:: ANPROJ_2 semantic presentation begin theorem Th1: :: ANPROJ_2:1 for V being RealLinearSpace for u, v, w being Element of V st ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) holds ( not u is zero & not v is zero & not w is zero & not u,v,w are_LinDep & not are_Prop u,v ) proof let V be RealLinearSpace; ::_thesis: for u, v, w being Element of V st ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) holds ( not u is zero & not v is zero & not w is zero & not u,v,w are_LinDep & not are_Prop u,v ) let u, v, w be Element of V; ::_thesis: ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) implies ( not u is zero & not v is zero & not w is zero & not u,v,w are_LinDep & not are_Prop u,v ) ) assume A1: for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ; ::_thesis: ( not u is zero & not v is zero & not w is zero & not u,v,w are_LinDep & not are_Prop u,v ) A2: now__::_thesis:_not_v_is_zero assume v is zero ; ::_thesis: contradiction then A3: v = 0. V by STRUCT_0:def_12; 0. V = (0. V) + (0. V) by RLVECT_1:4 .= ((0. V) + (0. V)) + (0. V) by RLVECT_1:4 .= ((0. V) + (1 * v)) + (0. V) by A3, RLVECT_1:def_8 .= ((0 * u) + (1 * v)) + (0. V) by RLVECT_1:10 .= ((0 * u) + (1 * v)) + (0 * w) by RLVECT_1:10 ; hence contradiction by A1; ::_thesis: verum end; A4: now__::_thesis:_not_w_is_zero assume w is zero ; ::_thesis: contradiction then A5: w = 0. V by STRUCT_0:def_12; 0. V = (0. V) + (0. V) by RLVECT_1:4 .= ((0. V) + (0. V)) + (0. V) by RLVECT_1:4 .= ((0. V) + (0. V)) + (1 * w) by A5, RLVECT_1:def_8 .= ((0 * u) + (0. V)) + (1 * w) by RLVECT_1:10 .= ((0 * u) + (0 * v)) + (1 * w) by RLVECT_1:10 ; hence contradiction by A1; ::_thesis: verum end; now__::_thesis:_not_u_is_zero assume u is zero ; ::_thesis: contradiction then A6: u = 0. V by STRUCT_0:def_12; 0. V = (0. V) + (0. V) by RLVECT_1:4 .= ((0. V) + (0. V)) + (0. V) by RLVECT_1:4 .= ((1 * u) + (0. V)) + (0. V) by A6, RLVECT_1:def_8 .= ((1 * u) + (0 * v)) + (0. V) by RLVECT_1:10 .= ((1 * u) + (0 * v)) + (0 * w) by RLVECT_1:10 ; hence contradiction by A1; ::_thesis: verum end; hence ( not u is zero & not v is zero & not w is zero ) by A2, A4; ::_thesis: ( not u,v,w are_LinDep & not are_Prop u,v ) thus not u,v,w are_LinDep by A1, ANPROJ_1:def_2; ::_thesis: not are_Prop u,v hence not are_Prop u,v by ANPROJ_1:12; ::_thesis: verum end; Lm1: for V being RealLinearSpace for u, v being Element of V st ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) holds ( not u is zero & not v is zero & not are_Prop u,v ) proof let V be RealLinearSpace; ::_thesis: for u, v being Element of V st ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) holds ( not u is zero & not v is zero & not are_Prop u,v ) let u, v be Element of V; ::_thesis: ( ( for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ) implies ( not u is zero & not v is zero & not are_Prop u,v ) ) assume A1: for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ; ::_thesis: ( not u is zero & not v is zero & not are_Prop u,v ) A2: now__::_thesis:_not_v_is_zero assume v is zero ; ::_thesis: contradiction then A3: v = 0. V by STRUCT_0:def_12; 0. V = (0. V) + (0. V) by RLVECT_1:4 .= (0. V) + (1 * v) by A3, RLVECT_1:def_8 .= (0 * u) + (1 * v) by RLVECT_1:10 ; hence contradiction by A1; ::_thesis: verum end; now__::_thesis:_not_u_is_zero assume u is zero ; ::_thesis: contradiction then A4: u = 0. V by STRUCT_0:def_12; 0. V = (0. V) + (0. V) by RLVECT_1:4 .= (1 * u) + (0. V) by A4, RLVECT_1:def_8 .= (1 * u) + (0 * v) by RLVECT_1:10 ; hence contradiction by A1; ::_thesis: verum end; hence ( not u is zero & not v is zero ) by A2; ::_thesis: not are_Prop u,v given a, b being Real such that A5: a * u = b * v and A6: a <> 0 and b <> 0 ; :: according to ANPROJ_1:def_1 ::_thesis: contradiction 0. V = (a * u) - (b * v) by A5, RLVECT_1:15 .= (a * u) + (b * (- v)) by RLVECT_1:25 .= (a * u) + ((- b) * v) by RLVECT_1:24 ; hence contradiction by A1, A6; ::_thesis: verum end; theorem Th2: :: ANPROJ_2:2 for V being RealLinearSpace for u, v, u1, v1 being Element of V st ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) holds ( not u is zero & not v is zero & not are_Prop u,v & not u1 is zero & not v1 is zero & not are_Prop u1,v1 & not u,v,u1 are_LinDep & not u1,v1,u are_LinDep ) proof let V be RealLinearSpace; ::_thesis: for u, v, u1, v1 being Element of V st ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) holds ( not u is zero & not v is zero & not are_Prop u,v & not u1 is zero & not v1 is zero & not are_Prop u1,v1 & not u,v,u1 are_LinDep & not u1,v1,u are_LinDep ) let u, v, u1, v1 be Element of V; ::_thesis: ( ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) implies ( not u is zero & not v is zero & not are_Prop u,v & not u1 is zero & not v1 is zero & not are_Prop u1,v1 & not u,v,u1 are_LinDep & not u1,v1,u are_LinDep ) ) assume A1: for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ; ::_thesis: ( not u is zero & not v is zero & not are_Prop u,v & not u1 is zero & not v1 is zero & not are_Prop u1,v1 & not u,v,u1 are_LinDep & not u1,v1,u are_LinDep ) A2: now__::_thesis:_for_d1,_d2,_d3_being_Real_st_((d1_*_u)_+_(d2_*_v))_+_(d3_*_u1)_=_0._V_holds_ (_d1_=_0_&_d2_=_0_&_d3_=_0_) let d1, d2, d3 be Real; ::_thesis: ( ((d1 * u) + (d2 * v)) + (d3 * u1) = 0. V implies ( d1 = 0 & d2 = 0 & d3 = 0 ) ) assume ((d1 * u) + (d2 * v)) + (d3 * u1) = 0. V ; ::_thesis: ( d1 = 0 & d2 = 0 & d3 = 0 ) then 0. V = (((d1 * u) + (d2 * v)) + (d3 * u1)) + (0. V) by RLVECT_1:4 .= (((d1 * u) + (d2 * v)) + (d3 * u1)) + (0 * v1) by RLVECT_1:10 ; hence ( d1 = 0 & d2 = 0 & d3 = 0 ) by A1; ::_thesis: verum end; now__::_thesis:_for_d1,_d2,_d3_being_Real_st_((d1_*_u1)_+_(d2_*_v1))_+_(d3_*_u)_=_0._V_holds_ (_d1_=_0_&_d2_=_0_&_d3_=_0_) let d1, d2, d3 be Real; ::_thesis: ( ((d1 * u1) + (d2 * v1)) + (d3 * u) = 0. V implies ( d1 = 0 & d2 = 0 & d3 = 0 ) ) assume ((d1 * u1) + (d2 * v1)) + (d3 * u) = 0. V ; ::_thesis: ( d1 = 0 & d2 = 0 & d3 = 0 ) then 0. V = ((d3 * u) + (d1 * u1)) + (d2 * v1) by RLVECT_1:def_3 .= (((d3 * u) + (0. V)) + (d1 * u1)) + (d2 * v1) by RLVECT_1:4 .= (((d3 * u) + (0 * v)) + (d1 * u1)) + (d2 * v1) by RLVECT_1:10 ; hence ( d1 = 0 & d2 = 0 & d3 = 0 ) by A1; ::_thesis: verum end; hence ( not u is zero & not v is zero & not are_Prop u,v & not u1 is zero & not v1 is zero & not are_Prop u1,v1 & not u,v,u1 are_LinDep & not u1,v1,u are_LinDep ) by A2, Th1; ::_thesis: verum end; Lm2: for V being RealLinearSpace for v, w, u being Element of V for a, b, c, d being Real holds a * (((b * v) + (c * w)) + (d * u)) = (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) proof let V be RealLinearSpace; ::_thesis: for v, w, u being Element of V for a, b, c, d being Real holds a * (((b * v) + (c * w)) + (d * u)) = (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) let v, w, u be Element of V; ::_thesis: for a, b, c, d being Real holds a * (((b * v) + (c * w)) + (d * u)) = (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) let a, b, c, d be Real; ::_thesis: a * (((b * v) + (c * w)) + (d * u)) = (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) thus (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) = ((a * (b * v)) + ((a * c) * w)) + ((a * d) * u) by RLVECT_1:def_7 .= ((a * (b * v)) + (a * (c * w))) + ((a * d) * u) by RLVECT_1:def_7 .= (a * ((b * v) + (c * w))) + ((a * d) * u) by RLVECT_1:def_5 .= (a * ((b * v) + (c * w))) + (a * (d * u)) by RLVECT_1:def_7 .= a * (((b * v) + (c * w)) + (d * u)) by RLVECT_1:def_5 ; ::_thesis: verum end; Lm3: for V being RealLinearSpace for u, v, w, u1, v1, w1 being Element of V holds ((u + v) + w) + ((u1 + v1) + w1) = ((u + u1) + (v + v1)) + (w + w1) proof let V be RealLinearSpace; ::_thesis: for u, v, w, u1, v1, w1 being Element of V holds ((u + v) + w) + ((u1 + v1) + w1) = ((u + u1) + (v + v1)) + (w + w1) let u, v, w, u1, v1, w1 be Element of V; ::_thesis: ((u + v) + w) + ((u1 + v1) + w1) = ((u + u1) + (v + v1)) + (w + w1) thus ((u + u1) + (v + v1)) + (w + w1) = (u1 + (u + (v + v1))) + (w + w1) by RLVECT_1:def_3 .= (u1 + ((u + v) + v1)) + (w + w1) by RLVECT_1:def_3 .= ((u1 + v1) + (u + v)) + (w + w1) by RLVECT_1:def_3 .= (u1 + v1) + ((u + v) + (w + w1)) by RLVECT_1:def_3 .= (u1 + v1) + (((u + v) + w) + w1) by RLVECT_1:def_3 .= ((u + v) + w) + ((u1 + v1) + w1) by RLVECT_1:def_3 ; ::_thesis: verum end; theorem Th3: :: ANPROJ_2:3 for V being RealLinearSpace for p, q, r being Element of V st ( for w being Element of V ex a, b, c being Real st w = ((a * p) + (b * q)) + (c * r) ) & ( for a, b, c being Real st ((a * p) + (b * q)) + (c * r) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) holds for u, u1 being Element of V ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) proof let V be RealLinearSpace; ::_thesis: for p, q, r being Element of V st ( for w being Element of V ex a, b, c being Real st w = ((a * p) + (b * q)) + (c * r) ) & ( for a, b, c being Real st ((a * p) + (b * q)) + (c * r) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) holds for u, u1 being Element of V ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) let p, q, r be Element of V; ::_thesis: ( ( for w being Element of V ex a, b, c being Real st w = ((a * p) + (b * q)) + (c * r) ) & ( for a, b, c being Real st ((a * p) + (b * q)) + (c * r) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) implies for u, u1 being Element of V ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) ) assume that A1: for w being Element of V ex a, b, c being Real st w = ((a * p) + (b * q)) + (c * r) and A2: for a, b, c being Real st ((a * p) + (b * q)) + (c * r) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ; ::_thesis: for u, u1 being Element of V ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) let u, u1 be Element of V; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) consider a, b, c being Real such that A3: u = ((a * p) + (b * q)) + (c * r) by A1; consider a1, b1, c1 being Real such that A4: u1 = ((a1 * p) + (b1 * q)) + (c1 * r) by A1; A5: for a3, b3 being Real holds (a3 * u) + (b3 * u1) = ((((a3 * a) + (b3 * a1)) * p) + (((a3 * b) + (b3 * b1)) * q)) + (((a3 * c) + (b3 * c1)) * r) proof let a3, b3 be Real; ::_thesis: (a3 * u) + (b3 * u1) = ((((a3 * a) + (b3 * a1)) * p) + (((a3 * b) + (b3 * b1)) * q)) + (((a3 * c) + (b3 * c1)) * r) a3 * u = (((a3 * a) * p) + ((a3 * b) * q)) + ((a3 * c) * r) by A3, Lm2; hence (a3 * u) + (b3 * u1) = ((((a3 * a) * p) + ((a3 * b) * q)) + ((a3 * c) * r)) + ((((b3 * a1) * p) + ((b3 * b1) * q)) + ((b3 * c1) * r)) by A4, Lm2 .= ((((a3 * a) * p) + ((b3 * a1) * p)) + (((a3 * b) * q) + ((b3 * b1) * q))) + (((a3 * c) * r) + ((b3 * c1) * r)) by Lm3 .= ((((a3 * a) + (b3 * a1)) * p) + (((a3 * b) * q) + ((b3 * b1) * q))) + (((a3 * c) * r) + ((b3 * c1) * r)) by RLVECT_1:def_6 .= ((((a3 * a) + (b3 * a1)) * p) + (((a3 * b) + (b3 * b1)) * q)) + (((a3 * c) * r) + ((b3 * c1) * r)) by RLVECT_1:def_6 .= ((((a3 * a) + (b3 * a1)) * p) + (((a3 * b) + (b3 * b1)) * q)) + (((a3 * c) + (b3 * c1)) * r) by RLVECT_1:def_6 ; ::_thesis: verum end; A6: not q is zero by A2, Th1; A7: now__::_thesis:_(_(_are_Prop_u,u1_or_u_is_zero_or_u1_is_zero_)_implies_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_)_) A8: now__::_thesis:_(_u1_is_zero_implies_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_)_) assume u1 is zero ; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) then u1 = 0. V by STRUCT_0:def_12; then ( p,q,q are_LinDep & u,u1,q are_LinDep ) by ANPROJ_1:10, ANPROJ_1:11; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A6; ::_thesis: verum end; A9: now__::_thesis:_(_u_is_zero_implies_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_)_) assume u is zero ; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) then u = 0. V by STRUCT_0:def_12; then ( p,q,q are_LinDep & u,u1,q are_LinDep ) by ANPROJ_1:10, ANPROJ_1:11; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A6; ::_thesis: verum end; A10: now__::_thesis:_(_are_Prop_u,u1_implies_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_)_) assume are_Prop u,u1 ; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) then ( p,q,q are_LinDep & u,u1,q are_LinDep ) by ANPROJ_1:11; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A6; ::_thesis: verum end; assume ( are_Prop u,u1 or u is zero or u1 is zero ) ; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A10, A9, A8; ::_thesis: verum end; A11: ( not p is zero & not are_Prop p,q ) by A2, Th1; A12: now__::_thesis:_(_not_are_Prop_u,u1_&_not_u_is_zero_&_not_u1_is_zero_&_c_<>_0_implies_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_)_) assume that A13: not are_Prop u,u1 and A14: not u is zero and A15: not u1 is zero and A16: c <> 0 ; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) A17: now__::_thesis:_(_c1_<>_0_implies_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_)_) set a3 = 1; set b3 = - (c * (c1 ")); set y = (1 * u) + ((- (c * (c1 "))) * u1); assume A18: c1 <> 0 ; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) then c1 " <> 0 by XCMPLX_1:202; then A19: c * (c1 ") <> 0 by A16, XCMPLX_1:6; A20: not (1 * u) + ((- (c * (c1 "))) * u1) is zero proof assume (1 * u) + ((- (c * (c1 "))) * u1) is zero ; ::_thesis: contradiction then 0. V = (1 * u) + ((- (c * (c1 "))) * u1) by STRUCT_0:def_12 .= (1 * u) + ((c * (c1 ")) * (- u1)) by RLVECT_1:24 .= (1 * u) + (- ((c * (c1 ")) * u1)) by RLVECT_1:25 ; then - (1 * u) = - ((c * (c1 ")) * u1) by RLVECT_1:def_10; then 1 * u = (c * (c1 ")) * u1 by RLVECT_1:18; hence contradiction by A13, A19, ANPROJ_1:def_1; ::_thesis: verum end; (1 * c) + ((- (c * (c1 "))) * c1) = c + ((- c) * ((c1 ") * c1)) .= c + ((- c) * 1) by A18, XCMPLX_0:def_7 .= 0 ; then (1 * u) + ((- (c * (c1 "))) * u1) = ((((1 * a) + ((- (c * (c1 "))) * a1)) * p) + (((1 * b) + ((- (c * (c1 "))) * b1)) * q)) + (0 * r) by A5 .= ((((1 * a) + ((- (c * (c1 "))) * a1)) * p) + (((1 * b) + ((- (c * (c1 "))) * b1)) * q)) + (0. V) by RLVECT_1:10 .= (((1 * a) + ((- (c * (c1 "))) * a1)) * p) + (((1 * b) + ((- (c * (c1 "))) * b1)) * q) by RLVECT_1:4 ; then A21: p,q,(1 * u) + ((- (c * (c1 "))) * u1) are_LinDep by A6, A11, ANPROJ_1:6; u,u1,(1 * u) + ((- (c * (c1 "))) * u1) are_LinDep by A13, A14, A15, ANPROJ_1:6; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A20, A21; ::_thesis: verum end; now__::_thesis:_(_c1_=_0_implies_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_)_) set a3 = 0 ; set b3 = 1; set y = (0 * u) + (1 * u1); A22: (0 * u) + (1 * u1) = (0 * u) + u1 by RLVECT_1:def_8 .= (0. V) + u1 by RLVECT_1:10 .= u1 by RLVECT_1:4 ; assume c1 = 0 ; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) then (0 * c) + (1 * c1) = 0 ; then (0 * u) + (1 * u1) = ((((0 * a) + (1 * a1)) * p) + (((0 * b) + (1 * b1)) * q)) + (0 * r) by A5 .= ((((0 * a) + (1 * a1)) * p) + (((0 * b) + (1 * b1)) * q)) + (0. V) by RLVECT_1:10 .= (((0 * a) + (1 * a1)) * p) + (((0 * b) + (1 * b1)) * q) by RLVECT_1:4 ; then A23: p,q,(0 * u) + (1 * u1) are_LinDep by A6, A11, ANPROJ_1:6; u,u1,(0 * u) + (1 * u1) are_LinDep by A13, A14, A15, ANPROJ_1:6; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A15, A22, A23; ::_thesis: verum end; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A17; ::_thesis: verum end; now__::_thesis:_(_not_are_Prop_u,u1_&_not_u_is_zero_&_not_u1_is_zero_&_c_=_0_implies_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_)_) assume that A24: not are_Prop u,u1 and A25: not u is zero and A26: not u1 is zero and A27: c = 0 ; ::_thesis: ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) now__::_thesis:_ex_y_being_Element_of_V_st_ (_p,q,y_are_LinDep_&_u,u1,y_are_LinDep_&_not_y_is_zero_) set a3 = 1; set b3 = 0 ; set y = (1 * u) + (0 * u1); A28: (1 * u) + (0 * u1) = u + (0 * u1) by RLVECT_1:def_8 .= u + (0. V) by RLVECT_1:10 .= u by RLVECT_1:4 ; (1 * c) + (0 * c1) = 0 by A27; then (1 * u) + (0 * u1) = ((((1 * a) + (0 * a1)) * p) + (((1 * b) + (0 * b1)) * q)) + (0 * r) by A5 .= ((((1 * a) + (0 * a1)) * p) + (((1 * b) + (0 * b1)) * q)) + (0. V) by RLVECT_1:10 .