:: ANALORT semantic presentation begin Lm1: for V being RealLinearSpace for v1, x, y, v2 being VECTOR of V for b1, b2, c1, c2 being Real st v1 = (b1 * x) + (b2 * y) & v2 = (c1 * x) + (c2 * y) holds ( v1 + v2 = ((b1 + c1) * x) + ((b2 + c2) * y) & v1 - v2 = ((b1 - c1) * x) + ((b2 - c2) * y) ) proof let V be RealLinearSpace; ::_thesis: for v1, x, y, v2 being VECTOR of V for b1, b2, c1, c2 being Real st v1 = (b1 * x) + (b2 * y) & v2 = (c1 * x) + (c2 * y) holds ( v1 + v2 = ((b1 + c1) * x) + ((b2 + c2) * y) & v1 - v2 = ((b1 - c1) * x) + ((b2 - c2) * y) ) let v1, x, y, v2 be VECTOR of V; ::_thesis: for b1, b2, c1, c2 being Real st v1 = (b1 * x) + (b2 * y) & v2 = (c1 * x) + (c2 * y) holds ( v1 + v2 = ((b1 + c1) * x) + ((b2 + c2) * y) & v1 - v2 = ((b1 - c1) * x) + ((b2 - c2) * y) ) let b1, b2, c1, c2 be Real; ::_thesis: ( v1 = (b1 * x) + (b2 * y) & v2 = (c1 * x) + (c2 * y) implies ( v1 + v2 = ((b1 + c1) * x) + ((b2 + c2) * y) & v1 - v2 = ((b1 - c1) * x) + ((b2 - c2) * y) ) ) assume that A1: v1 = (b1 * x) + (b2 * y) and A2: v2 = (c1 * x) + (c2 * y) ; ::_thesis: ( v1 + v2 = ((b1 + c1) * x) + ((b2 + c2) * y) & v1 - v2 = ((b1 - c1) * x) + ((b2 - c2) * y) ) thus v1 + v2 = (((b1 * x) + (b2 * y)) + (c1 * x)) + (c2 * y) by A1, A2, RLVECT_1:def_3 .= (((b1 * x) + (c1 * x)) + (b2 * y)) + (c2 * y) by RLVECT_1:def_3 .= (((b1 + c1) * x) + (b2 * y)) + (c2 * y) by RLVECT_1:def_6 .= ((b1 + c1) * x) + ((b2 * y) + (c2 * y)) by RLVECT_1:def_3 .= ((b1 + c1) * x) + ((b2 + c2) * y) by RLVECT_1:def_6 ; ::_thesis: v1 - v2 = ((b1 - c1) * x) + ((b2 - c2) * y) thus v1 - v2 = ((b1 * x) + (b2 * y)) + ((- (c1 * x)) + (- (c2 * y))) by A1, A2, RLVECT_1:31 .= ((b1 * x) + (b2 * y)) + ((c1 * (- x)) + (- (c2 * y))) by RLVECT_1:25 .= ((b1 * x) + (b2 * y)) + ((c1 * (- x)) + (c2 * (- y))) by RLVECT_1:25 .= ((b1 * x) + (b2 * y)) + (((- c1) * x) + (c2 * (- y))) by RLVECT_1:24 .= ((b1 * x) + (b2 * y)) + (((- c1) * x) + ((- c2) * y)) by RLVECT_1:24 .= (((b1 * x) + (b2 * y)) + ((- c1) * x)) + ((- c2) * y) by RLVECT_1:def_3 .= (((b1 * x) + ((- c1) * x)) + (b2 * y)) + ((- c2) * y) by RLVECT_1:def_3 .= (((b1 + (- c1)) * x) + (b2 * y)) + ((- c2) * y) by RLVECT_1:def_6 .= ((b1 + (- c1)) * x) + ((b2 * y) + ((- c2) * y)) by RLVECT_1:def_3 .= ((b1 - c1) * x) + ((b2 + (- c2)) * y) by RLVECT_1:def_6 .= ((b1 - c1) * x) + ((b2 - c2) * y) ; ::_thesis: verum end; Lm2: for V being RealLinearSpace for v, x, y being VECTOR of V for b1, b2, a being Real st v = (b1 * x) + (b2 * y) holds a * v = ((a * b1) * x) + ((a * b2) * y) proof let V be RealLinearSpace; ::_thesis: for v, x, y being VECTOR of V for b1, b2, a being Real st v = (b1 * x) + (b2 * y) holds a * v = ((a * b1) * x) + ((a * b2) * y) let v, x, y be VECTOR of V; ::_thesis: for b1, b2, a being Real st v = (b1 * x) + (b2 * y) holds a * v = ((a * b1) * x) + ((a * b2) * y) let b1, b2, a be Real; ::_thesis: ( v = (b1 * x) + (b2 * y) implies a * v = ((a * b1) * x) + ((a * b2) * y) ) assume v = (b1 * x) + (b2 * y) ; ::_thesis: a * v = ((a * b1) * x) + ((a * b2) * y) hence a * v = (a * (b1 * x)) + (a * (b2 * y)) by RLVECT_1:def_5 .= ((a * b1) * x) + (a * (b2 * y)) by RLVECT_1:def_7 .= ((a * b1) * x) + ((a * b2) * y) by RLVECT_1:def_7 ; ::_thesis: verum end; Lm3: for V being RealLinearSpace for x, y being VECTOR of V for a1, a2, b1, b2 being Real st Gen x,y & (a1 * x) + (a2 * y) = (b1 * x) + (b2 * y) holds ( a1 = b1 & a2 = b2 ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V for a1, a2, b1, b2 being Real st Gen x,y & (a1 * x) + (a2 * y) = (b1 * x) + (b2 * y) holds ( a1 = b1 & a2 = b2 ) let x, y be VECTOR of V; ::_thesis: for a1, a2, b1, b2 being Real st Gen x,y & (a1 * x) + (a2 * y) = (b1 * x) + (b2 * y) holds ( a1 = b1 & a2 = b2 ) let a1, a2, b1, b2 be Real; ::_thesis: ( Gen x,y & (a1 * x) + (a2 * y) = (b1 * x) + (b2 * y) implies ( a1 = b1 & a2 = b2 ) ) assume that A1: Gen x,y and A2: (a1 * x) + (a2 * y) = (b1 * x) + (b2 * y) ; ::_thesis: ( a1 = b1 & a2 = b2 ) A3: 0. V = ((a1 * x) + (a2 * y)) - ((b1 * x) + (b2 * y)) by A2, RLVECT_1:15 .= ((a1 - b1) * x) + ((a2 - b2) * y) by Lm1 ; then A4: (- b1) + a1 = 0 by A1, ANALMETR:def_1; (- b2) + a2 = 0 by A1, A3, ANALMETR:def_1; hence ( a1 = b1 & a2 = b2 ) by A4; ::_thesis: verum end; Lm4: for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds ( x <> 0. V & y <> 0. V ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds ( x <> 0. V & y <> 0. V ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies ( x <> 0. V & y <> 0. V ) ) assume A1: Gen x,y ; ::_thesis: ( x <> 0. V & y <> 0. V ) A2: x <> 0. V proof assume A3: x = 0. V ; ::_thesis: contradiction consider a, b being Real such that A4: a = 1 and A5: b = 0 ; (a * x) + (b * y) = (0. V) + (0 * y) by A3, A5, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; hence contradiction by A1, A4, ANALMETR:def_1; ::_thesis: verum end; y <> 0. V proof assume A6: y = 0. V ; ::_thesis: contradiction consider a, b being Real such that A7: a = 0 and A8: b = 1 ; (a * x) + (b * y) = (0. V) + (1 * (0. V)) by A6, A7, A8, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; hence contradiction by A1, A8, ANALMETR:def_1; ::_thesis: verum end; hence ( x <> 0. V & y <> 0. V ) by A2; ::_thesis: verum end; Lm5: for V being RealLinearSpace for x, y, u being VECTOR of V st Gen x,y holds u = ((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y) proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V st Gen x,y holds u = ((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y) let x, y, u be VECTOR of V; ::_thesis: ( Gen x,y implies u = ((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y) ) assume A1: Gen x,y ; ::_thesis: u = ((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y) then ex b being Real st u = ((pr1 (x,y,u)) * x) + (b * y) by GEOMTRAP:def_4; hence u = ((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y) by A1, GEOMTRAP:def_5; ::_thesis: verum end; Lm6: for V being RealLinearSpace for x, y, u being VECTOR of V for k1, k2 being Real st Gen x,y & u = (k1 * x) + (k2 * y) holds ( k1 = pr1 (x,y,u) & k2 = pr2 (x,y,u) ) proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V for k1, k2 being Real st Gen x,y & u = (k1 * x) + (k2 * y) holds ( k1 = pr1 (x,y,u) & k2 = pr2 (x,y,u) ) let x, y, u be VECTOR of V; ::_thesis: for k1, k2 being Real st Gen x,y & u = (k1 * x) + (k2 * y) holds ( k1 = pr1 (x,y,u) & k2 = pr2 (x,y,u) ) let k1, k2 be Real; ::_thesis: ( Gen x,y & u = (k1 * x) + (k2 * y) implies ( k1 = pr1 (x,y,u) & k2 = pr2 (x,y,u) ) ) assume that A1: Gen x,y and A2: u = (k1 * x) + (k2 * y) ; ::_thesis: ( k1 = pr1 (x,y,u) & k2 = pr2 (x,y,u) ) u = ((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y) by A1, Lm5; hence ( k1 = pr1 (x,y,u) & k2 = pr2 (x,y,u) ) by A1, A2, Lm3; ::_thesis: verum end; Lm7: for V being RealLinearSpace for x, y, u, v being VECTOR of V for a being Real st Gen x,y holds ( pr1 (x,y,(u + v)) = (pr1 (x,y,u)) + (pr1 (x,y,v)) & pr2 (x,y,(u + v)) = (pr2 (x,y,u)) + (pr2 (x,y,v)) & pr1 (x,y,(u - v)) = (pr1 (x,y,u)) - (pr1 (x,y,v)) & pr2 (x,y,(u - v)) = (pr2 (x,y,u)) - (pr2 (x,y,v)) & pr1 (x,y,(a * u)) = a * (pr1 (x,y,u)) & pr2 (x,y,(a * u)) = a * (pr2 (x,y,u)) ) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v being VECTOR of V for a being Real st Gen x,y holds ( pr1 (x,y,(u + v)) = (pr1 (x,y,u)) + (pr1 (x,y,v)) & pr2 (x,y,(u + v)) = (pr2 (x,y,u)) + (pr2 (x,y,v)) & pr1 (x,y,(u - v)) = (pr1 (x,y,u)) - (pr1 (x,y,v)) & pr2 (x,y,(u - v)) = (pr2 (x,y,u)) - (pr2 (x,y,v)) & pr1 (x,y,(a * u)) = a * (pr1 (x,y,u)) & pr2 (x,y,(a * u)) = a * (pr2 (x,y,u)) ) let x, y, u, v be VECTOR of V; ::_thesis: for a being Real st Gen x,y holds ( pr1 (x,y,(u + v)) = (pr1 (x,y,u)) + (pr1 (x,y,v)) & pr2 (x,y,(u + v)) = (pr2 (x,y,u)) + (pr2 (x,y,v)) & pr1 (x,y,(u - v)) = (pr1 (x,y,u)) - (pr1 (x,y,v)) & pr2 (x,y,(u - v)) = (pr2 (x,y,u)) - (pr2 (x,y,v)) & pr1 (x,y,(a * u)) = a * (pr1 (x,y,u)) & pr2 (x,y,(a * u)) = a * (pr2 (x,y,u)) ) let a be Real; ::_thesis: ( Gen x,y implies ( pr1 (x,y,(u + v)) = (pr1 (x,y,u)) + (pr1 (x,y,v)) & pr2 (x,y,(u + v)) = (pr2 (x,y,u)) + (pr2 (x,y,v)) & pr1 (x,y,(u - v)) = (pr1 (x,y,u)) - (pr1 (x,y,v)) & pr2 (x,y,(u - v)) = (pr2 (x,y,u)) - (pr2 (x,y,v)) & pr1 (x,y,(a * u)) = a * (pr1 (x,y,u)) & pr2 (x,y,(a * u)) = a * (pr2 (x,y,u)) ) ) assume A1: Gen x,y ; ::_thesis: ( pr1 (x,y,(u + v)) = (pr1 (x,y,u)) + (pr1 (x,y,v)) & pr2 (x,y,(u + v)) = (pr2 (x,y,u)) + (pr2 (x,y,v)) & pr1 (x,y,(u - v)) = (pr1 (x,y,u)) - (pr1 (x,y,v)) & pr2 (x,y,(u - v)) = (pr2 (x,y,u)) - (pr2 (x,y,v)) & pr1 (x,y,(a * u)) = a * (pr1 (x,y,u)) & pr2 (x,y,(a * u)) = a * (pr2 (x,y,u)) ) set p1u = pr1 (x,y,u); set p2u = pr2 (x,y,u); set p1v = pr1 (x,y,v); set p2v = pr2 (x,y,v); A2: u = ((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y) by A1, Lm5; A3: v = ((pr1 (x,y,v)) * x) + ((pr2 (x,y,v)) * y) by A1, Lm5; then u + v = ((((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y)) + ((pr1 (x,y,v)) * x)) + ((pr2 (x,y,v)) * y) by A2, RLVECT_1:def_3 .= ((((pr1 (x,y,u)) * x) + ((pr1 (x,y,v)) * x)) + ((pr2 (x,y,u)) * y)) + ((pr2 (x,y,v)) * y) by RLVECT_1:def_3 .= (((pr1 (x,y,u)) * x) + ((pr1 (x,y,v)) * x)) + (((pr2 (x,y,u)) * y) + ((pr2 (x,y,v)) * y)) by RLVECT_1:def_3 .= (((pr1 (x,y,u)) + (pr1 (x,y,v))) * x) + (((pr2 (x,y,u)) * y) + ((pr2 (x,y,v)) * y)) by RLVECT_1:def_6 .= (((pr1 (x,y,u)) + (pr1 (x,y,v))) * x) + (((pr2 (x,y,u)) + (pr2 (x,y,v))) * y) by RLVECT_1:def_6 ; hence ( pr1 (x,y,(u + v)) = (pr1 (x,y,u)) + (pr1 (x,y,v)) & pr2 (x,y,(u + v)) = (pr2 (x,y,u)) + (pr2 (x,y,v)) ) by A1, Lm6; ::_thesis: ( pr1 (x,y,(u - v)) = (pr1 (x,y,u)) - (pr1 (x,y,v)) & pr2 (x,y,(u - v)) = (pr2 (x,y,u)) - (pr2 (x,y,v)) & pr1 (x,y,(a * u)) = a * (pr1 (x,y,u)) & pr2 (x,y,(a * u)) = a * (pr2 (x,y,u)) ) u - v = (((pr1 (x,y,u)) - (pr1 (x,y,v))) * x) + (((pr2 (x,y,u)) - (pr2 (x,y,v))) * y) by A2, A3, Lm1; hence ( pr1 (x,y,(u - v)) = (pr1 (x,y,u)) - (pr1 (x,y,v)) & pr2 (x,y,(u - v)) = (pr2 (x,y,u)) - (pr2 (x,y,v)) ) by A1, Lm6; ::_thesis: ( pr1 (x,y,(a * u)) = a * (pr1 (x,y,u)) & pr2 (x,y,(a * u)) = a * (pr2 (x,y,u)) ) a * u = ((a * (pr1 (x,y,u))) * x) + ((a * (pr2 (x,y,u))) * y) by A2, Lm2; hence ( pr1 (x,y,(a * u)) = a * (pr1 (x,y,u)) & pr2 (x,y,(a * u)) = a * (pr2 (x,y,u)) ) by A1, Lm6; ::_thesis: verum end; definition let V be RealLinearSpace; let x, y, u be VECTOR of V; func Ortm (x,y,u) -> VECTOR of V equals :: ANALORT:def 1 ((pr1 (x,y,u)) * x) + ((- (pr2 (x,y,u))) * y); correctness coherence ((pr1 (x,y,u)) * x) + ((- (pr2 (x,y,u))) * y) is VECTOR of V; ; end; :: deftheorem defines Ortm ANALORT:def_1_:_ for V being RealLinearSpace for x, y, u being VECTOR of V holds Ortm (x,y,u) = ((pr1 (x,y,u)) * x) + ((- (pr2 (x,y,u))) * y); theorem Th1: :: ANALORT:1 for V being RealLinearSpace for x, y, u, v being VECTOR of V st Gen x,y holds Ortm (x,y,(u + v)) = (Ortm (x,y,u)) + (Ortm (x,y,v)) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v being VECTOR of V st Gen x,y holds Ortm (x,y,(u + v)) = (Ortm (x,y,u)) + (Ortm (x,y,v)) let x, y, u, v be VECTOR of V; ::_thesis: ( Gen x,y implies Ortm (x,y,(u + v)) = (Ortm (x,y,u)) + (Ortm (x,y,v)) ) assume A1: Gen x,y ; ::_thesis: Ortm (x,y,(u + v)) = (Ortm (x,y,u)) + (Ortm (x,y,v)) hence Ortm (x,y,(u + v)) = (((pr1 (x,y,u)) + (pr1 (x,y,v))) * x) + ((- (pr2 (x,y,(u + v)))) * y) by Lm7 .= (((pr1 (x,y,u)) + (pr1 (x,y,v))) * x) + ((- ((pr2 (x,y,u)) + (pr2 (x,y,v)))) * y) by A1, Lm7 .= (((pr1 (x,y,u)) * x) + ((pr1 (x,y,v)) * x)) + ((- ((pr2 (x,y,u)) + (pr2 (x,y,v)))) * y) by RLVECT_1:def_6 .= (((pr1 (x,y,u)) * x) + ((pr1 (x,y,v)) * x)) + (((pr2 (x,y,u)) + (pr2 (x,y,v))) * (- y)) by RLVECT_1:24 .= (((pr1 (x,y,u)) * x) + ((pr1 (x,y,v)) * x)) + (- (((pr2 (x,y,u)) + (pr2 (x,y,v))) * y)) by RLVECT_1:25 .= (((pr1 (x,y,u)) * x) + ((pr1 (x,y,v)) * x)) + (- (((pr2 (x,y,u)) * y) + ((pr2 (x,y,v)) * y))) by RLVECT_1:def_6 .= (((pr1 (x,y,u)) * x) + ((pr1 (x,y,v)) * x)) + ((- ((pr2 (x,y,u)) * y)) + (- ((pr2 (x,y,v)) * y))) by RLVECT_1:31 .= ((pr1 (x,y,u)) * x) + (((pr1 (x,y,v)) * x) + ((- ((pr2 (x,y,u)) * y)) + (- ((pr2 (x,y,v)) * y)))) by RLVECT_1:def_3 .= ((pr1 (x,y,u)) * x) + ((- ((pr2 (x,y,u)) * y)) + (((pr1 (x,y,v)) * x) + (- ((pr2 (x,y,v)) * y)))) by RLVECT_1:def_3 .= (((pr1 (x,y,u)) * x) + (- ((pr2 (x,y,u)) * y))) + (((pr1 (x,y,v)) * x) + (- ((pr2 (x,y,v)) * y))) by RLVECT_1:def_3 .= (((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * (- y))) + (((pr1 (x,y,v)) * x) + (- ((pr2 (x,y,v)) * y))) by RLVECT_1:25 .= (((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * (- y))) + (((pr1 (x,y,v)) * x) + ((pr2 (x,y,v)) * (- y))) by RLVECT_1:25 .= (((pr1 (x,y,u)) * x) + ((- (pr2 (x,y,u))) * y)) + (((pr1 (x,y,v)) * x) + ((pr2 (x,y,v)) * (- y))) by RLVECT_1:24 .= (Ortm (x,y,u)) + (Ortm (x,y,v)) by RLVECT_1:24 ; ::_thesis: verum end; theorem Th2: :: ANALORT:2 for V being RealLinearSpace for x, y, u being VECTOR of V for n being Real st Gen x,y holds Ortm (x,y,(n * u)) = n * (Ortm (x,y,u)) proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V for n being Real st Gen x,y holds Ortm (x,y,(n * u)) = n * (Ortm (x,y,u)) let x, y, u be VECTOR of V; ::_thesis: for n being Real st Gen x,y holds Ortm (x,y,(n * u)) = n * (Ortm (x,y,u)) let n be Real; ::_thesis: ( Gen x,y implies Ortm (x,y,(n * u)) = n * (Ortm (x,y,u)) ) assume A1: Gen x,y ; ::_thesis: Ortm (x,y,(n * u)) = n * (Ortm (x,y,u)) hence Ortm (x,y,(n * u)) = ((n * (pr1 (x,y,u))) * x) + ((- (pr2 (x,y,(n * u)))) * y) by Lm7 .= ((n * (pr1 (x,y,u))) * x) + ((- (n * (pr2 (x,y,u)))) * y) by A1, Lm7 .= ((n * (pr1 (x,y,u))) * x) + ((n * (pr2 (x,y,u))) * (- y)) by RLVECT_1:24 .= ((n * (pr1 (x,y,u))) * x) + (- ((n * (pr2 (x,y,u))) * y)) by RLVECT_1:25 .= ((n * (pr1 (x,y,u))) * x) + (- (n * ((pr2 (x,y,u)) * y))) by RLVECT_1:def_7 .= ((n * (pr1 (x,y,u))) * x) + (n * (- ((pr2 (x,y,u)) * y))) by RLVECT_1:25 .= (n * ((pr1 (x,y,u)) * x)) + (n * (- ((pr2 (x,y,u)) * y))) by RLVECT_1:def_7 .= n * (((pr1 (x,y,u)) * x) + (- ((pr2 (x,y,u)) * y))) by RLVECT_1:def_5 .= n * (((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * (- y))) by RLVECT_1:25 .