:: ANALOAF semantic presentation begin definition let V be RealLinearSpace; let u, v, w, y be VECTOR of V; predu,v // w,y means :Def1: :: ANALOAF:def 1 ( u = v or w = y or ex a, b being Real st ( 0 < a & 0 < b & a * (v - u) = b * (y - w) ) ); end; :: deftheorem Def1 defines // ANALOAF:def_1_:_ for V being RealLinearSpace for u, v, w, y being VECTOR of V holds ( u,v // w,y iff ( u = v or w = y or ex a, b being Real st ( 0 < a & 0 < b & a * (v - u) = b * (y - w) ) ) ); theorem Th1: :: ANALOAF:1 for V being RealLinearSpace for w, v, u being VECTOR of V holds (w - v) + (v - u) = w - u proof let V be RealLinearSpace; ::_thesis: for w, v, u being VECTOR of V holds (w - v) + (v - u) = w - u let w, v, u be VECTOR of V; ::_thesis: (w - v) + (v - u) = w - u thus (w - v) + (v - u) = w - (v - (v - u)) by RLVECT_1:29 .= w - ((v - v) + u) by RLVECT_1:29 .= w - ((0. V) + u) by RLVECT_1:15 .= w - u by RLVECT_1:4 ; ::_thesis: verum end; theorem Th2: :: ANALOAF:2 for V being RealLinearSpace for y, u, v, w being VECTOR of V st y + u = v + w holds y - w = v - u proof let V be RealLinearSpace; ::_thesis: for y, u, v, w being VECTOR of V st y + u = v + w holds y - w = v - u let y, u, v, w be VECTOR of V; ::_thesis: ( y + u = v + w implies y - w = v - u ) assume A1: y + u = v + w ; ::_thesis: y - w = v - u thus y - w = (y + (0. V)) - w by RLVECT_1:4 .= (y + (u - u)) - w by RLVECT_1:15 .= ((v + w) + (- u)) - w by A1, RLVECT_1:def_3 .= (- u) + ((v + w) - w) by RLVECT_1:def_3 .= v - u by RLSUB_2:61 ; ::_thesis: verum end; theorem Th3: :: ANALOAF:3 for V being RealLinearSpace for u, v being VECTOR of V for a being Real holds a * (u - v) = - (a * (v - u)) proof let V be RealLinearSpace; ::_thesis: for u, v being VECTOR of V for a being Real holds a * (u - v) = - (a * (v - u)) let u, v be VECTOR of V; ::_thesis: for a being Real holds a * (u - v) = - (a * (v - u)) let a be Real; ::_thesis: a * (u - v) = - (a * (v - u)) (a * (v - u)) + (a * (u - v)) = (a * (v - u)) + (a * (- (v - u))) by RLVECT_1:33 .= (a * (v - u)) - (a * (v - u)) by RLVECT_1:25 .= 0. V by RLVECT_1:15 ; hence a * (u - v) = - (a * (v - u)) by RLVECT_1:def_10; ::_thesis: verum end; theorem Th4: :: ANALOAF:4 for V being RealLinearSpace for u, v being VECTOR of V for a, b being Real holds (a - b) * (u - v) = (b - a) * (v - u) proof let V be RealLinearSpace; ::_thesis: for u, v being VECTOR of V for a, b being Real holds (a - b) * (u - v) = (b - a) * (v - u) let u, v be VECTOR of V; ::_thesis: for a, b being Real holds (a - b) * (u - v) = (b - a) * (v - u) let a, b be Real; ::_thesis: (a - b) * (u - v) = (b - a) * (v - u) thus (a - b) * (u - v) = (- (b - a)) * (- (v - u)) by RLVECT_1:33 .= (b - a) * (v - u) by RLVECT_1:26 ; ::_thesis: verum end; theorem Th5: :: ANALOAF:5 for V being RealLinearSpace for u, v being VECTOR of V for a being Real st a <> 0 & a * u = v holds u = (a ") * v proof let V be RealLinearSpace; ::_thesis: for u, v being VECTOR of V for a being Real st a <> 0 & a * u = v holds u = (a ") * v let u, v be VECTOR of V; ::_thesis: for a being Real st a <> 0 & a * u = v holds u = (a ") * v let a be Real; ::_thesis: ( a <> 0 & a * u = v implies u = (a ") * v ) assume that A1: a <> 0 and A2: a * u = v ; ::_thesis: u = (a ") * v thus u = 1 * u by RLVECT_1:def_8 .= ((a ") * a) * u by A1, XCMPLX_0:def_7 .= (a ") * v by A2, RLVECT_1:def_7 ; ::_thesis: verum end; theorem Th6: :: ANALOAF:6 for V being RealLinearSpace for u, v being VECTOR of V for a being Real holds ( ( a <> 0 & a * u = v implies u = (a ") * v ) & ( a <> 0 & u = (a ") * v implies a * u = v ) ) proof let V be RealLinearSpace; ::_thesis: for u, v being VECTOR of V for a being Real holds ( ( a <> 0 & a * u = v implies u = (a ") * v ) & ( a <> 0 & u = (a ") * v implies a * u = v ) ) let u, v be VECTOR of V; ::_thesis: for a being Real holds ( ( a <> 0 & a * u = v implies u = (a ") * v ) & ( a <> 0 & u = (a ") * v implies a * u = v ) ) let a be Real; ::_thesis: ( ( a <> 0 & a * u = v implies u = (a ") * v ) & ( a <> 0 & u = (a ") * v implies a * u = v ) ) now__::_thesis:_(_a_<>_0_&_u_=_(a_")_*_v_implies_v_=_a_*_u_) assume ( a <> 0 & u = (a ") * v ) ; ::_thesis: v = a * u hence v = ((a ") ") * u by Th5, XCMPLX_1:202 .= a * u ; ::_thesis: verum end; hence ( ( a <> 0 & a * u = v implies u = (a ") * v ) & ( a <> 0 & u = (a ") * v implies a * u = v ) ) by Th5; ::_thesis: verum end; theorem Th7: :: ANALOAF:7 for V being RealLinearSpace for u, v, w, y being VECTOR of V st u,v // w,y & u <> v & w <> y holds ex a, b being Real st ( a * (v - u) = b * (y - w) & 0 < a & 0 < b ) proof let V be RealLinearSpace; ::_thesis: for u, v, w, y being VECTOR of V st u,v // w,y & u <> v & w <> y holds ex a, b being Real st ( a * (v - u) = b * (y - w) & 0 < a & 0 < b ) let u, v, w, y be VECTOR of V; ::_thesis: ( u,v // w,y & u <> v & w <> y implies ex a, b being Real st ( a * (v - u) = b * (y - w) & 0 < a & 0 < b ) ) assume that A1: u,v // w,y and A2: ( u <> v & w <> y ) ; ::_thesis: ex a, b being Real st ( a * (v - u) = b * (y - w) & 0 < a & 0 < b ) ( u = v or w = y or ex a, b being Real st ( 0 < a & 0 < b & a * (v - u) = b * (y - w) ) ) by A1, Def1; hence ex a, b being Real st ( a * (v - u) = b * (y - w) & 0 < a & 0 < b ) by A2; ::_thesis: verum end; theorem Th8: :: ANALOAF:8 for V being RealLinearSpace for u, v being VECTOR of V holds u,v // u,v proof let V be RealLinearSpace; ::_thesis: for u, v being VECTOR of V holds u,v // u,v let u, v be VECTOR of V; ::_thesis: u,v // u,v 1 * (v - u) = 1 * (v - u) ; hence u,v // u,v by Def1; ::_thesis: verum end; theorem :: ANALOAF:9 for V being RealLinearSpace for u, v, w being VECTOR of V holds ( u,v // w,w & u,u // v,w ) by Def1; theorem Th10: :: ANALOAF:10 for V being RealLinearSpace for u, v being VECTOR of V st u,v // v,u holds u = v proof let V be RealLinearSpace; ::_thesis: for u, v being VECTOR of V st u,v // v,u holds u = v let u, v be VECTOR of V; ::_thesis: ( u,v // v,u implies u = v ) assume A1: u,v // v,u ; ::_thesis: u = v assume A2: u <> v ; ::_thesis: contradiction then consider a, b being Real such that A3: a * (v - u) = b * (u - v) and A4: ( 0 < a & 0 < b ) by A1, Th7; a * (v - u) = - (b * (v - u)) by A3, Th3; then (b * (v - u)) + (a * (v - u)) = 0. V by RLVECT_1:5; then (b + a) * (v - u) = 0. V by RLVECT_1:def_6; then ( v - u = 0. V or b + a = 0 ) by RLVECT_1:11; then 0. V = (- u) + v by A4, XREAL_1:34; then v = - (- u) by RLVECT_1:def_10 .= u by RLVECT_1:17 ; hence contradiction by A2; ::_thesis: verum end; theorem Th11: :: ANALOAF:11 for V being RealLinearSpace for p, q, u, v, w, y being VECTOR of V st p <> q & p,q // u,v & p,q // w,y holds u,v // w,y proof let V be RealLinearSpace; ::_thesis: for p, q, u, v, w, y being VECTOR of V st p <> q & p,q // u,v & p,q // w,y holds u,v // w,y let p, q, u, v, w, y be VECTOR of V; ::_thesis: ( p <> q & p,q // u,v & p,q // w,y implies u,v // w,y ) assume that A1: p <> q and A2: p,q // u,v and A3: p,q // w,y ; ::_thesis: u,v // w,y now__::_thesis:_(_u_<>_v_&_w_<>_y_implies_u,v_//_w,y_) assume that A4: u <> v and A5: w <> y ; ::_thesis: u,v // w,y consider a, b being Real such that A6: a * (q - p) = b * (v - u) and A7: 0 < a and A8: 0 < b by A1, A2, A4, Th7; 0 < a " by A7, XREAL_1:122; then A9: 0 < (a ") * b by A8, XREAL_1:129; consider c, d being Real such that A10: c * (q - p) = d * (y - w) and A11: 0 < c and A12: 0 < d by A1, A3, A5, Th7; A13: q - p = (c ") * (d * (y - w)) by A10, A11, Th6 .