= (((1 * a) + (0 * a1)) * p) + (((1 * b) + (0 * b1)) * q) by RLVECT_1:4 ; then A29: p,q,(1 * u) + (0 * u1) are_LinDep by A6, A11, ANPROJ_1:6; u,u1,(1 * u) + (0 * u1) are_LinDep by A24, A25, A26, ANPROJ_1:6; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A25, A28, A29; ::_thesis: verum end; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) ; ::_thesis: verum end; hence ex y being Element of V st ( p,q,y are_LinDep & u,u1,y are_LinDep & not y is zero ) by A7, A12; ::_thesis: verum end; Lm4: for V being RealLinearSpace for v, w, u, y being Element of V for a, b, c, d, d1 being Real holds a * ((((b * v) + (c * w)) + (d * u)) + (d1 * y)) = ((((a * b) * v) + ((a * c) * w)) + ((a * d) * u)) + ((a * d1) * y) proof let V be RealLinearSpace; ::_thesis: for v, w, u, y being Element of V for a, b, c, d, d1 being Real holds a * ((((b * v) + (c * w)) + (d * u)) + (d1 * y)) = ((((a * b) * v) + ((a * c) * w)) + ((a * d) * u)) + ((a * d1) * y) let v, w, u, y be Element of V; ::_thesis: for a, b, c, d, d1 being Real holds a * ((((b * v) + (c * w)) + (d * u)) + (d1 * y)) = ((((a * b) * v) + ((a * c) * w)) + ((a * d) * u)) + ((a * d1) * y) let a, b, c, d, d1 be Real; ::_thesis: a * ((((b * v) + (c * w)) + (d * u)) + (d1 * y)) = ((((a * b) * v) + ((a * c) * w)) + ((a * d) * u)) + ((a * d1) * y) thus ((((a * b) * v) + ((a * c) * w)) + ((a * d) * u)) + ((a * d1) * y) = (((a * (b * v)) + ((a * c) * w)) + ((a * d) * u)) + ((a * d1) * y) by RLVECT_1:def_7 .= (((a * (b * v)) + (a * (c * w))) + ((a * d) * u)) + ((a * d1) * y) by RLVECT_1:def_7 .= ((a * ((b * v) + (c * w))) + ((a * d) * u)) + ((a * d1) * y) by RLVECT_1:def_5 .= ((a * ((b * v) + (c * w))) + (a * (d * u))) + ((a * d1) * y) by RLVECT_1:def_7 .= ((a * ((b * v) + (c * w))) + (a * (d * u))) + (a * (d1 * y)) by RLVECT_1:def_7 .= (a * (((b * v) + (c * w)) + (d * u))) + (a * (d1 * y)) by RLVECT_1:def_5 .= a * ((((b * v) + (c * w)) + (d * u)) + (d1 * y)) by RLVECT_1:def_5 ; ::_thesis: verum end; Lm5: for V being RealLinearSpace for u, v, w, y, u1, v1, w1, y1 being Element of V holds (((u + v) + w) + y) + (((u1 + v1) + w1) + y1) = (((u + u1) + (v + v1)) + (w + w1)) + (y + y1) proof let V be RealLinearSpace; ::_thesis: for u, v, w, y, u1, v1, w1, y1 being Element of V holds (((u + v) + w) + y) + (((u1 + v1) + w1) + y1) = (((u + u1) + (v + v1)) + (w + w1)) + (y + y1) let u, v, w, y, u1, v1, w1, y1 be Element of V; ::_thesis: (((u + v) + w) + y) + (((u1 + v1) + w1) + y1) = (((u + u1) + (v + v1)) + (w + w1)) + (y + y1) thus (((u + u1) + (v + v1)) + (w + w1)) + (y + y1) = ((u1 + (u + (v + v1))) + (w + w1)) + (y + y1) by RLVECT_1:def_3 .= ((u1 + ((u + v) + v1)) + (w + w1)) + (y + y1) by RLVECT_1:def_3 .= (((u1 + v1) + (u + v)) + (w + w1)) + (y + y1) by RLVECT_1:def_3 .= ((u1 + v1) + ((u + v) + (w + w1))) + (y + y1) by RLVECT_1:def_3 .= ((u1 + v1) + (((u + v) + w) + w1)) + (y + y1) by RLVECT_1:def_3 .= (((u1 + v1) + w1) + ((u + v) + w)) + (y + y1) by RLVECT_1:def_3 .= ((u + v) + w) + (((u1 + v1) + w1) + (y + y1)) by RLVECT_1:def_3 .= ((u + v) + w) + (y + (y1 + ((u1 + v1) + w1))) by RLVECT_1:def_3 .= (((u + v) + w) + y) + (((u1 + v1) + w1) + y1) by RLVECT_1:def_3 ; ::_thesis: verum end; Lm6: for V being RealLinearSpace for v, w, u being Element of V for a, b, c, d being Real holds a * (((b * v) + (c * w)) + (d * u)) = (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) proof let V be RealLinearSpace; ::_thesis: for v, w, u being Element of V for a, b, c, d being Real holds a * (((b * v) + (c * w)) + (d * u)) = (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) let v, w, u be Element of V; ::_thesis: for a, b, c, d being Real holds a * (((b * v) + (c * w)) + (d * u)) = (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) let a, b, c, d be Real; ::_thesis: a * (((b * v) + (c * w)) + (d * u)) = (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) thus (((a * b) * v) + ((a * c) * w)) + ((a * d) * u) = ((a * (b * v)) + ((a * c) * w)) + ((a * d) * u) by RLVECT_1:def_7 .= ((a * (b * v)) + (a * (c * w))) + ((a * d) * u) by RLVECT_1:def_7 .= (a * ((b * v) + (c * w))) + ((a * d) * u) by RLVECT_1:def_5 .= (a * ((b * v) + (c * w))) + (a * (d * u)) by RLVECT_1:def_7 .= a * (((b * v) + (c * w)) + (d * u)) by RLVECT_1:def_5 ; ::_thesis: verum end; Lm7: for V being RealLinearSpace for y, p, w, q, r being Element of V for a1, b1, a, b, c being Real st y = (a1 * p) + (b1 * w) & w = ((a * p) + (b * q)) + (c * r) holds y = (((a1 + (b1 * a)) * p) + ((b1 * b) * q)) + ((b1 * c) * r) proof let V be RealLinearSpace; ::_thesis: for y, p, w, q, r being Element of V for a1, b1, a, b, c being Real st y = (a1 * p) + (b1 * w) & w = ((a * p) + (b * q)) + (c * r) holds y = (((a1 + (b1 * a)) * p) + ((b1 * b) * q)) + ((b1 * c) * r) let y, p, w, q, r be Element of V; ::_thesis: for a1, b1, a, b, c being Real st y = (a1 * p) + (b1 * w) & w = ((a * p) + (b * q)) + (c * r) holds y = (((a1 + (b1 * a)) * p) + ((b1 * b) * q)) + ((b1 * c) * r) let a1, b1, a, b, c be Real; ::_thesis: ( y = (a1 * p) + (b1 * w) & w = ((a * p) + (b * q)) + (c * r) implies y = (((a1 + (b1 * a)) * p) + ((b1 * b) * q)) + ((b1 * c) * r) ) assume ( y = (a1 * p) + (b1 * w) & w = ((a * p) + (b * q)) + (c * r) ) ; ::_thesis: y = (((a1 + (b1 * a)) * p) + ((b1 * b) * q)) + ((b1 * c) * r) hence y = (a1 * p) + ((((b1 * a) * p) + ((b1 * b) * q)) + ((b1 * c) * r)) by Lm6 .= (a1 * p) + (((b1 * a) * p) + (((b1 * b) * q) + ((b1 * c) * r))) by RLVECT_1:def_3 .= ((a1 * p) + ((b1 * a) * p)) + (((b1 * b) * q) + ((b1 * c) * r)) by RLVECT_1:def_3 .= ((a1 + (b1 * a)) * p) + (((b1 * b) * q) + ((b1 * c) * r)) by RLVECT_1:def_6 .= (((a1 + (b1 * a)) * p) + ((b1 * b) * q)) + ((b1 * c) * r) by RLVECT_1:def_3 ; ::_thesis: verum end; theorem Th4: :: ANPROJ_2:4 for V being RealLinearSpace for p, q, r, s being Element of V st ( for w being Element of V ex a, b, c, d being Real st w = (((a * p) + (b * q)) + (c * r)) + (d * s) ) & ( for a, b, c, d being Real st (((a * p) + (b * q)) + (c * r)) + (d * s) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) holds for u, v being Element of V st not u is zero & not v is zero holds ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) proof let V be RealLinearSpace; ::_thesis: for p, q, r, s being Element of V st ( for w being Element of V ex a, b, c, d being Real st w = (((a * p) + (b * q)) + (c * r)) + (d * s) ) & ( for a, b, c, d being Real st (((a * p) + (b * q)) + (c * r)) + (d * s) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) holds for u, v being Element of V st not u is zero & not v is zero holds ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) let p, q, r, s be Element of V; ::_thesis: ( ( for w being Element of V ex a, b, c, d being Real st w = (((a * p) + (b * q)) + (c * r)) + (d * s) ) & ( for a, b, c, d being Real st (((a * p) + (b * q)) + (c * r)) + (d * s) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) implies for u, v being Element of V st not u is zero & not v is zero holds ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) ) assume that A1: for w being Element of V ex a, b, c, d being Real st w = (((a * p) + (b * q)) + (c * r)) + (d * s) and A2: for a, b, c, d being Real st (((a * p) + (b * q)) + (c * r)) + (d * s) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ; ::_thesis: for u, v being Element of V st not u is zero & not v is zero holds ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) A3: not p is zero by A2, Th2; let u, v be Element of V; ::_thesis: ( not u is zero & not v is zero implies ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) ) assume that A4: not u is zero and A5: not v is zero ; ::_thesis: ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) consider a1, b1, c1, d1 being Real such that A6: u = (((a1 * p) + (b1 * q)) + (c1 * r)) + (d1 * s) by A1; not p,q,r are_LinDep by A2, Th2; then A7: not are_Prop q,r by ANPROJ_1:11; A8: not q is zero by A2, Th2; consider a2, b2, c2, d2 being Real such that A9: v = (((a2 * p) + (b2 * q)) + (c2 * r)) + (d2 * s) by A1; A10: for a3, b3 being Real holds (a3 * u) + (b3 * v) = (((((a3 * a1) + (b3 * a2)) * p) + (((a3 * b1) + (b3 * b2)) * q)) + (((a3 * c1) + (b3 * c2)) * r)) + (((a3 * d1) + (b3 * d2)) * s) proof let a3, b3 be Real; ::_thesis: (a3 * u) + (b3 * v) = (((((a3 * a1) + (b3 * a2)) * p) + (((a3 * b1) + (b3 * b2)) * q)) + (((a3 * c1) + (b3 * c2)) * r)) + (((a3 * d1) + (b3 * d2)) * s) a3 * u = ((((a3 * a1) * p) + ((a3 * b1) * q)) + ((a3 * c1) * r)) + ((a3 * d1) * s) by A6, Lm4; hence (a3 * u) + (b3 * v) = (((((a3 * a1) * p) + ((a3 * b1) * q)) + ((a3 * c1) * r)) + ((a3 * d1) * s)) + (((((b3 * a2) * p) + ((b3 * b2) * q)) + ((b3 * c2) * r)) + ((b3 * d2) * s)) by A9, Lm4 .= (((((a3 * a1) * p) + ((b3 * a2) * p)) + (((a3 * b1) * q) + ((b3 * b2) * q))) + (((a3 * c1) * r) + ((b3 * c2) * r))) + (((a3 * d1) * s) + ((b3 * d2) * s)) by Lm5 .= (((((a3 * a1) + (b3 * a2)) * p) + (((a3 * b1) * q) + ((b3 * b2) * q))) + (((a3 * c1) * r) + ((b3 * c2) * r))) + (((a3 * d1) * s) + ((b3 * d2) * s)) by RLVECT_1:def_6 .= (((((a3 * a1) + (b3 * a2)) * p) + (((a3 * b1) + (b3 * b2)) * q)) + (((a3 * c1) * r) + ((b3 * c2) * r))) + (((a3 * d1) * s) + ((b3 * d2) * s)) by RLVECT_1:def_6 .= (((((a3 * a1) + (b3 * a2)) * p) + (((a3 * b1) + (b3 * b2)) * q)) + (((a3 * c1) + (b3 * c2)) * r)) + (((a3 * d1) * s) + ((b3 * d2) * s)) by RLVECT_1:def_6 .= (((((a3 * a1) + (b3 * a2)) * p) + (((a3 * b1) + (b3 * b2)) * q)) + (((a3 * c1) + (b3 * c2)) * r)) + (((a3 * d1) + (b3 * d2)) * s) by RLVECT_1:def_6 ; ::_thesis: verum end; A11: not r is zero by A2, Th2; A12: now__::_thesis:_(_not_are_Prop_u,v_implies_ex_y,_w_being_Element_of_V_st_ (_u,v,w_are_LinDep_&_q,r,y_are_LinDep_&_p,w,y_are_LinDep_&_not_y_is_zero_&_not_w_is_zero_)_) assume A13: not are_Prop u,v ; ::_thesis: ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) ex w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) proof A14: now__::_thesis:_(_d1_<>_0_&_d2_<>_0_implies_ex_w_being_Element_of_V_st_ (_not_w_is_zero_&_u,v,w_are_LinDep_&_ex_A,_B,_C_being_Real_st_w_=_((A_*_p)_+_(B_*_q))_+_(C_*_r)_)_) set a3 = - (d2 * (d1 ")); set b3 = 1; set w = ((- (d2 * (d1 "))) * u) + (1 * v); assume that A15: d1 <> 0 and A16: d2 <> 0 ; ::_thesis: ex w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) set A = ((- (d2 * (d1 "))) * a1) + (1 * a2); set B = ((- (d2 * (d1 "))) * b1) + (1 * b2); set C = ((- (d2 * (d1 "))) * c1) + (1 * c2); A17: ( ((- (d2 * (d1 "))) * a1) + (1 * a2) <> 0 or ((- (d2 * (d1 "))) * b1) + (1 * b2) <> 0 or ((- (d2 * (d1 "))) * c1) + (1 * c2) <> 0 ) proof A18: d2 * (d1 ") <> 0 proof assume not d2 * (d1 ") <> 0 ; ::_thesis: contradiction then d1 " = 0 by A16, XCMPLX_1:6; hence contradiction by A15, XCMPLX_1:202; ::_thesis: verum end; A19: (d2 * (d1 ")) * d1 = d2 * ((d1 ") * d1) .= d2 * 1 by A15, XCMPLX_0:def_7 .= d2 ; assume A20: ( not ((- (d2 * (d1 "))) * a1) + (1 * a2) <> 0 & not ((- (d2 * (d1 "))) * b1) + (1 * b2) <> 0 & not ((- (d2 * (d1 "))) * c1) + (1 * c2) <> 0 ) ; ::_thesis: contradiction then A21: - (- ((d2 * (d1 ")) * c1)) = c2 ; ( - (- ((d2 * (d1 ")) * a1)) = a2 & - (- ((d2 * (d1 ")) * b1)) = b2 ) by A20; then (d2 * (d1 ")) * u = v by A6, A9, A21, A19, Lm4; hence contradiction by A13, A18, ANPROJ_1:1; ::_thesis: verum end; ((- (d2 * (d1 "))) * d1) + (1 * d2) = (- (d2 * ((d1 ") * d1))) + d2 .= (- (d2 * 1)) + d2 by A15, XCMPLX_0:def_7 .= 0 ; then A22: ((- (d2 * (d1 "))) * u) + (1 * v) = ((((((- (d2 * (d1 "))) * a1) + (1 * a2)) * p) + ((((- (d2 * (d1 "))) * b1) + (1 * b2)) * q)) + ((((- (d2 * (d1 "))) * c1) + (1 * c2)) * r)) + (0 * s) by A10 .= ((((((- (d2 * (d1 "))) * a1) + (1 * a2)) * p) + ((((- (d2 * (d1 "))) * b1) + (1 * b2)) * q)) + ((((- (d2 * (d1 "))) * c1) + (1 * c2)) * r)) + (0. V) by RLVECT_1:10 .= (((((- (d2 * (d1 "))) * a1) + (1 * a2)) * p) + ((((- (d2 * (d1 "))) * b1) + (1 * b2)) * q)) + ((((- (d2 * (d1 "))) * c1) + (1 * c2)) * r) by RLVECT_1:4 ; then A23: ((- (d2 * (d1 "))) * u) + (1 * v) = ((((((- (d2 * (d1 "))) * a1) + (1 * a2)) * p) + ((((- (d2 * (d1 "))) * b1) + (1 * b2)) * q)) + ((((- (d2 * (d1 "))) * c1) + (1 * c2)) * r)) + (0. V) by RLVECT_1:4 .= ((((((- (d2 * (d1 "))) * a1) + (1 * a2)) * p) + ((((- (d2 * (d1 "))) * b1) + (1 * b2)) * q)) + ((((- (d2 * (d1 "))) * c1) + (1 * c2)) * r)) + (0 * s) by RLVECT_1:10 ; A24: not ((- (d2 * (d1 "))) * u) + (1 * v) is zero proof assume ((- (d2 * (d1 "))) * u) + (1 * v) is zero ; ::_thesis: contradiction then ((- (d2 * (d1 "))) * u) + (1 * v) = 0. V by STRUCT_0:def_12; hence contradiction by A2, A23, A17; ::_thesis: verum end; u,v,((- (d2 * (d1 "))) * u) + (1 * v) are_LinDep by A4, A5, A13, ANPROJ_1:6; hence ex w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) by A22, A24; ::_thesis: verum end; A25: now__::_thesis:_(_d2_=_0_implies_ex_w,_w_being_Element_of_V_st_ (_not_w_is_zero_&_u,v,w_are_LinDep_&_ex_A,_B,_C_being_Real_st_w_=_((A_*_p)_+_(B_*_q))_+_(C_*_r)_)_) assume A26: d2 = 0 ; ::_thesis: ex w, w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) take w = v; ::_thesis: ex w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) A27: u,v,w are_LinDep by ANPROJ_1:11; w = (((a2 * p) + (b2 * q)) + (c2 * r)) + (0. V) by A9, A26, RLVECT_1:10 .= ((a2 * p) + (b2 * q)) + (c2 * r) by RLVECT_1:4 ; hence ex w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) by A5, A27; ::_thesis: verum end; now__::_thesis:_(_d1_=_0_implies_ex_w,_w_being_Element_of_V_st_ (_not_w_is_zero_&_u,v,w_are_LinDep_&_ex_A,_B,_C_being_Real_st_w_=_((A_*_p)_+_(B_*_q))_+_(C_*_r)_)_) assume A28: d1 = 0 ; ::_thesis: ex w, w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) take w = u; ::_thesis: ex w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) A29: u,v,w are_LinDep by ANPROJ_1:11; w = (((a1 * p) + (b1 * q)) + (c1 * r)) + (0. V) by A6, A28, RLVECT_1:10 .= ((a1 * p) + (b1 * q)) + (c1 * r) by RLVECT_1:4 ; hence ex w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) by A4, A29; ::_thesis: verum end; hence ex w being Element of V st ( not w is zero & u,v,w are_LinDep & ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ) by A25, A14; ::_thesis: verum end; then consider w being Element of V such that A30: not w is zero and A31: u,v,w are_LinDep and A32: ex A, B, C being Real st w = ((A * p) + (B * q)) + (C * r) ; consider A, B, C being Real such that A33: w = ((A * p) + (B * q)) + (C * r) by A32; A34: now__::_thesis:_(_not_are_Prop_p,w_implies_ex_y,_w_being_Element_of_V_st_ (_u,v,w_are_LinDep_&_q,r,y_are_LinDep_&_p,w,y_are_LinDep_&_not_y_is_zero_&_not_w_is_zero_)_) set b = 1; set a = - A; set y = ((- A) * p) + (1 * w); A35: ((- A) * p) + (1 * w) = ((((- A) + (1 * A)) * p) + ((1 * B) * q)) + ((1 * C) * r) by A33, Lm7 .= ((0. V) + ((1 * B) * q)) + ((1 * C) * r) by RLVECT_1:10 .= (B * q) + (C * r) by RLVECT_1:4 ; assume A36: not are_Prop p,w ; ::_thesis: ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) then A37: p,w,((- A) * p) + (1 * w) are_LinDep by A3, A30, ANPROJ_1:6; A38: ( B <> 0 or C <> 0 ) proof assume ( not B <> 0 & not C <> 0 ) ; ::_thesis: contradiction then A39: w = ((A * p) + (0. V)) + (0 * r) by A33, RLVECT_1:10 .= ((A * p) + (0. V)) + (0. V) by RLVECT_1:10 .= (A * p) + (0. V) by RLVECT_1:4 .= A * p by RLVECT_1:4 ; A <> 0 proof assume not A <> 0 ; ::_thesis: contradiction then w = 0. V by A39, RLVECT_1:10; hence contradiction by A30; ::_thesis: verum end; hence contradiction by A36, A39, ANPROJ_1:1; ::_thesis: verum end; A40: not ((- A) * p) + (1 * w) is zero proof assume ((- A) * p) + (1 * w) is zero ; ::_thesis: contradiction then 0. V = (B * q) + (C * r) by A35, STRUCT_0:def_12 .= ((0. V) + (B * q)) + (C * r) by RLVECT_1:4 .= ((0 * p) + (B * q)) + (C * r) by RLVECT_1:10 .= (((0 * p) + (B * q)) + (C * r)) + (0. V) by RLVECT_1:4 .