2( the U1 of c1)
x + ((L9 + (x `)) `) is M2( the U1 of c1)
(x + ((L9 + (x `)) `)) ` is M2( the U1 of c1)
((x + ((L9 + (x `)) `)) `) + x is M2( the U1 of c1)
(((x + ((L9 + (x `)) `)) `) + x) ` is M2( the U1 of c1)
((L9 + (x `)) `) + ((((x + ((L9 + (x `)) `)) `) + x) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
x + (x `) is M2( the U1 of c1)
(x + (x `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((x + (x `)) `) is M2( the U1 of c1)
(x `) + ((L9 + x) `) is M2( the U1 of c1)
((x `) + ((L9 + x) `)) ` is M2( the U1 of c1)
(((x `) + ((L9 + x) `)) `) + (x `) is M2( the U1 of c1)
((((x `) + ((L9 + x) `)) `) + (x `)) ` is M2( the U1 of c1)
((L9 + x) `) + (((((x `) + ((L9 + x) `)) `) + (x `)) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
(x `) + x is M2( the U1 of c1)
((x `) + x) ` is M2( the U1 of c1)
((L9 + x) `) + (((x `) + x) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
x ` is M2( the U1 of c1)
L9 + (x `) is M2( the U1 of c1)
(L9 + (x `)) ` is M2( the U1 of c1)
((L9 + (x `)) `) ` is M2( the U1 of c1)
(((L9 + (x `)) `) `) + x is M2( the U1 of c1)
((((L9 + (x `)) `) `) + x) ` is M2( the U1 of c1)
(x `) + x is M2( the U1 of c1)
((x `) + x) ` is M2( the U1 of c1)
((L9 + (x `)) `) + (((x `) + x) `) is M2( the U1 of c1)
(((L9 + (x `)) `) + (((x `) + x) `)) ` is M2( the U1 of c1)
((((L9 + (x `)) `) + (((x `) + x) `)) `) + x is M2( the U1 of c1)
(((((L9 + (x `)) `) + (((x `) + x) `)) `) + x) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
x ` is M2( the U1 of c1)
L9 + (x `) is M2( the U1 of c1)
(L9 + (x `)) + x is M2( the U1 of c1)
((L9 + (x `)) + x) ` is M2( the U1 of c1)
(x `) + x is M2( the U1 of c1)
((x `) + x) ` is M2( the U1 of c1)
(L9 + (x `)) ` is M2( the U1 of c1)
((L9 + (x `)) `) ` is M2( the U1 of c1)
(((L9 + (x `)) `) `) + x is M2( the U1 of c1)
((((L9 + (x `)) `) `) + x) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
x ` is M2( the U1 of c1)
L9 + (x `) is M2( the U1 of c1)
y is M2( the U1 of c1)
(L9 + (x `)) + y is M2( the U1 of c1)
((L9 + (x `)) + y) ` is M2( the U1 of c1)
(((L9 + (x `)) + y) `) + x is M2( the U1 of c1)
((((L9 + (x `)) + y) `) + x) ` is M2( the U1 of c1)
(x `) + x is M2( the U1 of c1)
((x `) + x) ` is M2( the U1 of c1)
(((((L9 + (x `)) + y) `) + x) `) + (((x `) + x) `) is M2( the U1 of c1)
((((((L9 + (x `)) + y) `) + x) `) + (((x `) + x) `)) ` is M2( the U1 of c1)
(L9 + (x `)) + x is M2( the U1 of c1)
((L9 + (x `)) + x) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + y) ` is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + y) `) + ((x + L9) `) is M2( the U1 of c1)
(((x + y) `) + ((x + L9) `)) ` is M2( the U1 of c1)
L9 + ((((x + y) `) + ((x + L9) `)) `) is M2( the U1 of c1)
((x + L9) `) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
y is M2( the U1 of c1)
y + x is M2( the U1 of c1)
(y + x) ` is M2( the U1 of c1)
((y + x) `) + L9 is M2( the U1 of c1)
(((y + x) `) + L9) ` is M2( the U1 of c1)
x + ((((y + x) `) + L9) `) is M2( the U1 of c1)
(x + ((((y + x) `) + L9) `)) ` is M2( the U1 of c1)
L9 + ((x + ((((y + x) `) + L9) `)) `) is M2( the U1 of c1)
x ` is M2( the U1 of c1)
((y + x) `) + (x `) is M2( the U1 of c1)
(((y + x) `) + (x `)) ` is M2( the U1 of c1)
((((y + x) `) + (x `)) `) + ((((y + x) `) + L9) `) is M2( the U1 of c1)