= n * (Ortm (x,y,u)) by RLVECT_1:24 ; ::_thesis: verum end; theorem :: ANALORT:3 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds Ortm (x,y,(0. V)) = 0. V proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds Ortm (x,y,(0. V)) = 0. V let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies Ortm (x,y,(0. V)) = 0. V ) assume A1: Gen x,y ; ::_thesis: Ortm (x,y,(0. V)) = 0. V set u = the VECTOR of V; thus Ortm (x,y,(0. V)) = Ortm (x,y,(0 * the VECTOR of V)) by RLVECT_1:10 .= 0 * (Ortm (x,y, the VECTOR of V)) by A1, Th2 .= 0. V by RLVECT_1:10 ; ::_thesis: verum end; theorem Th4: :: ANALORT:4 for V being RealLinearSpace for x, y, u being VECTOR of V st Gen x,y holds Ortm (x,y,(- u)) = - (Ortm (x,y,u)) proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V st Gen x,y holds Ortm (x,y,(- u)) = - (Ortm (x,y,u)) let x, y, u be VECTOR of V; ::_thesis: ( Gen x,y implies Ortm (x,y,(- u)) = - (Ortm (x,y,u)) ) assume A1: Gen x,y ; ::_thesis: Ortm (x,y,(- u)) = - (Ortm (x,y,u)) then A2: - u = - (((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y)) by Lm5 .= (- ((pr1 (x,y,u)) * x)) + (- ((pr2 (x,y,u)) * y)) by RLVECT_1:31 .= ((pr1 (x,y,u)) * (- x)) + (- ((pr2 (x,y,u)) * y)) by RLVECT_1:25 .= ((- (pr1 (x,y,u))) * x) + (- ((pr2 (x,y,u)) * y)) by RLVECT_1:24 .= ((- (pr1 (x,y,u))) * x) + ((pr2 (x,y,u)) * (- y)) by RLVECT_1:25 .= ((- (pr1 (x,y,u))) * x) + ((- (pr2 (x,y,u))) * y) by RLVECT_1:24 ; hence Ortm (x,y,(- u)) = ((- (pr1 (x,y,u))) * x) + ((- (pr2 (x,y,(- u)))) * y) by A1, Lm6 .= ((- (pr1 (x,y,u))) * x) + ((- (- (pr2 (x,y,u)))) * y) by A1, A2, Lm6 .= ((pr1 (x,y,u)) * (- x)) + ((- (- (pr2 (x,y,u)))) * y) by RLVECT_1:24 .= (- ((pr1 (x,y,u)) * x)) + ((- (- (pr2 (x,y,u)))) * y) by RLVECT_1:25 .= (- ((pr1 (x,y,u)) * x)) + ((- (pr2 (x,y,u))) * (- y)) by RLVECT_1:24 .= (- ((pr1 (x,y,u)) * x)) + (- ((- (pr2 (x,y,u))) * y)) by RLVECT_1:25 .= - (Ortm (x,y,u)) by RLVECT_1:31 ; ::_thesis: verum end; theorem Th5: :: ANALORT:5 for V being RealLinearSpace for x, y, u, v being VECTOR of V st Gen x,y holds Ortm (x,y,(u - v)) = (Ortm (x,y,u)) - (Ortm (x,y,v)) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v being VECTOR of V st Gen x,y holds Ortm (x,y,(u - v)) = (Ortm (x,y,u)) - (Ortm (x,y,v)) let x, y, u, v be VECTOR of V; ::_thesis: ( Gen x,y implies Ortm (x,y,(u - v)) = (Ortm (x,y,u)) - (Ortm (x,y,v)) ) assume A1: Gen x,y ; ::_thesis: Ortm (x,y,(u - v)) = (Ortm (x,y,u)) - (Ortm (x,y,v)) hence Ortm (x,y,(u - v)) = (Ortm (x,y,u)) + (Ortm (x,y,(- v))) by Th1 .= (Ortm (x,y,u)) - (Ortm (x,y,v)) by A1, Th4 ; ::_thesis: verum end; theorem Th6: :: ANALORT:6 for V being RealLinearSpace for x, y, u, v being VECTOR of V st Gen x,y & Ortm (x,y,u) = Ortm (x,y,v) holds u = v proof let V be RealLinearSpace; ::_thesis: for x, y, u, v being VECTOR of V st Gen x,y & Ortm (x,y,u) = Ortm (x,y,v) holds u = v let x, y, u, v be VECTOR of V; ::_thesis: ( Gen x,y & Ortm (x,y,u) = Ortm (x,y,v) implies u = v ) assume that A1: Gen x,y and A2: Ortm (x,y,u) = Ortm (x,y,v) ; ::_thesis: u = v (((pr1 (x,y,u)) * x) + ((- (pr2 (x,y,u))) * y)) - (((pr1 (x,y,v)) * x) + ((- (pr2 (x,y,v))) * y)) = 0. V by A2, RLVECT_1:15; then ((((pr1 (x,y,u)) * x) + ((- (pr2 (x,y,u))) * y)) - ((pr1 (x,y,v)) * x)) - ((- (pr2 (x,y,v))) * y) = 0. V by RLVECT_1:27; then ((((pr1 (x,y,u)) * x) + (- ((pr1 (x,y,v)) * x))) + ((- (pr2 (x,y,u))) * y)) - ((- (pr2 (x,y,v))) * y) = 0. V by RLVECT_1:def_3; then (((pr1 (x,y,u)) * x) - ((pr1 (x,y,v)) * x)) + (((- (pr2 (x,y,u))) * y) - ((- (pr2 (x,y,v))) * y)) = 0. V by RLVECT_1:def_3; then (((pr1 (x,y,u)) - (pr1 (x,y,v))) * x) + (((- (pr2 (x,y,u))) * y) - ((- (pr2 (x,y,v))) * y)) = 0. V by RLVECT_1:35; then A3: (((pr1 (x,y,u)) - (pr1 (x,y,v))) * x) + (((- (pr2 (x,y,u))) - (- (pr2 (x,y,v)))) * y) = 0. V by RLVECT_1:35; then A4: (pr1 (x,y,u)) - (pr1 (x,y,v)) = 0 by A1, ANALMETR:def_1; (- (pr2 (x,y,u))) - (- (pr2 (x,y,v))) = 0 by A1, A3, ANALMETR:def_1; hence u = ((pr1 (x,y,v)) * x) + ((pr2 (x,y,v)) * y) by A1, A4, Lm5 .= v by A1, Lm5 ; ::_thesis: verum end; theorem Th7: :: ANALORT:7 for V being RealLinearSpace for x, y, u being VECTOR of V st Gen x,y holds Ortm (x,y,(Ortm (x,y,u))) = u proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V st Gen x,y holds Ortm (x,y,(Ortm (x,y,u))) = u let x, y, u be VECTOR of V; ::_thesis: ( Gen x,y implies Ortm (x,y,(Ortm (x,y,u))) = u ) assume A1: Gen x,y ; ::_thesis: Ortm (x,y,(Ortm (x,y,u))) = u hence Ortm (x,y,(Ortm (x,y,u))) = ((pr1 (x,y,u)) * x) + ((- (pr2 (x,y,(((pr1 (x,y,u)) * x) + ((- (pr2 (x,y,u))) * y))))) * y) by GEOMTRAP:def_4 .= ((pr1 (x,y,u)) * x) + ((- (- (pr2 (x,y,u)))) * y) by A1, GEOMTRAP:def_5 .= u by A1, Lm5 ; ::_thesis: verum end; theorem Th8: :: ANALORT:8 for V being RealLinearSpace for x, y, u being VECTOR of V st Gen x,y holds ex v being VECTOR of V st u = Ortm (x,y,v) proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V st Gen x,y holds ex v being VECTOR of V st u = Ortm (x,y,v) let x, y, u be VECTOR of V; ::_thesis: ( Gen x,y implies ex v being VECTOR of V st u = Ortm (x,y,v) ) assume A1: Gen x,y ; ::_thesis: ex v being VECTOR of V st u = Ortm (x,y,v) take Ortm (x,y,u) ; ::_thesis: u = Ortm (x,y,(Ortm (x,y,u))) thus u = Ortm (x,y,(Ortm (x,y,u))) by A1, Th7; ::_thesis: verum end; definition let V be RealLinearSpace; let x, y, u be VECTOR of V; func Orte (x,y,u) -> VECTOR of V equals :: ANALORT:def 2 ((pr2 (x,y,u)) * x) + ((- (pr1 (x,y,u))) * y); correctness coherence ((pr2 (x,y,u)) * x) + ((- (pr1 (x,y,u))) * y) is VECTOR of V; ; end; :: deftheorem defines Orte ANALORT:def_2_:_ for V being RealLinearSpace for x, y, u being VECTOR of V holds Orte (x,y,u) = ((pr2 (x,y,u)) * x) + ((- (pr1 (x,y,u))) * y); theorem Th9: :: ANALORT:9 for V being RealLinearSpace for x, y, v being VECTOR of V st Gen x,y holds Orte (x,y,(- v)) = - (Orte (x,y,v)) proof let V be RealLinearSpace; ::_thesis: for x, y, v being VECTOR of V st Gen x,y holds Orte (x,y,(- v)) = - (Orte (x,y,v)) let x, y, v be VECTOR of V; ::_thesis: ( Gen x,y implies Orte (x,y,(- v)) = - (Orte (x,y,v)) ) assume A1: Gen x,y ; ::_thesis: Orte (x,y,(- v)) = - (Orte (x,y,v)) then A2: - v = - (((pr1 (x,y,v)) * x) + ((pr2 (x,y,v)) * y)) by Lm5 .= (- ((pr1 (x,y,v)) * x)) + (- ((pr2 (x,y,v)) * y)) by RLVECT_1:31 .= ((pr1 (x,y,v)) * (- x)) + (- ((pr2 (x,y,v)) * y)) by RLVECT_1:25 .= ((- (pr1 (x,y,v))) * x) + (- ((pr2 (x,y,v)) * y)) by RLVECT_1:24 .= ((- (pr1 (x,y,v))) * x) + ((pr2 (x,y,v)) * (- y)) by RLVECT_1:25 .= ((- (pr1 (x,y,v))) * x) + ((- (pr2 (x,y,v))) * y) by RLVECT_1:24 ; hence Orte (x,y,(- v)) = ((- (pr2 (x,y,v))) * x) + ((- (pr1 (x,y,(- v)))) * y) by A1, Lm6 .= ((- (pr2 (x,y,v))) * x) + ((- (- (pr1 (x,y,v)))) * y) by A1, A2, Lm6 .= ((pr2 (x,y,v)) * (- x)) + ((- (- (pr1 (x,y,v)))) * y) by RLVECT_1:24 .= (- ((pr2 (x,y,v)) * x)) + ((- (- (pr1 (x,y,v)))) * y) by RLVECT_1:25 .= (- ((pr2 (x,y,v)) * x)) + ((- (pr1 (x,y,v))) * (- y)) by RLVECT_1:24 .= (- ((pr2 (x,y,v)) * x)) + (- ((- (pr1 (x,y,v))) * y)) by RLVECT_1:25 .= - (Orte (x,y,v)) by RLVECT_1:31 ; ::_thesis: verum end; theorem Th10: :: ANALORT:10 for V being RealLinearSpace for x, y, u, v being VECTOR of V st Gen x,y holds Orte (x,y,(u + v)) = (Orte (x,y,u)) + (Orte (x,y,v)) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v being VECTOR of V st Gen x,y holds Orte (x,y,(u + v)) = (Orte (x,y,u)) + (Orte (x,y,v)) let x, y, u, v be VECTOR of V; ::_thesis: ( Gen x,y implies Orte (x,y,(u + v)) = (Orte (x,y,u)) + (Orte (x,y,v)) ) assume A1: Gen x,y ; ::_thesis: Orte (x,y,(u + v)) = (Orte (x,y,u)) + (Orte (x,y,v)) hence Orte (x,y,(u + v)) = ((pr2 (x,y,(u + v))) * x) + ((- ((pr1 (x,y,u)) + (pr1 (x,y,v)))) * y) by Lm7 .= (((pr2 (x,y,u)) + (pr2 (x,y,v))) * x) + ((- ((pr1 (x,y,u)) + (pr1 (x,y,v)))) * y) by A1, Lm7 .= (((pr2 (x,y,u)) * x) + ((pr2 (x,y,v)) * x)) + ((- ((pr1 (x,y,u)) + (pr1 (x,y,v)))) * y) by RLVECT_1:def_6 .= (((pr2 (x,y,u)) * x) + ((pr2 (x,y,v)) * x)) + (((pr1 (x,y,u)) + (pr1 (x,y,v))) * (- y)) by RLVECT_1:24 .= (((pr2 (x,y,u)) * x) + ((pr2 (x,y,v)) * x)) + (- (((pr1 (x,y,u)) + (pr1 (x,y,v))) * y)) by RLVECT_1:25 .= (((pr2 (x,y,u)) * x) + ((pr2 (x,y,v)) * x)) + (- (((pr1 (x,y,u)) * y) + ((pr1 (x,y,v)) * y))) by RLVECT_1:def_6 .= (((pr2 (x,y,u)) * x) + ((pr2 (x,y,v)) * x)) + ((- ((pr1 (x,y,u)) * y)) + (- ((pr1 (x,y,v)) * y))) by RLVECT_1:31 .= ((pr2 (x,y,u)) * x) + (((pr2 (x,y,v)) * x) + ((- ((pr1 (x,y,u)) * y)) + (- ((pr1 (x,y,v)) * y)))) by RLVECT_1:def_3 .= ((pr2 (x,y,u)) * x) + ((- ((pr1 (x,y,u)) * y)) + (((pr2 (x,y,v)) * x) + (- ((pr1 (x,y,v)) * y)))) by RLVECT_1:def_3 .= (((pr2 (x,y,u)) * x) + (- ((pr1 (x,y,u)) * y))) + (((pr2 (x,y,v)) * x) + (- ((pr1 (x,y,v)) * y))) by RLVECT_1:def_3 .= (((pr2 (x,y,u)) * x) + ((pr1 (x,y,u)) * (- y))) + (((pr2 (x,y,v)) * x) + (- ((pr1 (x,y,v)) * y))) by RLVECT_1:25 .= (((pr2 (x,y,u)) * x) + ((pr1 (x,y,u)) * (- y))) + (((pr2 (x,y,v)) * x) + ((pr1 (x,y,v)) * (- y))) by RLVECT_1:25 .= (((pr2 (x,y,u)) * x) + ((- (pr1 (x,y,u))) * y)) + (((pr2 (x,y,v)) * x) + ((pr1 (x,y,v)) * (- y))) by RLVECT_1:24 .= (Orte (x,y,u)) + (Orte (x,y,v)) by RLVECT_1:24 ; ::_thesis: verum end; theorem Th11: :: ANALORT:11 for V being RealLinearSpace for x, y, u, v being VECTOR of V st Gen x,y holds Orte (x,y,(u - v)) = (Orte (x,y,u)) - (Orte (x,y,v)) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v being VECTOR of V st Gen x,y holds Orte (x,y,(u - v)) = (Orte (x,y,u)) - (Orte (x,y,v)) let x, y, u, v be VECTOR of V; ::_thesis: ( Gen x,y implies Orte (x,y,(u - v)) = (Orte (x,y,u)) - (Orte (x,y,v)) ) assume A1: Gen x,y ; ::_thesis: Orte (x,y,(u - v)) = (Orte (x,y,u)) - (Orte (x,y,v)) hence Orte (x,y,(u - v)) = (Orte (x,y,u)) + (Orte (x,y,(- v))) by Th10 .= (Orte (x,y,u)) - (Orte (x,y,v)) by A1, Th9 ; ::_thesis: verum end; theorem Th12: :: ANALORT:12 for V being RealLinearSpace for x, y, u being VECTOR of V for n being Real st Gen x,y holds Orte (x,y,(n * u)) = n * (Orte (x,y,u)) proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V for n being Real st Gen x,y holds Orte (x,y,(n * u)) = n * (Orte (x,y,u)) let x, y, u be VECTOR of V; ::_thesis: for n being Real st Gen x,y holds Orte (x,y,(n * u)) = n * (Orte (x,y,u)) let n be Real; ::_thesis: ( Gen x,y implies Orte (x,y,(n * u)) = n * (Orte (x,y,u)) ) assume A1: Gen x,y ; ::_thesis: Orte (x,y,(n * u)) = n * (Orte (x,y,u)) hence Orte (x,y,(n * u)) = ((n * (pr2 (x,y,u))) * x) + ((- (pr1 (x,y,(n * u)))) * y) by Lm7 .= ((n * (pr2 (x,y,u))) * x) + ((- (n * (pr1 (x,y,u)))) * y) by A1, Lm7 .= ((n * (pr2 (x,y,u))) * x) + ((n * (pr1 (x,y,u))) * (- y)) by RLVECT_1:24 .= ((n * (pr2 (x,y,u))) * x) + (- ((n * (pr1 (x,y,u))) * y)) by RLVECT_1:25 .= ((n * (pr2 (x,y,u))) * x) + (- (n * ((pr1 (x,y,u)) * y))) by RLVECT_1:def_7 .= ((n * (pr2 (x,y,u))) * x) + (n * (- ((pr1 (x,y,u)) * y))) by RLVECT_1:25 .= (n * ((pr2 (x,y,u)) * x)) + (n * (- ((pr1 (x,y,u)) * y))) by RLVECT_1:def_7 .= n * (((pr2 (x,y,u)) * x) + (- ((pr1 (x,y,u)) * y))) by RLVECT_1:def_5 .= n * (((pr2 (x,y,u)) * x) + ((pr1 (x,y,u)) * (- y))) by RLVECT_1:25 .= n * (Orte (x,y,u)) by RLVECT_1:24 ; ::_thesis: verum end; theorem Th13: :: ANALORT:13 for V being RealLinearSpace for x, y, u, v being VECTOR of V st Gen x,y & Orte (x,y,u) = Orte (x,y,v) holds u = v proof let V be RealLinearSpace; ::_thesis: for x, y, u, v being VECTOR of V st Gen x,y & Orte (x,y,u) = Orte (x,y,v) holds u = v let x, y, u, v be VECTOR of V; ::_thesis: ( Gen x,y & Orte (x,y,u) = Orte (x,y,v) implies u = v ) assume that A1: Gen x,y and A2: Orte (x,y,u) = Orte (x,y,v) ; ::_thesis: u = v (((pr2 (x,y,u)) * x) + ((- (pr1 (x,y,u))) * y)) - (((pr2 (x,y,v)) * x) + ((- (pr1 (x,y,v))) * y)) = 0. V by A2, RLVECT_1:15; then ((((pr2 (x,y,u)) * x) + ((- (pr1 (x,y,u))) * y)) - ((pr2 (x,y,v)) * x)) - ((- (pr1 (x,y,v))) * y) = 0. V by RLVECT_1:27; then ((((pr2 (x,y,u)) * x) + (- ((pr2 (x,y,v)) * x))) + ((- (pr1 (x,y,u))) * y)) - ((- (pr1 (x,y,v))) * y) = 0. V by RLVECT_1:def_3; then (((pr2 (x,y,u)) * x) - ((pr2 (x,y,v)) * x)) + (((- (pr1 (x,y,u))) * y) - ((- (pr1 (x,y,v))) * y)) = 0. V by RLVECT_1:def_3; then (((pr2 (x,y,u)) - (pr2 (x,y,v))) * x) + (((- (pr1 (x,y,u))) * y) - ((- (pr1 (x,y,v))) * y)) = 0. V by RLVECT_1:35; then A3: (((pr2 (x,y,u)) - (pr2 (x,y,v))) * x) + (((- (pr1 (x,y,u))) - (- (pr1 (x,y,v)))) * y) = 0. V by RLVECT_1:35; then A4: (pr2 (x,y,u)) - (pr2 (x,y,v)) = 0 by A1, ANALMETR:def_1; (- (pr1 (x,y,u))) - (- (pr1 (x,y,v))) = 0 by A1, A3, ANALMETR:def_1; hence u = ((pr1 (x,y,v)) * x) + ((pr2 (x,y,v)) * y) by A1, A4, Lm5 .= v by A1, Lm5 ; ::_thesis: verum end; theorem Th14: :: ANALORT:14 for V being RealLinearSpace for x, y, u being VECTOR of V st Gen x,y holds Orte (x,y,(Orte (x,y,u))) = - u proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V st Gen x,y holds Orte (x,y,(Orte (x,y,u))) = - u let x, y, u be VECTOR of V; ::_thesis: ( Gen x,y implies Orte (x,y,(Orte (x,y,u))) = - u ) assume A1: Gen x,y ; ::_thesis: Orte (x,y,(Orte (x,y,u))) = - u hence Orte (x,y,(Orte (x,y,u))) = ((- (pr1 (x,y,u))) * x) + ((- (pr1 (x,y,(((pr2 (x,y,u)) * x) + ((- (pr1 (x,y,u))) * y))))) * y) by GEOMTRAP:def_5 .= ((- (pr1 (x,y,u))) * x) + ((- (pr2 (x,y,u))) * y) by A1, GEOMTRAP:def_4 .= ((pr1 (x,y,u)) * (- x)) + ((- (pr2 (x,y,u))) * y) by RLVECT_1:24 .= (- ((pr1 (x,y,u)) * x)) + ((- (pr2 (x,y,u))) * y) by RLVECT_1:25 .= (- ((pr1 (x,y,u)) * x)) + ((pr2 (x,y,u)) * (- y)) by RLVECT_1:24 .= (- ((pr1 (x,y,u)) * x)) + (- ((pr2 (x,y,u)) * y)) by RLVECT_1:25 .= - (((pr1 (x,y,u)) * x) + ((pr2 (x,y,u)) * y)) by RLVECT_1:31 .= - u by A1, Lm5 ; ::_thesis: verum end; theorem Th15: :: ANALORT:15 for V being RealLinearSpace for x, y, u being VECTOR of V st Gen x,y holds ex v being VECTOR of V st Orte (x,y,v) = u proof let V be RealLinearSpace; ::_thesis: for x, y, u being VECTOR of V st Gen x,y holds ex v being VECTOR of V st Orte (x,y,v) = u let x, y, u be VECTOR of V; ::_thesis: ( Gen x,y implies ex v being VECTOR of V st Orte (x,y,v) = u ) assume A1: Gen x,y ; ::_thesis: ex v being VECTOR of V st Orte (x,y,v) = u take v = - (Orte (x,y,u)); ::_thesis: Orte (x,y,v) = u thus Orte (x,y,v) = - (Orte (x,y,(Orte (x,y,u)))) by A1, Th9 .