= (((0 * p) + (B * q)) + (C * r)) + (0 * s) by RLVECT_1:10 ; hence contradiction by A2, A38; ::_thesis: verum end; q,r,((- A) * p) + (1 * w) are_LinDep by A8, A11, A7, A35, ANPROJ_1:6; hence ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) by A30, A31, A40, A37; ::_thesis: verum end; now__::_thesis:_(_are_Prop_p,w_implies_ex_y,_w_being_Element_of_V_st_ (_u,v,w_are_LinDep_&_q,r,y_are_LinDep_&_p,w,y_are_LinDep_&_not_y_is_zero_&_not_w_is_zero_)_) assume are_Prop p,w ; ::_thesis: ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) then ( q,r,q are_LinDep & p,w,q are_LinDep ) by ANPROJ_1:11; hence ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) by A8, A30, A31; ::_thesis: verum end; hence ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) by A34; ::_thesis: verum end; now__::_thesis:_(_are_Prop_u,v_implies_ex_y,_w_being_Element_of_V_st_ (_u,v,w_are_LinDep_&_q,r,y_are_LinDep_&_p,w,y_are_LinDep_&_not_y_is_zero_&_not_w_is_zero_)_) assume are_Prop u,v ; ::_thesis: ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) then A41: u,v,p are_LinDep by ANPROJ_1:11; ( q,r,q are_LinDep & p,p,q are_LinDep ) by ANPROJ_1:11; hence ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) by A3, A8, A41; ::_thesis: verum end; hence ex y, w being Element of V st ( u,v,w are_LinDep & q,r,y are_LinDep & p,w,y are_LinDep & not y is zero & not w is zero ) by A12; ::_thesis: verum end; theorem Th5: :: ANPROJ_2:5 for V being RealLinearSpace for u, v, u1, v1 being Element of V st ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) holds for y being Element of V holds ( y is zero or not u,v,y are_LinDep or not u1,v1,y are_LinDep ) proof let V be RealLinearSpace; ::_thesis: for u, v, u1, v1 being Element of V st ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) holds for y being Element of V holds ( y is zero or not u,v,y are_LinDep or not u1,v1,y are_LinDep ) let u, v, u1, v1 be Element of V; ::_thesis: ( ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) implies for y being Element of V holds ( y is zero or not u,v,y are_LinDep or not u1,v1,y are_LinDep ) ) assume A1: for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ; ::_thesis: for y being Element of V holds ( y is zero or not u,v,y are_LinDep or not u1,v1,y are_LinDep ) then A2: not are_Prop u,v by Th2; assume ex y being Element of V st ( not y is zero & u,v,y are_LinDep & u1,v1,y are_LinDep ) ; ::_thesis: contradiction then consider y being Element of V such that A3: not y is zero and A4: u,v,y are_LinDep and A5: u1,v1,y are_LinDep ; ( not u is zero & not v is zero ) by A1, Th2; then consider a, b being Real such that A6: y = (a * u) + (b * v) by A4, A2, ANPROJ_1:6; A7: not are_Prop u1,v1 by A1, Th2; ( not u1 is zero & not v1 is zero ) by A1, Th2; then consider a1, b1 being Real such that A8: y = (a1 * u1) + (b1 * v1) by A5, A7, ANPROJ_1:6; 0. V = ((a * u) + (b * v)) - ((a1 * u1) + (b1 * v1)) by A6, A8, RLVECT_1:15 .= ((a * u) + (b * v)) + ((- 1) * ((a1 * u1) + (b1 * v1))) by RLVECT_1:16 .= ((a * u) + (b * v)) + (((- 1) * (a1 * u1)) + ((- 1) * (b1 * v1))) by RLVECT_1:def_5 .= ((a * u) + (b * v)) + ((((- 1) * a1) * u1) + ((- 1) * (b1 * v1))) by RLVECT_1:def_7 .= ((a * u) + (b * v)) + ((((- 1) * a1) * u1) + (((- 1) * b1) * v1)) by RLVECT_1:def_7 .= (((a * u) + (b * v)) + (((- 1) * a1) * u1)) + (((- 1) * b1) * v1) by RLVECT_1:def_3 ; then ( a = 0 & b = 0 ) by A1; then y = (0. V) + (0 * v) by A6, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; hence contradiction by A3; ::_thesis: verum end; definition let V be RealLinearSpace; let u, v, w be Element of V; predu,v,w are_Prop_Vect means :Def1: :: ANPROJ_2:def 1 ( not u is zero & not v is zero & not w is zero ); end; :: deftheorem Def1 defines are_Prop_Vect ANPROJ_2:def_1_:_ for V being RealLinearSpace for u, v, w being Element of V holds ( u,v,w are_Prop_Vect iff ( not u is zero & not v is zero & not w is zero ) ); definition let V be RealLinearSpace; let u, v, w, u1, v1, w1 be Element of V; predu,v,w,u1,v1,w1 lie_on_a_triangle means :Def2: :: ANPROJ_2:def 2 ( u,v,w1 are_LinDep & u,w,v1 are_LinDep & v,w,u1 are_LinDep ); end; :: deftheorem Def2 defines lie_on_a_triangle ANPROJ_2:def_2_:_ for V being RealLinearSpace for u, v, w, u1, v1, w1 being Element of V holds ( u,v,w,u1,v1,w1 lie_on_a_triangle iff ( u,v,w1 are_LinDep & u,w,v1 are_LinDep & v,w,u1 are_LinDep ) ); definition let V be RealLinearSpace; let o, u, v, w, u2, v2, w2 be Element of V; predo,u,v,w,u2,v2,w2 are_perspective means :Def3: :: ANPROJ_2:def 3 ( o,u,u2 are_LinDep & o,v,v2 are_LinDep & o,w,w2 are_LinDep ); end; :: deftheorem Def3 defines are_perspective ANPROJ_2:def_3_:_ for V being RealLinearSpace for o, u, v, w, u2, v2, w2 being Element of V holds ( o,u,v,w,u2,v2,w2 are_perspective iff ( o,u,u2 are_LinDep & o,v,v2 are_LinDep & o,w,w2 are_LinDep ) ); Lm8: for V being RealLinearSpace for o being Element of V for a being Real holds - (a * o) = (- a) * o proof let V be RealLinearSpace; ::_thesis: for o being Element of V for a being Real holds - (a * o) = (- a) * o let o be Element of V; ::_thesis: for a being Real holds - (a * o) = (- a) * o let a be Real; ::_thesis: - (a * o) = (- a) * o thus - (a * o) = a * (- o) by RLVECT_1:25 .= (- a) * o by RLVECT_1:24 ; ::_thesis: verum end; theorem Th6: :: ANPROJ_2:6 for V being RealLinearSpace for o, u, u2 being Element of V st o,u,u2 are_LinDep & not are_Prop o,u & not are_Prop o,u2 & not are_Prop u,u2 & o,u,u2 are_Prop_Vect holds ( ex a1, b1 being Real st ( b1 * u2 = o + (a1 * u) & a1 <> 0 & b1 <> 0 ) & ex a2, c2 being Real st ( u2 = (c2 * o) + (a2 * u) & c2 <> 0 & a2 <> 0 ) ) proof let V be RealLinearSpace; ::_thesis: for o, u, u2 being Element of V st o,u,u2 are_LinDep & not are_Prop o,u & not are_Prop o,u2 & not are_Prop u,u2 & o,u,u2 are_Prop_Vect holds ( ex a1, b1 being Real st ( b1 * u2 = o + (a1 * u) & a1 <> 0 & b1 <> 0 ) & ex a2, c2 being Real st ( u2 = (c2 * o) + (a2 * u) & c2 <> 0 & a2 <> 0 ) ) let o, u, u2 be Element of V; ::_thesis: ( o,u,u2 are_LinDep & not are_Prop o,u & not are_Prop o,u2 & not are_Prop u,u2 & o,u,u2 are_Prop_Vect implies ( ex a1, b1 being Real st ( b1 * u2 = o + (a1 * u) & a1 <> 0 & b1 <> 0 ) & ex a2, c2 being Real st ( u2 = (c2 * o) + (a2 * u) & c2 <> 0 & a2 <> 0 ) ) ) assume that A1: o,u,u2 are_LinDep and A2: not are_Prop o,u and A3: not are_Prop o,u2 and A4: not are_Prop u,u2 and A5: o,u,u2 are_Prop_Vect ; ::_thesis: ( ex a1, b1 being Real st ( b1 * u2 = o + (a1 * u) & a1 <> 0 & b1 <> 0 ) & ex a2, c2 being Real st ( u2 = (c2 * o) + (a2 * u) & c2 <> 0 & a2 <> 0 ) ) consider a, b, c being Real such that A6: ((a * o) + (b * u)) + (c * u2) = 0. V and A7: ( a <> 0 or b <> 0 or c <> 0 ) by A1, ANPROJ_1:def_2; not u is zero by A5, Def1; then A8: u <> 0. V ; not u2 is zero by A5, Def1; then A9: u2 <> 0. V ; not o is zero by A5, Def1; then A10: o <> 0. V ; A11: ( a <> 0 & b <> 0 & c <> 0 ) proof A12: now__::_thesis:_not_b_=_0 assume A13: b = 0 ; ::_thesis: contradiction then 0. V = ((a * o) + (0. V)) + (c * u2) by A6, RLVECT_1:10 .= (a * o) + (c * u2) by RLVECT_1:4 ; then a * o = - (c * u2) by RLVECT_1:6 .= c * (- u2) by RLVECT_1:25 ; then A14: a * o = (- c) * u2 by RLVECT_1:24; A15: ( a <> 0 & c <> 0 ) proof A16: now__::_thesis:_not_c_=_0 assume A17: c = 0 ; ::_thesis: contradiction then 0. V = ((a * o) + (0 * u)) + (0. V) by A6, A13, RLVECT_1:10 .= (a * o) + (0 * u) by RLVECT_1:4 .= (a * o) + (0. V) by RLVECT_1:10 .= a * o by RLVECT_1:4 ; hence contradiction by A7, A10, A13, A17, RLVECT_1:11; ::_thesis: verum end; A18: now__::_thesis:_not_a_=_0 assume A19: a = 0 ; ::_thesis: contradiction then 0. V = ((0. V) + (0 * u)) + (c * u2) by A6, A13, RLVECT_1:10 .= (0 * u) + (c * u2) by RLVECT_1:4 .= (0. V) + (c * u2) by RLVECT_1:10 .= c * u2 by RLVECT_1:4 ; hence contradiction by A7, A9, A13, A19, RLVECT_1:11; ::_thesis: verum end; assume ( not a <> 0 or not c <> 0 ) ; ::_thesis: contradiction hence contradiction by A18, A16; ::_thesis: verum end; then - c <> 0 ; hence contradiction by A3, A15, A14, ANPROJ_1:def_1; ::_thesis: verum end; A20: now__::_thesis:_not_a_=_0 assume A21: a = 0 ; ::_thesis: contradiction then 0. V = ((0. V) + (b * u)) + (c * u2) by A6, RLVECT_1:10 .= (b * u) + (c * u2) by RLVECT_1:4 ; then b * u = - (c * u2) by RLVECT_1:6 .= c * (- u2) by RLVECT_1:25 ; then A22: b * u = (- c) * u2 by RLVECT_1:24; A23: ( b <> 0 & c <> 0 ) proof A24: now__::_thesis:_not_c_=_0 assume A25: c = 0 ; ::_thesis: contradiction then 0. V = ((0. V) + (b * u)) + (0 * u2) by A6, A21, RLVECT_1:10 .= (b * u) + (0 * u2) by RLVECT_1:4 .= (b * u) + (0. V) by RLVECT_1:10 .= b * u by RLVECT_1:4 ; hence contradiction by A7, A8, A21, A25, RLVECT_1:11; ::_thesis: verum end; A26: now__::_thesis:_not_b_=_0 assume A27: b = 0 ; ::_thesis: contradiction then 0. V = ((0. V) + (0 * u)) + (c * u2) by A6, A21, RLVECT_1:10 .= (0 * u) + (c * u2) by RLVECT_1:4 .= (0. V) + (c * u2) by RLVECT_1:10 .= c * u2 by RLVECT_1:4 ; hence contradiction by A7, A9, A21, A27, RLVECT_1:11; ::_thesis: verum end; assume ( not b <> 0 or not c <> 0 ) ; ::_thesis: contradiction hence contradiction by A26, A24; ::_thesis: verum end; then - c <> 0 ; hence contradiction by A4, A23, A22, ANPROJ_1:def_1; ::_thesis: verum end; A28: now__::_thesis:_not_c_=_0 assume A29: c = 0 ; ::_thesis: contradiction then 0. V = ((a * o) + (b * u)) + (0. V) by A6, RLVECT_1:10 .= (a * o) + (b * u) by RLVECT_1:4 ; then a * o = - (b * u) by RLVECT_1:6 .= b * (- u) by RLVECT_1:25 ; then A30: a * o = (- b) * u by RLVECT_1:24; A31: ( a <> 0 & b <> 0 ) proof A32: now__::_thesis:_not_b_=_0 assume A33: b = 0 ; ::_thesis: contradiction then 0. V = ((a * o) + (0 * u)) + (0. V) by A6, A29, RLVECT_1:10 .= (a * o) + (0 * u) by RLVECT_1:4 .= (a * o) + (0. V) by RLVECT_1:10 .= a * o by RLVECT_1:4 ; hence contradiction by A7, A10, A29, A33, RLVECT_1:11; ::_thesis: verum end; A34: now__::_thesis:_not_a_=_0 assume A35: a = 0 ; ::_thesis: contradiction then 0. V = ((0. V) + (b * u)) + (0 * u2) by A6, A29, RLVECT_1:10 .= (b * u) + (0 * u2) by RLVECT_1:4 .= (b * u) + (0. V) by RLVECT_1:10 .= b * u by RLVECT_1:4 ; hence contradiction by A7, A8, A29, A35, RLVECT_1:11; ::_thesis: verum end; assume ( not a <> 0 or not b <> 0 ) ; ::_thesis: contradiction hence contradiction by A34, A32; ::_thesis: verum end; then - b <> 0 ; hence contradiction by A2, A31, A30, ANPROJ_1:def_1; ::_thesis: verum end; assume ( not a <> 0 or not b <> 0 or not c <> 0 ) ; ::_thesis: contradiction hence contradiction by A20, A12, A28; ::_thesis: verum end; then A36: c " <> 0 by XCMPLX_1:202; a " <> 0 by A11, XCMPLX_1:202; then A37: ( (a ") * b <> 0 & - ((a ") * c) <> 0 ) by A11, XCMPLX_1:6; (a ") * (- (c * u2)) = (a ") * ((a * o) + (b * u)) by A6, RLVECT_1:6 .= ((a ") * (a * o)) + ((a ") * (b * u)) by RLVECT_1:def_5 .= (((a ") * a) * o) + ((a ") * (b * u)) by RLVECT_1:def_7 .= (((a ") * a) * o) + (((a ") * b) * u) by RLVECT_1:def_7 .= (1 * o) + (((a ") * b) * u) by A11, XCMPLX_0:def_7 .= o + (((a ") * b) * u) by RLVECT_1:def_8 ; then o + (((a ") * b) * u) = (a ") * (c * (- u2)) by RLVECT_1:25 .= ((a ") * c) * (- u2) by RLVECT_1:def_7 .= (- ((a ") * c)) * u2 by RLVECT_1:24 ; hence ex a1, b1 being Real st ( b1 * u2 = o + (a1 * u) & a1 <> 0 & b1 <> 0 ) by A37; ::_thesis: ex a2, c2 being Real st ( u2 = (c2 * o) + (a2 * u) & c2 <> 0 & a2 <> 0 ) - b <> 0 by A11; then A38: (c ") * (- b) <> 0 by A36, XCMPLX_1:6; c * u2 = - ((a * o) + (b * u)) by A6, RLVECT_1:def_10 .= (- (a * o)) + (- (b * u)) by RLVECT_1:31 .= ((- a) * o) + (- (b * u)) by Lm8 .= ((- a) * o) + ((- b) * u) by Lm8 ; then (c ") * (c * u2) = ((c ") * ((- a) * o)) + ((c ") * ((- b) * u)) by RLVECT_1:def_5 .= (((c ") * (- a)) * o) + ((c ") * ((- b) * u)) by RLVECT_1:def_7 .= (((c ") * (- a)) * o) + (((c ") * (- b)) * u) by RLVECT_1:def_7 ; then A39: (((c ") * (- a)) * o) + (((c ") * (- b)) * u) = ((c ") * c) * u2 by RLVECT_1:def_7 .= 1 * u2 by A11, XCMPLX_0:def_7 .= u2 by RLVECT_1:def_8 ; - a <> 0 by A11; then (c ") * (- a) <> 0 by A36, XCMPLX_1:6; hence ex a2, c2 being Real st ( u2 = (c2 * o) + (a2 * u) & c2 <> 0 & a2 <> 0 ) by A39, A38; ::_thesis: verum end; theorem Th7: :: ANPROJ_2:7 for V being RealLinearSpace for p, q, r being Element of V st p,q,r are_LinDep & not are_Prop p,q & p,q,r are_Prop_Vect holds ex a, b being Real st r = (a * p) + (b * q) proof let V be RealLinearSpace; ::_thesis: for p, q, r being Element of V st p,q,r are_LinDep & not are_Prop p,q & p,q,r are_Prop_Vect holds ex a, b being Real st r = (a * p) + (b * q) let p, q, r be Element of V; ::_thesis: ( p,q,r are_LinDep & not are_Prop p,q & p,q,r are_Prop_Vect implies ex a, b being Real st r = (a * p) + (b * q) ) assume that A1: p,q,r are_LinDep and A2: not are_Prop p,q and A3: p,q,r are_Prop_Vect ; ::_thesis: ex a, b being Real st r = (a * p) + (b * q) consider a, b, c being Real such that A4: ((a * p) + (b * q)) + (c * r) = 0. V and A5: ( a <> 0 or b <> 0 or c <> 0 ) by A1, ANPROJ_1:def_2; not q is zero by A3, Def1; then A6: q <> 0. V ; not p is zero by A3, Def1; then A7: p <> 0. V ; A8: c <> 0 proof assume A9: not c <> 0 ; ::_thesis: contradiction then 0. V = ((a * p) + (b * q)) + (0. V) by A4, RLVECT_1:10 .= (a * p) + (b * q) by RLVECT_1:4 ; then A10: a * p = - (b * q) by RLVECT_1:6 .= (- b) * q by Lm8 ; A11: ( a <> 0 & b <> 0 ) proof A12: now__::_thesis:_not_b_=_0 assume A13: b = 0 ; ::_thesis: contradiction then 0. V = ((a * p) + (0. V)) + (0 * r) by A4, A9, RLVECT_1:10 .= ((a * p) + (0. V)) + (0. V) by RLVECT_1:10 .= (a * p) + (0. V) by RLVECT_1:4 .= a * p by RLVECT_1:4 ; hence contradiction by A7, A5, A9, A13, RLVECT_1:11; ::_thesis: verum end; A14: now__::_thesis:_not_a_=_0 assume A15: a = 0 ; ::_thesis: contradiction then 0. V = ((0. V) + (b * q)) + (0 * r) by A4, A9, RLVECT_1:10 .= ((0. V) + (b * q)) + (0. V) by RLVECT_1:10 .= (b * q) + (0. V) by RLVECT_1:4 .= b * q by RLVECT_1:4 ; hence contradiction by A6, A5, A9, A15, RLVECT_1:11; ::_thesis: verum end; assume ( not a <> 0 or not b <> 0 ) ; ::_thesis: contradiction hence contradiction by A14, A12; ::_thesis: verum end; then - b <> 0 ; hence contradiction by A2, A11, A10, ANPROJ_1:def_1; ::_thesis: verum end; c * r = - ((a * p) + (b * q)) by A4, RLVECT_1:def_10 .= (- (a * p)) + (- (b * q)) by RLVECT_1:31 .= ((- a) * p) + (- (b * q)) by Lm8 .= ((- a) * p) + ((- b) * q) by Lm8 ; then (c ") * (c * r) = ((c ") * ((- a) * p)) + ((c ") * ((- b) * q)) by RLVECT_1:def_5 .= (((c ") * (- a)) * p) + ((c ") * ((- b) * q)) by RLVECT_1:def_7 .= (((c ") * (- a)) * p) + (((c ") * (- b)) * q) by RLVECT_1:def_7 ; then (((c ") * (- a)) * p) + (((c ") * (- b)) * q) = ((c ") * c) * r by RLVECT_1:def_7 .= 1 * r by A8, XCMPLX_0:def_7 .= r by RLVECT_1:def_8 ; hence ex a, b being Real st r = (a * p) + (b * q) ; ::_thesis: verum end; Lm9: for V being RealLinearSpace for u2, w2 being Element of V for b1 being Real st b1 * u2 = w2 & b1 <> 0 holds are_Prop u2,w2 proof let V be RealLinearSpace; ::_thesis: for u2, w2 being Element of V for b1 being Real st b1 * u2 = w2 & b1 <> 0 holds are_Prop u2,w2 let u2, w2 be Element of V; ::_thesis: for b1 being Real st b1 * u2 = w2 & b1 <> 0 holds are_Prop u2,w2 let b1 be Real; ::_thesis: ( b1 * u2 = w2 & b1 <> 0 implies are_Prop u2,w2 ) assume that A1: b1 * u2 = w2 and A2: b1 <> 0 ; ::_thesis: are_Prop u2,w2 b1 * u2 = 1 * w2 by A1, RLVECT_1:def_8; hence are_Prop u2,w2 by A2, ANPROJ_1:def_1; ::_thesis: verum end; Lm10: for V being RealLinearSpace for q, o, p, r, s being Element of V for a, b being Real st q = o + (a * p) & r = o + (b * s) & are_Prop q,r & a <> 0 holds o,p,s are_LinDep proof let V be RealLinearSpace; ::_thesis: for q, o, p, r, s being Element of V for a, b being Real st q = o + (a * p) & r = o + (b * s) & are_Prop q,r & a <> 0 holds o,p,s are_LinDep let q, o, p, r, s be Element of V; ::_thesis: for a, b being Real st q = o + (a * p) & r = o + (b * s) & are_Prop q,r & a <> 0 holds o,p,s are_LinDep let a, b be Real; ::_thesis: ( q = o + (a * p) & r = o + (b * s) & are_Prop q,r & a <> 0 implies o,p,s are_LinDep ) assume that A1: ( q = o + (a * p) & r = o + (b * s) & are_Prop q,r ) and A2: a <> 0 ; ::_thesis: o,p,s are_LinDep consider A being Real such that A <> 0 and A3: o + (a * p) = A * (o + (b * s)) by A1, ANPROJ_1:1; o + (a * p) = (A * o) + (A * (b * s)) by A3, RLVECT_1:def_5 .= (A * o) + ((A * b) * s) by RLVECT_1:def_7 ; then (- (A * o)) + (o + (a * p)) = ((- (A * o)) + (A * o)) + ((A * b) * s) by RLVECT_1:def_3 .