(((((y + x) `) + (x `)) `) + ((((y + x) `) + L9) `)) ` is M2( the U1 of c1)
L9 + ((((((y + x) `) + (x `)) `) + ((((y + x) `) + L9) `)) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + y) ` is M2( the U1 of c1)
((x + L9) `) + ((x + y) `) is M2( the U1 of c1)
(((x + L9) `) + ((x + y) `)) ` is M2( the U1 of c1)
L9 + ((((x + L9) `) + ((x + y) `)) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
L9 + y is M2( the U1 of c1)
(L9 + y) ` is M2( the U1 of c1)
((L9 + x) `) + ((L9 + y) `) is M2( the U1 of c1)
(((L9 + x) `) + ((L9 + y) `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((((L9 + x) `) + ((L9 + y) `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((L9 + x) `) + ((L9 + y) `)) `)) ` is M2( the U1 of c1)
((((L9 + x) `) + ((((L9 + x) `) + ((L9 + y) `)) `)) `) + x is M2( the U1 of c1)
x + ((((L9 + x) `) + ((L9 + y) `)) `) is M2( the U1 of c1)
(x + ((((L9 + x) `) + ((L9 + y) `)) `)) ` is M2( the U1 of c1)
((x + ((((L9 + x) `) + ((L9 + y) `)) `)) `) + ((((L9 + x) `) + ((L9 + y) `)) `) is M2( the U1 of c1)
(((x + ((((L9 + x) `) + ((L9 + y) `)) `)) `) + ((((L9 + x) `) + ((L9 + y) `)) `)) ` is M2( the U1 of c1)
((((x + ((((L9 + x) `) + ((L9 + y) `)) `)) `) + ((((L9 + x) `) + ((L9 + y) `)) `)) `) + x is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
x ` is M2( the U1 of c1)
L9 + (x `) is M2( the U1 of c1)
y is M2( the U1 of c1)
(L9 + (x `)) + y is M2( the U1 of c1)
((L9 + (x `)) + y) ` is M2( the U1 of c1)
(((L9 + (x `)) + y) `) + x is M2( the U1 of c1)
((((L9 + (x `)) + y) `) + x) ` is M2( the U1 of c1)
(((((L9 + (x `)) + y) `) + x) `) ` is M2( the U1 of c1)
(x `) + x is M2( the U1 of c1)
((x `) + x) ` is M2( the U1 of c1)
(((((L9 + (x `)) + y) `) + x) `) + (((x `) + x) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
x + (L9 `) is M2( the U1 of c1)
y is M2( the U1 of c1)
(x + (L9 `)) + y is M2( the U1 of c1)
((x + (L9 `)) + y) ` is M2( the U1 of c1)
L9 + (((x + (L9 `)) + y) `) is M2( the U1 of c1)
(((x + (L9 `)) + y) `) + L9 is M2( the U1 of c1)
((((x + (L9 `)) + y) `) + L9) ` is M2( the U1 of c1)
(((((x + (L9 `)) + y) `) + L9) `) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
y is M2( the U1 of c1)
(x + L9) + y is M2( the U1 of c1)
((x + L9) + y) ` is M2( the U1 of c1)
(L9 `) + (((x + L9) + y) `) is M2( the U1 of c1)
(L9 `) ` is M2( the U1 of c1)
x + ((L9 `) `) is M2( the U1 of c1)
(x + ((L9 `) `)) + y is M2( the U1 of c1)
((x + ((L9 `) `)) + y) ` is M2( the U1 of c1)
(L9 `) + (((x + ((L9 `) `)) + y) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
x ` is M2( the U1 of c1)
L9 + (x `) is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
x + ((((L9 + x) `) + L9) `) is M2( the U1 of c1)
(x + ((((L9 + x) `) + L9) `)) ` is M2( the U1 of c1)
L9 + ((x + ((((L9 + x) `) + L9) `)) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
x ` is M2( the U1 of c1)
L9 + (x `) is M2( the U1 of c1)
(L9 + (x `)) ` is M2( the U1 of c1)
L9 + ((L9 + (x `)) `) is M2( the U1 of c1)
(L9 + ((L9 + (x `)) `)) ` is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
((L9 + x) `) + L9 is M2( the U1 of c1)
(((L9 + x) `) + L9) ` is M2( the U1 of c1)
L9 + ((((L9 + x) `) + L9) `) is M2( the U1 of c1)
(L9 + ((((L9 + x) `) + L9) `)) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
L9 + y is M2( the U1 of c1)
((L9 + x) `) + (L9 + y) is M2( the U1 of c1)