= - (- u) by A1, Th14 .= u by RLVECT_1:17 ; ::_thesis: verum end; definition let V be RealLinearSpace; let x, y, u, v, u1, v1 be VECTOR of V; predu,v,u1,v1 are_COrte_wrt x,y means :Def3: :: ANALORT:def 3 Orte (x,y,u), Orte (x,y,v) // u1,v1; predu,v,u1,v1 are_COrtm_wrt x,y means :Def4: :: ANALORT:def 4 Ortm (x,y,u), Ortm (x,y,v) // u1,v1; end; :: deftheorem Def3 defines are_COrte_wrt ANALORT:def_3_:_ for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V holds ( u,v,u1,v1 are_COrte_wrt x,y iff Orte (x,y,u), Orte (x,y,v) // u1,v1 ); :: deftheorem Def4 defines are_COrtm_wrt ANALORT:def_4_:_ for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V holds ( u,v,u1,v1 are_COrtm_wrt x,y iff Ortm (x,y,u), Ortm (x,y,v) // u1,v1 ); theorem Th16: :: ANALORT:16 for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y & u,v // u1,v1 holds Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u1), Orte (x,y,v1) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y & u,v // u1,v1 holds Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u1), Orte (x,y,v1) let x, y, u, v, u1, v1 be VECTOR of V; ::_thesis: ( Gen x,y & u,v // u1,v1 implies Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u1), Orte (x,y,v1) ) assume A1: Gen x,y ; ::_thesis: ( not u,v // u1,v1 or Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u1), Orte (x,y,v1) ) assume A2: u,v // u1,v1 ; ::_thesis: Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u1), Orte (x,y,v1) now__::_thesis:_(_u_<>_v_&_u1_<>_v1_implies_Orte_(x,y,u),_Orte_(x,y,v)_//_Orte_(x,y,u1),_Orte_(x,y,v1)_) assume that A3: u <> v and A4: u1 <> v1 ; ::_thesis: Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u1), Orte (x,y,v1) consider a, b being Real such that A5: 0 < a and A6: 0 < b and A7: a * (v - u) = b * (v1 - u1) by A2, A3, A4, ANALOAF:def_1; a * ((Orte (x,y,v)) - (Orte (x,y,u))) = a * (Orte (x,y,(v - u))) by A1, Th11 .= Orte (x,y,(b * (v1 - u1))) by A1, A7, Th12 .= b * (Orte (x,y,(v1 - u1))) by A1, Th12 .= b * ((Orte (x,y,v1)) - (Orte (x,y,u1))) by A1, Th11 ; hence Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u1), Orte (x,y,v1) by A5, A6, ANALOAF:def_1; ::_thesis: verum end; hence Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u1), Orte (x,y,v1) by ANALOAF:9; ::_thesis: verum end; theorem Th17: :: ANALORT:17 for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y & u,v // u1,v1 holds Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y & u,v // u1,v1 holds Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) let x, y, u, v, u1, v1 be VECTOR of V; ::_thesis: ( Gen x,y & u,v // u1,v1 implies Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) ) assume A1: Gen x,y ; ::_thesis: ( not u,v // u1,v1 or Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) ) assume A2: u,v // u1,v1 ; ::_thesis: Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) now__::_thesis:_(_u_<>_v_implies_Ortm_(x,y,u),_Ortm_(x,y,v)_//_Ortm_(x,y,u1),_Ortm_(x,y,v1)_) assume A3: u <> v ; ::_thesis: Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) now__::_thesis:_(_u1_<>_v1_implies_Ortm_(x,y,u),_Ortm_(x,y,v)_//_Ortm_(x,y,u1),_Ortm_(x,y,v1)_) assume u1 <> v1 ; ::_thesis: Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) then consider a, b being Real such that A4: 0 < a and A5: 0 < b and A6: a * (v - u) = b * (v1 - u1) by A2, A3, ANALOAF:def_1; a * ((Ortm (x,y,v)) - (Ortm (x,y,u))) = a * (Ortm (x,y,(v - u))) by A1, Th5 .= Ortm (x,y,(b * (v1 - u1))) by A1, A6, Th2 .= b * (Ortm (x,y,(v1 - u1))) by A1, Th2 .= b * ((Ortm (x,y,v1)) - (Ortm (x,y,u1))) by A1, Th5 ; hence Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) by A4, A5, ANALOAF:def_1; ::_thesis: verum end; hence Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) by ANALOAF:9; ::_thesis: verum end; hence Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u1), Ortm (x,y,v1) by ANALOAF:9; ::_thesis: verum end; theorem Th18: :: ANALORT:18 for V being RealLinearSpace for x, y, u, u1, v, v1 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrte_wrt x,y holds v,v1,u1,u are_COrte_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, u1, v, v1 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrte_wrt x,y holds v,v1,u1,u are_COrte_wrt x,y let x, y, u, u1, v, v1 be VECTOR of V; ::_thesis: ( Gen x,y & u,u1,v,v1 are_COrte_wrt x,y implies v,v1,u1,u are_COrte_wrt x,y ) assume A1: Gen x,y ; ::_thesis: ( not u,u1,v,v1 are_COrte_wrt x,y or v,v1,u1,u are_COrte_wrt x,y ) assume u,u1,v,v1 are_COrte_wrt x,y ; ::_thesis: v,v1,u1,u are_COrte_wrt x,y then Orte (x,y,u), Orte (x,y,u1) // v,v1 by Def3; then v,v1 // Orte (x,y,u), Orte (x,y,u1) by ANALOAF:12; then Orte (x,y,v), Orte (x,y,v1) // Orte (x,y,(Orte (x,y,u))), Orte (x,y,(Orte (x,y,u1))) by A1, Th16; then Orte (x,y,v), Orte (x,y,v1) // - u, Orte (x,y,(Orte (x,y,u1))) by A1, Th14; then Orte (x,y,v), Orte (x,y,v1) // - u, - u1 by A1, Th14; then A2: - u, - u1 // Orte (x,y,v), Orte (x,y,v1) by ANALOAF:12; (- u1) - (- u) = u + (- u1) by RLVECT_1:17 .= u - u1 ; then A3: - u, - u1 // u1,u by ANALOAF:15; A4: now__::_thesis:_(_-_u_<>_-_u1_implies_v,v1,u1,u_are_COrte_wrt_x,y_) assume - u <> - u1 ; ::_thesis: v,v1,u1,u are_COrte_wrt x,y then Orte (x,y,v), Orte (x,y,v1) // u1,u by A2, A3, ANALOAF:11; hence v,v1,u1,u are_COrte_wrt x,y by Def3; ::_thesis: verum end; now__::_thesis:_(_-_u_=_-_u1_implies_v,v1,u1,u_are_COrte_wrt_x,y_) assume - u = - u1 ; ::_thesis: v,v1,u1,u are_COrte_wrt x,y then u = - (- u1) by RLVECT_1:17 .= u1 by RLVECT_1:17 ; then Orte (x,y,v), Orte (x,y,v1) // u1,u by ANALOAF:9; hence v,v1,u1,u are_COrte_wrt x,y by Def3; ::_thesis: verum end; hence v,v1,u1,u are_COrte_wrt x,y by A4; ::_thesis: verum end; theorem Th19: :: ANALORT:19 for V being RealLinearSpace for x, y, u, u1, v, v1 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y holds v,v1,u,u1 are_COrtm_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, u1, v, v1 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y holds v,v1,u,u1 are_COrtm_wrt x,y let x, y, u, u1, v, v1 be VECTOR of V; ::_thesis: ( Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y implies v,v1,u,u1 are_COrtm_wrt x,y ) assume A1: Gen x,y ; ::_thesis: ( not u,u1,v,v1 are_COrtm_wrt x,y or v,v1,u,u1 are_COrtm_wrt x,y ) assume u,u1,v,v1 are_COrtm_wrt x,y ; ::_thesis: v,v1,u,u1 are_COrtm_wrt x,y then Ortm (x,y,u), Ortm (x,y,u1) // v,v1 by Def4; then v,v1 // Ortm (x,y,u), Ortm (x,y,u1) by ANALOAF:12; then Ortm (x,y,v), Ortm (x,y,v1) // Ortm (x,y,(Ortm (x,y,u))), Ortm (x,y,(Ortm (x,y,u1))) by A1, Th17; then Ortm (x,y,v), Ortm (x,y,v1) // u, Ortm (x,y,(Ortm (x,y,u1))) by A1, Th7; then Ortm (x,y,v), Ortm (x,y,v1) // u,u1 by A1, Th7; hence v,v1,u,u1 are_COrtm_wrt x,y by Def4; ::_thesis: verum end; theorem Th20: :: ANALORT:20 for V being RealLinearSpace for u, v, w, x, y being VECTOR of V holds u,u,v,w are_COrte_wrt x,y proof let V be RealLinearSpace; ::_thesis: for u, v, w, x, y being VECTOR of V holds u,u,v,w are_COrte_wrt x,y let u, v, w, x, y be VECTOR of V; ::_thesis: u,u,v,w are_COrte_wrt x,y Orte (x,y,u), Orte (x,y,u) // v,w by ANALOAF:9; hence u,u,v,w are_COrte_wrt x,y by Def3; ::_thesis: verum end; theorem :: ANALORT:21 for V being RealLinearSpace for u, v, w, x, y being VECTOR of V holds u,u,v,w are_COrtm_wrt x,y proof let V be RealLinearSpace; ::_thesis: for u, v, w, x, y being VECTOR of V holds u,u,v,w are_COrtm_wrt x,y let u, v, w, x, y be VECTOR of V; ::_thesis: u,u,v,w are_COrtm_wrt x,y Ortm (x,y,u), Ortm (x,y,u) // v,w by ANALOAF:9; hence u,u,v,w are_COrtm_wrt x,y by Def4; ::_thesis: verum end; theorem :: ANALORT:22 for V being RealLinearSpace for u, v, w, x, y being VECTOR of V holds u,v,w,w are_COrte_wrt x,y proof let V be RealLinearSpace; ::_thesis: for u, v, w, x, y being VECTOR of V holds u,v,w,w are_COrte_wrt x,y let u, v, w, x, y be VECTOR of V; ::_thesis: u,v,w,w are_COrte_wrt x,y Orte (x,y,u), Orte (x,y,v) // w,w by ANALOAF:9; hence u,v,w,w are_COrte_wrt x,y by Def3; ::_thesis: verum end; theorem :: ANALORT:23 for V being RealLinearSpace for u, v, w, x, y being VECTOR of V holds u,v,w,w are_COrtm_wrt x,y proof let V be RealLinearSpace; ::_thesis: for u, v, w, x, y being VECTOR of V holds u,v,w,w are_COrtm_wrt x,y let u, v, w, x, y be VECTOR of V; ::_thesis: u,v,w,w are_COrtm_wrt x,y Ortm (x,y,u), Ortm (x,y,v) // w,w by ANALOAF:9; hence u,v,w,w are_COrtm_wrt x,y by Def4; ::_thesis: verum end; theorem Th24: :: ANALORT:24 for V being RealLinearSpace for x, y, u, v being VECTOR of V st Gen x,y holds u,v, Orte (x,y,u), Orte (x,y,v) are_Ort_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, v being VECTOR of V st Gen x,y holds u,v, Orte (x,y,u), Orte (x,y,v) are_Ort_wrt x,y let x, y, u, v be VECTOR of V; ::_thesis: ( Gen x,y implies u,v, Orte (x,y,u), Orte (x,y,v) are_Ort_wrt x,y ) assume A1: Gen x,y ; ::_thesis: u,v, Orte (x,y,u), Orte (x,y,v) are_Ort_wrt x,y set w = (Orte (x,y,v)) - (Orte (x,y,u)); A2: (Orte (x,y,v)) - (Orte (x,y,u)) = Orte (x,y,(v - u)) by A1, Th11 .= ((pr2 (x,y,(v - u))) * x) + ((- (pr1 (x,y,(v - u)))) * y) ; PProJ (x,y,(v - u),((Orte (x,y,v)) - (Orte (x,y,u)))) = ((pr1 (x,y,(v - u))) * (pr1 (x,y,((Orte (x,y,v)) - (Orte (x,y,u)))))) + ((pr2 (x,y,(v - u))) * (pr2 (x,y,((Orte (x,y,v)) - (Orte (x,y,u)))))) by GEOMTRAP:def_6 .= ((pr1 (x,y,(v - u))) * (pr2 (x,y,(v - u)))) + ((pr2 (x,y,(v - u))) * (pr2 (x,y,((Orte (x,y,v)) - (Orte (x,y,u)))))) by A1, A2, Lm6 .= ((pr1 (x,y,(v - u))) * (pr2 (x,y,(v - u)))) + ((- (pr1 (x,y,(v - u)))) * (pr2 (x,y,(v - u)))) by A1, A2, Lm6 .= 0 ; then v - u,(Orte (x,y,v)) - (Orte (x,y,u)) are_Ort_wrt x,y by A1, GEOMTRAP:32; hence u,v, Orte (x,y,u), Orte (x,y,v) are_Ort_wrt x,y by ANALMETR:def_3; ::_thesis: verum end; theorem :: ANALORT:25 for V being RealLinearSpace for u, v, x, y being VECTOR of V holds u,v, Orte (x,y,u), Orte (x,y,v) are_COrte_wrt x,y proof let V be RealLinearSpace; ::_thesis: for u, v, x, y being VECTOR of V holds u,v, Orte (x,y,u), Orte (x,y,v) are_COrte_wrt x,y let u, v, x, y be VECTOR of V; ::_thesis: u,v, Orte (x,y,u), Orte (x,y,v) are_COrte_wrt x,y Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u), Orte (x,y,v) by ANALOAF:8; hence u,v, Orte (x,y,u), Orte (x,y,v) are_COrte_wrt x,y by Def3; ::_thesis: verum end; theorem :: ANALORT:26 for V being RealLinearSpace for u, v, x, y being VECTOR of V holds u,v, Ortm (x,y,u), Ortm (x,y,v) are_COrtm_wrt x,y proof let V be RealLinearSpace; ::_thesis: for u, v, x, y being VECTOR of V holds u,v, Ortm (x,y,u), Ortm (x,y,v) are_COrtm_wrt x,y let u, v, x, y be VECTOR of V; ::_thesis: u,v, Ortm (x,y,u), Ortm (x,y,v) are_COrtm_wrt x,y Ortm (x,y,u), Ortm (x,y,v) // Ortm (x,y,u), Ortm (x,y,v) by ANALOAF:8; hence u,v, Ortm (x,y,u), Ortm (x,y,v) are_COrtm_wrt x,y by Def4; ::_thesis: verum end; theorem :: ANALORT:27 for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y holds ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) ) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y holds ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) ) let x, y, u, v, u1, v1 be VECTOR of V; ::_thesis: ( Gen x,y implies ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) ) ) assume A1: Gen x,y ; ::_thesis: ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) ) A2: ( u,v // u1,v1 implies ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) ) proof assume A3: u,v // u1,v1 ; ::_thesis: ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) A4: now__::_thesis:_(_u_=_v_&_u1_=_v1_implies_ex_u2_being_M2(_the_carrier_of_V)_ex_v2,_u2,_v2_being_VECTOR_of_V_st_ (_u2_<>_v2_&_u2,v2,u,v_are_COrte_wrt_x,y_&_u2,v2,u1,v1_are_COrte_wrt_x,y_)_) assume that A5: u = v and A6: u1 = v1 ; ::_thesis: ex u2 being M2( the carrier of V) ex v2, u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) take u2 = 0. V; ::_thesis: ex v2, u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) take v2 = x; ::_thesis: ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) A7: Orte (x,y,u2), Orte (x,y,v2) // u,v by A5, ANALOAF:9; Orte (x,y,u2), Orte (x,y,v2) // u1,v1 by A6, ANALOAF:9; then A8: u2,v2,u1,v1 are_COrte_wrt x,y by Def3; A9: u2,v2,u,v are_COrte_wrt x,y by A7, Def3; u2 <> v2 by A1, Lm4; hence ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) by A8, A9; ::_thesis: verum end; A10: now__::_thesis:_(_u_<>_v_implies_ex_u2,_v2_being_VECTOR_of_V_st_ (_u2_<>_v2_&_u2,v2,u,v_are_COrte_wrt_x,y_&_u2,v2,u1,v1_are_COrte_wrt_x,y_)_) assume A11: u <> v ; ::_thesis: ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) consider u2 being VECTOR of V such that A12: Orte (x,y,u2) = u by A1, Th15; consider v2 being VECTOR of V such that A13: Orte (x,y,v2) = v by A1, Th15; Orte (x,y,u2), Orte (x,y,v2) // u,v by A12, A13, ANALOAF:8; then A14: u2,v2,u,v are_COrte_wrt x,y by Def3; u2,v2,u1,v1 are_COrte_wrt x,y by A3, A12, A13, Def3; hence ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) by A11, A12, A13, A14; ::_thesis: verum end; now__::_thesis:_(_u1_<>_v1_implies_ex_u2,_v2_being_VECTOR_of_V_st_ (_u2_<>_v2_&_u2,v2,u,v_are_COrte_wrt_x,y_&_u2,v2,u1,v1_are_COrte_wrt_x,y_)_) assume A15: u1 <> v1 ; ::_thesis: ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) consider u2 being VECTOR of V such that A16: Orte (x,y,u2) = u1 by A1, Th15; consider v2 being VECTOR of V such that A17: Orte (x,y,v2) = v1 by A1, Th15; Orte (x,y,u2), Orte (x,y,v2) // u1,v1 by A16, A17, ANALOAF:8; then A18: u2,v2,u1,v1 are_COrte_wrt x,y by Def3; Orte (x,y,u2), Orte (x,y,v2) // u,v by A3, A16, A17, ANALOAF:12; then u2,v2,u,v are_COrte_wrt x,y by Def3; hence ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) by A15, A16, A17, A18; ::_thesis: verum end; hence ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) by A4, A10; ::_thesis: verum end; ( ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) implies u,v // u1,v1 ) proof given u2, v2 being VECTOR of V such that A19: u2 <> v2 and A20: u2,v2,u,v are_COrte_wrt x,y and A21: u2,v2,u1,v1 are_COrte_wrt x,y ; ::_thesis: u,v // u1,v1 A22: Orte (x,y,u2), Orte (x,y,v2) // u,v by A20, Def3; Orte (x,y,u2), Orte (x,y,v2) // u1,v1 by A21, Def3; hence u,v // u1,v1 by A1, A19, A22, Th13, ANALOAF:11; ::_thesis: verum end; hence ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y ) ) by A2; ::_thesis: verum end; theorem :: ANALORT:28 for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y holds ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) ) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y holds ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) ) let x, y, u, v, u1, v1 be VECTOR of V; ::_thesis: ( Gen x,y implies ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) ) ) assume A1: Gen x,y ; ::_thesis: ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) ) A2: ( u,v // u1,v1 implies ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) ) proof assume A3: u,v // u1,v1 ; ::_thesis: ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) A4: now__::_thesis:_(_u_=_v_&_u1_=_v1_implies_ex_u2_being_M2(_the_carrier_of_V)_ex_v2,_u2,_v2_being_VECTOR_of_V_st_ (_u2_<>_v2_&_u2,v2,u,v_are_COrtm_wrt_x,y_&_u2,v2,u1,v1_are_COrtm_wrt_x,y_)_) assume that A5: u = v and A6: u1 = v1 ; ::_thesis: ex u2 being M2( the carrier of V) ex v2, u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) take u2 = 0. V; ::_thesis: ex v2, u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) take v2 = x; ::_thesis: ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) A7: Ortm (x,y,u2), Ortm (x,y,v2) // u,v by A5, ANALOAF:9; Ortm (x,y,u2), Ortm (x,y,v2) // u1,v1 by A6, ANALOAF:9; then A8: u2,v2,u1,v1 are_COrtm_wrt x,y by Def4; A9: u2,v2,u,v are_COrtm_wrt x,y by A7, Def4; u2 <> v2 by A1, Lm4; hence ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) by A8, A9; ::_thesis: verum end; A10: now__::_thesis:_(_u_<>_v_implies_ex_u2,_v2_being_VECTOR_of_V_st_ (_u2_<>_v2_&_u2,v2,u,v_are_COrtm_wrt_x,y_&_u2,v2,u1,v1_are_COrtm_wrt_x,y_)_) assume A11: u <> v ; ::_thesis: ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) consider u2 being VECTOR of V such that A12: Ortm (x,y,u2) = u by A1, Th8; consider v2 being VECTOR of V such that A13: Ortm (x,y,v2) = v by A1, Th8; Ortm (x,y,u2), Ortm (x,y,v2) // u,v by A12, A13, ANALOAF:8; then A14: u2,v2,u,v are_COrtm_wrt x,y by Def4; u2,v2,u1,v1 are_COrtm_wrt x,y by A3, A12, A13, Def4; hence ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) by A11, A12, A13, A14; ::_thesis: verum end; now__::_thesis:_(_u1_<>_v1_implies_ex_u2,_v2_being_VECTOR_of_V_st_ (_u2_<>_v2_&_u2,v2,u,v_are_COrtm_wrt_x,y_&_u2,v2,u1,v1_are_COrtm_wrt_x,y_)_) assume A15: u1 <> v1 ; ::_thesis: ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) consider u2 being VECTOR of V such that A16: Ortm (x,y,u2) = u1 by A1, Th8; consider v2 being VECTOR of V such that A17: Ortm (x,y,v2) = v1 by A1, Th8; Ortm (x,y,u2), Ortm (x,y,v2) // u1,v1 by A16, A17, ANALOAF:8; then A18: u2,v2,u1,v1 are_COrtm_wrt x,y by Def4; Ortm (x,y,u2), Ortm (x,y,v2) // u,v by A3, A16, A17, ANALOAF:12; then u2,v2,u,v are_COrtm_wrt x,y by Def4; hence ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) by A15, A16, A17, A18; ::_thesis: verum end; hence ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) by A4, A10; ::_thesis: verum end; ( ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) implies u,v // u1,v1 ) proof given u2, v2 being VECTOR of V such that A19: u2 <> v2 and A20: u2,v2,u,v are_COrtm_wrt x,y and A21: u2,v2,u1,v1 are_COrtm_wrt x,y ; ::_thesis: u,v // u1,v1 A22: Ortm (x,y,u2), Ortm (x,y,v2) // u,v by A20, Def4; Ortm (x,y,u2), Ortm (x,y,v2) // u1,v1 by A21, Def4; hence u,v // u1,v1 by A1, A19, A22, Th6, ANALOAF:11; ::_thesis: verum end; hence ( u,v // u1,v1 iff ex u2, v2 being VECTOR of V st ( u2 <> v2 & u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y ) ) by A2; ::_thesis: verum end; theorem :: ANALORT:29 for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y holds ( u,v,u1,v1 are_Ort_wrt x,y iff ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) ) proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y holds ( u,v,u1,v1 are_Ort_wrt x,y iff ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) ) let x, y, u, v, u1, v1 be VECTOR of V; ::_thesis: ( Gen x,y implies ( u,v,u1,v1 are_Ort_wrt x,y iff ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) ) ) assume A1: Gen x,y ; ::_thesis: ( u,v,u1,v1 are_Ort_wrt x,y iff ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) ) A2: now__::_thesis:_(_u_=_v_implies_u,v,u1,v1_are_Ort_wrt_x,y_) assume u = v ; ::_thesis: u,v,u1,v1 are_Ort_wrt x,y then v - u = 0. V by RLVECT_1:15; then v - u,v1 - u1 are_Ort_wrt x,y by A1, ANALMETR:5; hence u,v,u1,v1 are_Ort_wrt x,y by ANALMETR:def_3; ::_thesis: verum end; now__::_thesis:_(_u_<>_v_implies_(_u,v,u1,v1_are_Ort_wrt_x,y_iff_(_u,v,u1,v1_are_COrte_wrt_x,y_or_u,v,v1,u1_are_COrte_wrt_x,y_)_)_) assume A3: u <> v ; ::_thesis: ( u,v,u1,v1 are_Ort_wrt x,y iff ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) ) set u2 = Orte (x,y,u); set v2 = Orte (x,y,v); A4: v - u <> 0. V by A3, RLVECT_1:21; u,v, Orte (x,y,u), Orte (x,y,v) are_Ort_wrt x,y by A1, Th24; then A5: v - u,(Orte (x,y,v)) - (Orte (x,y,u)) are_Ort_wrt x,y by ANALMETR:def_3; A6: now__::_thesis:_(_not_u,v,u1,v1_are_Ort_wrt_x,y_or_u,v,u1,v1_are_COrte_wrt_x,y_or_u,v,v1,u1_are_COrte_wrt_x,y_) assume u,v,u1,v1 are_Ort_wrt x,y ; ::_thesis: ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) then v - u,v1 - u1 are_Ort_wrt x,y by ANALMETR:def_3; then ex a, b being Real st ( a * ((Orte (x,y,v)) - (Orte (x,y,u))) = b * (v1 - u1) & ( a <> 0 or b <> 0 ) ) by A1, A4, A5, ANALMETR:9; then ( Orte (x,y,u), Orte (x,y,v) // u1,v1 or Orte (x,y,u), Orte (x,y,v) // v1,u1 ) by ANALMETR:14; hence ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) by Def3; ::_thesis: verum end; now__::_thesis:_(_(_u,v,u1,v1_are_COrte_wrt_x,y_or_u,v,v1,u1_are_COrte_wrt_x,y_)_implies_u,v,u1,v1_are_Ort_wrt_x,y_) assume ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) ; ::_thesis: u,v,u1,v1 are_Ort_wrt x,y then ( Orte (x,y,u), Orte (x,y,v) // u1,v1 or Orte (x,y,u), Orte (x,y,v) // v1,u1 ) by Def3; then consider a, b being Real such that A7: a * ((Orte (x,y,v)) - (Orte (x,y,u))) = b * (v1 - u1) and A8: ( a <> 0 or b <> 0 ) by ANALMETR:14; A9: now__::_thesis:_(_b_=_0_implies_u,v,u1,v1_are_Ort_wrt_x,y_) assume A10: b = 0 ; ::_thesis: u,v,u1,v1 are_Ort_wrt x,y then 0. V = a * ((Orte (x,y,v)) - (Orte (x,y,u))) by A7, RLVECT_1:10; then (Orte (x,y,v)) - (Orte (x,y,u)) = 0. V by A8, A10, RLVECT_1:11; then Orte (x,y,v) = Orte (x,y,u) by RLVECT_1:21; then u = v by A1, Th13; then v - u = 0. V by RLVECT_1:15; then v - u,v1 - u1 are_Ort_wrt x,y by A1, ANALMETR:5; hence u,v,u1,v1 are_Ort_wrt x,y by ANALMETR:def_3; ::_thesis: verum end; now__::_thesis:_(_b_<>_0_implies_u,v,u1,v1_are_Ort_wrt_x,y_) assume A11: b <> 0 ; ::_thesis: u,v,u1,v1 are_Ort_wrt x,y ((b ") * a) * ((Orte (x,y,v)) - (Orte (x,y,u))) = (b ") * (b * (v1 - u1)) by A7, RLVECT_1:def_7; then ((b ") * a) * ((Orte (x,y,v)) - (Orte (x,y,u))) = ((b ") * b) * (v1 - u1) by RLVECT_1:def_7; then ((b ") * a) * ((Orte (x,y,v)) - (Orte (x,y,u))) = 1 * (v1 - u1) by A11, XCMPLX_0:def_7; then v1 - u1 = ((b ") * a) * ((Orte (x,y,v)) - (Orte (x,y,u))) by RLVECT_1:def_8; then v - u,v1 - u1 are_Ort_wrt x,y by A5, ANALMETR:7; hence u,v,u1,v1 are_Ort_wrt x,y by ANALMETR:def_3; ::_thesis: verum end; hence u,v,u1,v1 are_Ort_wrt x,y by A9; ::_thesis: verum end; hence ( u,v,u1,v1 are_Ort_wrt x,y iff ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) ) by A6; ::_thesis: verum end; hence ( u,v,u1,v1 are_Ort_wrt x,y iff ( u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y ) ) by A2, Th20; ::_thesis: verum end; theorem :: ANALORT:30 for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,u1 are_COrte_wrt x,y & not u = v holds u1 = v1 proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,u1 are_COrte_wrt x,y & not u = v holds u1 = v1 let x, y, u, v, u1, v1 be VECTOR of V; ::_thesis: ( Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,u1 are_COrte_wrt x,y & not u = v implies u1 = v1 ) assume A1: Gen x,y ; ::_thesis: ( not u,v,u1,v1 are_COrte_wrt x,y or not u,v,v1,u1 are_COrte_wrt x,y or u = v or u1 = v1 ) assume that A2: u,v,u1,v1 are_COrte_wrt x,y and A3: u,v,v1,u1 are_COrte_wrt x,y ; ::_thesis: ( u = v or u1 = v1 ) assume that A4: u <> v and A5: u1 <> v1 ; ::_thesis: contradiction A6: Orte (x,y,u), Orte (x,y,v) // u1,v1 by A2, Def3; A7: Orte (x,y,u), Orte (x,y,v) // v1,u1 by A3, Def3; Orte (x,y,u) <> Orte (x,y,v) by A1, A4, Th13; hence contradiction by A5, A6, A7, ANALOAF:10, ANALOAF:11; ::_thesis: verum end; theorem :: ANALORT:31 for V being RealLinearSpace for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,u1 are_COrtm_wrt x,y & not u = v holds u1 = v1 proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1 being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,u1 are_COrtm_wrt x,y & not u = v holds u1 = v1 let x, y, u, v, u1, v1 be VECTOR of V; ::_thesis: ( Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,u1 are_COrtm_wrt x,y & not u = v implies u1 = v1 ) assume A1: Gen x,y ; ::_thesis: ( not u,v,u1,v1 are_COrtm_wrt x,y or not u,v,v1,u1 are_COrtm_wrt x,y or u = v or u1 = v1 ) assume that A2: u,v,u1,v1 are_COrtm_wrt x,y and A3: u,v,v1,u1 are_COrtm_wrt x,y ; ::_thesis: ( u = v or u1 = v1 ) assume that A4: u <> v and A5: u1 <> v1 ; ::_thesis: contradiction A6: Ortm (x,y,u), Ortm (x,y,v) // u1,v1 by A2, Def4; A7: Ortm (x,y,u), Ortm (x,y,v) // v1,u1 by A3, Def4; Ortm (x,y,u) <> Ortm (x,y,v) by A1, A4, Th6; hence contradiction by A5, A6, A7, ANALOAF:10, ANALOAF:11; ::_thesis: verum end; theorem :: ANALORT:32 for V being RealLinearSpace for x, y, u, v, u1, v1, w being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,u1,w are_COrte_wrt x,y & not u,v,v1,w are_COrte_wrt x,y holds u,v,w,v1 are_COrte_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1, w being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,u1,w are_COrte_wrt x,y & not u,v,v1,w are_COrte_wrt x,y holds u,v,w,v1 are_COrte_wrt x,y let x, y, u, v, u1, v1, w be VECTOR of V; ::_thesis: ( Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,u1,w are_COrte_wrt x,y & not u,v,v1,w are_COrte_wrt x,y implies u,v,w,v1 are_COrte_wrt x,y ) assume that A1: Gen x,y and A2: u,v,u1,v1 are_COrte_wrt x,y and A3: u,v,u1,w are_COrte_wrt x,y ; ::_thesis: ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) A4: Orte (x,y,u), Orte (x,y,v) // u1,v1 by A2, Def3; A5: Orte (x,y,u), Orte (x,y,v) // u1,w by A3, Def3; now__::_thesis:_(_u_<>_v_&_not_u,v,v1,w_are_COrte_wrt_x,y_implies_u,v,w,v1_are_COrte_wrt_x,y_) assume A6: u <> v ; ::_thesis: ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) now__::_thesis:_(_u1_<>_v1_&_u1_<>_w_&_not_u,v,v1,w_are_COrte_wrt_x,y_implies_u,v,w,v1_are_COrte_wrt_x,y_) assume that A7: u1 <> v1 and A8: u1 <> w ; ::_thesis: ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) A9: u1,v1 // u1,w by A1, A4, A5, A6, Th13, ANALOAF:11; A10: now__::_thesis:_(_u1,v1_//_v1,w_&_not_u,v,v1,w_are_COrte_wrt_x,y_implies_u,v,w,v1_are_COrte_wrt_x,y_) assume A11: u1,v1 // v1,w ; ::_thesis: ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) u1,v1 // Orte (x,y,u), Orte (x,y,v) by A4, ANALOAF:12; then Orte (x,y,u), Orte (x,y,v) // v1,w by A7, A11, ANALOAF:11; hence ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) by Def3; ::_thesis: verum end; now__::_thesis:_(_u1,w_//_w,v1_&_not_u,v,v1,w_are_COrte_wrt_x,y_implies_u,v,w,v1_are_COrte_wrt_x,y_) assume A12: u1,w // w,v1 ; ::_thesis: ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) u1,w // Orte (x,y,u), Orte (x,y,v) by A5, ANALOAF:12; then Orte (x,y,u), Orte (x,y,v) // w,v1 by A8, A12, ANALOAF:11; hence ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) by Def3; ::_thesis: verum end; hence ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) by A9, A10, ANALOAF:14; ::_thesis: verum end; hence ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) by A2, A3; ::_thesis: verum end; hence ( u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y ) by Th20; ::_thesis: verum end; theorem :: ANALORT:33 for V being RealLinearSpace for x, y, u, v, u1, v1, w being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,u1,w are_COrtm_wrt x,y & not u,v,v1,w are_COrtm_wrt x,y holds u,v,w,v1 are_COrtm_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1, w being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,u1,w are_COrtm_wrt x,y & not u,v,v1,w are_COrtm_wrt x,y holds u,v,w,v1 are_COrtm_wrt x,y let x, y, u, v, u1, v1, w be VECTOR of V; ::_thesis: ( Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,u1,w are_COrtm_wrt x,y & not u,v,v1,w are_COrtm_wrt x,y implies u,v,w,v1 are_COrtm_wrt x,y ) assume that A1: Gen x,y and A2: u,v,u1,v1 are_COrtm_wrt x,y and A3: u,v,u1,w are_COrtm_wrt x,y ; ::_thesis: ( u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y ) A4: Ortm (x,y,u), Ortm (x,y,v) // u1,v1 by A2, Def4; A5: Ortm (x,y,u), Ortm (x,y,v) // u1,w by A3, Def4; A6: now__::_thesis:_(_u_<>_v_&_u1_<>_v1_&_not_u,v,v1,w_are_COrtm_wrt_x,y_implies_u,v,w,v1_are_COrtm_wrt_x,y_) assume that A7: u <> v and A8: u1 <> v1 ; ::_thesis: ( u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y ) u1,v1 // u1,w by A1, A4, A5, A7, Th6, ANALOAF:11; then A9: ( u1,v1 // v1,w or u1,w // w,v1 ) by ANALOAF:14; now__::_thesis:_(_u1_<>_w_&_not_u,v,v1,w_are_COrtm_wrt_x,y_implies_u,v,w,v1_are_COrtm_wrt_x,y_) assume A10: u1 <> w ; ::_thesis: ( u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y ) A11: u1,v1 // Ortm (x,y,u), Ortm (x,y,v) by A4, ANALOAF:12; u1,w // Ortm (x,y,u), Ortm (x,y,v) by A5, ANALOAF:12; then ( Ortm (x,y,u), Ortm (x,y,v) // v1,w or Ortm (x,y,u), Ortm (x,y,v) // w,v1 ) by A8, A9, A10, A11, ANALOAF:11; hence ( u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y ) by Def4; ::_thesis: verum end; hence ( u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y ) by A2; ::_thesis: verum end; now__::_thesis:_(_u_=_v_&_not_u,v,v1,w_are_COrtm_wrt_x,y_implies_u,v,w,v1_are_COrtm_wrt_x,y_) assume