= (0. V) + ((A * b) * s) by RLVECT_1:5 .= (A * b) * s by RLVECT_1:4 ; then ((- (A * o)) + o) + (a * p) = (A * b) * s by RLVECT_1:def_3; then (A * b) * s = (((- A) * o) + o) + (a * p) by Lm8 .= (((- A) * o) + (1 * o)) + (a * p) by RLVECT_1:def_8 .= (((- A) + 1) * o) + (a * p) by RLVECT_1:def_6 ; then ((((- A) + 1) * o) + (a * p)) + (- ((A * b) * s)) = 0. V by RLVECT_1:5; then 0. V = ((((- A) + 1) * o) + (a * p)) + ((- (A * b)) * s) by Lm8; hence o,p,s are_LinDep by A2, ANPROJ_1:def_2; ::_thesis: verum end; Lm11: for V being RealLinearSpace for p, q being Element of V for a being Real st a * p = q & a <> 0 & not p is zero holds not q is zero proof let V be RealLinearSpace; ::_thesis: for p, q being Element of V for a being Real st a * p = q & a <> 0 & not p is zero holds not q is zero let p, q be Element of V; ::_thesis: for a being Real st a * p = q & a <> 0 & not p is zero holds not q is zero let a be Real; ::_thesis: ( a * p = q & a <> 0 & not p is zero implies not q is zero ) assume that A1: ( a * p = q & a <> 0 ) and A2: not p is zero ; ::_thesis: not q is zero p <> 0. V by A2; then q <> 0. V by A1, RLVECT_1:11; hence not q is zero by STRUCT_0:def_12; ::_thesis: verum end; Lm12: for V being RealLinearSpace for r, u2, v2, o, u, v being Element of V for a1, a2, A, B being Real st r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) holds r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) proof let V be RealLinearSpace; ::_thesis: for r, u2, v2, o, u, v being Element of V for a1, a2, A, B being Real st r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) holds r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) let r, u2, v2, o, u, v be Element of V; ::_thesis: for a1, a2, A, B being Real st r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) holds r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) let a1, a2 be Real; ::_thesis: for A, B being Real st r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) holds r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) let A, B be Real; ::_thesis: ( r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) implies r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) ) assume ( r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) ) ; ::_thesis: r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) hence r = ((A * o) + (A * (a1 * u))) + (B * (o + (a2 * v))) by RLVECT_1:def_5 .= ((A * o) + (A * (a1 * u))) + ((B * o) + (B * (a2 * v))) by RLVECT_1:def_5 .= ((A * o) + ((A * a1) * u)) + ((B * o) + (B * (a2 * v))) by RLVECT_1:def_7 .= ((A * o) + ((A * a1) * u)) + ((B * o) + ((B * a2) * v)) by RLVECT_1:def_7 .= (((A * o) + ((A * a1) * u)) + (B * o)) + ((B * a2) * v) by RLVECT_1:def_3 .= (((A * o) + (B * o)) + ((A * a1) * u)) + ((B * a2) * v) by RLVECT_1:def_3 .= (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) by RLVECT_1:def_6 ; ::_thesis: verum end; Lm13: for V being RealLinearSpace for r, p, q, o being Element of V for a, b being Real st r = (a * p) + (b * q) holds r = ((0 * o) + (a * p)) + (b * q) proof let V be RealLinearSpace; ::_thesis: for r, p, q, o being Element of V for a, b being Real st r = (a * p) + (b * q) holds r = ((0 * o) + (a * p)) + (b * q) let r, p, q, o be Element of V; ::_thesis: for a, b being Real st r = (a * p) + (b * q) holds r = ((0 * o) + (a * p)) + (b * q) let a, b be Real; ::_thesis: ( r = (a * p) + (b * q) implies r = ((0 * o) + (a * p)) + (b * q) ) assume r = (a * p) + (b * q) ; ::_thesis: r = ((0 * o) + (a * p)) + (b * q) hence r = ((0. V) + (a * p)) + (b * q) by RLVECT_1:4 .= ((0 * o) + (a * p)) + (b * q) by RLVECT_1:10 ; ::_thesis: verum end; Lm14: for V being RealLinearSpace for p, q being Element of V holds (0 * p) + (0 * q) = 0. V proof let V be RealLinearSpace; ::_thesis: for p, q being Element of V holds (0 * p) + (0 * q) = 0. V let p, q be Element of V; ::_thesis: (0 * p) + (0 * q) = 0. V thus (0 * p) + (0 * q) = (0. V) + (0 * q) by RLVECT_1:10 .= 0 * q by RLVECT_1:4 .= 0. V by RLVECT_1:10 ; ::_thesis: verum end; Lm15: for V being RealLinearSpace for o, v, w being Element of V for b, a2, a3 being Real holds ((0 * o) + ((b * a2) * v)) + (((- b) * a3) * w) = b * ((a2 * v) - (a3 * w)) proof let V be RealLinearSpace; ::_thesis: for o, v, w being Element of V for b, a2, a3 being Real holds ((0 * o) + ((b * a2) * v)) + (((- b) * a3) * w) = b * ((a2 * v) - (a3 * w)) let o, v, w be Element of V; ::_thesis: for b, a2, a3 being Real holds ((0 * o) + ((b * a2) * v)) + (((- b) * a3) * w) = b * ((a2 * v) - (a3 * w)) let b, a2, a3 be Real; ::_thesis: ((0 * o) + ((b * a2) * v)) + (((- b) * a3) * w) = b * ((a2 * v) - (a3 * w)) thus ((0 * o) + ((b * a2) * v)) + (((- b) * a3) * w) = ((0. V) + ((b * a2) * v)) + (((- b) * a3) * w) by RLVECT_1:10 .= ((b * a2) * v) + (((- b) * a3) * w) by RLVECT_1:4 .= (b * (a2 * v)) + ((b * (- a3)) * w) by RLVECT_1:def_7 .= (b * (a2 * v)) + (b * ((- a3) * w)) by RLVECT_1:def_7 .= (b * (a2 * v)) + (b * (- (a3 * w))) by Lm8 .= b * ((a2 * v) - (a3 * w)) by RLVECT_1:def_5 ; ::_thesis: verum end; theorem Th8: :: ANPROJ_2:8 for V being RealLinearSpace for o, u, v, w, u2, v2, w2, u1, v1, w1 being Element of V st not o is zero & u,v,w are_Prop_Vect & u2,v2,w2 are_Prop_Vect & u1,v1,w1 are_Prop_Vect & o,u,v,w,u2,v2,w2 are_perspective & not are_Prop o,u2 & not are_Prop o,v2 & not are_Prop o,w2 & not are_Prop u,u2 & not are_Prop v,v2 & not are_Prop w,w2 & not o,u,v are_LinDep & not o,u,w are_LinDep & not o,v,w are_LinDep & u,v,w,u1,v1,w1 lie_on_a_triangle & u2,v2,w2,u1,v1,w1 lie_on_a_triangle holds u1,v1,w1 are_LinDep proof let V be RealLinearSpace; ::_thesis: for o, u, v, w, u2, v2, w2, u1, v1, w1 being Element of V st not o is zero & u,v,w are_Prop_Vect & u2,v2,w2 are_Prop_Vect & u1,v1,w1 are_Prop_Vect & o,u,v,w,u2,v2,w2 are_perspective & not are_Prop o,u2 & not are_Prop o,v2 & not are_Prop o,w2 & not are_Prop u,u2 & not are_Prop v,v2 & not are_Prop w,w2 & not o,u,v are_LinDep & not o,u,w are_LinDep & not o,v,w are_LinDep & u,v,w,u1,v1,w1 lie_on_a_triangle & u2,v2,w2,u1,v1,w1 lie_on_a_triangle holds u1,v1,w1 are_LinDep let o, u, v, w, u2, v2, w2, u1, v1, w1 be Element of V; ::_thesis: ( not o is zero & u,v,w are_Prop_Vect & u2,v2,w2 are_Prop_Vect & u1,v1,w1 are_Prop_Vect & o,u,v,w,u2,v2,w2 are_perspective & not are_Prop o,u2 & not are_Prop o,v2 & not are_Prop o,w2 & not are_Prop u,u2 & not are_Prop v,v2 & not are_Prop w,w2 & not o,u,v are_LinDep & not o,u,w are_LinDep & not o,v,w are_LinDep & u,v,w,u1,v1,w1 lie_on_a_triangle & u2,v2,w2,u1,v1,w1 lie_on_a_triangle implies u1,v1,w1 are_LinDep ) assume that A1: not o is zero and A2: u,v,w are_Prop_Vect and A3: u2,v2,w2 are_Prop_Vect and A4: u1,v1,w1 are_Prop_Vect and A5: o,u,v,w,u2,v2,w2 are_perspective and A6: not are_Prop o,u2 and A7: not are_Prop o,v2 and A8: not are_Prop o,w2 and A9: not are_Prop u,u2 and A10: not are_Prop v,v2 and A11: not are_Prop w,w2 and A12: not o,u,v are_LinDep and A13: not o,u,w are_LinDep and A14: not o,v,w are_LinDep and A15: u,v,w,u1,v1,w1 lie_on_a_triangle and A16: u2,v2,w2,u1,v1,w1 lie_on_a_triangle ; ::_thesis: u1,v1,w1 are_LinDep A17: not w is zero by A2, Def1; A18: ( o,w,w2 are_LinDep & not are_Prop w,o ) by A5, A13, Def3, ANPROJ_1:11; A19: not w2 is zero by A3, Def1; then o,w,w2 are_Prop_Vect by A1, A17, Def1; then consider a3, b3 being Real such that A20: b3 * w2 = o + (a3 * w) and a3 <> 0 and A21: b3 <> 0 by A8, A11, A18, Th6; A22: not u is zero by A2, Def1; A23: not v is zero by A2, Def1; A24: ( o,v,v2 are_LinDep & not are_Prop o,v ) by A5, A12, Def3, ANPROJ_1:11; A25: ( o,u,u2 are_LinDep & not are_Prop o,u ) by A5, A12, Def3, ANPROJ_1:11; A26: not u2 is zero by A3, Def1; then o,u,u2 are_Prop_Vect by A1, A22, Def1; then consider a1, b1 being Real such that A27: b1 * u2 = o + (a1 * u) and A28: a1 <> 0 and A29: b1 <> 0 by A6, A9, A25, Th6; A30: not v2 is zero by A3, Def1; then o,v,v2 are_Prop_Vect by A1, A23, Def1; then consider a2, b2 being Real such that A31: b2 * v2 = o + (a2 * v) and A32: a2 <> 0 and A33: b2 <> 0 by A7, A10, A24, Th6; set u29 = o + (a1 * u); set v29 = o + (a2 * v); set w29 = o + (a3 * w); A34: are_Prop v2,o + (a2 * v) by A31, A33, Lm9; A35: not o + (a2 * v) is zero by A30, A31, A33, Lm11; A36: are_Prop w2,o + (a3 * w) by A20, A21, Lm9; A37: ( u,v,w1 are_LinDep & not are_Prop u,v ) by A12, A15, Def2, ANPROJ_1:12; A38: not w1 is zero by A4, Def1; then u,v,w1 are_Prop_Vect by A22, A23, Def1; then consider c3, d3 being Real such that A39: w1 = (c3 * u) + (d3 * v) by A37, Th7; A40: are_Prop u2,o + (a1 * u) by A27, A29, Lm9; A41: ( v,w,u1 are_LinDep & not are_Prop v,w ) by A14, A15, Def2, ANPROJ_1:12; A42: not u1 is zero by A4, Def1; then v,w,u1 are_Prop_Vect by A23, A17, Def1; then consider c1, d1 being Real such that A43: u1 = (c1 * v) + (d1 * w) by A41, Th7; v2,w2,u1 are_LinDep by A16, Def2; then A44: o + (a2 * v),o + (a3 * w),u1 are_LinDep by A34, A36, ANPROJ_1:4; A45: not are_Prop o + (a2 * v),o + (a3 * w) by A14, A32, Lm10; A46: not o + (a3 * w) is zero by A19, A20, A21, Lm11; then o + (a2 * v),o + (a3 * w),u1 are_Prop_Vect by A42, A35, Def1; then consider A1, B1 being Real such that A47: u1 = (A1 * (o + (a2 * v))) + (B1 * (o + (a3 * w))) by A44, A45, Th7; A48: ( u,w,v1 are_LinDep & not are_Prop u,w ) by A13, A15, Def2, ANPROJ_1:12; A49: not v1 is zero by A4, Def1; then u,w,v1 are_Prop_Vect by A22, A17, Def1; then consider c2, d2 being Real such that A50: v1 = (c2 * u) + (d2 * w) by A48, Th7; A51: u1 = (((A1 + B1) * o) + ((A1 * a2) * v)) + ((B1 * a3) * w) by A47, Lm12; u2,v2,w1 are_LinDep by A16, Def2; then A52: o + (a1 * u),o + (a2 * v),w1 are_LinDep by A40, A34, ANPROJ_1:4; A53: not are_Prop o + (a1 * u),o + (a2 * v) by A12, A28, Lm10; A54: not o + (a1 * u) is zero by A26, A27, A29, Lm11; then o + (a1 * u),o + (a2 * v),w1 are_Prop_Vect by A38, A35, Def1; then consider A3, B3 being Real such that A55: w1 = (A3 * (o + (a1 * u))) + (B3 * (o + (a2 * v))) by A52, A53, Th7; u2,w2,v1 are_LinDep by A16, Def2; then A56: o + (a1 * u),o + (a3 * w),v1 are_LinDep by A40, A36, ANPROJ_1:4; A57: not are_Prop o + (a1 * u),o + (a3 * w) by A13, A28, Lm10; A58: w1 = (((A3 + B3) * o) + ((A3 * a1) * u)) + ((B3 * a2) * v) by A55, Lm12; o + (a1 * u),o + (a3 * w),v1 are_Prop_Vect by A49, A54, A46, Def1; then consider A2, B2 being Real such that A59: v1 = (A2 * (o + (a1 * u))) + (B2 * (o + (a3 * w))) by A56, A57, Th7; A60: v1 = (((A2 + B2) * o) + ((A2 * a1) * u)) + ((B2 * a3) * w) by A59, Lm12; w1 = ((0 * o) + (c3 * u)) + (d3 * v) by A39, Lm13; then A61: A3 + B3 = 0 by A12, A58, ANPROJ_1:8; u1 = ((0 * o) + (c1 * v)) + (d1 * w) by A43, Lm13; then A62: A1 + B1 = 0 by A14, A51, ANPROJ_1:8; v1 = ((0 * o) + (c2 * u)) + (d2 * w) by A50, Lm13; then A63: A2 + B2 = 0 by A13, A60, ANPROJ_1:8; A64: ( A1 <> 0 & A2 <> 0 & A3 <> 0 ) proof A65: now__::_thesis:_not_A2_=_0 assume A2 = 0 ; ::_thesis: contradiction then v1 = 0. V by A59, A63, Lm14; hence contradiction by A49; ::_thesis: verum end; A66: now__::_thesis:_not_A1_=_0 assume A1 = 0 ; ::_thesis: contradiction then u1 = 0. V by A47, A62, Lm14; hence contradiction by A42; ::_thesis: verum end; A67: now__::_thesis:_not_A3_=_0 assume A3 = 0 ; ::_thesis: contradiction then w1 = 0. V by A55, A61, Lm14; hence contradiction by A38; ::_thesis: verum end; assume ( not A1 <> 0 or not A2 <> 0 or not A3 <> 0 ) ; ::_thesis: contradiction hence contradiction by A66, A65, A67; ::_thesis: verum end; set u19 = (a2 * v) - (a3 * w); set v19 = (a1 * u) - (a3 * w); set w19 = (a1 * u) - (a2 * v); B1 = - A1 by A62; then u1 = A1 * ((a2 * v) - (a3 * w)) by A51, Lm15; then A68: are_Prop (a2 * v) - (a3 * w),u1 by A64, Lm9; B3 = - A3 by A61; then w1 = A3 * ((a1 * u) - (a2 * v)) by A58, Lm15; then A69: are_Prop (a1 * u) - (a2 * v),w1 by A64, Lm9; B2 = - A2 by A63; then v1 = A2 * ((a1 * u) - (a3 * w)) by A60, Lm15; then A70: are_Prop (a1 * u) - (a3 * w),v1 by A64, Lm9; ((1 * ((a2 * v) - (a3 * w))) + ((- 1) * ((a1 * u) - (a3 * w)))) + (1 * ((a1 * u) - (a2 * v))) = (((a2 * v) - (a3 * w)) + ((- 1) * ((a1 * u) - (a3 * w)))) + (1 * ((a1 * u) - (a2 * v))) by RLVECT_1:def_8 .= (((a2 * v) - (a3 * w)) + ((- 1) * ((a1 * u) - (a3 * w)))) + ((a1 * u) - (a2 * v)) by RLVECT_1:def_8 .= (((a2 * v) - (a3 * w)) + (- ((a1 * u) - (a3 * w)))) + ((a1 * u) - (a2 * v)) by RLVECT_1:16 .= (((a2 * v) + (- (a3 * w))) + ((a3 * w) + (- (a1 * u)))) + ((a1 * u) - (a2 * v)) by RLVECT_1:33 .= ((((a2 * v) + (- (a3 * w))) + (a3 * w)) + (- (a1 * u))) + ((a1 * u) + (- (a2 * v))) by RLVECT_1:def_3 .= (((a2 * v) + ((- (a3 * w)) + (a3 * w))) + (- (a1 * u))) + ((a1 * u) + (- (a2 * v))) by RLVECT_1:def_3 .= (((a2 * v) + (0. V)) + (- (a1 * u))) + ((a1 * u) + (- (a2 * v))) by RLVECT_1:5 .= ((a2 * v) + (- (a1 * u))) + ((a1 * u) + (- (a2 * v))) by RLVECT_1:4 .= (a2 * v) + ((- (a1 * u)) + ((a1 * u) + (- (a2 * v)))) by RLVECT_1:def_3 .= (a2 * v) + (((- (a1 * u)) + (a1 * u)) + (- (a2 * v))) by RLVECT_1:def_3 .= (a2 * v) + ((0. V) + (- (a2 * v))) by RLVECT_1:5 .= (a2 * v) + (- (a2 * v)) by RLVECT_1:4 .= 0. V by RLVECT_1:5 ; then (a2 * v) - (a3 * w),(a1 * u) - (a3 * w),(a1 * u) - (a2 * v) are_LinDep by ANPROJ_1:def_2; hence u1,v1,w1 are_LinDep by A68, A70, A69, ANPROJ_1:4; ::_thesis: verum end; definition let V be RealLinearSpace; let o, u, v, w, u2, v2, w2 be Element of V; predo,u,v,w,u2,v2,w2 lie_on_an_angle means :Def4: :: ANPROJ_2:def 4 ( not o,u,u2 are_LinDep & o,u,v are_LinDep & o,u,w are_LinDep & o,u2,v2 are_LinDep & o,u2,w2 are_LinDep ); end; :: deftheorem Def4 defines lie_on_an_angle ANPROJ_2:def_4_:_ for V being RealLinearSpace for o, u, v, w, u2, v2, w2 being Element of V holds ( o,u,v,w,u2,v2,w2 lie_on_an_angle iff ( not o,u,u2 are_LinDep & o,u,v are_LinDep & o,u,w are_LinDep & o,u2,v2 are_LinDep & o,u2,w2 are_LinDep ) ); definition let V be RealLinearSpace; let o, u, v, w, u2, v2, w2 be Element of V; predo,u,v,w,u2,v2,w2 are_half_mutually_not_Prop means :Def5: :: ANPROJ_2:def 5 ( not are_Prop o,v & not are_Prop o,w & not are_Prop o,v2 & not are_Prop o,w2 & not are_Prop u,v & not are_Prop u,w & not are_Prop u2,v2 & not are_Prop u2,w2 & not are_Prop v,w & not are_Prop v2,w2 ); end; :: deftheorem Def5 defines are_half_mutually_not_Prop ANPROJ_2:def_5_:_ for V being RealLinearSpace for o, u, v, w, u2, v2, w2 being Element of V holds ( o,u,v,w,u2,v2,w2 are_half_mutually_not_Prop iff ( not are_Prop o,v & not are_Prop o,w & not are_Prop o,v2 & not are_Prop o,w2 & not are_Prop u,v & not are_Prop u,w & not are_Prop u2,v2 & not are_Prop u2,w2 & not are_Prop v,w & not are_Prop v2,w2 ) ); Lm16: for V being RealLinearSpace for u2, w2 being Element of V for b1 being Real st b1 * u2 = w2 & b1 <> 0 holds are_Prop u2,w2 proof let V be RealLinearSpace; ::_thesis: for u2, w2 being Element of V for b1 being Real st b1 * u2 = w2 & b1 <> 0 holds are_Prop u2,w2 let u2, w2 be Element of V; ::_thesis: for b1 being Real st b1 * u2 = w2 & b1 <> 0 holds are_Prop u2,w2 let b1 be Real; ::_thesis: ( b1 * u2 = w2 & b1 <> 0 implies are_Prop u2,w2 ) assume that A1: b1 * u2 = w2 and A2: b1 <> 0 ; ::_thesis: are_Prop u2,w2 b1 * u2 = 1 * w2 by A1, RLVECT_1:def_8; hence are_Prop u2,w2 by A2, ANPROJ_1:def_1; ::_thesis: verum end; Lm17: for V being RealLinearSpace for p, q, y being Element of V for a being Real st not are_Prop p,q & y = a * q & a <> 0 holds not are_Prop p,y proof let V be RealLinearSpace; ::_thesis: for p, q, y being Element of V for a being Real st not are_Prop p,q & y = a * q & a <> 0 holds not are_Prop p,y let p, q, y be Element of V; ::_thesis: for a being Real st not are_Prop p,q & y = a * q & a <> 0 holds not are_Prop p,y let a be Real; ::_thesis: ( not are_Prop p,q & y = a * q & a <> 0 implies not are_Prop p,y ) assume that A1: not are_Prop p,q and A2: ( y = a * q & a <> 0 ) ; ::_thesis: not are_Prop p,y assume are_Prop p,y ; ::_thesis: contradiction then consider b being Real such that A3: ( b <> 0 & p = b * y ) by ANPROJ_1:1; ( p = (b * a) * q & b * a <> 0 ) by A2, A3, RLVECT_1:def_7, XCMPLX_1:6; hence contradiction by A1, ANPROJ_1:1; ::_thesis: verum end; Lm18: for V being RealLinearSpace for w1, u, v2, o, u2 being Element of V for a, b, c2 being Real st w1 = (a * u) + (b * v2) & v2 = o + (c2 * u2) holds w1 = ((b * o) + (a * u)) + ((b * c2) * u2) proof let V be RealLinearSpace; ::_thesis: for w1, u, v2, o, u2 being Element of V for a, b, c2 being Real st w1 = (a * u) + (b * v2) & v2 = o + (c2 * u2) holds w1 = ((b * o) + (a * u)) + ((b * c2) * u2) let w1, u, v2, o, u2 be Element of V; ::_thesis: for a, b, c2 being Real st w1 = (a * u) + (b * v2) & v2 = o + (c2 * u2) holds w1 = ((b * o) + (a * u)) + ((b * c2) * u2) let a, b, c2 be Real; ::_thesis: ( w1 = (a * u) + (b * v2) & v2 = o + (c2 * u2) implies w1 = ((b * o) + (a * u)) + ((b * c2) * u2) ) assume ( w1 = (a * u) + (b * v2) & v2 = o + (c2 * u2) ) ; ::_thesis: w1 = ((b * o) + (a * u)) + ((b * c2) * u2) hence w1 = (a * u) + ((b * o) + (b * (c2 * u2))) by RLVECT_1:def_5 .