(((L9 + x) `) + (L9 + y)) ` is M2( the U1 of c1)
((((L9 + x) `) + (L9 + y)) `) + x is M2( the U1 of c1)
(L9 + y) ` is M2( the U1 of c1)
((L9 + x) `) + ((L9 + y) `) is M2( the U1 of c1)
(((L9 + x) `) + ((L9 + y) `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((((L9 + x) `) + ((L9 + y) `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((((L9 + x) `) + ((L9 + y) `)) `)) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
((L9 + x) `) + y is M2( the U1 of c1)
(((L9 + x) `) + y) ` is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
(L9 `) + x is M2( the U1 of c1)
((L9 `) + x) ` is M2( the U1 of c1)
((((L9 + x) `) + y) `) + (((L9 `) + x) `) is M2( the U1 of c1)
(((((L9 + x) `) + y) `) + (((L9 `) + x) `)) ` is M2( the U1 of c1)
((((((L9 + x) `) + y) `) + (((L9 `) + x) `)) `) + x is M2( the U1 of c1)
(((L9 `) + x) `) ` is M2( the U1 of c1)
(((((((L9 + x) `) + y) `) + (((L9 `) + x) `)) `) + x) ` is M2( the U1 of c1)
((((((((L9 + x) `) + y) `) + (((L9 `) + x) `)) `) + x) `) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
((L9 + x) `) + y is M2( the U1 of c1)
(((L9 + x) `) + y) ` is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
(L9 `) + x is M2( the U1 of c1)
((L9 `) + x) ` is M2( the U1 of c1)
((((L9 + x) `) + y) `) + (((L9 `) + x) `) is M2( the U1 of c1)
(((((L9 + x) `) + y) `) + (((L9 `) + x) `)) ` is M2( the U1 of c1)
((((((L9 + x) `) + y) `) + (((L9 `) + x) `)) `) + x is M2( the U1 of c1)
(((L9 `) + x) `) ` is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + L9) `) ` is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(((x + L9) `) `) + (x + y) is M2( the U1 of c1)
((((x + L9) `) `) + (x + y)) ` is M2( the U1 of c1)
(L9 `) + (((((x + L9) `) `) + (x + y)) `) is M2( the U1 of c1)
((L9 `) + (((((x + L9) `) `) + (x + y)) `)) ` is M2( the U1 of c1)
(((L9 `) + (((((x + L9) `) `) + (x + y)) `)) `) + (x + y) is M2( the U1 of c1)
((x + L9) `) + (x + y) is M2( the U1 of c1)
(((x + L9) `) + (x + y)) ` is M2( the U1 of c1)
((((x + L9) `) + (x + y)) `) + L9 is M2( the U1 of c1)
(((((x + L9) `) + (x + y)) `) + L9) ` is M2( the U1 of c1)
((((((x + L9) `) + (x + y)) `) + L9) `) + (((((x + L9) `) `) + (x + y)) `) is M2( the U1 of c1)
(((((((x + L9) `) + (x + y)) `) + L9) `) + (((((x + L9) `) `) + (x + y)) `)) ` is M2( the U1 of c1)
((((((((x + L9) `) + (x + y)) `) + L9) `) + (((((x + L9) `) `) + (x + y)) `)) `) + (x + y) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + L9) + (x + y) is M2( the U1 of c1)
((x + L9) + (x + y)) ` is M2( the U1 of c1)
(L9 `) + (((x + L9) + (x + y)) `) is M2( the U1 of c1)
((L9 `) + (((x + L9) + (x + y)) `)) ` is M2( the U1 of c1)
(((L9 `) + (((x + L9) + (x + y)) `)) `) + (x + y) is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + L9) `) ` is M2( the U1 of c1)
(((x + L9) `) `) + (x + y) is M2( the U1 of c1)
((((x + L9) `) `) + (x + y)) ` is M2( the U1 of c1)
(L9 `) + (((((x + L9) `) `) + (x + y)) `) is M2( the U1 of c1)
((L9 `) + (((((x + L9) `) `) + (x + y)) `)) ` is M2( the U1 of c1)
(((L9 `) + (((((x + L9) `) `) + (x + y)) `)) `) + (x + y) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
x is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + L9) + (x + y) is M2( the U1 of c1)
((x + L9) + (x + y)) ` is M2( the U1 of c1)
(L9 `) + (((x + L9) + (x + y)) `) is M2( the U1 of c1)