u = v ; ::_thesis: ( u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y ) then ( Ortm (x,y,u), Ortm (x,y,v) // v1,w or Ortm (x,y,u), Ortm (x,y,v) // w,v1 ) by ANALOAF:9; hence ( u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y ) by Def4; ::_thesis: verum end; hence ( u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y ) by A3, A6; ::_thesis: verum end; theorem :: ANALORT:34 for V being RealLinearSpace for u, v, u1, v1, x, y being VECTOR of V st u,v,u1,v1 are_COrte_wrt x,y holds v,u,v1,u1 are_COrte_wrt x,y proof let V be RealLinearSpace; ::_thesis: for u, v, u1, v1, x, y being VECTOR of V st u,v,u1,v1 are_COrte_wrt x,y holds v,u,v1,u1 are_COrte_wrt x,y let u, v, u1, v1, x, y be VECTOR of V; ::_thesis: ( u,v,u1,v1 are_COrte_wrt x,y implies v,u,v1,u1 are_COrte_wrt x,y ) assume u,v,u1,v1 are_COrte_wrt x,y ; ::_thesis: v,u,v1,u1 are_COrte_wrt x,y then Orte (x,y,u), Orte (x,y,v) // u1,v1 by Def3; then Orte (x,y,v), Orte (x,y,u) // v1,u1 by ANALOAF:12; hence v,u,v1,u1 are_COrte_wrt x,y by Def3; ::_thesis: verum end; theorem :: ANALORT:35 for V being RealLinearSpace for u, v, u1, v1, x, y being VECTOR of V st u,v,u1,v1 are_COrtm_wrt x,y holds v,u,v1,u1 are_COrtm_wrt x,y proof let V be RealLinearSpace; ::_thesis: for u, v, u1, v1, x, y being VECTOR of V st u,v,u1,v1 are_COrtm_wrt x,y holds v,u,v1,u1 are_COrtm_wrt x,y let u, v, u1, v1, x, y be VECTOR of V; ::_thesis: ( u,v,u1,v1 are_COrtm_wrt x,y implies v,u,v1,u1 are_COrtm_wrt x,y ) assume u,v,u1,v1 are_COrtm_wrt x,y ; ::_thesis: v,u,v1,u1 are_COrtm_wrt x,y then Ortm (x,y,u), Ortm (x,y,v) // u1,v1 by Def4; then Ortm (x,y,v), Ortm (x,y,u) // v1,u1 by ANALOAF:12; hence v,u,v1,u1 are_COrtm_wrt x,y by Def4; ::_thesis: verum end; theorem :: ANALORT:36 for V being RealLinearSpace for x, y, u, v, u1, v1, w being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,w are_COrte_wrt x,y holds u,v,u1,w are_COrte_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1, w being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,w are_COrte_wrt x,y holds u,v,u1,w are_COrte_wrt x,y let x, y, u, v, u1, v1, w be VECTOR of V; ::_thesis: ( Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,w are_COrte_wrt x,y implies u,v,u1,w are_COrte_wrt x,y ) assume A1: Gen x,y ; ::_thesis: ( not u,v,u1,v1 are_COrte_wrt x,y or not u,v,v1,w are_COrte_wrt x,y or u,v,u1,w are_COrte_wrt x,y ) assume that A2: u,v,u1,v1 are_COrte_wrt x,y and A3: u,v,v1,w are_COrte_wrt x,y ; ::_thesis: u,v,u1,w are_COrte_wrt x,y A4: Orte (x,y,u), Orte (x,y,v) // u1,v1 by A2, Def3; A5: Orte (x,y,u), Orte (x,y,v) // v1,w by A3, Def3; A6: u1,v1 // Orte (x,y,u), Orte (x,y,v) by A4, ANALOAF:12; A7: now__::_thesis:_(_u_<>_v_implies_u,v,u1,w_are_COrte_wrt_x,y_) assume u <> v ; ::_thesis: u,v,u1,w are_COrte_wrt x,y then u1,v1 // v1,w by A1, A4, A5, Th13, ANALOAF:11; then A8: u1,v1 // u1,w by ANALOAF:13; now__::_thesis:_(_u1_<>_v1_implies_u,v,u1,w_are_COrte_wrt_x,y_) assume u1 <> v1 ; ::_thesis: u,v,u1,w are_COrte_wrt x,y then Orte (x,y,u), Orte (x,y,v) // u1,w by A6, A8, ANALOAF:11; hence u,v,u1,w are_COrte_wrt x,y by Def3; ::_thesis: verum end; hence u,v,u1,w are_COrte_wrt x,y by A3; ::_thesis: verum end; now__::_thesis:_(_u_=_v_implies_u,v,u1,w_are_COrte_wrt_x,y_) assume u = v ; ::_thesis: u,v,u1,w are_COrte_wrt x,y then Orte (x,y,u), Orte (x,y,v) // u1,w by ANALOAF:9; hence u,v,u1,w are_COrte_wrt x,y by Def3; ::_thesis: verum end; hence u,v,u1,w are_COrte_wrt x,y by A7; ::_thesis: verum end; theorem :: ANALORT:37 for V being RealLinearSpace for x, y, u, v, u1, v1, w being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,w are_COrtm_wrt x,y holds u,v,u1,w are_COrtm_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, v, u1, v1, w being VECTOR of V st Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,w are_COrtm_wrt x,y holds u,v,u1,w are_COrtm_wrt x,y let x, y, u, v, u1, v1, w be VECTOR of V; ::_thesis: ( Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,w are_COrtm_wrt x,y implies u,v,u1,w are_COrtm_wrt x,y ) assume A1: Gen x,y ; ::_thesis: ( not u,v,u1,v1 are_COrtm_wrt x,y or not u,v,v1,w are_COrtm_wrt x,y or u,v,u1,w are_COrtm_wrt x,y ) assume that A2: u,v,u1,v1 are_COrtm_wrt x,y and A3: u,v,v1,w are_COrtm_wrt x,y ; ::_thesis: u,v,u1,w are_COrtm_wrt x,y A4: Ortm (x,y,u), Ortm (x,y,v) // u1,v1 by A2, Def4; A5: Ortm (x,y,u), Ortm (x,y,v) // v1,w by A3, Def4; A6: u1,v1 // Ortm (x,y,u), Ortm (x,y,v) by A4, ANALOAF:12; A7: now__::_thesis:_(_u_<>_v_implies_u,v,u1,w_are_COrtm_wrt_x,y_) assume u <> v ; ::_thesis: u,v,u1,w are_COrtm_wrt x,y then u1,v1 // v1,w by A1, A4, A5, Th6, ANALOAF:11; then A8: u1,v1 // u1,w by ANALOAF:13; now__::_thesis:_(_u1_<>_v1_implies_u,v,u1,w_are_COrtm_wrt_x,y_) assume u1 <> v1 ; ::_thesis: u,v,u1,w are_COrtm_wrt x,y then Ortm (x,y,u), Ortm (x,y,v) // u1,w by A6, A8, ANALOAF:11; hence u,v,u1,w are_COrtm_wrt x,y by Def4; ::_thesis: verum end; hence u,v,u1,w are_COrtm_wrt x,y by A3; ::_thesis: verum end; now__::_thesis:_(_u_=_v_implies_u,v,u1,w_are_COrtm_wrt_x,y_) assume u = v ; ::_thesis: u,v,u1,w are_COrtm_wrt x,y then Ortm (x,y,u), Ortm (x,y,v) // u1,w by ANALOAF:9; hence u,v,u1,w are_COrtm_wrt x,y by Def4; ::_thesis: verum end; hence u,v,u1,w are_COrtm_wrt x,y by A7; ::_thesis: verum end; theorem :: ANALORT:38 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) ) assume A1: Gen x,y ; ::_thesis: for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) let u, v, w be VECTOR of V; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) A2: now__::_thesis:_(_u_=_v_implies_ex_u1_being_M2(_the_carrier_of_V)_ex_u1_being_VECTOR_of_V_st_ (_w_<>_u1_&_w,u1,u,v_are_COrte_wrt_x,y_)_) assume A3: u = v ; ::_thesis: ex u1 being M2( the carrier of V) ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) take u1 = w + x; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) Orte (x,y,w), Orte (x,y,u1) // u,v by A3, ANALOAF:9; then A4: w,u1,u,v are_COrte_wrt x,y by Def3; now__::_thesis:_not_w_=_u1 assume w = u1 ; ::_thesis: contradiction then x = 0. V by RLVECT_1:9; hence contradiction by A1, Lm4; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) by A4; ::_thesis: verum end; now__::_thesis:_(_u_<>_v_implies_ex_u1_being_M2(_the_carrier_of_V)_ex_u1_being_VECTOR_of_V_st_ (_w_<>_u1_&_w,u1,u,v_are_COrte_wrt_x,y_)_) assume A5: u <> v ; ::_thesis: ex u1 being M2( the carrier of V) ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) consider u2 being VECTOR of V such that A6: Orte (x,y,u2) = u by A1, Th15; consider v2 being VECTOR of V such that A7: Orte (x,y,v2) = v by A1, Th15; take u1 = (v2 + w) - u2; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) u2,v2 // w,u1 by ANALOAF:16; then w,u1 // u2,v2 by ANALOAF:12; then Orte (x,y,w), Orte (x,y,u1) // Orte (x,y,u2), Orte (x,y,v2) by A1, Th16; then A8: w,u1,u,v are_COrte_wrt x,y by A6, A7, Def3; now__::_thesis:_not_w_=_u1 assume w = u1 ; ::_thesis: contradiction then w = w + (v2 - u2) by RLVECT_1:def_3; then v2 - u2 = 0. V by RLVECT_1:9; hence contradiction by A5, A6, A7, RLVECT_1:21; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) by A8; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrte_wrt x,y ) by A2; ::_thesis: verum end; theorem :: ANALORT:39 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) ) assume A1: Gen x,y ; ::_thesis: for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) let u, v, w be VECTOR of V; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) A2: now__::_thesis:_(_u_=_v_implies_ex_u1_being_M2(_the_carrier_of_V)_ex_u1_being_VECTOR_of_V_st_ (_w_<>_u1_&_w,u1,u,v_are_COrtm_wrt_x,y_)_) assume A3: u = v ; ::_thesis: ex u1 being M2( the carrier of V) ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) take u1 = w + x; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) Ortm (x,y,w), Ortm (x,y,u1) // u,v by A3, ANALOAF:9; then A4: w,u1,u,v are_COrtm_wrt x,y by Def4; now__::_thesis:_not_w_=_u1 assume w = u1 ; ::_thesis: contradiction then x = 0. V by RLVECT_1:9; hence contradiction by A1, Lm4; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) by A4; ::_thesis: verum end; now__::_thesis:_(_u_<>_v_implies_ex_u1_being_M2(_the_carrier_of_V)_ex_u1_being_VECTOR_of_V_st_ (_w_<>_u1_&_w,u1,u,v_are_COrtm_wrt_x,y_)_) assume A5: u <> v ; ::_thesis: ex u1 being M2( the carrier of V) ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) consider u2 being VECTOR of V such that A6: Ortm (x,y,u2) = u by A1, Th8; consider v2 being VECTOR of V such that A7: Ortm (x,y,v2) = v by A1, Th8; take u1 = (v2 + w) - u2; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) u2,v2 // w,u1 by ANALOAF:16; then w,u1 // u2,v2 by ANALOAF:12; then Ortm (x,y,w), Ortm (x,y,u1) // Ortm (x,y,u2), Ortm (x,y,v2) by A1, Th17; then A8: w,u1,u,v are_COrtm_wrt x,y by A6, A7, Def4; now__::_thesis:_not_w_=_u1 assume w = u1 ; ::_thesis: contradiction then w = w + (v2 - u2) by RLVECT_1:def_3; then v2 - u2 = 0. V by RLVECT_1:9; hence contradiction by A5, A6, A7, RLVECT_1:21; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) by A8; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & w,u1,u,v are_COrtm_wrt x,y ) by A2; ::_thesis: verum end; theorem Th40: :: ANALORT:40 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) ) assume A1: Gen x,y ; ::_thesis: for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) let u, v, w be VECTOR of V; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) A2: now__::_thesis:_(_u_=_v_implies_ex_u1_being_M2(_the_carrier_of_V)_ex_u1_being_VECTOR_of_V_st_ (_w_<>_u1_&_u,v,w,u1_are_COrte_wrt_x,y_)_) assume A3: u = v ; ::_thesis: ex u1 being M2( the carrier of V) ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) take u1 = w + x; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) Orte (x,y,u), Orte (x,y,v) // w,u1 by A3, ANALOAF:9; then A4: u,v,w,u1 are_COrte_wrt x,y by Def3; now__::_thesis:_not_w_=_u1 assume w = u1 ; ::_thesis: contradiction then x = 0. V by RLVECT_1:9; hence contradiction by A1, Lm4; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) by A4; ::_thesis: verum end; now__::_thesis:_(_u_<>_v_implies_ex_u1_being_M2(_the_carrier_of_V)_ex_u1_being_VECTOR_of_V_st_ (_w_<>_u1_&_u,v,w,u1_are_COrte_wrt_x,y_)_) assume A5: u <> v ; ::_thesis: ex u1 being M2( the carrier of V) ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) consider u2 being VECTOR of V such that A6: Orte (x,y,u2) = u by A1, Th15; consider v2 being VECTOR of V such that A7: Orte (x,y,v2) = v by A1, Th15; take u1 = (u2 + w) - v2; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) v2,u2 // w,u1 by ANALOAF:16; then Orte (x,y,v2), Orte (x,y,u2) // Orte (x,y,w), Orte (x,y,u1) by A1, Th16; then Orte (x,y,w), Orte (x,y,u1) // v,u by A6, A7, ANALOAF:12; then Orte (x,y,u1), Orte (x,y,w) // u,v by ANALOAF:12; then A8: u1,w,u,v are_COrte_wrt x,y by Def3; now__::_thesis:_not_w_=_u1 assume w = u1 ; ::_thesis: contradiction then w = w + (u2 - v2) by RLVECT_1:def_3; then u2 - v2 = 0. V by RLVECT_1:9; hence contradiction by A5, A6, A7, RLVECT_1:21; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) by A1, A8, Th18; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrte_wrt x,y ) by A2; ::_thesis: verum end; theorem Th41: :: ANALORT:41 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) ) assume A1: Gen x,y ; ::_thesis: for u, v, w being VECTOR of V ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) let u, v, w be VECTOR of V; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) A2: now__::_thesis:_(_u_=_v_implies_ex_u1_being_M2(_the_carrier_of_V)_ex_u1_being_VECTOR_of_V_st_ (_w_<>_u1_&_u,v,w,u1_are_COrtm_wrt_x,y_)_) assume A3: u = v ; ::_thesis: ex u1 being M2( the carrier of V) ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) take u1 = w + x; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) Ortm (x,y,w), Ortm (x,y,u1) // u,v by A3, ANALOAF:9; then A4: w,u1,u,v are_COrtm_wrt x,y by Def4; w <> u1 proof assume w = u1 ; ::_thesis: contradiction then x = 0. V by RLVECT_1:9; hence contradiction by A1, Lm4; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) by A1, A4, Th19; ::_thesis: verum end; now__::_thesis:_(_u_<>_v_implies_ex_u1_being_M2(_the_carrier_of_V)_ex_u1_being_VECTOR_of_V_st_ (_w_<>_u1_&_u,v,w,u1_are_COrtm_wrt_x,y_)_) assume A5: u <> v ; ::_thesis: ex u1 being M2( the carrier of V) ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) consider u2 being VECTOR of V such that A6: Ortm (x,y,u2) = u by A1, Th8; consider v2 being VECTOR of V such that A7: Ortm (x,y,v2) = v by A1, Th8; take u1 = (v2 + w) - u2; ::_thesis: ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) u2,v2 // w,u1 by ANALOAF:16; then w,u1 // u2,v2 by ANALOAF:12; then Ortm (x,y,w), Ortm (x,y,u1) // Ortm (x,y,u2), Ortm (x,y,v2) by A1, Th17; then A8: w,u1,u,v are_COrtm_wrt x,y by A6, A7, Def4; w <> u1 proof assume w = u1 ; ::_thesis: contradiction then w = w + (v2 - u2) by RLVECT_1:def_3; then v2 - u2 = 0. V by RLVECT_1:9; hence contradiction by A5, A6, A7, RLVECT_1:21; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) by A1, A8, Th19; ::_thesis: verum end; hence ex u1 being VECTOR of V st ( w <> u1 & u,v,w,u1 are_COrtm_wrt x,y ) by A2; ::_thesis: verum end; theorem :: ANALORT:42 for V being RealLinearSpace for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & w,w1,v,v1 are_COrte_wrt x,y & w,w1,u2,v2 are_COrte_wrt x,y & not w = w1 & not v = v1 holds u,u1,u2,v2 are_COrte_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & w,w1,v,v1 are_COrte_wrt x,y & w,w1,u2,v2 are_COrte_wrt x,y & not w = w1 & not v = v1 holds u,u1,u2,v2 are_COrte_wrt x,y let x, y, u, u1, v, v1, w, w1, u2, v2 be VECTOR of V; ::_thesis: ( Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & w,w1,v,v1 are_COrte_wrt x,y & w,w1,u2,v2 are_COrte_wrt x,y & not w = w1 & not v = v1 implies u,u1,u2,v2 are_COrte_wrt x,y ) assume A1: Gen x,y ; ::_thesis: ( not u,u1,v,v1 are_COrte_wrt x,y or not w,w1,v,v1 are_COrte_wrt x,y or not w,w1,u2,v2 are_COrte_wrt x,y or w = w1 or v = v1 or u,u1,u2,v2 