= ((c ") * d) * (y - w) by RLVECT_1:def_7 ; 0 < c " by A11, XREAL_1:122; then A14: 0 < (c ") * d by A12, XREAL_1:129; q - p = (a ") * (b * (v - u)) by A6, A7, Th6 .= ((a ") * b) * (v - u) by RLVECT_1:def_7 ; hence u,v // w,y by A13, A9, A14, Def1; ::_thesis: verum end; hence u,v // w,y by Def1; ::_thesis: verum end; theorem Th12: :: ANALOAF:12 for V being RealLinearSpace for u, v, w, y being VECTOR of V st u,v // w,y holds ( v,u // y,w & w,y // u,v ) proof let V be RealLinearSpace; ::_thesis: for u, v, w, y being VECTOR of V st u,v // w,y holds ( v,u // y,w & w,y // u,v ) let u, v, w, y be VECTOR of V; ::_thesis: ( u,v // w,y implies ( v,u // y,w & w,y // u,v ) ) assume A1: u,v // w,y ; ::_thesis: ( v,u // y,w & w,y // u,v ) now__::_thesis:_(_u_<>_v_&_w_<>_y_implies_(_v,u_//_y,w_&_w,y_//_u,v_)_) assume ( u <> v & w <> y ) ; ::_thesis: ( v,u // y,w & w,y // u,v ) then consider a, b being Real such that A2: a * (v - u) = b * (y - w) and A3: ( 0 < a & 0 < b ) by A1, Th7; a * (u - v) = - (b * (y - w)) by A2, Th3 .= b * (w - y) by Th3 ; hence ( v,u // y,w & w,y // u,v ) by A2, A3, Def1; ::_thesis: verum end; hence ( v,u // y,w & w,y // u,v ) by Def1; ::_thesis: verum end; theorem Th13: :: ANALOAF:13 for V being RealLinearSpace for u, v, w being VECTOR of V st u,v // v,w holds u,v // u,w proof let V be RealLinearSpace; ::_thesis: for u, v, w being VECTOR of V st u,v // v,w holds u,v // u,w let u, v, w be VECTOR of V; ::_thesis: ( u,v // v,w implies u,v // u,w ) assume A1: u,v // v,w ; ::_thesis: u,v // u,w now__::_thesis:_(_u_<>_v_&_v_<>_w_implies_u,v_//_u,w_) assume ( u <> v & v <> w ) ; ::_thesis: u,v // u,w then consider a, b being Real such that A2: a * (v - u) = b * (w - v) and A3: 0 < a and A4: 0 < b by A1, Th7; A5: 0 < a + b by A3, A4, XREAL_1:34; b * (w - u) = b * ((w - v) + (v - u)) by Th1 .= (a * (v - u)) + (b * (v - u)) by A2, RLVECT_1:def_5 .= (a + b) * (v - u) by RLVECT_1:def_6 ; hence u,v // u,w by A4, A5, Def1; ::_thesis: verum end; hence u,v // u,w by Def1, Th8; ::_thesis: verum end; theorem Th14: :: ANALOAF:14 for V being RealLinearSpace for u, v, w being VECTOR of V holds ( not u,v // u,w or u,v // v,w or u,w // w,v ) proof let V be RealLinearSpace; ::_thesis: for u, v, w being VECTOR of V holds ( not u,v // u,w or u,v // v,w or u,w // w,v ) let u, v, w be VECTOR of V; ::_thesis: ( not u,v // u,w or u,v // v,w or u,w // w,v ) assume A1: u,v // u,w ; ::_thesis: ( u,v // v,w or u,w // w,v ) now__::_thesis:_(_u_<>_v_&_u_<>_w_&_not_u,v_//_v,w_implies_u,w_//_w,v_) assume ( u <> v & u <> w ) ; ::_thesis: ( u,v // v,w or u,w // w,v ) then consider a, b being Real such that A2: a * (v - u) = b * (w - u) and A3: 0 < a and A4: 0 < b by A1, Th7; w - v = (w - u) + (u - v) by Th1 .= (w - u) - (v - u) by RLVECT_1:33 ; then A5: a * (w - v) = (a * (w - u)) - (b * (w - u)) by A2, RLVECT_1:34 .= (a - b) * (w - u) by RLVECT_1:35 .= (b - a) * (u - w) by Th4 ; v - w = (v - u) + (u - w) by Th1 .= (v - u) - (w - u) by RLVECT_1:33 ; then A6: b * (v - w) = (b * (v - u)) - (a * (v - u)) by A2, RLVECT_1:34 .= (b - a) * (v - u) by RLVECT_1:35 .= (a - b) * (u - v) by Th4 ; A7: now__::_thesis:_(_not_a_<>_b_or_u,v_//_v,w_or_u,w_//_w,v_) assume a <> b ; ::_thesis: ( u,v // v,w or u,w // w,v ) then ( 0 < a - b or 0 < b - a ) by XREAL_1:55; then ( v,u // w,v or w,u // v,w ) by A3, A4, A6, A5, Def1; hence ( u,v // v,w or u,w // w,v ) by Th12; ::_thesis: verum end; now__::_thesis:_(_not_a_=_b_or_u,v_//_v,w_or_u,w_//_w,v_) assume a = b ; ::_thesis: ( u,v // v,w or u,w // w,v ) then (- u) + v = (- u) + w by A2, A3, RLVECT_1:36; then v = w by RLVECT_1:8; hence ( u,v // v,w or u,w // w,v ) by Def1; ::_thesis: verum end; hence ( u,v // v,w or u,w // w,v ) by A7; ::_thesis: verum end; hence ( u,v // v,w or u,w // w,v ) by Def1; ::_thesis: verum end; theorem Th15: :: ANALOAF:15 for V being RealLinearSpace for v, u, y, w being VECTOR of V st v - u = y - w holds u,v // w,y proof let V be RealLinearSpace; ::_thesis: for v, u, y, w being VECTOR of V st v - u = y - w holds u,v // w,y let v, u, y, w be VECTOR of V; ::_thesis: ( v - u = y - w implies u,v // w,y ) assume v - u = y - w ; ::_thesis: u,v // w,y then 1 * (v - u) = 1 * (y - w) ; hence u,v // w,y by Def1; ::_thesis: verum end; theorem Th16: :: ANALOAF:16 for V being RealLinearSpace for y, v, w, u being VECTOR of V st y = (v + w) - u holds ( u,v // w,y & u,w // v,y ) proof let V be RealLinearSpace; ::_thesis: for y, v, w, u being VECTOR of V st y = (v + w) - u holds ( u,v // w,y & u,w // v,y ) let y, v, w, u be VECTOR of V; ::_thesis: ( y = (v + w) - u implies ( u,v // w,y & u,w // v,y ) ) set y = (v + w) - u; ((v + w) - u) + u = v + w by RLSUB_2:61; then ( ((v + w) - u) - v = w - u & ((v + w) - u) - w = v - u ) by Th2; hence ( y = (v + w) - u implies ( u,v // w,y & u,w // v,y ) ) by Th15; ::_thesis: verum end; theorem Th17: :: ANALOAF:17 for V being RealLinearSpace st ex p, q being VECTOR of V st p <> q holds for u, v, w being VECTOR of V ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) proof let V be RealLinearSpace; ::_thesis: ( ex p, q being VECTOR of V st p <> q implies for u, v, w being VECTOR of V ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) ) given p, q being VECTOR of V such that A1: p <> q ; ::_thesis: for u, v, w being VECTOR of V ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) let u, v, w be VECTOR of V; ::_thesis: ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) A2: now__::_thesis:_(_u_<>_w_implies_ex_y_being_M2(_the_carrier_of_V)_ex_y_being_VECTOR_of_V_st_ (_u,v_//_w,y_&_u,w_//_v,y_&_v_<>_y_)_) assume A3: u <> w ; ::_thesis: ex y being M2( the carrier of V) ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) take y = (v + w) - u; ::_thesis: ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) A4: now__::_thesis:_not_v_=_y assume v = y ; ::_thesis: contradiction then v = v + (w - u) by RLVECT_1:def_3; then w - u = 0. V by RLVECT_1:9; hence contradiction by A3, RLVECT_1:21; ::_thesis: verum end; ( u,v // w,y & u,w // v,y ) by Th16; hence ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) by A4; ::_thesis: verum end; now__::_thesis:_(_u_=_w_implies_ex_y_being_VECTOR_of_V_st_ (_u,v_//_w,y_&_u,w_//_v,y_&_v_<>_y_)_) assume A5: u = w ; ::_thesis: ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) A6: now__::_thesis:_(_u_=_v_implies_ex_y_being_VECTOR_of_V_st_ (_u,v_//_w,y_&_u,w_//_v,y_&_v_<>_y_)_) assume u = v ; ::_thesis: ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) then A7: ( u,v // w,p & u,v // w,q ) by Def1; A8: ( v <> p or v <> q ) by A1; ( u,w // v,p & u,w // v,q ) by A5, Def1; hence ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) by A8, A7; ::_thesis: verum end; ( u,v // w,u & u,w // v,u ) by A5, Def1; hence ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) by A6; ::_thesis: verum end; hence ex y being VECTOR of V st ( u,v // w,y & u,w // v,y & v <> y ) by A2; ::_thesis: verum end; theorem Th18: :: ANALOAF:18 for V being RealLinearSpace for p, v, w, u being VECTOR of V st p <> v & v,p // p,w holds ex y being VECTOR of V st ( u,p // p,y & u,v // w,y ) proof let V be RealLinearSpace; ::_thesis: for p, v, w, u being VECTOR of V st p <> v & v,p // p,w holds ex y being VECTOR of V st ( u,p // p,y & u,v // w,y ) let p, v, w, u be VECTOR of V; ::_thesis: ( p <> v & v,p // p,w implies ex y being VECTOR of V st ( u,p // p,y & u,v // w,y ) ) assume A1: ( p <> v & v,p // p,w ) ; ::_thesis: ex y being VECTOR of V st ( u,p // p,y & u,v // w,y ) A2: now__::_thesis:_(_p_<>_w_implies_ex_y_being_VECTOR_of_V_st_ (_u,p_//_p,y_&_u,v_//_w,y_)_) assume p <> w ; ::_thesis: ex y being VECTOR of V st ( u,p // p,y & u,v // w,y ) then consider a, b being Real such that A3: a * (p - v) = b * (w - p) and A4: 0 < a and A5: 0 < b by A1, Th7; set y = (((b ") * a) * (p - u)) + p; A6: ((((b ") * a) * (p - u)) + p) - p = ((b ") * a) * (p - u) by RLSUB_2:61 .= (b ") * (a * (p - u)) by RLVECT_1:def_7 ; A7: ((((b ") * a) * (p - u)) + p) - w = (((((b ") * a) * (p - u)) + p) - p) + (p - w) by Th1 .= (((((b ") * a) * (p - u)) + p) - p) - (w - p) by RLVECT_1:33 ; v - u = (p - u) + (v - p) by Th1 .= (p - u) - (p - v) by RLVECT_1:33 ; then a * (v - u) = (a * (p - u)) - (a * (p - v)) by RLVECT_1:34 .= (b * (((((b ") * a) * (p - u)) + p) - p)) - (b * (w - p)) by A3, A5, A6, Th6 .= b * (((((b ") * a) * (p - u)) + p) - w) by A7, RLVECT_1:34 ; then A8: u,v // w,(((b ") * a) * (p - u)) + p by A4, A5, Def1; 0 < b " by A5, XREAL_1:122; then A9: 0 < (b ") * a by A4, XREAL_1:129; 1 * (((((b ") * a) * (p - u)) + p) - p) = ((((b ") * a) * (p - u)) + p) - p by RLVECT_1:def_8 .= ((b ") * a) * (p - u) by RLSUB_2:61 ; then u,p // p,(((b ") * a) * (p - u)) + p by A9, Def1; hence ex y being VECTOR of V st ( u,p // p,y & u,v // w,y ) by A8; ::_thesis: verum end; now__::_thesis:_(_p_=_w_implies_ex_y_being_VECTOR_of_V_st_ (_u,p_//_p,y_&_u,v_//_w,y_)_) assume A10: p = w ; ::_thesis: ex y being VECTOR of V st ( u,p // p,y & u,v // w,y ) take y = p; ::_thesis: ( u,p // p,y & u,v // w,y ) thus ( u,p // p,y & u,v // w,y ) by A10, Def1; ::_thesis: verum end; hence ex y being VECTOR of V st ( u,p // p,y & u,v // w,y ) by A2; ::_thesis: verum end; theorem Th19: :: ANALOAF:19 for V being RealLinearSpace for u, v being VECTOR of V st ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) holds ( u <> v & u <> 0. V & v <> 0. V ) proof let V be RealLinearSpace; ::_thesis: for u, v being VECTOR of V st ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) holds ( u <> v & u <> 0. V & v <> 0. V ) let u, v be VECTOR of V; ::_thesis: ( ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) implies ( u <> v & u <> 0. V & v <> 0. V ) ) assume A1: for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ; ::_thesis: ( u <> v & u <> 0. V & v <> 0. V ) thus u <> v ::_thesis: ( u <> 0. V & v <> 0. V ) proof assume u = v ; ::_thesis: contradiction then u - v = 0. V by RLVECT_1:15; then (1 * u) + (- v) = 0. V by RLVECT_1:def_8; then (1 * u) + ((- 1) * v) = 0. V by RLVECT_1:16; hence contradiction by A1; ::_thesis: verum end; thus u <> 0. V ::_thesis: v <> 0. V proof assume u = 0. V ; ::_thesis: contradiction then 1 * u = 0. V by RLVECT_1:10; then (1 * u) + (0. V) = 0. V by RLVECT_1:4; then (1 * u) + (0 * v) = 0. V by RLVECT_1:10; hence contradiction by A1; ::_thesis: verum end; thus v <> 0. V ::_thesis: verum proof assume v = 0. V ; ::_thesis: contradiction then 1 * v = 0. V by RLVECT_1:10; then (0. V) + (1 * v) = 0. V by RLVECT_1:4; then (0 * u) + (1 * v) = 0. V by RLVECT_1:10; hence contradiction by A1; ::_thesis: verum end; end; theorem Th20: :: ANALOAF:20 for V being RealLinearSpace st ex u, v being VECTOR of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) holds ex u, v, w, y being VECTOR of V st ( not u,v // w,y & not u,v // y,w ) proof let V be RealLinearSpace; ::_thesis: ( ex u, v being VECTOR of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) implies ex u, v, w, y being VECTOR of V st ( not u,v // w,y & not u,v // y,w ) ) given u, v being VECTOR of V such that A1: for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ; ::_thesis: ex u, v, w, y being VECTOR of V st ( not u,v // w,y & not u,v // y,w ) A2: ( u <> 0. V & v <> 0. V ) by A1, Th19; A3: not 0. V,u // v, 0. V proof A4: now__::_thesis:_for_a,_b_being_Real_holds_ (_not_0_<_a_or_not_0_<_b_or_not_a_*_(u_-_(0._V))_=_b_*_((0._V)_-_v)_) given a, b being Real such that A5: 0 < a and 0 < b and A6: a * (u - (0. V)) = b * ((0. V) - v) ; ::_thesis: contradiction ( a * u = a * (u - (0. V)) & b * ((0. V) - v) = b * (- v) ) by RLVECT_1:13, RLVECT_1:14; then a * u = - (b * v) by A6, RLVECT_1:25; then (a * u) + (b * v) = 0. V by RLVECT_1:5; hence contradiction by A1, A5; ::_thesis: verum end; assume 0. V,u // v, 0. V ; ::_thesis: contradiction hence contradiction by A2, A4, Def1; ::_thesis: verum end; not 0. V,u // 0. V,v proof A7: now__::_thesis:_for_a,_b_being_Real_holds_ (_not_0_<_a_or_not_0_<_b_or_not_a_*_(u_-_(0._V))_=_b_*_(v_-_(0._V))_) given a, b being Real such that A8: 0 < a and 0 < b and A9: a * (u - (0. V)) = b * (v - (0. V)) ; ::_thesis: contradiction ( a * u = a * (u - (0. V)) & b * (v - (0. V)) = b * v ) by RLVECT_1:13; then 0. V = (a * u) - (b * v) by A9, RLVECT_1:15 .= (a * u) + (b * (- v)) by RLVECT_1:25 .= (a * u) + ((- b) * v) by RLVECT_1:24 ; hence contradiction by A1, A8; ::_thesis: verum end; assume 0. V,u // 0. V,v ; ::_thesis: contradiction hence contradiction by A2, A7, Def1; ::_thesis: verum end; hence ex u, v, w, y being VECTOR of V st ( not u,v // w,y & not u,v // y,w ) by A3; ::_thesis: verum end; Lm1: for V being RealLinearSpace for v, u, w, y being VECTOR of V for a, b being Real st a * (v - u) = b * (w - y) & ( a <> 0 or b <> 0 ) & not u,v // w,y holds u,v // y,w proof let V be RealLinearSpace; ::_thesis: for v, u, w, y being VECTOR of V for a, b being Real st a * (v - u) = b * (w - y) & ( a <> 0 or b <> 0 ) & not u,v // w,y holds u,v // y,w let v, u, w, y be VECTOR of V; ::_thesis: for a, b being Real st a * (v - u) = b * (w - y) & ( a <> 0 or b <> 0 ) & not u,v // w,y holds u,v // y,w let a, b be Real; ::_thesis: ( a * (v - u) = b * (w - y) & ( a <> 0 or b <> 0 ) & not u,v // w,y implies u,v // y,w ) assume that A1: a * (v - u) = b * (w - y) and A2: ( a <> 0 or b <> 0 ) ; ::_thesis: ( u,v // w,y or u,v // y,w ) A3: now__::_thesis:_(_b_=_0_implies_u,v_//_w,y_) assume A4: b = 0 ; ::_thesis: u,v // w,y then 0. V = a * (v - u) by A1, RLVECT_1:10; then v - u = 0. V by A2, A4, RLVECT_1:11; then u = v by RLVECT_1:21; hence u,v // w,y by Def1; ::_thesis: verum end; A5: now__::_thesis:_(_a_<>_0_&_b_<>_0_&_not_u,v_//_w,y_implies_u,v_//_y,w_) A6: now__::_thesis:_(_0_<_a_&_b_<_0_implies_u,v_//_w,y_) A7: a * (v - u) = - (- (b * (w - y))) by A1, RLVECT_1:17 .