= ((a * u) + (b * o)) + (b * (c2 * u2)) by RLVECT_1:def_3 .= ((b * o) + (a * u)) + ((b * c2) * u2) by RLVECT_1:def_7 ; ::_thesis: verum end; Lm19: for V being RealLinearSpace for w1, u2, v1, o, u being Element of V for a, b, a2 being Real st w1 = (a * u2) + (b * v1) & v1 = o + (a2 * u) holds w1 = ((b * o) + ((b * a2) * u)) + (a * u2) proof let V be RealLinearSpace; ::_thesis: for w1, u2, v1, o, u being Element of V for a, b, a2 being Real st w1 = (a * u2) + (b * v1) & v1 = o + (a2 * u) holds w1 = ((b * o) + ((b * a2) * u)) + (a * u2) let w1, u2, v1, o, u be Element of V; ::_thesis: for a, b, a2 being Real st w1 = (a * u2) + (b * v1) & v1 = o + (a2 * u) holds w1 = ((b * o) + ((b * a2) * u)) + (a * u2) let a, b, a2 be Real; ::_thesis: ( w1 = (a * u2) + (b * v1) & v1 = o + (a2 * u) implies w1 = ((b * o) + ((b * a2) * u)) + (a * u2) ) assume ( w1 = (a * u2) + (b * v1) & v1 = o + (a2 * u) ) ; ::_thesis: w1 = ((b * o) + ((b * a2) * u)) + (a * u2) hence w1 = ((b * o) + (a * u2)) + ((b * a2) * u) by Lm18 .= ((b * o) + ((b * a2) * u)) + (a * u2) by RLVECT_1:def_3 ; ::_thesis: verum end; Lm20: for V being RealLinearSpace for p, q being Element of V for a being Real st a * p = q & a <> 0 & not p is zero holds not q is zero proof let V be RealLinearSpace; ::_thesis: for p, q being Element of V for a being Real st a * p = q & a <> 0 & not p is zero holds not q is zero let p, q be Element of V; ::_thesis: for a being Real st a * p = q & a <> 0 & not p is zero holds not q is zero let a be Real; ::_thesis: ( a * p = q & a <> 0 & not p is zero implies not q is zero ) assume that A1: ( a * p = q & a <> 0 ) and A2: not p is zero ; ::_thesis: not q is zero p <> 0. V by A2; then q <> 0. V by A1, RLVECT_1:11; hence not q is zero by STRUCT_0:def_12; ::_thesis: verum end; Lm21: for V being RealLinearSpace for p, q, y, s being Element of V for a, b being Real st not are_Prop p,q & y = a * q & a <> 0 & s = b * p & b <> 0 holds not are_Prop s,y proof let V be RealLinearSpace; ::_thesis: for p, q, y, s being Element of V for a, b being Real st not are_Prop p,q & y = a * q & a <> 0 & s = b * p & b <> 0 holds not are_Prop s,y let p, q, y, s be Element of V; ::_thesis: for a, b being Real st not are_Prop p,q & y = a * q & a <> 0 & s = b * p & b <> 0 holds not are_Prop s,y let a, b be Real; ::_thesis: ( not are_Prop p,q & y = a * q & a <> 0 & s = b * p & b <> 0 implies not are_Prop s,y ) assume that A1: not are_Prop p,q and A2: ( y = a * q & a <> 0 ) and A3: ( s = b * p & b <> 0 ) ; ::_thesis: not are_Prop s,y assume are_Prop s,y ; ::_thesis: contradiction then consider c being Real such that A4: ( c <> 0 & s = c * y ) by ANPROJ_1:1; ( s = (c * a) * q & c * a <> 0 ) by A2, A4, RLVECT_1:def_7, XCMPLX_1:6; hence contradiction by A1, A3, ANPROJ_1:def_1; ::_thesis: verum end; Lm22: for V being RealLinearSpace for r, u2, v2, o, u, v being Element of V for a1, a2, A, B being Real st r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) holds r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) proof let V be RealLinearSpace; ::_thesis: for r, u2, v2, o, u, v being Element of V for a1, a2, A, B being Real st r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) holds r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) let r, u2, v2, o, u, v be Element of V; ::_thesis: for a1, a2, A, B being Real st r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) holds r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) let a1, a2 be Real; ::_thesis: for A, B being Real st r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) holds r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) let A, B be Real; ::_thesis: ( r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) implies r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) ) assume ( r = (A * u2) + (B * v2) & u2 = o + (a1 * u) & v2 = o + (a2 * v) ) ; ::_thesis: r = (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) hence r = ((A * o) + (A * (a1 * u))) + (B * (o + (a2 * v))) by RLVECT_1:def_5 .= ((A * o) + (A * (a1 * u))) + ((B * o) + (B * (a2 * v))) by RLVECT_1:def_5 .= ((A * o) + ((A * a1) * u)) + ((B * o) + (B * (a2 * v))) by RLVECT_1:def_7 .= ((A * o) + ((A * a1) * u)) + ((B * o) + ((B * a2) * v)) by RLVECT_1:def_7 .= (((A * o) + ((A * a1) * u)) + (B * o)) + ((B * a2) * v) by RLVECT_1:def_3 .= (((A * o) + (B * o)) + ((A * a1) * u)) + ((B * a2) * v) by RLVECT_1:def_3 .= (((A + B) * o) + ((A * a1) * u)) + ((B * a2) * v) by RLVECT_1:def_6 ; ::_thesis: verum end; Lm23: for a2, a3, c2 being Real st a2 <> a3 & c2 <> 0 holds (a3 * c2) - (a2 * c2) <> 0 proof let a2, a3, c2 be Real; ::_thesis: ( a2 <> a3 & c2 <> 0 implies (a3 * c2) - (a2 * c2) <> 0 ) assume that A1: a2 <> a3 and A2: c2 <> 0 ; ::_thesis: (a3 * c2) - (a2 * c2) <> 0 ( (a3 * c2) - (a2 * c2) = (a3 - a2) * c2 & a3 - a2 <> 0 ) by A1; hence (a3 * c2) - (a2 * c2) <> 0 by A2, XCMPLX_1:6; ::_thesis: verum end; Lm24: for a2, a3, c3, c2, A1, A19, B1, B19 being Real st A1 + B1 = A19 + B19 & A1 * a2 = A19 * a3 & B1 * c3 = B19 * c2 & a2 <> a3 & c2 <> 0 holds A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 proof let a2, a3, c3, c2 be Real; ::_thesis: for A1, A19, B1, B19 being Real st A1 + B1 = A19 + B19 & A1 * a2 = A19 * a3 & B1 * c3 = B19 * c2 & a2 <> a3 & c2 <> 0 holds A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 let A1, A19, B1, B19 be Real; ::_thesis: ( A1 + B1 = A19 + B19 & A1 * a2 = A19 * a3 & B1 * c3 = B19 * c2 & a2 <> a3 & c2 <> 0 implies A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 ) assume that A1: A1 + B1 = A19 + B19 and A2: ( A1 * a2 = A19 * a3 & B1 * c3 = B19 * c2 ) and A3: ( a2 <> a3 & c2 <> 0 ) ; ::_thesis: A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 A4: (A1 * (a3 * c2)) + (B1 * (a3 * c2)) = (A19 + B19) * (a3 * c2) by A1, XCMPLX_1:8; ( A1 * (a2 * c2) = (A19 * a3) * c2 & B1 * (c3 * a3) = (B19 * c2) * a3 ) by A2, XCMPLX_1:4; then B1 * ((a3 * c3) - (a3 * c2)) = A1 * ((a3 * c2) - (a2 * c2)) by A4; then A5: A1 * (((a3 * c2) - (a2 * c2)) * (((a3 * c2) - (a2 * c2)) ")) = (B1 * ((a3 * c3) - (a3 * c2))) * (((a3 * c2) - (a2 * c2)) ") by XCMPLX_1:4; (a3 * c2) - (a2 * c2) <> 0 by A3, Lm23; then A1 * 1 = (B1 * ((a3 * c3) - (a3 * c2))) * (((a3 * c2) - (a2 * c2)) ") by A5, XCMPLX_0:def_7; hence A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 ; ::_thesis: verum end; Lm25: for c2, a2, a3, B1 being Real st c2 <> 0 & a2 <> a3 & B1 <> 0 holds B1 * (((a3 * c2) - (a2 * c2)) ") <> 0 proof let c2, a2, a3, B1 be Real; ::_thesis: ( c2 <> 0 & a2 <> a3 & B1 <> 0 implies B1 * (((a3 * c2) - (a2 * c2)) ") <> 0 ) assume that A1: ( c2 <> 0 & a2 <> a3 ) and A2: B1 <> 0 ; ::_thesis: B1 * (((a3 * c2) - (a2 * c2)) ") <> 0 ((a3 * c2) - (a2 * c2)) " <> 0 by A1, Lm23, XCMPLX_1:202; hence B1 * (((a3 * c2) - (a2 * c2)) ") <> 0 by A2, XCMPLX_1:6; ::_thesis: verum end; Lm26: for V being RealLinearSpace for u1, o, u, u2 being Element of V for a3, c3, c2, a2, A1, B1 being Real st A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 & c2 <> 0 & a2 <> a3 & u1 = (((A1 + B1) * o) + ((A1 * a2) * u)) + ((B1 * c3) * u2) holds u1 = (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2)) proof let V be RealLinearSpace; ::_thesis: for u1, o, u, u2 being Element of V for a3, c3, c2, a2, A1, B1 being Real st A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 & c2 <> 0 & a2 <> a3 & u1 = (((A1 + B1) * o) + ((A1 * a2) * u)) + ((B1 * c3) * u2) holds u1 = (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2)) let u1, o, u, u2 be Element of V; ::_thesis: for a3, c3, c2, a2, A1, B1 being Real st A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 & c2 <> 0 & a2 <> a3 & u1 = (((A1 + B1) * o) + ((A1 * a2) * u)) + ((B1 * c3) * u2) holds u1 = (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2)) let a3, c3, c2, a2 be Real; ::_thesis: for A1, B1 being Real st A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 & c2 <> 0 & a2 <> a3 & u1 = (((A1 + B1) * o) + ((A1 * a2) * u)) + ((B1 * c3) * u2) holds u1 = (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2)) let A1, B1 be Real; ::_thesis: ( A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 & c2 <> 0 & a2 <> a3 & u1 = (((A1 + B1) * o) + ((A1 * a2) * u)) + ((B1 * c3) * u2) implies u1 = (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2)) ) assume that A1: A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 and A2: ( c2 <> 0 & a2 <> a3 ) and A3: u1 = (((A1 + B1) * o) + ((A1 * a2) * u)) + ((B1 * c3) * u2) ; ::_thesis: u1 = (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2)) A4: (a3 * c2) - (a2 * c2) <> 0 by A2, Lm23; A5: (B1 * c3) * u2 = ((B1 * 1) * c3) * u2 .= ((B1 * ((((a3 * c2) - (a2 * c2)) ") * ((a3 * c2) - (a2 * c2)))) * c3) * u2 by A4, XCMPLX_0:def_7 .= ((B1 * (((a3 * c2) - (a2 * c2)) ")) * ((c3 * c2) * (a3 - a2))) * u2 .= (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((c2 * c3) * (a3 - a2)) * u2) by RLVECT_1:def_7 ; A6: (((((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1) * a2) * u = ((B1 * (((a3 * c2) - (a2 * c2)) ")) * ((a2 * a3) * (c3 - c2))) * u .= (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((a2 * a3) * (c3 - c2)) * u) by RLVECT_1:def_7 ; (((((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1) + (B1 * 1)) * o = ((((a3 * c3) - (a3 * c2)) * (B1 * (((a3 * c2) - (a2 * c2)) "))) + (B1 * ((((a3 * c2) - (a2 * c2)) ") * ((a3 * c2) - (a2 * c2))))) * o by A4, XCMPLX_0:def_7 .= ((B1 * (((a3 * c2) - (a2 * c2)) ")) * ((((a3 * c3) + (- (a3 * c2))) + (a3 * c2)) - (a2 * c2))) * o .= (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((a3 * c3) - (a2 * c2)) * o) by RLVECT_1:def_7 ; hence u1 = ((B1 * (((a3 * c2) - (a2 * c2)) ")) * ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u))) + ((B1 * (((a3 * c2) - (a2 * c2)) ")) * (((c2 * c3) * (a3 - a2)) * u2)) by A1, A3, A6, A5, RLVECT_1:def_5 .= (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2)) by RLVECT_1:def_5 ; ::_thesis: verum end; Lm27: for V being RealLinearSpace for p, q, r, u, u2, u1 being Element of V holds ((p + q) + r) + ((u + u2) + u1) = ((p + u) + (q + u2)) + (r + u1) proof let V be RealLinearSpace; ::_thesis: for p, q, r, u, u2, u1 being Element of V holds ((p + q) + r) + ((u + u2) + u1) = ((p + u) + (q + u2)) + (r + u1) let p, q, r, u, u2, u1 be Element of V; ::_thesis: ((p + q) + r) + ((u + u2) + u1) = ((p + u) + (q + u2)) + (r + u1) thus ((p + u) + (q + u2)) + (r + u1) = (u + (p + (q + u2))) + (r + u1) by RLVECT_1:def_3 .= (u + ((p + q) + u2)) + (r + u1) by RLVECT_1:def_3 .= ((u + u2) + (p + q)) + (r + u1) by RLVECT_1:def_3 .= (u + u2) + ((p + q) + (r + u1)) by RLVECT_1:def_3 .= (u + u2) + (((p + q) + r) + u1) by RLVECT_1:def_3 .= ((p + q) + r) + ((u + u2) + u1) by RLVECT_1:def_3 ; ::_thesis: verum end; Lm28: for V being RealLinearSpace for u1, o, u, u2, v1, w2 being Element of V for a3, c3, a2, c2, C2, C3 being Real st u1 = ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2) & v1 = (o + (a3 * u)) + (c3 * u2) & w2 = (o + (a2 * u)) + (c2 * u2) & C2 + C3 = (a2 * c2) - (a3 * c3) & (C2 * a3) + (C3 * a2) = (a2 * a3) * (c2 - c3) & (C2 * c3) + (C3 * c2) = (c2 * c3) * (a2 - a3) holds ((1 * u1) + (C2 * v1)) + (C3 * w2) = 0. V proof let V be RealLinearSpace; ::_thesis: for u1, o, u, u2, v1, w2 being Element of V for a3, c3, a2, c2, C2, C3 being Real st u1 = ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2) & v1 = (o + (a3 * u)) + (c3 * u2) & w2 = (o + (a2 * u)) + (c2 * u2) & C2 + C3 = (a2 * c2) - (a3 * c3) & (C2 * a3) + (C3 * a2) = (a2 * a3) * (c2 - c3) & (C2 * c3) + (C3 * c2) = (c2 * c3) * (a2 - a3) holds ((1 * u1) + (C2 * v1)) + (C3 * w2) = 0. V let u1, o, u, u2, v1, w2 be Element of V; ::_thesis: for a3, c3, a2, c2, C2, C3 being Real st u1 = ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2) & v1 = (o + (a3 * u)) + (c3 * u2) & w2 = (o + (a2 * u)) + (c2 * u2) & C2 + C3 = (a2 * c2) - (a3 * c3) & (C2 * a3) + (C3 * a2) = (a2 * a3) * (c2 - c3) & (C2 * c3) + (C3 * c2) = (c2 * c3) * (a2 - a3) holds ((1 * u1) + (C2 * v1)) + (C3 * w2) = 0. V let a3, c3, a2, c2 be Real; ::_thesis: for C2, C3 being Real st u1 = ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2) & v1 = (o + (a3 * u)) + (c3 * u2) & w2 = (o + (a2 * u)) + (c2 * u2) & C2 + C3 = (a2 * c2) - (a3 * c3) & (C2 * a3) + (C3 * a2) = (a2 * a3) * (c2 - c3) & (C2 * c3) + (C3 * c2) = (c2 * c3) * (a2 - a3) holds ((1 * u1) + (C2 * v1)) + (C3 * w2) = 0. V let C2, C3 be Real; ::_thesis: ( u1 = ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2) & v1 = (o + (a3 * u)) + (c3 * u2) & w2 = (o + (a2 * u)) + (c2 * u2) & C2 + C3 = (a2 * c2) - (a3 * c3) & (C2 * a3) + (C3 * a2) = (a2 * a3) * (c2 - c3) & (C2 * c3) + (C3 * c2) = (c2 * c3) * (a2 - a3) implies ((1 * u1) + (C2 * v1)) + (C3 * w2) = 0. V ) assume that A1: u1 = ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2) and A2: ( v1 = (o + (a3 * u)) + (c3 * u2) & w2 = (o + (a2 * u)) + (c2 * u2) ) and A3: ( C2 + C3 = (a2 * c2) - (a3 * c3) & (C2 * a3) + (C3 * a2) = (a2 * a3) * (c2 - c3) & (C2 * c3) + (C3 * c2) = (c2 * c3) * (a2 - a3) ) ; ::_thesis: ((1 * u1) + (C2 * v1)) + (C3 * w2) = 0. V A4: ((1 * u1) + (C2 * v1)) + (C3 * w2) = (u1 + (C2 * v1)) + (C3 * w2) by RLVECT_1:def_8 .= u1 + ((C2 * v1) + (C3 * w2)) by RLVECT_1:def_3 ; (C2 * v1) + (C3 * w2) = ((C2 * (o + (a3 * u))) + (C2 * (c3 * u2))) + (C3 * ((o + (a2 * u)) + (c2 * u2))) by A2, RLVECT_1:def_5 .= (((C2 * o) + (C2 * (a3 * u))) + (C2 * (c3 * u2))) + (C3 * ((o + (a2 * u)) + (c2 * u2))) by RLVECT_1:def_5 .= (((C2 * o) + (C2 * (a3 * u))) + (C2 * (c3 * u2))) + ((C3 * (o + (a2 * u))) + (C3 * (c2 * u2))) by RLVECT_1:def_5 .= (((C2 * o) + (C2 * (a3 * u))) + (C2 * (c3 * u2))) + (((C3 * o) + (C3 * (a2 * u))) + (C3 * (c2 * u2))) by RLVECT_1:def_5 .= (((C2 * o) + (C3 * o)) + ((C2 * (a3 * u)) + (C3 * (a2 * u)))) + ((C2 * (c3 * u2)) + (C3 * (c2 * u2))) by Lm27 .= (((C2 + C3) * o) + ((C2 * (a3 * u)) + (C3 * (a2 * u)))) + ((C2 * (c3 * u2)) + (C3 * (c2 * u2))) by RLVECT_1:def_6 .= (((C2 + C3) * o) + (((C2 * a3) * u) + (C3 * (a2 * u)))) + ((C2 * (c3 * u2)) + (C3 * (c2 * u2))) by RLVECT_1:def_7 .= (((C2 + C3) * o) + (((C2 * a3) * u) + ((C3 * a2) * u))) + ((C2 * (c3 * u2)) + (C3 * (c2 * u2))) by RLVECT_1:def_7 .= (((C2 + C3) * o) + (((C2 * a3) * u) + ((C3 * a2) * u))) + (((C2 * c3) * u2) + (C3 * (c2 * u2))) by RLVECT_1:def_7 .= (((C2 + C3) * o) + (((C2 * a3) * u) + ((C3 * a2) * u))) + (((C2 * c3) * u2) + ((C3 * c2) * u2)) by RLVECT_1:def_7 .= (((C2 + C3) * o) + (((C2 * a3) + (C3 * a2)) * u)) + (((C2 * c3) * u2) + ((C3 * c2) * u2)) by RLVECT_1:def_6 .= ((((a2 * c2) - (a3 * c3)) * o) + (((a2 * a3) * (c2 - c3)) * u)) + (((c2 * c3) * (a2 - a3)) * u2) by A3, RLVECT_1:def_6 ; hence ((1 * u1) + (C2 * v1)) + (C3 * w2) = (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * c2) - (a3 * c3)) * o)) + ((((a2 * a3) * (c3 - c2)) * u) + (((a2 * a3) * (c2 - c3)) * u))) + ((((c2 * c3) * (a3 - a2)) * u2) + (((c2 * c3) * (a2 - a3)) * u2)) by A1, A4, Lm27 .= (((((a3 * c3) - (a2 * c2)) + ((a2 * c2) - (a3 * c3))) * o) + ((((a2 * a3) * (c3 - c2)) * u) + (((a2 * a3) * (c2 - c3)) * u))) + ((((c2 * c3) * (a3 - a2)) * u2) + (((c2 * c3) * (a2 - a3)) * u2)) by RLVECT_1:def_6 .