are_COrte_wrt x,y ) assume that A2: u,u1,v,v1 are_COrte_wrt x,y and A3: w,w1,v,v1 are_COrte_wrt x,y and A4: w,w1,u2,v2 are_COrte_wrt x,y ; ::_thesis: ( w = w1 or v = v1 or u,u1,u2,v2 are_COrte_wrt x,y ) Orte (x,y,u), Orte (x,y,u1) // v,v1 by A2, Def3; then A5: v,v1 // Orte (x,y,u), Orte (x,y,u1) by ANALOAF:12; Orte (x,y,w), Orte (x,y,w1) // v,v1 by A3, Def3; then A6: v,v1 // Orte (x,y,w), Orte (x,y,w1) by ANALOAF:12; A7: Orte (x,y,w), Orte (x,y,w1) // u2,v2 by A4, Def3; now__::_thesis:_(_w_<>_w1_&_v_<>_v1_implies_u,u1,u2,v2_are_COrte_wrt_x,y_) assume that A8: w <> w1 and A9: v <> v1 ; ::_thesis: u,u1,u2,v2 are_COrte_wrt x,y Orte (x,y,w), Orte (x,y,w1) // Orte (x,y,u), Orte (x,y,u1) by A5, A6, A9, ANALOAF:11; then Orte (x,y,u), Orte (x,y,u1) // u2,v2 by A1, A7, A8, Th13, ANALOAF:11; hence u,u1,u2,v2 are_COrte_wrt x,y by Def3; ::_thesis: verum end; hence ( w = w1 or v = v1 or u,u1,u2,v2 are_COrte_wrt x,y ) ; ::_thesis: verum end; theorem :: ANALORT:43 for V being RealLinearSpace for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & w,w1,v,v1 are_COrtm_wrt x,y & w,w1,u2,v2 are_COrtm_wrt x,y & not w = w1 & not v = v1 holds u,u1,u2,v2 are_COrtm_wrt x,y proof let V be RealLinearSpace; ::_thesis: for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & w,w1,v,v1 are_COrtm_wrt x,y & w,w1,u2,v2 are_COrtm_wrt x,y & not w = w1 & not v = v1 holds u,u1,u2,v2 are_COrtm_wrt x,y let x, y, u, u1, v, v1, w, w1, u2, v2 be VECTOR of V; ::_thesis: ( Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & w,w1,v,v1 are_COrtm_wrt x,y & w,w1,u2,v2 are_COrtm_wrt x,y & not w = w1 & not v = v1 implies u,u1,u2,v2 are_COrtm_wrt x,y ) assume A1: Gen x,y ; ::_thesis: ( not u,u1,v,v1 are_COrtm_wrt x,y or not w,w1,v,v1 are_COrtm_wrt x,y or not w,w1,u2,v2 are_COrtm_wrt x,y or w = w1 or v = v1 or u,u1,u2,v2 are_COrtm_wrt x,y ) assume that A2: u,u1,v,v1 are_COrtm_wrt x,y and A3: w,w1,v,v1 are_COrtm_wrt x,y and A4: w,w1,u2,v2 are_COrtm_wrt x,y ; ::_thesis: ( w = w1 or v = v1 or u,u1,u2,v2 are_COrtm_wrt x,y ) Ortm (x,y,u), Ortm (x,y,u1) // v,v1 by A2, Def4; then A5: v,v1 // Ortm (x,y,u), Ortm (x,y,u1) by ANALOAF:12; Ortm (x,y,w), Ortm (x,y,w1) // v,v1 by A3, Def4; then A6: v,v1 // Ortm (x,y,w), Ortm (x,y,w1) by ANALOAF:12; A7: Ortm (x,y,w), Ortm (x,y,w1) // u2,v2 by A4, Def4; now__::_thesis:_(_w_<>_w1_&_v_<>_v1_implies_u,u1,u2,v2_are_COrtm_wrt_x,y_) assume that A8: w <> w1 and A9: v <> v1 ; ::_thesis: u,u1,u2,v2 are_COrtm_wrt x,y Ortm (x,y,w), Ortm (x,y,w1) // Ortm (x,y,u), Ortm (x,y,u1) by A5, A6, A9, ANALOAF:11; then Ortm (x,y,u), Ortm (x,y,u1) // u2,v2 by A1, A7, A8, Th6, ANALOAF:11; hence u,u1,u2,v2 are_COrtm_wrt x,y by Def4; ::_thesis: verum end; hence ( w = w1 or v = v1 or u,u1,u2,v2 are_COrtm_wrt x,y ) ; ::_thesis: verum end; theorem :: ANALORT:44 for V being RealLinearSpace for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y & u2,v2,w,w1 are_COrte_wrt x,y & not u,u1,u2,v2 are_COrte_wrt x,y & not v = v1 holds w = w1 proof let V be RealLinearSpace; ::_thesis: for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y & u2,v2,w,w1 are_COrte_wrt x,y & not u,u1,u2,v2 are_COrte_wrt x,y & not v = v1 holds w = w1 let x, y, u, u1, v, v1, w, w1, u2, v2 be VECTOR of V; ::_thesis: ( Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y & u2,v2,w,w1 are_COrte_wrt x,y & not u,u1,u2,v2 are_COrte_wrt x,y & not v = v1 implies w = w1 ) assume A1: Gen x,y ; ::_thesis: ( not u,u1,v,v1 are_COrte_wrt x,y or not v,v1,w,w1 are_COrte_wrt x,y or not u2,v2,w,w1 are_COrte_wrt x,y or u,u1,u2,v2 are_COrte_wrt x,y or v = v1 or w = w1 ) assume that A2: u,u1,v,v1 are_COrte_wrt x,y and A3: v,v1,w,w1 are_COrte_wrt x,y and A4: u2,v2,w,w1 are_COrte_wrt x,y ; ::_thesis: ( u,u1,u2,v2 are_COrte_wrt x,y or v = v1 or w = w1 ) v,v1,u1,u are_COrte_wrt x,y by A1, A2, Th18; then A5: Orte (x,y,v), Orte (x,y,v1) // u1,u by Def3; Orte (x,y,v), Orte (x,y,v1) // w,w1 by A3, Def3; then A6: w,w1 // Orte (x,y,v), Orte (x,y,v1) by ANALOAF:12; Orte (x,y,u2), Orte (x,y,v2) // w,w1 by A4, Def3; then A7: w,w1 // Orte (x,y,u2), Orte (x,y,v2) by ANALOAF:12; now__::_thesis:_(_w_<>_w1_&_v_<>_v1_&_not_u,u1,u2,v2_are_COrte_wrt_x,y_&_not_v_=_v1_implies_w_=_w1_) assume that A8: w <> w1 and A9: v <> v1 ; ::_thesis: ( u,u1,u2,v2 are_COrte_wrt x,y or v = v1 or w = w1 ) Orte (x,y,v), Orte (x,y,v1) // Orte (x,y,u2), Orte (x,y,v2) by A6, A7, A8, ANALOAF:11; then Orte (x,y,u2), Orte (x,y,v2) // u1,u by A1, A5, A9, Th13, ANALOAF:11; then Orte (x,y,v2), Orte (x,y,u2) // u,u1 by ANALOAF:12; then v2,u2,u,u1 are_COrte_wrt x,y by Def3; hence ( u,u1,u2,v2 are_COrte_wrt x,y or v = v1 or w = w1 ) by A1, Th18; ::_thesis: verum end; hence ( u,u1,u2,v2 are_COrte_wrt x,y or v = v1 or w = w1 ) ; ::_thesis: verum end; theorem :: ANALORT:45 for V being RealLinearSpace for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y & u2,v2,w,w1 are_COrtm_wrt x,y & not u,u1,u2,v2 are_COrtm_wrt x,y & not v = v1 holds w = w1 proof let V be RealLinearSpace; ::_thesis: for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y & u2,v2,w,w1 are_COrtm_wrt x,y & not u,u1,u2,v2 are_COrtm_wrt x,y & not v = v1 holds w = w1 let x, y, u, u1, v, v1, w, w1, u2, v2 be VECTOR of V; ::_thesis: ( Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y & u2,v2,w,w1 are_COrtm_wrt x,y & not u,u1,u2,v2 are_COrtm_wrt x,y & not v = v1 implies w = w1 ) assume A1: Gen x,y ; ::_thesis: ( not u,u1,v,v1 are_COrtm_wrt x,y or not v,v1,w,w1 are_COrtm_wrt x,y or not u2,v2,w,w1 are_COrtm_wrt x,y or u,u1,u2,v2 are_COrtm_wrt x,y or v = v1 or w = w1 ) assume that A2: u,u1,v,v1 are_COrtm_wrt x,y and A3: v,v1,w,w1 are_COrtm_wrt x,y and A4: u2,v2,w,w1 are_COrtm_wrt x,y ; ::_thesis: ( u,u1,u2,v2 are_COrtm_wrt x,y or v = v1 or w = w1 ) Ortm (x,y,u), Ortm (x,y,u1) // v,v1 by A2, Def4; then A5: v,v1 // Ortm (x,y,u), Ortm (x,y,u1) by ANALOAF:12; w,w1,v,v1 are_COrtm_wrt x,y by A1, A3, Th19; then Ortm (x,y,w), Ortm (x,y,w1) // v,v1 by Def4; then A6: v,v1 // Ortm (x,y,w), Ortm (x,y,w1) by ANALOAF:12; w,w1,u2,v2 are_COrtm_wrt x,y by A1, A4, Th19; then A7: Ortm (x,y,w), Ortm (x,y,w1) // u2,v2 by Def4; now__::_thesis:_(_w_<>_w1_&_v_<>_v1_&_not_u,u1,u2,v2_are_COrtm_wrt_x,y_&_not_v_=_v1_implies_w_=_w1_) assume that A8: w <> w1 and A9: v <> v1 ; ::_thesis: ( u,u1,u2,v2 are_COrtm_wrt x,y or v = v1 or w = w1 ) Ortm (x,y,w), Ortm (x,y,w1) // Ortm (x,y,u), Ortm (x,y,u1) by A5, A6, A9, ANALOAF:11; then Ortm (x,y,u), Ortm (x,y,u1) // u2,v2 by A1, A7, A8, Th6, ANALOAF:11; hence ( u,u1,u2,v2 are_COrtm_wrt x,y or v = v1 or w = w1 ) by Def4; ::_thesis: verum end; hence ( u,u1,u2,v2 are_COrtm_wrt x,y or v = v1 or w = w1 ) ; ::_thesis: verum end; theorem :: ANALORT:46 for V being RealLinearSpace for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y & u,u1,u2,v2 are_COrte_wrt x,y & not u2,v2,w,w1 are_COrte_wrt x,y & not v = v1 holds u = u1 proof let V be RealLinearSpace; ::_thesis: for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y & u,u1,u2,v2 are_COrte_wrt x,y & not u2,v2,w,w1 are_COrte_wrt x,y & not v = v1 holds u = u1 let x, y, u, u1, v, v1, w, w1, u2, v2 be VECTOR of V; ::_thesis: ( Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y & u,u1,u2,v2 are_COrte_wrt x,y & not u2,v2,w,w1 are_COrte_wrt x,y & not v = v1 implies u = u1 ) assume A1: Gen x,y ; ::_thesis: ( not u,u1,v,v1 are_COrte_wrt x,y or not v,v1,w,w1 are_COrte_wrt x,y or not u,u1,u2,v2 are_COrte_wrt x,y or u2,v2,w,w1 are_COrte_wrt x,y or v = v1 or u = u1 ) assume that A2: u,u1,v,v1 are_COrte_wrt x,y and A3: v,v1,w,w1 are_COrte_wrt x,y and A4: u,u1,u2,v2 are_COrte_wrt x,y ; ::_thesis: ( u2,v2,w,w1 are_COrte_wrt x,y or v = v1 or u = u1 ) A5: Orte (x,y,u), Orte (x,y,u1) // v,v1 by A2, Def3; A6: Orte (x,y,v), Orte (x,y,v1) // w,w1 by A3, Def3; A7: Orte (x,y,u), Orte (x,y,u1) // u2,v2 by A4, Def3; now__::_thesis:_(_u_<>_u1_&_v_<>_v1_&_not_u2,v2,w,w1_are_COrte_wrt_x,y_&_not_v_=_v1_implies_u_=_u1_) assume that A8: u <> u1 and A9: v <> v1 ; ::_thesis: ( u2,v2,w,w1 are_COrte_wrt x,y or v = v1 or u = u1 ) v,v1 // u2,v2 by A1, A5, A7, A8, Th13, ANALOAF:11; then Orte (x,y,v), Orte (x,y,v1) // Orte (x,y,u2), Orte (x,y,v2) by A1, Th16; then Orte (x,y,u2), Orte (x,y,v2) // w,w1 by A1, A6, A9, Th13, ANALOAF:11; hence ( u2,v2,w,w1 are_COrte_wrt x,y or v = v1 or u = u1 ) by Def3; ::_thesis: verum end; hence ( u2,v2,w,w1 are_COrte_wrt x,y or v = v1 or u = u1 ) ; ::_thesis: verum end; theorem :: ANALORT:47 for V being RealLinearSpace for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y & u,u1,u2,v2 are_COrtm_wrt x,y & not u2,v2,w,w1 are_COrtm_wrt x,y & not v = v1 holds u = u1 proof let V be RealLinearSpace; ::_thesis: for x, y, u, u1, v, v1, w, w1, u2, v2 being VECTOR of V st Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y & u,u1,u2,v2 are_COrtm_wrt x,y & not u2,v2,w,w1 are_COrtm_wrt x,y & not v = v1 holds u = u1 let x, y, u, u1, v, v1, w, w1, u2, v2 be VECTOR of V; ::_thesis: ( Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y & u,u1,u2,v2 are_COrtm_wrt x,y & not u2,v2,w,w1 are_COrtm_wrt x,y & not v = v1 implies u = u1 ) assume A1: Gen x,y ; ::_thesis: ( not u,u1,v,v1 are_COrtm_wrt x,y or not v,v1,w,w1 are_COrtm_wrt x,y or not u,u1,u2,v2 are_COrtm_wrt x,y or u2,v2,w,w1 are_COrtm_wrt x,y or v = v1 or u = u1 ) assume that A2: u,u1,v,v1 are_COrtm_wrt x,y and A3: v,v1,w,w1 are_COrtm_wrt x,y and A4: u,u1,u2,v2 are_COrtm_wrt x,y ; ::_thesis: ( u2,v2,w,w1 are_COrtm_wrt x,y or v = v1 or u = u1 ) A5: Ortm (x,y,u), Ortm (x,y,u1) // v,v1 by A2, Def4; A6: Ortm (x,y,v), Ortm (x,y,v1) // w,w1 by A3, Def4; A7: Ortm (x,y,u), Ortm (x,y,u1) // u2,v2 by A4, Def4; now__::_thesis:_(_u_<>_u1_&_v_<>_v1_&_not_u2,v2,w,w1_are_COrtm_wrt_x,y_&_not_v_=_v1_implies_u_=_u1_) assume that A8: u <> u1 and A9: v <> v1 ; ::_thesis: ( u2,v2,w,w1 are_COrtm_wrt x,y or v = v1 or u = u1 ) v,v1 // u2,v2 by A1, A5, A7, A8, Th6, ANALOAF:11; then Ortm (x,y,v), Ortm (x,y,v1) // Ortm (x,y,u2), Ortm (x,y,v2) by A1, Th17; then Ortm (x,y,u2), Ortm (x,y,v2) // w,w1 by A1, A6, A9, Th6, ANALOAF:11; hence ( u2,v2,w,w1 are_COrtm_wrt x,y or v = v1 or u = u1 ) by Def4; ::_thesis: verum end; hence ( u2,v2,w,w1 are_COrtm_wrt x,y or v = v1 or u = u1 ) ; ::_thesis: verum end; theorem :: ANALORT:48 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds for v, w, u1, v1, w1 being VECTOR of V st not v,v1,w,u1 are_COrte_wrt x,y & not v,v1,u1,w are_COrte_wrt x,y & u1,w1,u1,w are_COrte_wrt x,y holds ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y ) & ( u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y ) ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds for v, w, u1, v1, w1 being VECTOR of V st not v,v1,w,u1 are_COrte_wrt x,y & not v,v1,u1,w are_COrte_wrt x,y & u1,w1,u1,w are_COrte_wrt x,y holds ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y ) & ( u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y ) ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies for v, w, u1, v1, w1 being VECTOR of V st not v,v1,w,u1 are_COrte_wrt x,y & not v,v1,u1,w are_COrte_wrt x,y & u1,w1,u1,w are_COrte_wrt x,y holds ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y ) & ( u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y ) ) ) assume A1: Gen x,y ; ::_thesis: for v, w, u1, v1, w1 being VECTOR of V st not v,v1,w,u1 are_COrte_wrt x,y & not v,v1,u1,w are_COrte_wrt x,y & u1,w1,u1,w are_COrte_wrt x,y holds ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y ) & ( u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y ) ) let v, w, u1, v1, w1 be VECTOR of V; ::_thesis: ( not v,v1,w,u1 are_COrte_wrt x,y & not v,v1,u1,w are_COrte_wrt x,y & u1,w1,u1,w are_COrte_wrt x,y implies ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y ) & ( u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y ) ) ) consider u being VECTOR of V such that A2: v <> u and A3: v,v1,v,u are_COrte_wrt x,y by A1, Th40; assume that A4: not v,v1,w,u1 are_COrte_wrt x,y and A5: not v,v1,u1,w are_COrte_wrt x,y and A6: u1,w1,u1,w are_COrte_wrt x,y ; ::_thesis: ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y ) & ( u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y ) ) A7: not Orte (x,y,v), Orte (x,y,v1) // w,u1 by A4, Def3; A8: Orte (x,y,v), Orte (x,y,v1) // v,u by A3, Def3; A9: Orte (x,y,u1), Orte (x,y,w1) // u1,w by A6, Def3; A10: not Orte (x,y,v), Orte (x,y,v1) // u1,w by A5, Def3; A11: v,u // Orte (x,y,v), Orte (x,y,v1) by A8, ANALOAF:12; A12: u1,w // Orte (x,y,u1), Orte (x,y,w1) by A9, ANALOAF:12; A13: u1 <> w by A7, ANALOAF:9; A14: not v,u // u1,w by A2, A10, A11, ANALOAF:11; A15: not v,u // w,u1 by A2, A7, A11, ANALOAF:11; ( Gen x,y implies ex u, v being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * u) + (b * v) = w ) proof assume A16: Gen x,y ; ::_thesis: ex u, v being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * u) + (b * v) = w take x ; ::_thesis: ex v being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * x) + (b * v) = w take y ; ::_thesis: for w being VECTOR of V ex a, b being Real st (a * x) + (b * y) = w thus for w being VECTOR of V ex a, b being Real st (a * x) + (b * y) = w by A16, ANALMETR:def_1; ::_thesis: verum end; then consider u2 being VECTOR of V such that A17: ( v,u // v,u2 or v,u // u2,v ) and A18: ( u1,w // u1,u2 or u1,w // u2,u1 ) by A1, A14, A15, ANALOAF:21; ( Orte (x,y,v), Orte (x,y,v1) // v,u2 or Orte (x,y,v), Orte (x,y,v1) // u2,v ) by A2, A11, A17, ANALOAF:11; then A19: ( v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y ) by Def3; ( Orte (x,y,u1), Orte (x,y,w1) // u1,u2 or Orte (x,y,u1), Orte (x,y,w1) // u2,u1 ) by A12, A13, A18, ANALOAF:11; then ( u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y ) by Def3; hence ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y ) & ( u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y ) ) by A19; ::_thesis: verum end; theorem :: ANALORT:49 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds ex u, v, w being VECTOR of V st ( u,v,u,w are_COrte_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ) ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds ex u, v, w being VECTOR of V st ( u,v,u,w are_COrte_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ) ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies ex u, v, w being VECTOR of V st ( u,v,u,w are_COrte_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ) ) ) assume A1: Gen x,y ; ::_thesis: ex u, v, w being VECTOR of V st ( u,v,u,w are_COrte_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ) ) ( Gen x,y implies ex u, v being VECTOR of V st u <> v ) proof assume A2: Gen x,y ; ::_thesis: ex u, v being VECTOR of V st u <> v take x ; ::_thesis: ex v being VECTOR of V st x <> v take 0. V ; ::_thesis: x <> 0. V thus x <> 0. V by A2, Lm4; ::_thesis: verum end; then consider u, v being VECTOR of V such that A3: u <> v by A1; take u ; ::_thesis: ex v, w being VECTOR of V st ( u,v,u,w are_COrte_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ) ) take v ; ::_thesis: ex w being VECTOR of V st ( u,v,u,w are_COrte_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ) ) consider w being VECTOR of V such that A4: w <> u and A5: u,v,u,w are_COrte_wrt x,y by A1, Th40; take w ; ::_thesis: ( u,v,u,w are_COrte_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ) ) thus u,v,u,w are_COrte_wrt x,y by A5; ::_thesis: for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) A6: Orte (x,y,u), Orte (x,y,v) // u,w by A5, Def3; let v1, w1 be VECTOR of V; ::_thesis: ( not v1,w1,u,v are_COrte_wrt x,y or ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) assume v1,w1,u,v are_COrte_wrt x,y ; ::_thesis: ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) then A7: Orte (x,y,v1), Orte (x,y,w1) // u,v by Def3; now__::_thesis:_(_v1_<>_w1_&_(_v1,w1,u,w_are_COrte_wrt_x,y_or_v1,w1,w,u_are_COrte_wrt_x,y_)_implies_ex_a,_b_being_Real_st_ (_(_not_v1,w1,u,w_are_COrte_wrt_x,y_&_not_v1,w1,w,u_are_COrte_wrt_x,y_)_or_v1_=_w1_)_) assume A8: v1 <> w1 ; ::_thesis: ( ( v1,w1,u,w are_COrte_wrt x,y or v1,w1,w,u are_COrte_wrt x,y ) implies ex a, b being Real st ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ) assume ( v1,w1,u,w are_COrte_wrt x,y or v1,w1,w,u are_COrte_wrt x,y ) ; ::_thesis: ex a, b being Real st ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) then ( Orte (x,y,v1), Orte (x,y,w1) // u,w or Orte (x,y,v1), Orte (x,y,w1) // w,u ) by Def3; then ( u,v // u,w or u,v // w,u ) by A1, A7, A8, Th13, ANALOAF:11; then ( Orte (x,y,u), Orte (x,y,v) // Orte (x,y,u), Orte (x,y,w) or Orte (x,y,u), Orte (x,y,v) // Orte (x,y,w), Orte (x,y,u) ) by A1, Th16; then ( u,w // Orte (x,y,u), Orte (x,y,w) or u,w // Orte (x,y,w), Orte (x,y,u) ) by A1, A3, A6, Th13, ANALOAF:11; then consider a, b being Real such that A9: a * (w - u) = b * ((Orte (x,y,w)) - (Orte (x,y,u))) and A10: ( a <> 0 or b <> 0 ) by ANALMETR:14; take a = a; ::_thesis: ex b being Real st ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) take b = b; ::_thesis: ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) a * (w - u) = b * (Orte (x,y,(w - u))) by A1, A9, Th11; then A11: a * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y)) = b * (Orte (x,y,(w - u))) by A1, Lm5; A12: now__::_thesis:_(_not_a_<>_0_or_(_not_v1,w1,u,w_are_COrte_wrt_x,y_&_not_v1,w1,w,u_are_COrte_wrt_x,y_)_or_v1_=_w1_) assume A13: a <> 0 ; ::_thesis: ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) A14: pr2 (x,y,(w - u)) <> 0 proof assume A15: not pr2 (x,y,(w - u)) <> 0 ; ::_thesis: contradiction then a * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y)) = ((b * 0) * x) + ((b * (- (pr1 (x,y,(w - u))))) * y) by A11, Lm2; then ((a * (pr1 (x,y,(w - u)))) * x) + ((a * (pr2 (x,y,(w - u)))) * y) = ((b * 0) * x) + ((b * (- (pr1 (x,y,(w - u))))) * y) by Lm2; then a * (pr1 (x,y,(w - u))) = 0 by A1, Lm3; then pr1 (x,y,(w - u)) = 0 by A13, XCMPLX_1:6; then w - u = (0 * x) + (0 * y) by A1, A15, Lm5 .= (0. V) + (0 * y) by RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; hence contradiction by A4, RLVECT_1:21; ::_thesis: verum end; ((a ") * a) * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y)) = (a ") * (b * (((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y))) by A11, RLVECT_1:def_7; then ((a ") * a) * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y)) = ((a ") * b) * (((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y)) by RLVECT_1:def_7; then 1 * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y)) = ((a ") * b) * (((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y)) by A13, XCMPLX_0:def_7; then ((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y) = ((a ") * b) * (((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y)) by RLVECT_1:def_8; then A16: ((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y) = ((((a ") * b) * (pr2 (x,y,(w - u)))) * x) + ((((a ") * b) * (- (pr1 (x,y,(w - u))))) * y) by Lm2; then pr1 (x,y,(w - u)) = ((a ") * b) * (pr2 (x,y,(w - u))) by A1, Lm3; then A17: pr2 (x,y,(w - u)) = - (((a ") * b) * (((a ") * b) * (pr2 (x,y,(w - u))))) by A1, A16, Lm3; - (((pr2 (x,y,(w - u))) ") * (pr2 (x,y,(w - u)))) = ((pr2 (x,y,(w - u))) ") * (- (pr2 (x,y,(w - u)))) .= ((pr2 (x,y,(w - u))) ") * (((a ") * b) * (((a ") * b) * (pr2 (x,y,(w - u))))) by A17 ; then - 1 = (((pr2 (x,y,(w - u))) ") * (pr2 (x,y,(w - u)))) * (((a ") * b) * ((a ") * b)) by A14, XCMPLX_0:def_7; then - 1 = 1 * (((a ") * b) * ((a ") * b)) by A14, XCMPLX_0:def_7; hence ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) by XREAL_1:63; ::_thesis: verum end; now__::_thesis:_(_not_b_<>_0_or_(_not_v1,w1,u,w_are_COrte_wrt_x,y_&_not_v1,w1,w,u_are_COrte_wrt_x,y_)_or_v1_=_w1_) assume A18: b <> 0 ; ::_thesis: ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) A19: pr2 (x,y,(w - u)) <> 0 proof assume A20: not pr2 (x,y,(w - u)) <> 0 ; ::_thesis: contradiction then a * (((pr1 (x,y,(w - u))) * x) + (0 * y)) = ((b * 0) * x) + ((b * (- (pr1 (x,y,(w - u))))) * y) by A11, Lm2; then ((a * (pr1 (x,y,(w - u)))) * x) + ((a * 0) * y) = ((b * 0) * x) + ((b * (- (pr1 (x,y,(w - u))))) * y) by Lm2; then b * (- (pr1 (x,y,(w - u)))) = 0 by A1, Lm3; then - (pr1 (x,y,(w - u))) = 0 by A18, XCMPLX_1:6; then w - u = (0 * x) + ((- 0) * y) by A1, A20, Lm5 .= (0. V) + (0 * y) by RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; hence contradiction by A4, RLVECT_1:21; ::_thesis: verum end; (b ") * (a * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y))) = ((b ") * b) * (((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y)) by A11, RLVECT_1:def_7; then ((b ") * a) * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y)) = ((b ") * b) * (((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y)) by RLVECT_1:def_7; then ((b ") * a) * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y)) = 1 * (((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y)) by A18, XCMPLX_0:def_7; then ((b ") * a) * (((pr1 (x,y,(w - u))) * x) + ((pr2 (x,y,(w - u))) * y)) = ((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y) by RLVECT_1:def_8; then A21: ((((b ") * a) * (pr1 (x,y,(w - u)))) * x) + ((((b ") * a) * (pr2 (x,y,(w - u)))) * y) = ((pr2 (x,y,(w - u))) * x) + ((- (pr1 (x,y,(w - u)))) * y) by Lm2; then ((b ") * a) * (pr2 (x,y,(w - u))) = - (pr1 (x,y,(w - u))) by A1, Lm3; then A22: pr2 (x,y,(w - u)) = ((b ") * a) * (- (((b ") * a) * (pr2 (x,y,(w - u))))) by A1, A21, Lm3; - (((pr2 (x,y,(w - u))) ") * (pr2 (x,y,(w - u)))) = ((pr2 (x,y,(w - u))) ") * (- (pr2 (x,y,(w - u)))) .= ((pr2 (x,y,(w - u))) ") * (((b ") * a) * (((b ") * a) * (pr2 (x,y,(w - u))))) by A22 ; then - 1 = (((pr2 (x,y,(w - u))) ") * (pr2 (x,y,(w - u)))) * (((b ") * a) * ((b ") * a)) by A19, XCMPLX_0:def_7; then - 1 = 1 * (((b ") * a) * ((b ") * a)) by A19, XCMPLX_0:def_7; hence ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) by XREAL_1:63; ::_thesis: verum end; hence ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) by A10, A12; ::_thesis: verum end; hence ( ( not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y ) or v1 = w1 ) ; ::_thesis: verum end; theorem :: ANALORT:50 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds for v, w, u1, v1, w1 being VECTOR of V st not v,v1,w,u1 are_COrtm_wrt x,y & not v,v1,u1,w are_COrtm_wrt x,y & u1,w1,u1,w are_COrtm_wrt x,y holds ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y ) & ( u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y ) ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds for v, w, u1, v1, w1 being VECTOR of V st not v,v1,w,u1 are_COrtm_wrt x,y & not v,v1,u1,w are_COrtm_wrt x,y & u1,w1,u1,w are_COrtm_wrt x,y holds ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y ) & ( u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y ) ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies for v, w, u1, v1, w1 being VECTOR of V st not v,v1,w,u1 are_COrtm_wrt x,y & not v,v1,u1,w are_COrtm_wrt x,y & u1,w1,u1,w are_COrtm_wrt x,y holds ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y ) & ( u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y ) ) ) assume A1: Gen x,y ; ::_thesis: for v, w, u1, v1, w1 being VECTOR of V st not v,v1,w,u1 are_COrtm_wrt x,y & not v,v1,u1,w are_COrtm_wrt x,y & u1,w1,u1,w are_COrtm_wrt x,y holds ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y ) & ( u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y ) ) let v, w, u1, v1, w1 be VECTOR of V; ::_thesis: ( not v,v1,w,u1 are_COrtm_wrt x,y & not v,v1,u1,w are_COrtm_wrt x,y & u1,w1,u1,w are_COrtm_wrt x,y implies ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y ) & ( u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y ) ) ) consider u being VECTOR of V such that A2: v <> u and A3: v,v1,v,u are_COrtm_wrt x,y by A1, Th41; assume that A4: not v,v1,w,u1 are_COrtm_wrt x,y and A5: not v,v1,u1,w are_COrtm_wrt x,y and A6: u1,w1,u1,w are_COrtm_wrt x,y ; ::_thesis: ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y ) & ( u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y ) ) A7: not Ortm (x,y,v), Ortm (x,y,v1) // w,u1 by A4, Def4; A8: Ortm (x,y,v), Ortm (x,y,v1) // v,u by A3, Def4; A9: Ortm (x,y,u1), Ortm (x,y,w1) // u1,w by A6, Def4; A10: not Ortm (x,y,v), Ortm (x,y,v1) // u1,w by A5, Def4; A11: v,u // Ortm (x,y,v), Ortm (x,y,v1) by A8, ANALOAF:12; A12: u1,w // Ortm (x,y,u1), Ortm (x,y,w1) by A9, ANALOAF:12; A13: u1 <> w by A7, ANALOAF:9; A14: not v,u // u1,w by A2, A10, A11, ANALOAF:11; A15: not v,u // w,u1 by A2, A7, A11, ANALOAF:11; ( Gen x,y implies ex u, v being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * u) + (b * v) = w ) proof assume A16: Gen x,y ; ::_thesis: ex u, v being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * u) + (b * v) = w take x ; ::_thesis: ex v being VECTOR of V st for w being VECTOR of V ex a, b being Real st (a * x) + (b * v) = w take y ; ::_thesis: for w being VECTOR of V ex a, b being Real st (a * x) + (b * y) = w thus for w being VECTOR of V ex a, b being Real st (a * x) + (b * y) = w by A16, ANALMETR:def_1; ::_thesis: verum end; then consider u2 being VECTOR of V such that A17: ( v,u // v,u2 or v,u // u2,v ) and A18: ( u1,w // u1,u2 or u1,w // u2,u1 ) by A1, A14, A15, ANALOAF:21; ( Ortm (x,y,v), Ortm (x,y,v1) // v,u2 or Ortm (x,y,v), Ortm (x,y,v1) // u2,v ) by A2, A11, A17, ANALOAF:11; then A19: ( v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y ) by Def4; ( Ortm (x,y,u1), Ortm (x,y,w1) // u1,u2 or Ortm (x,y,u1), Ortm (x,y,w1) // u2,u1 ) by A12, A13, A18, ANALOAF:11; then ( u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y ) by Def4; hence ex u2 being VECTOR of V st ( ( v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y ) & ( u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y ) ) by A19; ::_thesis: verum end; theorem :: ANALORT:51 for V being RealLinearSpace for x, y being VECTOR of V st Gen x,y holds ex u, v, w being VECTOR of V st ( u,v,u,w are_COrtm_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) ) proof let V be RealLinearSpace; ::_thesis: for x, y being VECTOR of V st Gen x,y holds ex u, v, w being VECTOR of V st ( u,v,u,w are_COrtm_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) ) let x, y be VECTOR of V; ::_thesis: ( Gen x,y implies ex u, v, w being VECTOR of V st ( u,v,u,w are_COrtm_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) ) ) assume A1: Gen x,y ; ::_thesis: ex u, v, w being VECTOR of V st ( u,v,u,w are_COrtm_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) ) take u = (0 * x) + (0 * y); ::_thesis: ex v, w being VECTOR of V st ( u,v,u,w are_COrtm_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) ) take v = (1 * x) + (1 * y); ::_thesis: ex w being VECTOR of V st ( u,v,u,w are_COrtm_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) ) take w = (1 * x) + ((- 1) * y); ::_thesis: ( u,v,u,w are_COrtm_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) ) A2: pr1 (x,y,u) = 0 by A1, Lm6; A3: pr2 (x,y,u) = 0 by A1, Lm6; A4: pr1 (x,y,v) = 1 by A1, Lm6; pr2 (x,y,v) = 1 by A1, Lm6; then A5: Ortm (x,y,u), Ortm (x,y,v) // u,w by A2, A3, A4, ANALOAF:8; for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) proof let v1, w1 be VECTOR of V; ::_thesis: ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) assume v1,w1,u,v are_COrtm_wrt x,y ; ::_thesis: ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) then A6: Ortm (x,y,v1), Ortm (x,y,w1) // u,v by Def4; now__::_thesis:_(_v1_<>_w1_&_(_v1,w1,u,w_are_COrtm_wrt_x,y_or_v1,w1,w,u_are_COrtm_wrt_x,y_)_implies_ex_a,_b_being_Real_st_ (_(_not_v1,w1,u,w_are_COrtm_wrt_x,y_&_not_v1,w1,w,u_are_COrtm_wrt_x,y_)_or_v1_=_w1_)_) assume A7: v1 <> w1 ; ::_thesis: ( ( v1,w1,u,w are_COrtm_wrt x,y or v1,w1,w,u are_COrtm_wrt x,y ) implies ex a, b being Real st ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) assume ( v1,w1,u,w are_COrtm_wrt x,y or v1,w1,w,u are_COrtm_wrt x,y ) ; ::_thesis: ex a, b being Real st ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) then ( Ortm (x,y,v1), Ortm (x,y,w1) // u,w or Ortm (x,y,v1), Ortm (x,y,w1) // w,u ) by Def4; then ( u,v // u,w or u,v // w,u ) by A1, A6, A7, Th6, ANALOAF:11; then consider a, b