= - (b * (- (w - y))) by RLVECT_1:25 .= - (b * (y - w)) by RLVECT_1:33 .= b * (- (y - w)) by RLVECT_1:25 .= (- b) * (y - w) by RLVECT_1:24 ; assume that A8: 0 < a and A9: b < 0 ; ::_thesis: u,v // w,y 0 < - b by A9, XREAL_1:58; hence u,v // w,y by A8, A7, Def1; ::_thesis: verum end; A10: now__::_thesis:_(_a_<_0_&_0_<_b_implies_u,v_//_w,y_) A11: (- a) * (v - u) = a * (- (v - u)) by RLVECT_1:24 .= - (b * (w - y)) by A1, RLVECT_1:25 .= b * (- (w - y)) by RLVECT_1:25 .= b * (y - w) by RLVECT_1:33 ; assume that A12: a < 0 and A13: 0 < b ; ::_thesis: u,v // w,y 0 < - a by A12, XREAL_1:58; hence u,v // w,y by A13, A11, Def1; ::_thesis: verum end; A14: now__::_thesis:_(_a_<_0_&_b_<_0_implies_u,v_//_y,w_) assume ( a < 0 & b < 0 ) ; ::_thesis: u,v // y,w then A15: ( 0 < - a & 0 < - b ) by XREAL_1:58; (- a) * (v - u) = a * (- (v - u)) by RLVECT_1:24 .= - (b * (w - y)) by A1, RLVECT_1:25 .= b * (- (w - y)) by RLVECT_1:25 .= (- b) * (w - y) by RLVECT_1:24 ; hence u,v // y,w by A15, Def1; ::_thesis: verum end; assume ( a <> 0 & b <> 0 ) ; ::_thesis: ( u,v // w,y or u,v // y,w ) hence ( u,v // w,y or u,v // y,w ) by A1, A14, A10, A6, Def1; ::_thesis: verum end; now__::_thesis:_(_a_=_0_implies_u,v_//_w,y_) assume A16: a = 0 ; ::_thesis: u,v // w,y then 0. V = b * (w - y) by A1, RLVECT_1:10; then w - y = 0. V by A2, A16, RLVECT_1:11; then w = y by RLVECT_1:21; hence u,v // w,y by Def1; ::_thesis: verum end; hence ( u,v // w,y or u,v // y,w ) by A3, A5; ::_thesis: verum end; theorem Th21: :: ANALOAF:21 for V being RealLinearSpace st ex p, q being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * p) + (b * q) = w holds for u, v, w, y being VECTOR of V st not u,v // w,y & not u,v // y,w holds ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) proof let V be RealLinearSpace; ::_thesis: ( ex p, q being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * p) + (b * q) = w implies for u, v, w, y being VECTOR of V st not u,v // w,y & not u,v // y,w holds ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) ) given p, q being VECTOR of V such that A1: for w being VECTOR of V ex a, b being Real st (a * p) + (b * q) = w ; ::_thesis: for u, v, w, y being VECTOR of V st not u,v // w,y & not u,v // y,w holds ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) let u, v, w, y be VECTOR of V; ::_thesis: ( not u,v // w,y & not u,v // y,w implies ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) ) assume that A2: not u,v // w,y and A3: not u,v // y,w ; ::_thesis: ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) consider r1, s1 being Real such that A4: (r1 * p) + (s1 * q) = v - u by A1; consider r2, s2 being Real such that A5: (r2 * p) + (s2 * q) = y - w by A1; set r = (r1 * s2) - (r2 * s1); A6: now__::_thesis:_not_(r1_*_s2)_-_(r2_*_s1)_=_0 assume A7: (r1 * s2) - (r2 * s1) = 0 ; ::_thesis: contradiction A8: now__::_thesis:_(_r1_<>_0_implies_not_r2_=_0_) assume that A9: r1 <> 0 and A10: r2 = 0 ; ::_thesis: contradiction s2 <> 0 proof assume s2 = 0 ; ::_thesis: contradiction then y - w = (0. V) + (0 * q) by A5, A10, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; then y = w by RLVECT_1:21; hence contradiction by A2, Def1; ::_thesis: verum end; hence contradiction by A7, A9, A10, XCMPLX_1:6; ::_thesis: verum end; A11: now__::_thesis:_not_r1_=_0 assume A12: r1 = 0 ; ::_thesis: contradiction A13: s1 <> 0 proof assume s1 = 0 ; ::_thesis: contradiction then v - u = (0. V) + (0 * q) by A4, A12, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; then u = v by RLVECT_1:21; hence contradiction by A2, Def1; ::_thesis: verum end; then A14: r2 = 0 by A7, A12, XCMPLX_1:6; A15: s2 <> 0 proof assume s2 = 0 ; ::_thesis: contradiction then y - w = (0. V) + (0 * q) by A5, A14, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; then y = w by RLVECT_1:21; hence contradiction by A2, Def1; ::_thesis: verum end; y - w = (0. V) + (s2 * q) by A5, A14, RLVECT_1:10 .= s2 * q by RLVECT_1:4 ; then A16: (s2 ") * (y - w) = ((s2 ") * s2) * q by RLVECT_1:def_7 .= 1 * q by A15, XCMPLX_0:def_7 .= q by RLVECT_1:def_8 ; v - u = (0. V) + (s1 * q) by A4, A12, RLVECT_1:10 .= s1 * q by RLVECT_1:4 ; then A17: (s1 ") * (v - u) = ((s1 ") * s1) * q by RLVECT_1:def_7 .= 1 * q by A13, XCMPLX_0:def_7 .= q by RLVECT_1:def_8 ; s1 " <> 0 by A13, XCMPLX_1:202; hence contradiction by A2, A3, A17, A16, Lm1; ::_thesis: verum end; A18: now__::_thesis:_(_r1_<>_0_&_r2_<>_0_implies_not_s1_=_0_) assume that A19: r1 <> 0 and A20: r2 <> 0 and A21: s1 = 0 ; ::_thesis: contradiction v - u = (r1 * p) + (0. V) by A4, A21, RLVECT_1:10 .= r1 * p by RLVECT_1:4 ; then A22: (r1 ") * (v - u) = ((r1 ") * r1) * p by RLVECT_1:def_7 .= 1 * p by A19, XCMPLX_0:def_7 .= p by RLVECT_1:def_8 ; s2 = 0 by A7, A19, A21, XCMPLX_1:6; then y - w = (r2 * p) + (0. V) by A5, RLVECT_1:10 .= r2 * p by RLVECT_1:4 ; then A23: (r2 ") * (y - w) = ((r2 ") * r2) * p by RLVECT_1:def_7 .= 1 * p by A20, XCMPLX_0:def_7 .= p by RLVECT_1:def_8 ; r1 " <> 0 by A19, XCMPLX_1:202; hence contradiction by A2, A3, A22, A23, Lm1; ::_thesis: verum end; now__::_thesis:_(_r1_<>_0_&_r2_<>_0_&_s1_<>_0_implies_not_s2_<>_0_) assume that A24: r1 <> 0 and r2 <> 0 and s1 <> 0 and s2 <> 0 ; ::_thesis: contradiction r2 * (v - u) = (r2 * (r1 * p)) + (r2 * (s1 * q)) by A4, RLVECT_1:def_5 .= ((r2 * r1) * p) + (r2 * (s1 * q)) by RLVECT_1:def_7 .= ((r1 * r2) * p) + ((r1 * s2) * q) by A7, RLVECT_1:def_7 .= (r1 * (r2 * p)) + ((r1 * s2) * q) by RLVECT_1:def_7 .= (r1 * (r2 * p)) + (r1 * (s2 * q)) by RLVECT_1:def_7 .= r1 * (y - w) by A5, RLVECT_1:def_5 ; hence contradiction by A2, A3, A24, Lm1; ::_thesis: verum end; hence contradiction by A7, A11, A8, A18, XCMPLX_1:6; ::_thesis: verum end; consider r3, s3 being Real such that A25: (r3 * p) + (s3 * q) = u - w by A1; set a = (r2 * s3) - (r3 * s2); set b = (r1 * s3) - (r3 * s1); A26: ((r1 * s3) - (r3 * s1)) * r2 = (r1 * ((r2 * s3) - (r3 * s2))) + (r3 * ((r1 * s2) - (r2 * s1))) ; set z = u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)); A27: ((r1 * s2) - (r2 * s1)) * ((u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u))) - u) = (((r1 * s2) - (r2 * s1)) * (u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)))) - (((r1 * s2) - (r2 * s1)) * u) by RLVECT_1:34 .= ((((r1 * s2) - (r2 * s1)) * u) + (((r1 * s2) - (r2 * s1)) * (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)))) - (((r1 * s2) - (r2 * s1)) * u) by RLVECT_1:def_5 .= ((((r1 * s2) - (r2 * s1)) * u) + ((((r1 * s2) - (r2 * s1)) * ((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2)))) * (v - u))) - (((r1 * s2) - (r2 * s1)) * u) by RLVECT_1:def_7 .= ((((r1 * s2) - (r2 * s1)) * u) + (((((r1 * s2) - (r2 * s1)) * (((r1 * s2) - (r2 * s1)) ")) * ((r2 * s3) - (r3 * s2))) * (v - u))) - (((r1 * s2) - (r2 * s1)) * u) .= ((((r1 * s2) - (r2 * s1)) * u) + ((1 * ((r2 * s3) - (r3 * s2))) * (v - u))) - (((r1 * s2) - (r2 * s1)) * u) by A6, XCMPLX_0:def_7 .