= (((((a3 * c3) - (a2 * c2)) + ((a2 * c2) - (a3 * c3))) * o) + ((((a2 * a3) * (c3 - c2)) + ((a2 * a3) * (c2 - c3))) * u)) + ((((c2 * c3) * (a3 - a2)) * u2) + (((c2 * c3) * (a2 - a3)) * u2)) by RLVECT_1:def_6 .= ((((((a3 * c3) + (- (a2 * c2))) + (a2 * c2)) + (- (a3 * c3))) * o) + ((((a2 * a3) * (c3 - c2)) + ((a2 * a3) * (c2 - c3))) * u)) + ((((c2 * c3) * (a3 - a2)) + ((c2 * c3) * (a2 - a3))) * u2) by RLVECT_1:def_6 .= ((0. V) + ((((a2 * a3) * (c3 - c2)) + ((a2 * a3) * (c2 - c3))) * u)) + ((((c2 * c3) * (a3 - a2)) + ((c2 * c3) * (a2 - a3))) * u2) by RLVECT_1:10 .= (0 * u) + ((((c2 * c3) * (a3 - a2)) + (- ((c2 * c3) * (a3 - a2)))) * u2) by RLVECT_1:4 .= (0. V) + (0 * u2) by RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; ::_thesis: verum end; Lm29: for V being RealLinearSpace for w2, o, u, u2, w1 being Element of V for a2, c2, A3, A39, B3, B39 being Real st w2 = (o + (a2 * u)) + (c2 * u2) & w1 = ((B3 * o) + (A3 * u)) + ((B3 * c2) * u2) & B3 = B39 & A3 = B39 * a2 holds w1 = B3 * w2 proof let V be RealLinearSpace; ::_thesis: for w2, o, u, u2, w1 being Element of V for a2, c2, A3, A39, B3, B39 being Real st w2 = (o + (a2 * u)) + (c2 * u2) & w1 = ((B3 * o) + (A3 * u)) + ((B3 * c2) * u2) & B3 = B39 & A3 = B39 * a2 holds w1 = B3 * w2 let w2, o, u, u2, w1 be Element of V; ::_thesis: for a2, c2, A3, A39, B3, B39 being Real st w2 = (o + (a2 * u)) + (c2 * u2) & w1 = ((B3 * o) + (A3 * u)) + ((B3 * c2) * u2) & B3 = B39 & A3 = B39 * a2 holds w1 = B3 * w2 let a2, c2 be Real; ::_thesis: for A3, A39, B3, B39 being Real st w2 = (o + (a2 * u)) + (c2 * u2) & w1 = ((B3 * o) + (A3 * u)) + ((B3 * c2) * u2) & B3 = B39 & A3 = B39 * a2 holds w1 = B3 * w2 let A3, A39, B3, B39 be Real; ::_thesis: ( w2 = (o + (a2 * u)) + (c2 * u2) & w1 = ((B3 * o) + (A3 * u)) + ((B3 * c2) * u2) & B3 = B39 & A3 = B39 * a2 implies w1 = B3 * w2 ) assume that A1: w2 = (o + (a2 * u)) + (c2 * u2) and A2: ( w1 = ((B3 * o) + (A3 * u)) + ((B3 * c2) * u2) & B3 = B39 & A3 = B39 * a2 ) ; ::_thesis: w1 = B3 * w2 thus w1 = ((B3 * o) + (B3 * (a2 * u))) + ((B3 * c2) * u2) by A2, RLVECT_1:def_7 .= ((B3 * o) + (B3 * (a2 * u))) + (B3 * (c2 * u2)) by RLVECT_1:def_7 .= (B3 * (o + (a2 * u))) + (B3 * (c2 * u2)) by RLVECT_1:def_5 .= B3 * w2 by A1, RLVECT_1:def_5 ; ::_thesis: verum end; theorem Th9: :: ANPROJ_2:9 for V being RealLinearSpace for o, u, v, w, u2, v2, w2, u1, v1, w1 being Element of V st not o is zero & u,v,w are_Prop_Vect & u2,v2,w2 are_Prop_Vect & u1,v1,w1 are_Prop_Vect & o,u,v,w,u2,v2,w2 lie_on_an_angle & o,u,v,w,u2,v2,w2 are_half_mutually_not_Prop & u,v2,w1 are_LinDep & u2,v,w1 are_LinDep & u,w2,v1 are_LinDep & w,u2,v1 are_LinDep & v,w2,u1 are_LinDep & w,v2,u1 are_LinDep holds u1,v1,w1 are_LinDep proof let V be RealLinearSpace; ::_thesis: for o, u, v, w, u2, v2, w2, u1, v1, w1 being Element of V st not o is zero & u,v,w are_Prop_Vect & u2,v2,w2 are_Prop_Vect & u1,v1,w1 are_Prop_Vect & o,u,v,w,u2,v2,w2 lie_on_an_angle & o,u,v,w,u2,v2,w2 are_half_mutually_not_Prop & u,v2,w1 are_LinDep & u2,v,w1 are_LinDep & u,w2,v1 are_LinDep & w,u2,v1 are_LinDep & v,w2,u1 are_LinDep & w,v2,u1 are_LinDep holds u1,v1,w1 are_LinDep let o, u, v, w, u2, v2, w2, u1, v1, w1 be Element of V; ::_thesis: ( not o is zero & u,v,w are_Prop_Vect & u2,v2,w2 are_Prop_Vect & u1,v1,w1 are_Prop_Vect & o,u,v,w,u2,v2,w2 lie_on_an_angle & o,u,v,w,u2,v2,w2 are_half_mutually_not_Prop & u,v2,w1 are_LinDep & u2,v,w1 are_LinDep & u,w2,v1 are_LinDep & w,u2,v1 are_LinDep & v,w2,u1 are_LinDep & w,v2,u1 are_LinDep implies u1,v1,w1 are_LinDep ) assume that A1: not o is zero and A2: u,v,w are_Prop_Vect and A3: u2,v2,w2 are_Prop_Vect and A4: u1,v1,w1 are_Prop_Vect and A5: o,u,v,w,u2,v2,w2 lie_on_an_angle and A6: o,u,v,w,u2,v2,w2 are_half_mutually_not_Prop and A7: u,v2,w1 are_LinDep and A8: u2,v,w1 are_LinDep and A9: u,w2,v1 are_LinDep and A10: w,u2,v1 are_LinDep and A11: v,w2,u1 are_LinDep and A12: w,v2,u1 are_LinDep ; ::_thesis: u1,v1,w1 are_LinDep A13: not u is zero by A2, Def1; A14: not are_Prop u2,v2 by A6, Def5; A15: not are_Prop o,v by A6, Def5; A16: not are_Prop u,v by A6, Def5; A17: o,u2,v2 are_LinDep by A5, Def4; A18: ( not are_Prop o,w2 & not are_Prop u2,w2 ) by A6, Def5; A19: not u2 is zero by A3, Def1; A20: ( not are_Prop o,w & not are_Prop u,w ) by A6, Def5; A21: o,u,w are_LinDep by A5, Def4; A22: not are_Prop o,v2 by A6, Def5; A23: o,u2,w2 are_LinDep by A5, Def4; A24: not o,u,u2 are_LinDep by A5, Def4; then A25: not are_Prop o,u by ANPROJ_1:12; A26: not w is zero by A2, Def1; then o,u,w are_Prop_Vect by A1, A13, Def1; then consider a3, b3 being Real such that A27: b3 * w = o + (a3 * u) and a3 <> 0 and A28: b3 <> 0 by A21, A20, A25, Th6; A29: not are_Prop u2,o by A24, ANPROJ_1:12; A30: not w2 is zero by A3, Def1; then o,u2,w2 are_Prop_Vect by A1, A19, Def1; then consider c3, d3 being Real such that A31: d3 * w2 = o + (c3 * u2) and c3 <> 0 and A32: d3 <> 0 by A23, A18, A29, Th6; A33: o,u,v are_LinDep by A5, Def4; A34: not v2 is zero by A3, Def1; then o,u2,v2 are_Prop_Vect by A1, A19, Def1; then consider c2, d2 being Real such that A35: d2 * v2 = o + (c2 * u2) and A36: c2 <> 0 and A37: d2 <> 0 by A17, A22, A14, A29, Th6; A38: not v is zero by A2, Def1; then o,u,v are_Prop_Vect by A1, A13, Def1; then consider a2, b2 being Real such that A39: b2 * v = o + (a2 * u) and a2 <> 0 and A40: b2 <> 0 by A33, A15, A16, A25, Th6; set v9 = o + (a2 * u); set w9 = o + (a3 * u); set v29 = o + (c2 * u2); set w29 = o + (c3 * u2); A41: not o + (c2 * u2) is zero by A34, A35, A37, Lm20; A42: not o + (a2 * u) is zero by A38, A39, A40, Lm20; A43: not o + (a3 * u) is zero by A26, A27, A28, Lm20; A44: not o + (c3 * u2) is zero by A30, A31, A32, Lm20; A45: are_Prop w2,o + (c3 * u2) by A31, A32, Lm16; then A46: u,o + (c3 * u2),v1 are_LinDep by A9, ANPROJ_1:4; A47: are_Prop v,o + (a2 * u) by A39, A40, Lm16; then A48: o + (a2 * u),o + (c3 * u2),u1 are_LinDep by A11, A45, ANPROJ_1:4; A49: are_Prop v2,o + (c2 * u2) by A35, A37, Lm16; then A50: u,o + (c2 * u2),w1 are_LinDep by A7, ANPROJ_1:4; A51: are_Prop w,o + (a3 * u) by A27, A28, Lm16; then A52: o + (a3 * u),o + (c2 * u2),u1 are_LinDep by A12, A49, ANPROJ_1:4; not are_Prop u,v2 proof assume are_Prop u,v2 ; ::_thesis: contradiction then o,u2,u are_LinDep by A17, ANPROJ_1:4; hence contradiction by A24, ANPROJ_1:5; ::_thesis: verum end; then not are_Prop u,o + (c2 * u2) by A35, A37, Lm17; then consider A3, B3 being Real such that A53: w1 = (A3 * u) + (B3 * (o + (c2 * u2))) by A13, A50, A41, ANPROJ_1:6; not o,u2,v are_LinDep proof assume o,u2,v are_LinDep ; ::_thesis: contradiction then A54: o,v,u2 are_LinDep by ANPROJ_1:5; ( o,v,u are_LinDep & o,v,o are_LinDep ) by A33, ANPROJ_1:5, ANPROJ_1:11; hence contradiction by A1, A38, A24, A15, A54, ANPROJ_1:14; ::_thesis: verum end; then not are_Prop v,w2 by A23, ANPROJ_1:4; then not are_Prop o + (a2 * u),o + (c3 * u2) by A39, A40, A31, A32, Lm21; then consider A1, B1 being Real such that A55: u1 = (A1 * (o + (a2 * u))) + (B1 * (o + (c3 * u2))) by A42, A44, A48, ANPROJ_1:6; not o,u,v2 are_LinDep proof assume o,u,v2 are_LinDep ; ::_thesis: contradiction then A56: o,v2,u are_LinDep by ANPROJ_1:5; ( o,v2,u2 are_LinDep & o,v2,o are_LinDep ) by A17, ANPROJ_1:5, ANPROJ_1:11; hence contradiction by A1, A34, A24, A22, A56, ANPROJ_1:14; ::_thesis: verum end; then not are_Prop v2,w by A21, ANPROJ_1:4; then not are_Prop o + (a3 * u),o + (c2 * u2) by A27, A28, A35, A37, Lm21; then consider A19, B19 being Real such that A57: u1 = (A19 * (o + (a3 * u))) + (B19 * (o + (c2 * u2))) by A41, A43, A52, ANPROJ_1:6; A58: u1 = (((A1 + B1) * o) + ((A1 * a2) * u)) + ((B1 * c3) * u2) by A55, Lm22; A59: not are_Prop v2,w2 by A6, Def5; A60: not are_Prop v,w by A6, Def5; A61: ( not are_Prop o + (a2 * u),o + (a3 * u) & not are_Prop o + (c2 * u2),o + (c3 * u2) ) proof A62: now__::_thesis:_not_are_Prop_o_+_(c2_*_u2),o_+_(c3_*_u2) assume are_Prop o + (c2 * u2),o + (c3 * u2) ; ::_thesis: contradiction then are_Prop v2,o + (c3 * u2) by A49, ANPROJ_1:2; hence contradiction by A59, A45, ANPROJ_1:2; ::_thesis: verum end; A63: now__::_thesis:_not_are_Prop_o_+_(a2_*_u),o_+_(a3_*_u) assume are_Prop o + (a2 * u),o + (a3 * u) ; ::_thesis: contradiction then are_Prop v,o + (a3 * u) by A47, ANPROJ_1:2; hence contradiction by A60, A51, ANPROJ_1:2; ::_thesis: verum end; assume ( are_Prop o + (a2 * u),o + (a3 * u) or are_Prop o + (c2 * u2),o + (c3 * u2) ) ; ::_thesis: contradiction hence contradiction by A63, A62; ::_thesis: verum end; not are_Prop u,w2 proof assume are_Prop u,w2 ; ::_thesis: contradiction then o,u2,u are_LinDep by A23, ANPROJ_1:4; hence contradiction by A24, ANPROJ_1:5; ::_thesis: verum end; then not are_Prop u,o + (c3 * u2) by A31, A32, Lm17; then consider A2, B2 being Real such that A64: v1 = (A2 * u) + (B2 * (o + (c3 * u2))) by A13, A44, A46, ANPROJ_1:6; u2,w,v1 are_LinDep by A10, ANPROJ_1:5; then A65: u2,o + (a3 * u),v1 are_LinDep by A51, ANPROJ_1:4; not are_Prop u2,w by A24, A21, ANPROJ_1:4; then not are_Prop u2,o + (a3 * u) by A27, A28, Lm17; then consider A29, B29 being Real such that A66: v1 = (A29 * u2) + (B29 * (o + (a3 * u))) by A19, A43, A65, ANPROJ_1:6; A67: v1 = ((B2 * o) + (A2 * u)) + ((B2 * c3) * u2) by A64, Lm18; A68: u2,o + (a2 * u),w1 are_LinDep by A8, A47, ANPROJ_1:4; not are_Prop u2,v by A24, A33, ANPROJ_1:4; then not are_Prop u2,o + (a2 * u) by A39, A40, Lm17; then consider A39, B39 being Real such that A69: w1 = (A39 * u2) + (B39 * (o + (a2 * u))) by A19, A68, A42, ANPROJ_1:6; A70: w1 = ((B3 * o) + (A3 * u)) + ((B3 * c2) * u2) by A53, Lm18; v1 = ((B29 * o) + ((B29 * a3) * u)) + (A29 * u2) by A66, Lm19; then A71: ( B2 = B29 & A2 = B29 * a3 ) by A24, A67, ANPROJ_1:8; w1 = ((B39 * o) + ((B39 * a2) * u)) + (A39 * u2) by A69, Lm19; then A72: ( B3 = B39 & A3 = B39 * a2 ) by A24, A70, ANPROJ_1:8; A73: u1 = (((A19 + B19) * o) + ((A19 * a3) * u)) + ((B19 * c2) * u2) by A57, Lm22; then A74: B1 * c3 = B19 * c2 by A24, A58, ANPROJ_1:8; ( A1 + B1 = A19 + B19 & A1 * a2 = A19 * a3 ) by A24, A58, A73, ANPROJ_1:8; then A75: A1 = (((a3 * c3) - (a3 * c2)) * (((a3 * c2) - (a2 * c2)) ")) * B1 by A36, A61, A74, Lm24; set v19 = (o + (a3 * u)) + (c3 * u2); set C2 = a2 * c2; set C3 = - (a3 * c3); set u19 = ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2); set w19 = (o + (a2 * u)) + (c2 * u2); A76: ((a2 * c2) * c3) + ((- (a3 * c3)) * c2) = (c2 * c3) * (a2 - a3) ; ( (a2 * c2) + (- (a3 * c3)) = (a2 * c2) - (a3 * c3) & ((a2 * c2) * a3) + ((- (a3 * c3)) * a2) = (a2 * a3) * (c2 - c3) ) ; then ((1 * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2))) + ((a2 * c2) * ((o + (a3 * u)) + (c3 * u2)))) + ((- (a3 * c3)) * ((o + (a2 * u)) + (c2 * u2))) = 0. V by A76, Lm28; then A77: ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2),(o + (a3 * u)) + (c3 * u2),(o + (a2 * u)) + (c2 * u2) are_LinDep by ANPROJ_1:def_2; A78: not v1 is zero by A4, Def1; A79: B2 <> 0 proof assume not B2 <> 0 ; ::_thesis: contradiction then v1 = (0. V) + (0 * (o + (c3 * u2))) by A64, A71, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; hence contradiction by A78; ::_thesis: verum end; v1 = B2 * ((o + (a3 * u)) + (c3 * u2)) by A67, A71, Lm29; then A80: are_Prop (o + (a3 * u)) + (c3 * u2),v1 by A79, Lm16; A81: not w1 is zero by A4, Def1; A82: B3 <> 0 proof assume not B3 <> 0 ; ::_thesis: contradiction then w1 = (0. V) + (0 * (o + (c2 * u2))) by A53, A72, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; hence contradiction by A81; ::_thesis: verum end; w1 = B3 * ((o + (a2 * u)) + (c2 * u2)) by A70, A72, Lm29; then A83: are_Prop (o + (a2 * u)) + (c2 * u2),w1 by A82, Lm16; A84: not u1 is zero by A4, Def1; A85: B1 <> 0 proof assume not B1 <> 0 ; ::_thesis: contradiction then u1 = (0. V) + (0 * (o + (c3 * u2))) by A55, A75, RLVECT_1:10 .= (0. V) + (0. V) by RLVECT_1:10 .= 0. V by RLVECT_1:4 ; hence contradiction by A84; ::_thesis: verum end; u1 = (B1 * (((a3 * c2) - (a2 * c2)) ")) * (((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2)) by A36, A61, A58, A75, Lm26; then are_Prop ((((a3 * c3) - (a2 * c2)) * o) + (((a2 * a3) * (c3 - c2)) * u)) + (((c2 * c3) * (a3 - a2)) * u2),u1 by A36, A61, A85, Lm16, Lm25; hence u1,v1,w1 are_LinDep by A83, A80, A77, ANPROJ_1:4; ::_thesis: verum end; theorem Th10: :: ANPROJ_2:10 for A being non empty set for x1 being Element of A ex f being Element of Funcs (A,REAL) st ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) proof let A be non empty set ; ::_thesis: for x1 being Element of A ex f being Element of Funcs (A,REAL) st ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) let x1 be Element of A; ::_thesis: ex f being Element of Funcs (A,REAL) st ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) deffunc H1( set ) -> Element of NAT = 0 ; deffunc H2( set ) -> Element of NAT = 1; defpred S1[ set ] means $1 = x1; A1: for z being set st z in A holds ( ( S1[z] implies H2(z) in REAL ) & ( not S1[z] implies H1(z) in REAL ) ) ; consider f being Function of A,REAL such that A2: for z being set st z in A holds ( ( S1[z] implies f . z = H2(z) ) & ( not S1[z] implies f . z = H1(z) ) ) from FUNCT_2:sch_5(A1); reconsider f = f as Element of Funcs (A,REAL) by FUNCT_2:8; take f ; ::_thesis: ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) thus ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) by A2; ::_thesis: verum end; theorem Th11: :: ANPROJ_2:11 for A being non empty set for f, g, h being Element of Funcs (A,REAL) for x1, x2, x3 being Element of A st x1 <> x2 & x1 <> x3 & x2 <> x3 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) holds for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) proof let A be non empty set ; ::_thesis: for f, g, h being Element of Funcs (A,REAL) for x1, x2, x3 being Element of A st x1 <> x2 & x1 <> x3 & x2 <> x3 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) holds for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) let f, g, h be Element of Funcs (A,REAL); ::_thesis: for x1, x2, x3 being Element of A st x1 <> x2 & x1 <> x3 & x2 <> x3 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) holds for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) let x1, x2, x3 be Element of A; ::_thesis: ( x1 <> x2 & x1 <> x3 & x2 <> x3 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) implies for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) set RM = RealFuncExtMult A; set RA = RealFuncAdd A; assume that A1: x1 <> x2 and A2: x1 <> x3 and A3: x2 <> x3 and A4: f . x1 = 1 and A5: for z being set st z in A & z <> x1 holds f . z = 0 and A6: g . x2 = 1 and A7: for z being set st z in A & z <> x2 holds g . z = 0 and A8: h . x3 = 1 and A9: for z being set st z in A & z <> x3 holds h . z = 0 ; ::_thesis: for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) A10: ( f . x2 = 0 & h . x2 = 0 ) by A1, A3, A5, A9; let a, b, c be Real; ::_thesis: ( (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A implies ( a = 0 & b = 0 & c = 0 ) ) assume A11: (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A ; ::_thesis: ( a = 0 & b = 0 & c = 0 ) then A12: 0 = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x2 by FUNCOP_1:7 .= (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x2) + (((RealFuncExtMult A) . [c,h]) . x2) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (((RealFuncExtMult A) . [c,h]) . x2) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (c * (h . x2)) by FUNCSDOM:4 .= ((((RealFuncExtMult A) . [a,f]) . x2) + (b * (g . x2))) + (c * (h . x2)) by FUNCSDOM:4 .= ((a * 0) + (b * 1)) + (c * 0) by A6, A10, FUNCSDOM:4 .= b ; A13: ( g . x1 = 0 & h . x1 = 0 ) by A1, A2, A7, A9; A14: ( f . x3 = 0 & g . x3 = 0 ) by A2, A3, A5, A7; A15: 0 = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x3 by A11, FUNCOP_1:7 .= (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x3) + (((RealFuncExtMult A) . [c,h]) . x3) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (((RealFuncExtMult A) . [c,h]) . x3) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (c * (h . x3)) by FUNCSDOM:4 .