being Real such that A8: a * (v - u) = b * (w - u) and A9: ( a <> 0 or b <> 0 ) by ANALMETR:14; take a = a; ::_thesis: ex b being Real st ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) take b = b; ::_thesis: ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) u = (0. V) + (0 * y) by RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; then a * v = b * (w - (0. V)) by A8, RLVECT_1:13; then A10: a * v = b * w by RLVECT_1:13; A11: now__::_thesis:_(_not_a_<>_0_or_(_not_v1,w1,u,w_are_COrtm_wrt_x,y_&_not_v1,w1,w,u_are_COrtm_wrt_x,y_)_or_v1_=_w1_) assume A12: a <> 0 ; ::_thesis: ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ((a ") * a) * v = (a ") * (b * w) by A10, RLVECT_1:def_7; then ((a ") * a) * v = ((a ") * b) * w by RLVECT_1:def_7; then 1 * v = ((a ") * b) * w by A12, XCMPLX_0:def_7; then 1 * v = ((((a ") * b) * 1) * x) + ((((a ") * b) * (- 1)) * y) by Lm2; then A13: ((1 * 1) * x) + ((1 * 1) * y) = ((((a ") * b) * 1) * x) + ((((a ") * b) * (- 1)) * y) by Lm2; then a * 1 = a * ((a ") * (b * 1)) by A1, Lm3; then A14: a * 1 = (a * (a ")) * (b * 1) ; 1 = ((a ") * b) * (- 1) by A1, A13, Lm3; then 1 = ((a ") * a) * (- 1) by A12, A14, XCMPLX_0:def_7; hence ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) by A12, XCMPLX_0:def_7; ::_thesis: verum end; now__::_thesis:_(_not_b_<>_0_or_(_not_v1,w1,u,w_are_COrtm_wrt_x,y_&_not_v1,w1,w,u_are_COrtm_wrt_x,y_)_or_v1_=_w1_) assume A15: b <> 0 ; ::_thesis: ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ((b ") * a) * v = (b ") * (b * w) by A10, RLVECT_1:def_7; then ((b ") * a) * v = ((b ") * b) * w by RLVECT_1:def_7; then ((b ") * a) * v = 1 * w by A15, XCMPLX_0:def_7; then ((((b ") * a) * 1) * x) + ((((b ") * a) * 1) * y) = 1 * w by Lm2; then A16: ((((b ") * a) * 1) * x) + ((((b ") * a) * 1) * y) = ((1 * 1) * x) + ((1 * (- 1)) * y) by Lm2; then b * 1 = b * ((b ") * (a * 1)) by A1, Lm3; then A17: b * 1 = (b * (b ")) * (a * 1) ; - 1 = ((b ") * a) * 1 by A1, A16, Lm3; then - 1 = ((b ") * b) * 1 by A15, A17, XCMPLX_0:def_7; hence ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) by A15, XCMPLX_0:def_7; ::_thesis: verum end; hence ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) by A9, A11; ::_thesis: verum end; hence ( ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ; ::_thesis: verum end; hence ( u,v,u,w are_COrtm_wrt x,y & ( for v1, w1 being VECTOR of V holds ( not v1,w1,u,v are_COrtm_wrt x,y or ( not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y ) or v1 = w1 ) ) ) by A5, Def4; ::_thesis: verum end; definition let V be RealLinearSpace; let x, y be VECTOR of V; func CORTE (V,x,y) -> Relation of [: the carrier of V, the carrier of V:] means :Def5: :: ANALORT:def 5 for uu, vv being set holds ( [uu,vv] in it iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ); existence ex b1 being Relation of [: the carrier of V, the carrier of V:] st for uu, vv being set holds ( [uu,vv] in b1 iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) proof set VV = [: the carrier of V, the carrier of V:]; defpred S1[ set , set ] means ex u1, u2, v1, v2 being VECTOR of V st ( $1 = [u1,u2] & $2 = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ); consider P being Relation of [: the carrier of V, the carrier of V:],[: the carrier of V, the carrier of V:] such that A1: for uu, vv being set holds ( [uu,vv] in P iff ( uu in [: the carrier of V, the carrier of V:] & vv in [: the carrier of V, the carrier of V:] & S1[uu,vv] ) ) from RELSET_1:sch_1(); take P ; ::_thesis: for uu, vv being set holds ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) let uu, vv be set ; ::_thesis: ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) thus ( [uu,vv] in P implies ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) by A1; ::_thesis: ( ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) implies [uu,vv] in P ) assume A2: ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ; ::_thesis: [uu,vv] in P then A3: uu in [: the carrier of V, the carrier of V:] by ZFMISC_1:def_2; vv in [: the carrier of V, the carrier of V:] by A2, ZFMISC_1:def_2; hence [uu,vv] in P by A1, A2, A3; ::_thesis: verum end; uniqueness for b1, b2 being Relation of [: the carrier of V, the carrier of V:] st ( for uu, vv being set holds ( [uu,vv] in b1 iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) ) & ( for uu, vv being set holds ( [uu,vv] in b2 iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) ) holds b1 = b2 proof let P, Q be Relation of [: the carrier of V, the carrier of V:]; ::_thesis: ( ( for uu, vv being set holds ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) ) & ( for uu, vv being set holds ( [uu,vv] in Q iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) ) implies P = Q ) assume that A4: for uu, vv being set holds ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) and A5: for uu, vv being set holds ( [uu,vv] in Q iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) ; ::_thesis: P = Q for uu, vv being set holds ( [uu,vv] in P iff [uu,vv] in Q ) proof let uu, vv be set ; ::_thesis: ( [uu,vv] in P iff [uu,vv] in Q ) ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) by A4; hence ( [uu,vv] in P iff [uu,vv] in Q ) by A5; ::_thesis: verum end; hence P = Q by RELAT_1:def_2; ::_thesis: verum end; end; :: deftheorem Def5 defines CORTE ANALORT:def_5_:_ for V being RealLinearSpace for x, y being VECTOR of V for b4 being Relation of [: the carrier of V, the carrier of V:] holds ( b4 = CORTE (V,x,y) iff for uu, vv being set holds ( [uu,vv] in b4 iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y ) ) ); definition let V be RealLinearSpace; let x, y be VECTOR of V; func CORTM (V,x,y) -> Relation of [: the carrier of V, the carrier of V:] means :Def6: :: ANALORT:def 6 for uu, vv being set holds ( [uu,vv] in it iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ); existence ex b1 being Relation of [: the carrier of V, the carrier of V:] st for uu, vv being set holds ( [uu,vv] in b1 iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) proof set VV = [: the carrier of V, the carrier of V:]; defpred S1[ set , set ] means ex u1, u2, v1, v2 being VECTOR of V st ( $1 = [u1,u2] & $2 = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ); consider P being Relation of [: the carrier of V, the carrier of V:],[: the carrier of V, the carrier of V:] such that A1: for uu, vv being set holds ( [uu,vv] in P iff ( uu in [: the carrier of V, the carrier of V:] & vv in [: the carrier of V, the carrier of V:] & S1[uu,vv] ) ) from RELSET_1:sch_1(); take P ; ::_thesis: for uu, vv being set holds ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) let uu, vv be set ; ::_thesis: ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) thus ( [uu,vv] in P implies ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) by A1; ::_thesis: ( ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) implies [uu,vv] in P ) assume A2: ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ; ::_thesis: [uu,vv] in P then A3: uu in [: the carrier of V, the carrier of V:] by ZFMISC_1:def_2; vv in [: the carrier of V, the carrier of V:] by A2, ZFMISC_1:def_2; hence [uu,vv] in P by A1, A2, A3; ::_thesis: verum end; uniqueness for b1, b2 being Relation of [: the carrier of V, the carrier of V:] st ( for uu, vv being set holds ( [uu,vv] in b1 iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) ) & ( for uu, vv being set holds ( [uu,vv] in b2 iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) ) holds b1 = b2 proof let P, Q be Relation of [: the carrier of V, the carrier of V:]; ::_thesis: ( ( for uu, vv being set holds ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) ) & ( for uu, vv being set holds ( [uu,vv] in Q iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) ) implies P = Q ) assume that A4: for uu, vv being set holds ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) and A5: for uu, vv being set holds ( [uu,vv] in Q iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) ; ::_thesis: P = Q for uu, vv being set holds ( [uu,vv] in P iff [uu,vv] in Q ) proof let uu, vv be set ; ::_thesis: ( [uu,vv] in P iff [uu,vv] in Q ) ( [uu,vv] in P iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) by A4; hence ( [uu,vv] in P iff [uu,vv] in Q ) by A5; ::_thesis: verum end; hence P = Q by RELAT_1:def_2; ::_thesis: verum end; end; :: deftheorem Def6 defines CORTM ANALORT:def_6_:_ for V being RealLinearSpace for x, y being VECTOR of V for b4 being Relation of [: the carrier of V, the carrier of V:] holds ( b4 = CORTM (V,x,y) iff for uu, vv being set holds ( [uu,vv] in b4 iff ex u1, u2, v1, v2 being VECTOR of V st ( uu = [u1,u2] & vv = [v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y ) ) ); definition let V be RealLinearSpace; let x, y be VECTOR of V; func CESpace (V,x,y) -> strict AffinStruct equals :: ANALORT:def 7 AffinStruct(# the carrier of V,(CORTE (V,x,y)) #); correctness coherence AffinStruct(# the carrier of V,(CORTE (V,x,y)) #) is strict AffinStruct ; ; end; :: deftheorem defines CESpace ANALORT:def_7_:_ for V being RealLinearSpace for x, y being VECTOR of V holds CESpace (V,x,y) = AffinStruct(# the carrier of V,(CORTE (V,x,y)) #); registration let V be RealLinearSpace; let x, y be VECTOR of V; cluster CESpace (V,x,y) -> non empty strict ; coherence not CESpace (V,x,y) is empty ; end; definition let V be RealLinearSpace; let x, y be VECTOR of V; func CMSpace (V,x,y) -> strict AffinStruct equals :: ANALORT:def 8 AffinStruct(# the carrier of V,(CORTM (V,x,y)) #); correctness coherence AffinStruct(# the carrier of V,(CORTM (V,x,y)) #) is strict AffinStruct ; ; end; :: deftheorem defines CMSpace ANALORT:def_8_:_ for V being RealLinearSpace for x, y being VECTOR of V holds CMSpace (V,x,y) = AffinStruct(# the carrier of V,(CORTM (V,x,y)) #); registration let V be RealLinearSpace; let x, y be VECTOR of V; cluster CMSpace (V,x,y) -> non empty strict ; coherence not CMSpace (V,x,y) is empty ; end; theorem :: ANALORT:52 for V being RealLinearSpace for x, y being VECTOR of V for uu being set holds ( uu is Element of (CESpace (V,x,y)) iff uu is VECTOR of V ) ; theorem :: ANALORT:53 for V being RealLinearSpace for x, y being VECTOR of V for uu being set holds ( uu is Element of (CMSpace (V,x,y)) iff uu is VECTOR of V ) ; theorem :: ANALORT:54 for V being RealLinearSpace for u, v, u1, v1, x, y being VECTOR of V for p, q, r, s being Element of (CESpace (V,x,y)) st u = p & v = q & u1 = r & v1 = s holds ( p,q // r,s iff u,v,u1,v1 are_COrte_wrt x,y ) proof let V be RealLinearSpace; ::_thesis: for u, v, u1, v1, x, y being VECTOR of V for p, q, r, s being Element of (CESpace (V,x,y)) st u = p & v = q & u1 = r & v1 = s holds ( p,q // r,s iff u,v,u1,v1 are_COrte_wrt x,y ) let u, v, u1, v1, x, y be VECTOR of V; ::_thesis: for p, q, r, s being Element of (CESpace (V,x,y)) st u = p & v = q & u1 = r & v1 = s holds ( p,q // r,s iff u,v,u1,v1 are_COrte_wrt x,y ) let p, q, r, s be Element of (CESpace (V,x,y)); ::_thesis: ( u = p & v = q & u1 = r & v1 = s implies ( p,q // r,s iff u,v,u1,v1 are_COrte_wrt x,y ) ) assume that A1: u = p and A2: v = q and A3: u1 = r and A4: v1 = s ; ::_thesis: ( p,q // r,s iff u,v,u1,v1 are_COrte_wrt x,y ) A5: ( p,q // r,s implies u,v,u1,v1 are_COrte_wrt x,y ) proof assume p,q // r,s ; ::_thesis: u,v,u1,v1 are_COrte_wrt x,y then [[p,q],[r,s]] in the CONGR of (CESpace (V,x,y)) by ANALOAF:def_2; then consider u19, u29, v19, v29 being VECTOR of V such that A6: [u,v] = [u19,u29] and A7: [u1,v1] = [v19,v29] and A8: u19,u29,v19,v29 are_COrte_wrt x,y by A1, A2, A3, A4, Def5; A9: u = u19 by A6, XTUPLE_0:1; A10: v = u29 by A6, XTUPLE_0:1; u1 = v19 by A7, XTUPLE_0:1; hence u,v,u1,v1 are_COrte_wrt x,y by A7, A8, A9, A10, XTUPLE_0:1; ::_thesis: verum end; ( u,v,u1,v1 are_COrte_wrt x,y implies p,q // r,s ) proof assume u,v,u1,v1 are_COrte_wrt x,y ; ::_thesis: p,q // r,s then [[u,v],[u1,v1]] in the CONGR of AffinStruct(# the carrier of V,(CORTE (V,x,y)) #) by Def5; hence p,q // r,s by A1, A2, A3, A4, ANALOAF:def_2; ::_thesis: verum end; hence ( p,q // r,s iff u,v,u1,v1 are_COrte_wrt x,y ) by A5; ::_thesis: verum end; theorem :: ANALORT:55 for V being RealLinearSpace for u, v, u1, v1, x, y being VECTOR of V for p, q, r, s being Element of (CMSpace (V,x,y)) st u = p & v = q & u1 = r & v1 = s holds ( p,q // r,s iff u,v,u1,v1 are_COrtm_wrt x,y ) proof let V be RealLinearSpace; ::_thesis: for u, v, u1, v1, x, y being VECTOR of V for p, q, r, s being Element of (CMSpace (V,x,y)) st u = p & v = q & u1 = r & v1 = s holds ( p,q // r,s iff u,v,u1,v1 are_COrtm_wrt x,y ) let u, v, u1, v1, x, y be VECTOR of V; ::_thesis: for p, q, r, s being Element of (CMSpace (V,x,y)) st u = p & v = q & u1 = r & v1 = s holds ( p,q // r,s iff u,v,u1,v1 are_COrtm_wrt x,y ) let p, q, r, s be Element of (CMSpace (V,x,y)); ::_thesis: ( u = p & v = q & u1 = r & v1 = s implies ( p,q // r,s iff u,v,u1,v1 are_COrtm_wrt x,y ) ) assume that A1: u = p and A2: v = q and A3: u1 = r and A4: v1 = s ; ::_thesis: ( p,q // r,s iff u,v,u1,v1 are_COrtm_wrt x,y ) A5: ( p,q // r,s implies u,v,u1,v1 are_COrtm_wrt x,y ) proof assume p,q // r,s ; ::_thesis: u,v,u1,v1 are_COrtm_wrt x,y then [[p,q],[r,s]] in the CONGR of (CMSpace (V,x,y)) by ANALOAF:def_2; then consider u19, u29, v19, v29 being VECTOR of V such that A6: [u,v] = [u19,u29] and A7: [u1,v1] = [v19,v29] and A8: u19,u29,v19,v29 are_COrtm_wrt x,y by A1, A2, A3, A4, Def6; A9: u = u19 by A6, XTUPLE_0:1; A10: v = u29 by A6, XTUPLE_0:1; u1 = v19 by A7, XTUPLE_0:1; hence u,v,u1,v1 are_COrtm_wrt x,y by A7, A8, A9, A10, XTUPLE_0:1; ::_thesis: verum end; ( u,v,u1,v1 are_COrtm_wrt x,y implies p,q // r,s ) proof assume u,v,u1,v1 are_COrtm_wrt x,y ; ::_thesis: p,q // r,s then [[u,v],[u1,v1]] in the CONGR of AffinStruct(# the carrier of V,(CORTM (V,x,y)) #) by Def6; hence p,q // r,s by A1, A2, A3, A4, ANALOAF:def_2; ::_thesis: verum end; hence ( p,q // r,s iff u,v,u1,v1 are_COrtm_wrt x,y ) by A5; ::_thesis: verum end;