= (((r2 * s3) - (r3 * s2)) * (v - u)) + ((((r1 * s2) - (r2 * s1)) * u) - (((r1 * s2) - (r2 * s1)) * u)) by RLVECT_1:def_3 .= (((r2 * s3) - (r3 * s2)) * (v - u)) + (0. V) by RLVECT_1:15 .= ((r2 * s3) - (r3 * s2)) * (v - u) by RLVECT_1:4 ; A28: ((r1 * s2) - (r2 * s1)) * ((u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u))) - w) = (((r1 * s2) - (r2 * s1)) * (u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)))) - (((r1 * s2) - (r2 * s1)) * w) by RLVECT_1:34 .= ((((r1 * s2) - (r2 * s1)) * u) + (((r1 * s2) - (r2 * s1)) * (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)))) - (((r1 * s2) - (r2 * s1)) * w) by RLVECT_1:def_5 .= ((((r1 * s2) - (r2 * s1)) * u) + ((((r1 * s2) - (r2 * s1)) * ((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2)))) * (v - u))) - (((r1 * s2) - (r2 * s1)) * w) by RLVECT_1:def_7 .= ((((r1 * s2) - (r2 * s1)) * u) + (((((r1 * s2) - (r2 * s1)) * (((r1 * s2) - (r2 * s1)) ")) * ((r2 * s3) - (r3 * s2))) * (v - u))) - (((r1 * s2) - (r2 * s1)) * w) .= ((((r1 * s2) - (r2 * s1)) * u) + ((1 * ((r2 * s3) - (r3 * s2))) * (v - u))) - (((r1 * s2) - (r2 * s1)) * w) by A6, XCMPLX_0:def_7 .= (((r2 * s3) - (r3 * s2)) * (v - u)) + ((((r1 * s2) - (r2 * s1)) * u) - (((r1 * s2) - (r2 * s1)) * w)) by RLVECT_1:def_3 .= (((r2 * s3) - (r3 * s2)) * ((r1 * p) + (s1 * q))) + (((r1 * s2) - (r2 * s1)) * ((r3 * p) + (s3 * q))) by A4, A25, RLVECT_1:34 .= ((((r2 * s3) - (r3 * s2)) * (r1 * p)) + (((r2 * s3) - (r3 * s2)) * (s1 * q))) + (((r1 * s2) - (r2 * s1)) * ((r3 * p) + (s3 * q))) by RLVECT_1:def_5 .= ((((r2 * s3) - (r3 * s2)) * (r1 * p)) + (((r2 * s3) - (r3 * s2)) * (s1 * q))) + ((((r1 * s2) - (r2 * s1)) * (r3 * p)) + (((r1 * s2) - (r2 * s1)) * (s3 * q))) by RLVECT_1:def_5 .= (((((r2 * s3) - (r3 * s2)) * r1) * p) + (((r2 * s3) - (r3 * s2)) * (s1 * q))) + ((((r1 * s2) - (r2 * s1)) * (r3 * p)) + (((r1 * s2) - (r2 * s1)) * (s3 * q))) by RLVECT_1:def_7 .= (((((r2 * s3) - (r3 * s2)) * r1) * p) + ((((r2 * s3) - (r3 * s2)) * s1) * q)) + ((((r1 * s2) - (r2 * s1)) * (r3 * p)) + (((r1 * s2) - (r2 * s1)) * (s3 * q))) by RLVECT_1:def_7 .= (((((r2 * s3) - (r3 * s2)) * r1) * p) + ((((r2 * s3) - (r3 * s2)) * s1) * q)) + (((((r1 * s2) - (r2 * s1)) * r3) * p) + (((r1 * s2) - (r2 * s1)) * (s3 * q))) by RLVECT_1:def_7 .= (((((r2 * s3) - (r3 * s2)) * r1) * p) + ((((r2 * s3) - (r3 * s2)) * s1) * q)) + (((((r1 * s2) - (r2 * s1)) * s3) * q) + ((((r1 * s2) - (r2 * s1)) * r3) * p)) by RLVECT_1:def_7 .= ((((((r2 * s3) - (r3 * s2)) * r1) * p) + ((((r2 * s3) - (r3 * s2)) * s1) * q)) + ((((r1 * s2) - (r2 * s1)) * s3) * q)) + ((((r1 * s2) - (r2 * s1)) * r3) * p) by RLVECT_1:def_3 .= ((((((r2 * s3) - (r3 * s2)) * s1) * q) + ((((r1 * s2) - (r2 * s1)) * s3) * q)) + ((((r2 * s3) - (r3 * s2)) * r1) * p)) + ((((r1 * s2) - (r2 * s1)) * r3) * p) by RLVECT_1:def_3 .= (((((r2 * s3) - (r3 * s2)) * s1) * q) + ((((r1 * s2) - (r2 * s1)) * s3) * q)) + (((((r2 * s3) - (r3 * s2)) * r1) * p) + ((((r1 * s2) - (r2 * s1)) * r3) * p)) by RLVECT_1:def_3 .= (((((r2 * s3) - (r3 * s2)) * s1) + (((r1 * s2) - (r2 * s1)) * s3)) * q) + (((((r2 * s3) - (r3 * s2)) * r1) * p) + ((((r1 * s2) - (r2 * s1)) * r3) * p)) by RLVECT_1:def_6 .= ((((r1 * s3) - (r3 * s1)) * s2) * q) + ((((r1 * s3) - (r3 * s1)) * r2) * p) by A26, RLVECT_1:def_6 .= (((r1 * s3) - (r3 * s1)) * (s2 * q)) + ((((r1 * s3) - (r3 * s1)) * r2) * p) by RLVECT_1:def_7 .= (((r1 * s3) - (r3 * s1)) * (s2 * q)) + (((r1 * s3) - (r3 * s1)) * (r2 * p)) by RLVECT_1:def_7 .= ((r1 * s3) - (r3 * s1)) * (y - w) by A5, RLVECT_1:def_5 ; A29: now__::_thesis:_(_(r2_*_s3)_-_(r3_*_s2)_=_0_&_(r1_*_s3)_-_(r3_*_s1)_<>_0_implies_ex_z_being_VECTOR_of_V_st_ (_(_u,v_//_u,z_or_u,v_//_z,u_)_&_(_w,y_//_w,z_or_w,y_//_z,w_)_)_) assume that A30: (r2 * s3) - (r3 * s2) = 0 and A31: (r1 * s3) - (r3 * s1) <> 0 ; ::_thesis: ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) ((r1 * s2) - (r2 * s1)) * ((u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u))) - u) = 0. V by A27, A30, RLVECT_1:10; then (u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u))) - u = 0. V by A6, RLVECT_1:11; then u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)) = u by RLVECT_1:21; then A32: u,v // u,u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)) by Def1; ( w,y // w,u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)) or w,y // u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)),w ) by A28, A31, Lm1; hence ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) by A32; ::_thesis: verum end; A33: ((r1 * s3) - (r3 * s1)) * s2 = (s1 * ((r2 * s3) - (r3 * s2))) + (s3 * ((r1 * s2) - (r2 * s1))) ; A34: now__::_thesis:_(_(r2_*_s3)_-_(r3_*_s2)_=_0_&_(r1_*_s3)_-_(r3_*_s1)_=_0_implies_ex_z_being_VECTOR_of_V_st_ (_(_u,v_//_u,z_or_u,v_//_z,u_)_&_(_w,y_//_w,z_or_w,y_//_z,w_)_)_) assume ( (r2 * s3) - (r3 * s2) = 0 & (r1 * s3) - (r3 * s1) = 0 ) ; ::_thesis: ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) then ( r3 = 0 & s3 = 0 ) by A6, A26, A33, XCMPLX_1:6; then (0. V) + (0 * q) = u - w by A25, RLVECT_1:10; then (0. V) + (0. V) = u - w by RLVECT_1:10; then 0. V = u - w by RLVECT_1:4; then u = w by RLVECT_1:21; then A35: w,y // w,u by Def1; u,v // u,u by Def1; hence ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) by A35; ::_thesis: verum end; A36: now__::_thesis:_(_(r2_*_s3)_-_(r3_*_s2)_<>_0_&_(r1_*_s3)_-_(r3_*_s1)_=_0_implies_ex_z_being_VECTOR_of_V_st_ (_(_u,v_//_u,z_or_u,v_//_z,u_)_&_(_w,y_//_w,z_or_w,y_//_z,w_)_)_) assume that A37: (r2 * s3) - (r3 * s2) <> 0 and A38: (r1 * s3) - (r3 * s1) = 0 ; ::_thesis: ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) ((r1 * s2) - (r2 * s1)) * ((u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u))) - w) = 0. V by A28, A38, RLVECT_1:10; then (u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u))) - w = 0. V by A6, RLVECT_1:11; then u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)) = w by RLVECT_1:21; then A39: w,y // w,u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)) by Def1; ( u,v // u,u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)) or u,v // u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)),u ) by A27, A37, Lm1; hence ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) by A39; ::_thesis: verum end; now__::_thesis:_(_(r2_*_s3)_-_(r3_*_s2)_<>_0_&_(r1_*_s3)_-_(r3_*_s1)_<>_0_implies_ex_z_being_VECTOR_of_V_st_ (_(_u,v_//_u,z_or_u,v_//_z,u_)_&_(_w,y_//_w,z_or_w,y_//_z,w_)_)_) assume that A40: (r2 * s3) - (r3 * s2) <> 0 and A41: (r1 * s3) - (r3 * s1) <> 0 ; ::_thesis: ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) A42: ( w,y // w,u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)) or w,y // u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)),w ) by A28, A41, Lm1; ( u,v // u,u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)) or u,v // u + (((((r1 * s2) - (r2 * s1)) ") * ((r2 * s3) - (r3 * s2))) * (v - u)),u ) by A27, A40, Lm1; hence ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) by A42; ::_thesis: verum end; hence ex z being