= ((((RealFuncExtMult A) . [a,f]) . x3) + (b * (g . x3))) + (c * (h . x3)) by FUNCSDOM:4 .= ((a * 0) + (b * 0)) + (c * 1) by A8, A14, FUNCSDOM:4 .= c ; 0 = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x1 by A11, FUNCOP_1:7 .= (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x1) + (((RealFuncExtMult A) . [c,h]) . x1) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (((RealFuncExtMult A) . [c,h]) . x1) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (c * (h . x1)) by FUNCSDOM:4 .= ((((RealFuncExtMult A) . [a,f]) . x1) + (b * (g . x1))) + (c * (h . x1)) by FUNCSDOM:4 .= ((a * 1) + (b * 0)) + (c * 0) by A4, A13, FUNCSDOM:4 .= a ; hence ( a = 0 & b = 0 & c = 0 ) by A12, A15; ::_thesis: verum end; theorem :: ANPROJ_2:12 for A being non empty set for x1, x2, x3 being Element of A st x1 <> x2 & x1 <> x3 & x2 <> x3 holds ex f, g, h being Element of Funcs (A,REAL) st for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) proof let A be non empty set ; ::_thesis: for x1, x2, x3 being Element of A st x1 <> x2 & x1 <> x3 & x2 <> x3 holds ex f, g, h being Element of Funcs (A,REAL) st for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) let x1, x2, x3 be Element of A; ::_thesis: ( x1 <> x2 & x1 <> x3 & x2 <> x3 implies ex f, g, h being Element of Funcs (A,REAL) st for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) assume A1: ( x1 <> x2 & x1 <> x3 & x2 <> x3 ) ; ::_thesis: ex f, g, h being Element of Funcs (A,REAL) st for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) consider f being Element of Funcs (A,REAL) such that A2: ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) by Th10; consider h being Element of Funcs (A,REAL) such that A3: ( h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) ) by Th10; consider g being Element of Funcs (A,REAL) such that A4: ( g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) ) by Th10; take f ; ::_thesis: ex g, h being Element of Funcs (A,REAL) st for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) take g ; ::_thesis: ex h being Element of Funcs (A,REAL) st for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) take h ; ::_thesis: for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) let a, b, c be Real; ::_thesis: ( (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A implies ( a = 0 & b = 0 & c = 0 ) ) assume (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A ; ::_thesis: ( a = 0 & b = 0 & c = 0 ) hence ( a = 0 & b = 0 & c = 0 ) by A1, A2, A4, A3, Th11; ::_thesis: verum end; theorem Th13: :: ANPROJ_2:13 for A being non empty set for f, g, h being Element of Funcs (A,REAL) for x1, x2, x3 being Element of A st A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) holds for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) proof let A be non empty set ; ::_thesis: for f, g, h being Element of Funcs (A,REAL) for x1, x2, x3 being Element of A st A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) holds for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) let f, g, h be Element of Funcs (A,REAL); ::_thesis: for x1, x2, x3 being Element of A st A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) holds for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) let x1, x2, x3 be Element of A; ::_thesis: ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) implies for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) assume that A1: A = {x1,x2,x3} and A2: x1 <> x2 and A3: x1 <> x3 and A4: x2 <> x3 and A5: f . x1 = 1 and A6: for z being set st z in A & z <> x1 holds f . z = 0 and A7: g . x2 = 1 and A8: for z being set st z in A & z <> x2 holds g . z = 0 and A9: h . x3 = 1 and A10: for z being set st z in A & z <> x3 holds h . z = 0 ; ::_thesis: for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) A11: ( g . x1 = 0 & h . x1 = 0 ) by A2, A3, A8, A10; A12: ( f . x2 = 0 & h . x2 = 0 ) by A2, A4, A6, A10; let h9 be Element of Funcs (A,REAL); ::_thesis: ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) take a = h9 . x1; ::_thesis: ex b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) take b = h9 . x2; ::_thesis: ex c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) take c = h9 . x3; ::_thesis: h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) A13: ( f . x3 = 0 & g . x3 = 0 ) by A3, A4, A6, A8; now__::_thesis:_for_x_being_Element_of_A_holds_h9_._x_=_((RealFuncAdd_A)_._(((RealFuncAdd_A)_._(((RealFuncExtMult_A)_._[a,f]),((RealFuncExtMult_A)_._[b,g]))),((RealFuncExtMult_A)_._[c,h])))_._x let x be Element of A; ::_thesis: h9 . x = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x A14: ( x = x1 or x = x2 or x = x3 ) by A1, ENUMSET1:def_1; A15: ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x2 = (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x2) + (((RealFuncExtMult A) . [c,h]) . x2) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (((RealFuncExtMult A) . [c,h]) . x2) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (c * (h . x2)) by FUNCSDOM:4 .= ((((RealFuncExtMult A) . [a,f]) . x2) + (b * (g . x2))) + (c * (h . x2)) by FUNCSDOM:4 .= ((a * 0) + (b * 1)) + (c * 0) by A7, A12, FUNCSDOM:4 .= h9 . x2 ; A16: ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x3 = (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x3) + (((RealFuncExtMult A) . [c,h]) . x3) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (((RealFuncExtMult A) . [c,h]) . x3) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (c * (h . x3)) by FUNCSDOM:4 .= ((((RealFuncExtMult A) . [a,f]) . x3) + (b * (g . x3))) + (c * (h . x3)) by FUNCSDOM:4 .= ((a * 0) + (b * 0)) + (c * 1) by A9, A13, FUNCSDOM:4 .= h9 . x3 ; ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x1 = (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x1) + (((RealFuncExtMult A) . [c,h]) . x1) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (((RealFuncExtMult A) . [c,h]) . x1) by FUNCSDOM:1 .= ((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (c * (h . x1)) by FUNCSDOM:4 .= ((((RealFuncExtMult A) . [a,f]) . x1) + (b * (g . x1))) + (c * (h . x1)) by FUNCSDOM:4 .= ((a * 1) + (b * 0)) + (c * 0) by A5, A11, FUNCSDOM:4 .= h9 . x1 ; hence h9 . x = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x by A14, A15, A16; ::_thesis: verum end; hence h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) by FUNCT_2:63; ::_thesis: verum end; theorem :: ANPROJ_2:14 for A being non empty set for x1, x2, x3 being Element of A st A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 holds ex f, g, h being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) proof let A be non empty set ; ::_thesis: for x1, x2, x3 being Element of A st A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 holds ex f, g, h being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) let x1, x2, x3 be Element of A; ::_thesis: ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 implies ex f, g, h being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) assume A1: ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) ; ::_thesis: ex f, g, h being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) consider f being Element of Funcs (A,REAL) such that A2: ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) by Th10; consider h being Element of Funcs (A,REAL) such that A3: ( h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) ) by Th10; consider g being Element of Funcs (A,REAL) such that A4: ( g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) ) by Th10; take f ; ::_thesis: ex g, h being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) take g ; ::_thesis: ex h being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) take h ; ::_thesis: for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) let h9 be Element of Funcs (A,REAL); ::_thesis: ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) thus ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) by A1, A2, A4, A3, Th13; ::_thesis: verum end; theorem Th15: :: ANPROJ_2:15 for A being non empty set for x1, x2, x3 being Element of A st A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 holds ex f, g, h being Element of Funcs (A,REAL) st ( ( for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) ) proof let A be non empty set ; ::_thesis: for x1, x2, x3 being Element of A st A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 holds ex f, g, h being Element of Funcs (A,REAL) st ( ( for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) ) let x1, x2, x3 be Element of A; ::_thesis: ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 implies ex f, g, h being Element of Funcs (A,REAL) st ( ( for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) ) ) assume A1: ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) ; ::_thesis: ex f, g, h being Element of Funcs (A,REAL) st ( ( for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) ) consider f being Element of Funcs (A,REAL) such that A2: ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) by Th10; consider h being Element of Funcs (A,REAL) such that A3: ( h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) ) by Th10; consider g being Element of Funcs (A,REAL) such that A4: ( g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) ) by Th10; take f ; ::_thesis: ex g, h being Element of Funcs (A,REAL) st ( ( for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) ) take g ; ::_thesis: ex h being Element of Funcs (A,REAL) st ( ( for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) ) take h ; ::_thesis: ( ( for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) ) thus ( ( for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) ) ) by A1, A2, A4, A3, Th11, Th13; ::_thesis: verum end; Lm30: ex A being non empty set ex x1, x2, x3 being Element of A st ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) proof reconsider A = {0,1,2} as non empty set ; take A ; ::_thesis: ex x1, x2, x3 being Element of A st ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) reconsider x1 = 0 , x2 = 1, x3 = 2 as Element of A by ENUMSET1:def_1; take x1 ; ::_thesis: ex x2, x3 being Element of A st ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) take x2 ; ::_thesis: ex x3 being Element of A st ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) take x3 ; ::_thesis: ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) thus ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) ; ::_thesis: verum end; theorem Th16: :: ANPROJ_2:16 ex V being non trivial RealLinearSpace ex u, v, w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) proof consider A being non empty set , x1, x2, x3 being Element of A such that A1: ( A = {x1,x2,x3} & x1 <> x2 & x1 <> x3 & x2 <> x3 ) by Lm30; set V = RealVectSpace A; consider f, g, h being Element of Funcs (A,REAL) such that A2: for a, b, c being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 ) and A3: for h9 being Element of Funcs (A,REAL) ex a, b, c being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) by A1, Th15; reconsider u = f, v = g, w = h as Element of (RealVectSpace A) ; for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. (RealVectSpace A) holds ( a = 0 & b = 0 & c = 0 ) by A2; then not u is zero by Th1; then A4: u <> 0. (RealVectSpace A) ; A5: for y being Element of (RealVectSpace A) ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) proof let y be Element of (RealVectSpace A); ::_thesis: ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) reconsider h9 = y as Element of Funcs (A,REAL) ; consider a, b, c being Real such that A6: h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h])) by A3; h9 = ((a * u) + (b * v)) + (c * w) by A6; hence ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ; ::_thesis: verum end; reconsider V = RealVectSpace A as non trivial RealLinearSpace by A4, STRUCT_0:def_18; take V ; ::_thesis: ex u, v, w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) reconsider u = u, v = v, w = w as Element of V ; take u ; ::_thesis: ex v, w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) take v ; ::_thesis: ex w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) take w ; ::_thesis: ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) thus ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) by A2, A5; ::_thesis: verum end; theorem Th17: :: ANPROJ_2:17 for A being non empty set for f, g, h, f1 being Element of Funcs (A,REAL) for x1, x2, x3, x4 being Element of A st x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) & f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) holds for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) proof let A be non empty set ; ::_thesis: for f, g, h, f1 being Element of Funcs (A,REAL) for x1, x2, x3, x4 being Element of A st x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) & f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) holds for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) let f, g, h, f1 be Element of Funcs (A,REAL); ::_thesis: for x1, x2, x3, x4 being Element of A st x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) & f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) holds for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) let x1, x2, x3, x4 be Element of A; ::_thesis: ( x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) & f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) implies for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) set RM = RealFuncExtMult A; set RA = RealFuncAdd A; assume that A1: x1 <> x2 and A2: x1 <> x3 and A3: x1 <> x4 and A4: x2 <> x3 and A5: x2 <> x4 and A6: x3 <> x4 and A7: f . x1 = 1 and A8: for z being set st z in A & z <> x1 holds f . z = 0 and A9: g . x2 = 1 and A10: for z being set st z in A & z <> x2 holds g . z = 0 and A11: h . x3 = 1 and A12: for z being set st z in A & z <> x3 holds h . z = 0 and A13: f1 . x4 = 1 and A14: for z being set st z in A & z <> x4 holds f1 . z = 0 ; ::_thesis: for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) A15: ( f . x2 = 0 & h . x2 = 0 ) by A1, A4, A8, A12; A16: ( g . x1 = 0 & h . x1 = 0 ) by A1, A2, A10, A12; A17: f1 . x1 = 0 by A3, A14; A18: f1 . x2 = 0 by A5, A14; let a, b, c, d be Real; ::_thesis: ( (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A implies ( a = 0 & b = 0 & c = 0 & d = 0 ) ) assume A19: (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A ; ::_thesis: ( a = 0 & b = 0 & c = 0 & d = 0 ) then A20: 0 = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x2 by FUNCOP_1:7 .= (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x2) + (((RealFuncExtMult A) . [d,f1]) . x2) by FUNCSDOM:1 .= ((((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x2) + (((RealFuncExtMult A) . [c,h]) . x2)) + (((RealFuncExtMult A) . [d,f1]) . x2) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (((RealFuncExtMult A) . [c,h]) . x2)) + (((RealFuncExtMult A) . [d,f1]) . x2) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (((RealFuncExtMult A) . [c,h]) . x2)) + (d * (f1 . x2)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (c * (h . x2))) + (d * (f1 . x2)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x2) + (b * (g . x2))) + (c * (h . x2))) + (d * (f1 . x2)) by FUNCSDOM:4 .= (((a * 0) + (b * 1)) + (c * 0)) + (d * 0) by A9, A15, A18, FUNCSDOM:4 .= b ; A21: ( f . x4 = 0 & g . x4 = 0 ) by A3, A5, A8, A10; A22: h . x4 = 0 by A6, A12; A23: ( f . x3 = 0 & g . x3 = 0 ) by A2, A4, A8, A10; A24: f1 . x3 = 0 by A6, A14; A25: 0 = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x4 by A19, FUNCOP_1:7 .= (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x4) + (((RealFuncExtMult A) . [d,f1]) . x4) by FUNCSDOM:1 .