((L9 `) + (((x + L9) + (x + y)) `)) ` is M2( the U1 of c1)
(((L9 `) + (((x + L9) + (x + y)) `)) `) + (x + y) is M2( the U1 of c1)
(x + L9) ` is M2( the U1 of c1)
((x + L9) `) ` is M2( the U1 of c1)
(((x + L9) `) `) + (x + y) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
(L9 `) ` is M2( the U1 of c1)
x is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
((L9 `) `) + (x + y) is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
(x + L9) + (x + y) is M2( the U1 of c1)
((x + L9) + (x + y)) ` is M2( the U1 of c1)
(L9 `) + (((x + L9) + (x + y)) `) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
y is M2( the U1 of c1)
L9 + y is M2( the U1 of c1)
(L9 + x) + (L9 + y) is M2( the U1 of c1)
x + (L9 + y) is M2( the U1 of c1)
x ` is M2( the U1 of c1)
(x `) ` is M2( the U1 of c1)
((x `) `) + (L9 + y) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
y is M2( the U1 of c1)
L9 + y is M2( the U1 of c1)
(L9 + x) + (L9 + y) is M2( the U1 of c1)
y + (L9 + x) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
L9 + (x + y) is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
y + (x + L9) is M2( the U1 of c1)
(x + L9) + (x + y) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
L9 + (x + y) is M2( the U1 of c1)
y + L9 is M2( the U1 of c1)
x + (y + L9) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
y is M2( the U1 of c1)
(L9 + x) + y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
L9 + (x + y) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
y is M2( the U1 of c1)
(L9 + x) + y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
L9 + (x + y) is M2( the U1 of c1)
c1 is non empty join-commutative () ComplLLattStr
the U1 of c1 is V11() set
L9 is M2( the U1 of c1)
x is M2( the U1 of c1)
L9 + x is M2( the U1 of c1)
(L9 + x) ` is M2( the U1 of c1)
x ` is M2( the U1 of c1)
L9 + (x `) is M2( the U1 of c1)
(L9 + (x `)) ` is M2( the U1 of c1)
((L9 + x) `) + ((L9 + (x `)) `) is M2( the U1 of c1)
(((L9 + x) `) + ((L9 + (x `)) `)) ` is M2( the U1 of c1)
c1 is non empty ComplLLattStr
c1 is non empty ComplLLattStr
c1 is non empty ComplLLattStr
the U1 of c1 is V11() set
x is M2( the U1 of c1)
L9 is M2( the U1 of c1)
x + L9 is M2( the U1 of c1)
L9 ` is M2( the U1 of c1)
x + (L9 `) is M2( the U1 of c1)
(x + L9) *' (x + (L9 `)) is M2( the U1 of c1)
y is non empty join-commutative join-associative upper-bounded Huntington join-idempotent ComplLLattStr
the U1 of y is V11() set
z is M2( the U1 of y)
Z is M2( the U1 of y)
z + Z is M2( the U1 of y)
Z ` is M2( the U1 of y)
z + (Z `) is M2( the U1 of y)
(z + Z) *' (z + (Z `)) is M2( the U1 of y)
Z *' (Z `) is M2( the U1 of y)
z + (Z *' (Z `)) is M2( the U1 of y)
Bot y is M2( the U1 of y)
z + (Bot y) is M2( the U1 of y)
c1 is non empty join-commutative join-associative ComplLLattStr
the U1 of c1 is V11() set
x is M2( the U1 of c1)
y is M2( the U1 of c1)
x + y is M2( the U1 of c1)
(x + y) ` is M2( the U1 of c1)
z is M2( the U1 of c1)
((x + y) `) + z is M2( the U1 of c1)
(((x + y) `) + z) ` is M2( the U1 of c1)
z ` is M2( the U1 of c1)
Z is M2( the U1 of c1)
z + Z is M2( the U1 of c1)
(z + Z) ` is M2( the U1 of c1)
(z `) + ((z + Z) `) is M2( the U1 of c1)
((z `) + ((z + Z) `)) ` is M2( the U1 of c1)
x + (((z `) + ((z + Z) `)) `) is M2( the U1 of c1)
(x + (((z `) + ((z + Z) `)) `)) ` is M2( the U1 of c1)