VECTOR of V st ( ( u,v // u,z or u,v // z,u ) & ( w,y // w,z or w,y // z,w ) ) by A34, A29, A36; ::_thesis: verum end; definition attrc1 is strict ; struct AffinStruct -> 1-sorted ; aggrAffinStruct(# carrier, CONGR #) -> AffinStruct ; sel CONGR c1 -> Relation of [: the carrier of c1, the carrier of c1:]; end; registration cluster non trivial strict for AffinStruct ; existence ex b1 being AffinStruct st ( not b1 is trivial & b1 is strict ) proof set A = the non trivial set ; set R = the Relation of [: the non trivial set , the non trivial set :]; take AffinStruct(# the non trivial set , the Relation of [: the non trivial set , the non trivial set :] #) ; ::_thesis: ( not AffinStruct(# the non trivial set , the Relation of [: the non trivial set , the non trivial set :] #) is trivial & AffinStruct(# the non trivial set , the Relation of [: the non trivial set , the non trivial set :] #) is strict ) thus ( not AffinStruct(# the non trivial set , the Relation of [: the non trivial set , the non trivial set :] #) is trivial & AffinStruct(# the non trivial set , the Relation of [: the non trivial set , the non trivial set :] #) is strict ) ; ::_thesis: verum end; end; definition let AS be non empty AffinStruct ; let a, b, c, d be Element of AS; preda,b // c,d means :Def2: :: ANALOAF:def 2 [[a,b],[c,d]] in the CONGR of AS; end; :: deftheorem Def2 defines // ANALOAF:def_2_:_ for AS being non empty AffinStruct for a, b, c, d being Element of AS holds ( a,b // c,d iff [[a,b],[c,d]] in the CONGR of AS ); definition let V be RealLinearSpace; func DirPar V -> Relation of [: the carrier of V, the carrier of V:] means :Def3: :: ANALOAF:def 3 for x, z being set holds ( [x,z] in it iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ); existence ex b1 being Relation of [: the carrier of V, the carrier of V:] st for x, z being set holds ( [x,z] in b1 iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) proof defpred S1[ set , set ] means ex u, v, w, y being VECTOR of V st ( $1 = [u,v] & $2 = [w,y] & u,v // w,y ); set VV = [: the carrier of V, the carrier of V:]; consider P being Relation of [: the carrier of V, the carrier of V:],[: the carrier of V, the carrier of V:] such that A1: for x, z being set holds ( [x,z] in P iff ( x in [: the carrier of V, the carrier of V:] & z in [: the carrier of V, the carrier of V:] & S1[x,z] ) ) from RELSET_1:sch_1(); take P ; ::_thesis: for x, z being set holds ( [x,z] in P iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) let x, z be set ; ::_thesis: ( [x,z] in P iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) thus ( [x,z] in P implies ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) by A1; ::_thesis: ( ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) implies [x,z] in P ) assume ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ; ::_thesis: [x,z] in P hence [x,z] in P by A1; ::_thesis: verum end; uniqueness for b1, b2 being Relation of [: the carrier of V, the carrier of V:] st ( for x, z being set holds ( [x,z] in b1 iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) ) & ( for x, z being set holds ( [x,z] in b2 iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) ) holds b1 = b2 proof let P, Q be Relation of [: the carrier of V, the carrier of V:]; ::_thesis: ( ( for x, z being set holds ( [x,z] in P iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) ) & ( for x, z being set holds ( [x,z] in Q iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) ) implies P = Q ) assume that A2: for x, z being set holds ( [x,z] in P iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) and A3: for x, z being set holds ( [x,z] in Q iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) ; ::_thesis: P = Q for x, z being set holds ( [x,z] in P iff [x,z] in Q ) proof let x, z be set ; ::_thesis: ( [x,z] in P iff [x,z] in Q ) ( [x,z] in P iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) by A2; hence ( [x,z] in P iff [x,z] in Q ) by A3; ::_thesis: verum end; hence P = Q by RELAT_1:def_2; ::_thesis: verum end; end; :: deftheorem Def3 defines DirPar ANALOAF:def_3_:_ for V being RealLinearSpace for b2 being Relation of [: the carrier of V, the carrier of V:] holds ( b2 = DirPar V iff for x, z being set holds ( [x,z] in b2 iff ex u, v, w, y being VECTOR of V st ( x = [u,v] & z = [w,y] & u,v // w,y ) ) ); theorem Th22: :: ANALOAF:22 for V being RealLinearSpace for u, v, w, y being VECTOR of V holds ( [[u,v],[w,y]] in DirPar V iff u,v // w,y ) proof let V be RealLinearSpace; ::_thesis: for u, v, w, y being VECTOR of V holds ( [[u,v],[w,y]] in DirPar V iff u,v // w,y ) let u, v, w, y be VECTOR of V; ::_thesis: ( [[u,v],[w,y]] in DirPar V iff u,v // w,y ) thus ( [[u,v],[w,y]] in DirPar V implies u,v // w,y ) ::_thesis: ( u,v // w,y implies [[u,v],[w,y]] in DirPar V ) proof assume [[u,v],[w,y]] in DirPar V ; ::_thesis: u,v // w,y then consider u9, v9, w9, y9 being VECTOR of V such that A1: [u,v] = [u9,v9] and A2: [w,y] = [w9,y9] and A3: u9,v9 // w9,y9 by Def3; A4: w = w9 by A2, XTUPLE_0:1; ( u = u9 & v = v9 ) by A1, XTUPLE_0:1; hence u,v // w,y by A2, A3, A4, XTUPLE_0:1; ::_thesis: verum end; thus ( u,v // w,y implies [[u,v],[w,y]] in DirPar V ) by Def3; ::_thesis: verum end; definition let V be RealLinearSpace; func OASpace V -> strict AffinStruct equals :: ANALOAF:def 4 AffinStruct(# the carrier of V,(DirPar V) #); correctness coherence AffinStruct(# the carrier of V,(DirPar V) #) is strict AffinStruct ; ; end; :: deftheorem defines OASpace ANALOAF:def_4_:_ for V being RealLinearSpace holds OASpace V = AffinStruct(# the carrier of V,(DirPar V) #); registration let V be RealLinearSpace; cluster OASpace V -> non empty strict ; coherence not OASpace V is empty ; end; theorem Th23: :: ANALOAF:23 for V being RealLinearSpace st ex u, v being VECTOR of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) holds ( ex a, b being Element of (OASpace V) st a <> b & ( for a, b, c, d, p, q, r, s being Element of (OASpace V) holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) & ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) ) ) proof let V be RealLinearSpace; ::_thesis: ( ex u, v being VECTOR of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) implies ( ex a, b being Element of (OASpace V) st a <> b & ( for a, b, c, d, p, q, r, s being Element of (OASpace V) holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) & ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) ) ) ) given u, v being VECTOR of V such that A1: for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ; ::_thesis: ( ex a, b being Element of (OASpace V) st a <> b & ( for a, b, c, d, p, q, r, s being Element of (OASpace V) holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) & ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) ) ) set S = OASpace V; A2: u <> v by A1, Th19; hence ex a, b being Element of (OASpace V) st a <> b ; ::_thesis: ( ( for a, b, c, d, p, q, r, s being Element of (OASpace V) holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) & ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) ) ) thus for a, b, c, d, p, q, r, s being Element of (OASpace V) holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ::_thesis: ( ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) ) ) proof let a, b, c, d, p, q, r, s be Element of (OASpace V); ::_thesis: ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) reconsider a9 = a, b9 = b, c9 = c, d9 = d, p9 = p, q9 = q, r9 = r, s9 = s as Element of V ; a9,b9 // c9,c9 by Def1; hence [[a,b],[c,c]] in the CONGR of (OASpace V) by Def3; :: according to ANALOAF:def_2 ::_thesis: ( ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) thus ( a,b // b,a implies a = b ) ::_thesis: ( ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) proof assume [[a,b],[b,a]] in the CONGR of (OASpace V) ; :: according to ANALOAF:def_2 ::_thesis: a = b then a9,b9 // b9,a9 by Th22; hence a = b by Th10; ::_thesis: verum end; thus ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) ::_thesis: ( ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) proof assume that A3: a <> b and A4: ( [[a,b],[p,q]] in the CONGR of (OASpace V) & [[a,b],[r,s]] in the CONGR of (OASpace V) ) ; :: according to ANALOAF:def_2 ::_thesis: p,q // r,s ( a9,b9 // p9,q9 & a9,b9 // r9,s9 ) by A4, Th22; then p9,q9 // r9,s9 by A3, Th11; then [[p,q],[r,s]] in the CONGR of (OASpace V) by Th22; hence p,q // r,s by Def2; ::_thesis: verum end; thus ( a,b // c,d implies b,a // d,c ) ::_thesis: ( ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) proof assume [[a,b],[c,d]] in the CONGR of (OASpace V) ; :: according to ANALOAF:def_2 ::_thesis: b,a // d,c then a9,b9 // c9,d9 by Th22; then b9,a9 // d9,c9 by Th12; then [[b,a],[d,c]] in the CONGR of (OASpace V) by Th22; hence b,a // d,c by Def2; ::_thesis: verum end; thus ( a,b // b,c implies a,b // a,c ) ::_thesis: ( not a,b // a,c or a,b // b,c or a,c // c,b ) proof assume [[a,b],[b,c]] in the CONGR of (OASpace V) ; :: according to ANALOAF:def_2 ::_thesis: a,b // a,c then a9,b9 // b9,c9 by Th22; then a9,b9 // a9,c9 by Th13; then [[a,b],[a,c]] in the CONGR of (OASpace V) by Th22; hence a,b // a,c by Def2; ::_thesis: verum end; thus ( not a,b // a,c or a,b // b,c or a,c // c,b ) ::_thesis: verum proof assume [[a,b],[a,c]] in the CONGR of (OASpace V) ; :: according to ANALOAF:def_2 ::_thesis: ( a,b // b,c or a,c // c,b ) then a9,b9 // a9,c9 by Th22; then ( a9,b9 // b9,c9 or a9,c9 // c9,b9 ) by Th14; then ( [[a,b],[b,c]] in the CONGR of (OASpace V) or [[a,c],[c,b]] in the CONGR of (OASpace V) ) by Th22; hence ( a,b // b,c or a,c // c,b ) by Def2; ::_thesis: verum end; end; thus ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) ::_thesis: ( ( for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) ) ) proof consider a9, b9, c9, d9 being VECTOR of V such that A5: not a9,b9 // c9,d9 and A6: not a9,b9 // d9,c9 by A1, Th20; reconsider a = a9, b = b9, c = c9, d = d9 as Element of (OASpace V) ; not [[a,b],[d,c]] in the CONGR of (OASpace V) by A6, Th22; then A7: not a,b // d,c by Def2; not [[a,b],[c,d]] in the CONGR of (OASpace V) by A5, Th22; then not a,b // c,d by Def2; hence ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) by A7; ::_thesis: verum end; thus for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ::_thesis: for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) proof let a, b, c be Element of (OASpace V); ::_thesis: ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) reconsider a9 = a, b9 = b, c9 = c as Element of V ; consider d9 being VECTOR of V such that A8: a9,b9 // c9,d9 and A9: a9,c9 // b9,d9 and A10: b9 <> d9 by A2, Th17; reconsider d = d9 as Element of (OASpace V) ; [[a,c],[b,d]] in the CONGR of (OASpace V) by A9, Th22; then A11: a,c // b,d by Def2; [[a,b],[c,d]] in the CONGR of (OASpace V) by A8, Th22; then a,b // c,d by Def2; hence ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) by A10, A11; ::_thesis: verum end; thus for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) ::_thesis: verum proof let p, a, b, c be Element of (OASpace V); ::_thesis: ( p <> b & b,p // p,c implies ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) ) assume that A12: p <> b and A13: [[b,p],[p,c]] in the CONGR of (OASpace V) ; :: according to ANALOAF:def_2 ::_thesis: ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) reconsider p9 = p, a9 = a, b9 = b, c9 = c as Element of V ; b9,p9 // p9,c9 by A13, Th22; then consider d9 being VECTOR of V such that A14: a9,p9 // p9,d9 and A15: a9,b9 // c9,d9 by A12, Th18; reconsider d = d9 as Element of (OASpace V) ; [[a,b],[c,d]] in the CONGR of (OASpace V) by A15, Th22; then A16: a,b // c,d by Def2; [[a,p],[p,d]] in the CONGR of (OASpace V) by A14, Th22; then a,p // p,d by Def2; hence ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) by A16; ::_thesis: verum end; end; theorem Th24: :: ANALOAF:24 for V being RealLinearSpace st ex p, q being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * p) + (b * q) = w holds for a, b, c, d being Element of (OASpace V) st not a,b // c,d & not a,b // d,c holds ex t being Element of (OASpace V) st ( ( a,b // a,t or a,b // t,a ) & ( c,d // c,t or c,d // t,c ) ) proof let V be RealLinearSpace; ::_thesis: ( ex p, q being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * p) + (b * q) = w implies for a, b, c, d being Element of (OASpace V) st not a,b // c,d & not a,b // d,c holds ex t being Element of (OASpace V) st ( ( a,b // a,t or a,b // t,a ) & ( c,d // c,t or c,d // t,c ) ) ) assume A1: ex p, q being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * p) + (b * q) = w ; ::_thesis: for a, b, c, d being Element of (OASpace V) st not a,b // c,d & not a,b // d,c holds ex t being Element of (OASpace V) st ( ( a,b // a,t or a,b // t,a ) & ( c,d // c,t or c,d // t,c ) ) set S = OASpace V; let a, b, c, d be Element of (OASpace V); ::_thesis: ( not a,b // c,d & not a,b // d,c implies ex t being Element of (OASpace V) st ( ( a,b // a,t or a,b // t,a ) & ( c,d // c,t or c,d // t,c ) ) ) reconsider a9 = a, b9 = b, c9 = c, d9 = d as Element of V ; assume ( not [[a,b],[c,d]] in the CONGR of (OASpace V) & not [[a,b],[d,c]] in the CONGR of (OASpace V) ) ; :: according to ANALOAF:def_2 ::_thesis: ex t being Element of (OASpace V) st ( ( a,b // a,t or a,b // t,a ) & ( c,d // c,t or c,d // t,c ) ) then ( not a9,b9 // c9,d9 & not a9,b9 // d9,c9 ) by Th22; then consider t9 being VECTOR of V such that A2: ( a9,b9 // a9,t9 or a9,b9 // t9,a9 ) and A3: ( c9,d9 // c9,t9 or c9,d9 // t9,c9 ) by A1, Th21; reconsider t = t9 as Element of (OASpace V) ; ( [[c,d],[c,t]] in the CONGR of (OASpace V) or [[c,d],[t,c]] in the CONGR of (OASpace V) ) by A3, Th22; then A4: ( c,d // c,t or c,d // t,c ) by Def2; ( [[a,b],[a,t]] in the CONGR of (OASpace V) or [[a,b],[t,a]] in the CONGR of (OASpace V) ) by A2, Th22; then ( a,b // a,t or a,b // t,a ) by Def2; hence ex t being Element of (OASpace V) st ( ( a,b // a,t or a,b // t,a ) & ( c,d // c,t or c,d // t,c ) ) by A4; ::_thesis: verum end; definition let IT be non empty AffinStruct ; attrIT is OAffinSpace-like means :Def5: :: ANALOAF:def 5 ( ( for a, b, c, d, p, q, r, s being Element of IT holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) & ex a, b, c, d being Element of IT st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of IT ex d being Element of IT st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of IT st p <> b & b,p // p,c holds ex d being Element of IT st ( a,p // p,d & a,b // c,d ) ) ); end; :: deftheorem Def5 defines OAffinSpace-like ANALOAF:def_5_:_ for IT being non empty AffinStruct holds ( IT is OAffinSpace-like iff ( ( for a, b, c, d, p, q, r, s being Element of IT holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) & ex a, b, c, d being Element of IT st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of IT ex d being Element of IT st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of IT st p <> b & b,p // p,c holds ex d being Element of IT st ( a,p // p,d & a,b // c,d ) ) ) ); registration cluster non empty non trivial strict OAffinSpace-like for AffinStruct ; existence ex b1 being non trivial AffinStruct st ( b1 is strict & b1 is OAffinSpace-like ) proof consider V being RealLinearSpace, u, v being VECTOR of V such that A1: for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) and for w being VECTOR of V ex a, b being Real st w = (a * u) + (b * v) by FUNCSDOM:23; A2: ( ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ) ) by A1, Th23; A3: for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) by A1, Th23; ( ex a, b being Element of (OASpace V) st a <> b & ( for a, b, c, d, p, q, r, s being Element of (OASpace V) holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) ) by A1, Th23; then ( not OASpace V is trivial & OASpace V is OAffinSpace-like ) by A2, A3, Def5, STRUCT_0:def_10; hence ex b1 being non trivial AffinStruct st ( b1 is strict & b1 is OAffinSpace-like ) ; ::_thesis: verum end; end; definition mode OAffinSpace is non trivial OAffinSpace-like AffinStruct ; end; theorem :: ANALOAF:25 for AS being non empty AffinStruct holds ( ( ex a, b being Element of AS st a <> b & ( for a, b, c, d, p, q, r, s being Element of AS holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) & ex a, b, c, d being Element of AS st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of AS ex d being Element of AS st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of AS st p <> b & b,p // p,c holds ex d being Element of AS st ( a,p // p,d & a,b // c,d ) ) ) iff AS is OAffinSpace ) by Def5, STRUCT_0:def_10; theorem Th26: :: ANALOAF:26 for V being RealLinearSpace st ex u, v being VECTOR of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) holds OASpace V is OAffinSpace proof let V be RealLinearSpace; ::_thesis: ( ex u, v being VECTOR of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) implies OASpace V is OAffinSpace ) assume A1: ex u, v being VECTOR of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ; ::_thesis: OASpace V is OAffinSpace then A2: ( ex a, b, c, d being Element of (OASpace V) st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of (OASpace V) ex d being Element of (OASpace V) st ( a,b // c,d & a,c // b,d & b <> d ) ) ) by Th23; A3: for p, a, b, c being Element of (OASpace V) st p <> b & b,p // p,c holds ex d being Element of (OASpace V) st ( a,p // p,d & a,b // c,d ) by A1, Th23; ( ex a, b being Element of (OASpace V) st a <> b & ( for a, b, c, d, p, q, r, s being Element of (OASpace V) holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) ) by A1, Th23; hence OASpace V is OAffinSpace by A2, A3, Def5, STRUCT_0:def_10; ::_thesis: verum end; definition let IT be OAffinSpace; attrIT is 2-dimensional means :Def6: :: ANALOAF:def 6 for a, b, c, d being Element of IT st not a,b // c,d & not a,b // d,c holds ex p being Element of IT st ( ( a,b // a,p or a,b // p,a ) & ( c,d // c,p or c,d // p,c ) ); end; :: deftheorem Def6 defines 2-dimensional ANALOAF:def_6_:_ for IT being OAffinSpace holds ( IT is 2-dimensional iff for a, b, c, d being Element of IT st not a,b // c,d & not a,b // d,c holds ex p being Element of IT st ( ( a,b // a,p or a,b // p,a ) & ( c,d // c,p or c,d // p,c ) ) ); registration cluster non empty non trivial strict OAffinSpace-like 2-dimensional for AffinStruct ; existence ex b1 being OAffinSpace st ( b1 is strict & b1 is 2-dimensional ) proof consider V being RealLinearSpace such that A1: ex u, v being VECTOR of V st ( ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) & ( for w being VECTOR of V ex a, b being Real st w = (a * u) + (b * v) ) ) by FUNCSDOM:23; reconsider S = OASpace V as OAffinSpace by A1, Th26; for a, b, c, d being Element of S st not a,b // c,d & not a,b // d,c holds ex p being Element of S st ( ( a,b // a,p or a,b // p,a ) & ( c,d // c,p or c,d // p,c ) ) by A1, Th24; then S is 2-dimensional by Def6; hence ex b1 being OAffinSpace st ( b1 is strict & b1 is 2-dimensional ) ; ::_thesis: verum end; end; definition mode OAffinPlane is 2-dimensional OAffinSpace; end; theorem :: ANALOAF:27 for AS being non empty AffinStruct holds ( ( ex a, b being Element of AS st a <> b & ( for a, b, c, d, p, q, r, s being Element of AS holds ( a,b // c,c & ( a,b // b,a implies a = b ) & ( a <> b & a,b // p,q & a,b // r,s implies p,q // r,s ) & ( a,b // c,d implies b,a // d,c ) & ( a,b // b,c implies a,b // a,c ) & ( not a,b // a,c or a,b // b,c or a,c // c,b ) ) ) & ex a, b, c, d being Element of AS st ( not a,b // c,d & not a,b // d,c ) & ( for a, b, c being Element of AS ex d being Element of AS st ( a,b // c,d & a,c // b,d & b <> d ) ) & ( for p, a, b, c being Element of AS st p <> b & b,p // p,c holds ex d being Element of AS st ( a,p // p,d & a,b // c,d ) ) & ( for a, b, c, d being Element of AS st not a,b // c,d & not a,b // d,c holds ex p being Element of AS st ( ( a,b // a,p or a,b // p,a ) & ( c,d // c,p or c,d // p,c ) ) ) ) iff AS is OAffinPlane ) by Def5, Def6, STRUCT_0:def_10; theorem :: ANALOAF:28 for V being RealLinearSpace st ex u, v being VECTOR of V st ( ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) & ( for w being VECTOR of V ex a, b being Real st w = (a * u) + (b * v) ) ) holds OASpace V is OAffinPlane proof let V be RealLinearSpace; ::_thesis: ( ex u, v being VECTOR of V st ( ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) & ( for w being VECTOR of V ex a, b being Real st w = (a * u) + (b * v) ) ) implies OASpace V is OAffinPlane ) set S = OASpace V; assume A1: ex u, v being VECTOR of V st ( ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) & ( for w being VECTOR of V ex a, b being Real st w = (a * u) + (b * v) ) ) ; ::_thesis: OASpace V is OAffinPlane then for a, b, c, d being Element of (OASpace V) st not a,b // c,d & not a,b // d,c holds ex p being Element of (OASpace V) st ( ( a,b // a,p or a,b // p,a ) & ( c,d // c,p or c,d // p,c ) ) by Th24; hence OASpace V is OAffinPlane by A1, Def6, Th26; ::_thesis: verum end;