= ((((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x4) + (((RealFuncExtMult A) . [c,h]) . x4)) + (((RealFuncExtMult A) . [d,f1]) . x4) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x4) + (((RealFuncExtMult A) . [b,g]) . x4)) + (((RealFuncExtMult A) . [c,h]) . x4)) + (((RealFuncExtMult A) . [d,f1]) . x4) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x4) + (((RealFuncExtMult A) . [b,g]) . x4)) + (((RealFuncExtMult A) . [c,h]) . x4)) + (d * (f1 . x4)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x4) + (((RealFuncExtMult A) . [b,g]) . x4)) + (c * (h . x4))) + (d * (f1 . x4)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x4) + (b * (g . x4))) + (c * (h . x4))) + (d * (f1 . x4)) by FUNCSDOM:4 .= (((a * 0) + (b * 0)) + (c * 0)) + (d * 1) by A13, A21, A22, FUNCSDOM:4 .= d ; A26: 0 = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x3 by A19, FUNCOP_1:7 .= (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x3) + (((RealFuncExtMult A) . [d,f1]) . x3) by FUNCSDOM:1 .= ((((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x3) + (((RealFuncExtMult A) . [c,h]) . x3)) + (((RealFuncExtMult A) . [d,f1]) . x3) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (((RealFuncExtMult A) . [c,h]) . x3)) + (((RealFuncExtMult A) . [d,f1]) . x3) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (((RealFuncExtMult A) . [c,h]) . x3)) + (d * (f1 . x3)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (c * (h . x3))) + (d * (f1 . x3)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x3) + (b * (g . x3))) + (c * (h . x3))) + (d * (f1 . x3)) by FUNCSDOM:4 .= (((a * 0) + (b * 0)) + (c * 1)) + (d * 0) by A11, A23, A24, FUNCSDOM:4 .= c ; 0 = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x1 by A19, FUNCOP_1:7 .= (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x1) + (((RealFuncExtMult A) . [d,f1]) . x1) by FUNCSDOM:1 .= ((((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x1) + (((RealFuncExtMult A) . [c,h]) . x1)) + (((RealFuncExtMult A) . [d,f1]) . x1) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (((RealFuncExtMult A) . [c,h]) . x1)) + (((RealFuncExtMult A) . [d,f1]) . x1) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (((RealFuncExtMult A) . [c,h]) . x1)) + (d * (f1 . x1)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (c * (h . x1))) + (d * (f1 . x1)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x1) + (b * (g . x1))) + (c * (h . x1))) + (d * (f1 . x1)) by FUNCSDOM:4 .= (((a * 1) + (b * 0)) + (c * 0)) + (d * 0) by A7, A16, A17, FUNCSDOM:4 .= a ; hence ( a = 0 & b = 0 & c = 0 & d = 0 ) by A20, A26, A25; ::_thesis: verum end; theorem :: ANPROJ_2:18 for A being non empty set for x1, x2, x3, x4 being Element of A st x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 holds ex f, g, h, f1 being Element of Funcs (A,REAL) st for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) proof let A be non empty set ; ::_thesis: for x1, x2, x3, x4 being Element of A st x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 holds ex f, g, h, f1 being Element of Funcs (A,REAL) st for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) let x1, x2, x3, x4 be Element of A; ::_thesis: ( x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 implies ex f, g, h, f1 being Element of Funcs (A,REAL) st for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) assume A1: ( x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) ; ::_thesis: ex f, g, h, f1 being Element of Funcs (A,REAL) st for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) consider f being Element of Funcs (A,REAL) such that A2: ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) by Th10; consider f1 being Element of Funcs (A,REAL) such that A3: ( f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) ) by Th10; consider h being Element of Funcs (A,REAL) such that A4: ( h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) ) by Th10; consider g being Element of Funcs (A,REAL) such that A5: ( g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) ) by Th10; take f ; ::_thesis: ex g, h, f1 being Element of Funcs (A,REAL) st for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) take g ; ::_thesis: ex h, f1 being Element of Funcs (A,REAL) st for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) take h ; ::_thesis: ex f1 being Element of Funcs (A,REAL) st for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) take f1 ; ::_thesis: for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) let a, b, c, d be Real; ::_thesis: ( (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A implies ( a = 0 & b = 0 & c = 0 & d = 0 ) ) assume (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A ; ::_thesis: ( a = 0 & b = 0 & c = 0 & d = 0 ) hence ( a = 0 & b = 0 & c = 0 & d = 0 ) by A1, A2, A5, A4, A3, Th17; ::_thesis: verum end; theorem Th19: :: ANPROJ_2:19 for A being non empty set for f, g, h, f1 being Element of Funcs (A,REAL) for x1, x2, x3, x4 being Element of A st A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) & f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) holds for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) proof let A be non empty set ; ::_thesis: for f, g, h, f1 being Element of Funcs (A,REAL) for x1, x2, x3, x4 being Element of A st A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) & f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) holds for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) let f, g, h, f1 be Element of Funcs (A,REAL); ::_thesis: for x1, x2, x3, x4 being Element of A st A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) & f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) holds for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) let x1, x2, x3, x4 be Element of A; ::_thesis: ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 & f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) & g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) & h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) & f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) implies for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) assume that A1: A = {x1,x2,x3,x4} and A2: x1 <> x2 and A3: x1 <> x3 and A4: x1 <> x4 and A5: x2 <> x3 and A6: x2 <> x4 and A7: x3 <> x4 and A8: f . x1 = 1 and A9: for z being set st z in A & z <> x1 holds f . z = 0 and A10: g . x2 = 1 and A11: for z being set st z in A & z <> x2 holds g . z = 0 and A12: h . x3 = 1 and A13: for z being set st z in A & z <> x3 holds h . z = 0 and A14: f1 . x4 = 1 and A15: for z being set st z in A & z <> x4 holds f1 . z = 0 ; ::_thesis: for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) A16: ( f . x4 = 0 & g . x4 = 0 ) by A4, A6, A9, A11; A17: f1 . x3 = 0 by A7, A15; A18: f1 . x2 = 0 by A6, A15; A19: ( f . x2 = 0 & h . x2 = 0 ) by A2, A5, A9, A13; A20: f1 . x1 = 0 by A4, A15; A21: ( g . x1 = 0 & h . x1 = 0 ) by A2, A3, A11, A13; A22: h . x4 = 0 by A7, A13; let h9 be Element of Funcs (A,REAL); ::_thesis: ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) take a = h9 . x1; ::_thesis: ex b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) take b = h9 . x2; ::_thesis: ex c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) take c = h9 . x3; ::_thesis: ex d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) take d = h9 . x4; ::_thesis: h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) A23: ( f . x3 = 0 & g . x3 = 0 ) by A3, A5, A9, A11; now__::_thesis:_for_x_being_Element_of_A_holds_h9_._x_=_((RealFuncAdd_A)_._(((RealFuncAdd_A)_._(((RealFuncAdd_A)_._(((RealFuncExtMult_A)_._[a,f]),((RealFuncExtMult_A)_._[b,g]))),((RealFuncExtMult_A)_._[c,h]))),((RealFuncExtMult_A)_._[d,f1])))_._x let x be Element of A; ::_thesis: h9 . x = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x A24: ( x = x1 or x = x2 or x = x3 or x = x4 ) by A1, ENUMSET1:def_2; A25: ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x2 = (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x2) + (((RealFuncExtMult A) . [d,f1]) . x2) by FUNCSDOM:1 .= ((((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x2) + (((RealFuncExtMult A) . [c,h]) . x2)) + (((RealFuncExtMult A) . [d,f1]) . x2) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (((RealFuncExtMult A) . [c,h]) . x2)) + (((RealFuncExtMult A) . [d,f1]) . x2) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (((RealFuncExtMult A) . [c,h]) . x2)) + (d * (f1 . x2)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x2) + (((RealFuncExtMult A) . [b,g]) . x2)) + (c * (h . x2))) + (d * (f1 . x2)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x2) + (b * (g . x2))) + (c * (h . x2))) + (d * (f1 . x2)) by FUNCSDOM:4 .= (((a * 0) + (b * 1)) + (c * 0)) + (d * 0) by A10, A19, A18, FUNCSDOM:4 .= h9 . x2 ; A26: ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x4 = (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x4) + (((RealFuncExtMult A) . [d,f1]) . x4) by FUNCSDOM:1 .= ((((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x4) + (((RealFuncExtMult A) . [c,h]) . x4)) + (((RealFuncExtMult A) . [d,f1]) . x4) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x4) + (((RealFuncExtMult A) . [b,g]) . x4)) + (((RealFuncExtMult A) . [c,h]) . x4)) + (((RealFuncExtMult A) . [d,f1]) . x4) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x4) + (((RealFuncExtMult A) . [b,g]) . x4)) + (((RealFuncExtMult A) . [c,h]) . x4)) + (d * (f1 . x4)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x4) + (((RealFuncExtMult A) . [b,g]) . x4)) + (c * (h . x4))) + (d * (f1 . x4)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x4) + (b * (g . x4))) + (c * (h . x4))) + (d * (f1 . x4)) by FUNCSDOM:4 .= (((a * 0) + (b * 0)) + (c * 0)) + (d * 1) by A14, A16, A22, FUNCSDOM:4 .= h9 . x4 ; A27: ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x3 = (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x3) + (((RealFuncExtMult A) . [d,f1]) . x3) by FUNCSDOM:1 .= ((((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x3) + (((RealFuncExtMult A) . [c,h]) . x3)) + (((RealFuncExtMult A) . [d,f1]) . x3) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (((RealFuncExtMult A) . [c,h]) . x3)) + (((RealFuncExtMult A) . [d,f1]) . x3) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (((RealFuncExtMult A) . [c,h]) . x3)) + (d * (f1 . x3)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x3) + (((RealFuncExtMult A) . [b,g]) . x3)) + (c * (h . x3))) + (d * (f1 . x3)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x3) + (b * (g . x3))) + (c * (h . x3))) + (d * (f1 . x3)) by FUNCSDOM:4 .= (((a * 0) + (b * 0)) + (c * 1)) + (d * 0) by A12, A23, A17, FUNCSDOM:4 .= h9 . x3 ; ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x1 = (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))) . x1) + (((RealFuncExtMult A) . [d,f1]) . x1) by FUNCSDOM:1 .= ((((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))) . x1) + (((RealFuncExtMult A) . [c,h]) . x1)) + (((RealFuncExtMult A) . [d,f1]) . x1) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (((RealFuncExtMult A) . [c,h]) . x1)) + (((RealFuncExtMult A) . [d,f1]) . x1) by FUNCSDOM:1 .= (((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (((RealFuncExtMult A) . [c,h]) . x1)) + (d * (f1 . x1)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x1) + (((RealFuncExtMult A) . [b,g]) . x1)) + (c * (h . x1))) + (d * (f1 . x1)) by FUNCSDOM:4 .= (((((RealFuncExtMult A) . [a,f]) . x1) + (b * (g . x1))) + (c * (h . x1))) + (d * (f1 . x1)) by FUNCSDOM:4 .= (((a * 1) + (b * 0)) + (c * 0)) + (d * 0) by A8, A21, A20, FUNCSDOM:4 .= h9 . x1 ; hence h9 . x = ((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1]))) . x by A24, A25, A27, A26; ::_thesis: verum end; hence h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) by FUNCT_2:63; ::_thesis: verum end; theorem :: ANPROJ_2:20 for A being non empty set for x1, x2, x3, x4 being Element of A st A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 holds ex f, g, h, f1 being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) proof let A be non empty set ; ::_thesis: for x1, x2, x3, x4 being Element of A st A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 holds ex f, g, h, f1 being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) let x1, x2, x3, x4 be Element of A; ::_thesis: ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 implies ex f, g, h, f1 being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) assume A1: ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) ; ::_thesis: ex f, g, h, f1 being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) consider f being Element of Funcs (A,REAL) such that A2: ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) by Th10; consider f1 being Element of Funcs (A,REAL) such that A3: ( f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) ) by Th10; consider h being Element of Funcs (A,REAL) such that A4: ( h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) ) by Th10; consider g being Element of Funcs (A,REAL) such that A5: ( g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) ) by Th10; take f ; ::_thesis: ex g, h, f1 being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) take g ; ::_thesis: ex h, f1 being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) take h ; ::_thesis: ex f1 being Element of Funcs (A,REAL) st for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) take f1 ; ::_thesis: for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) let h9 be Element of Funcs (A,REAL); ::_thesis: ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) thus ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) by A1, A2, A5, A4, A3, Th19; ::_thesis: verum end; theorem Th21: :: ANPROJ_2:21 for A being non empty set for x1, x2, x3, x4 being Element of A st A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 holds ex f, g, h, f1 being Element of Funcs (A,REAL) st ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) proof let A be non empty set ; ::_thesis: for x1, x2, x3, x4 being Element of A st A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 holds ex f, g, h, f1 being Element of Funcs (A,REAL) st ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) let x1, x2, x3, x4 be Element of A; ::_thesis: ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 implies ex f, g, h, f1 being Element of Funcs (A,REAL) st ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) ) assume A1: ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) ; ::_thesis: ex f, g, h, f1 being Element of Funcs (A,REAL) st ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) consider f being Element of Funcs (A,REAL) such that A2: ( f . x1 = 1 & ( for z being set st z in A & z <> x1 holds f . z = 0 ) ) by Th10; consider f1 being Element of Funcs (A,REAL) such that A3: ( f1 . x4 = 1 & ( for z being set st z in A & z <> x4 holds f1 . z = 0 ) ) by Th10; consider h being Element of Funcs (A,REAL) such that A4: ( h . x3 = 1 & ( for z being set st z in A & z <> x3 holds h . z = 0 ) ) by Th10; consider g being Element of Funcs (A,REAL) such that A5: ( g . x2 = 1 & ( for z being set st z in A & z <> x2 holds g . z = 0 ) ) by Th10; take f ; ::_thesis: ex g, h, f1 being Element of Funcs (A,REAL) st ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) take g ; ::_thesis: ex h, f1 being Element of Funcs (A,REAL) st ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) take h ; ::_thesis: ex f1 being Element of Funcs (A,REAL) st ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) take f1 ; ::_thesis: ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) thus ( ( for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) ) ) by A1, A2, A5, A4, A3, Th17, Th19; ::_thesis: verum end; Lm31: ex A being non empty set ex x1, x2, x3, x4 being Element of A st ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) proof reconsider A = {0,1,2,3} as non empty set ; take A ; ::_thesis: ex x1, x2, x3, x4 being Element of A st ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) reconsider x1 = 0 , x2 = 1, x3 = 2, x4 = 3 as Element of A by ENUMSET1:def_2; take x1 ; ::_thesis: ex x2, x3, x4 being Element of A st ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) take x2 ; ::_thesis: ex x3, x4 being Element of A st ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) take x3 ; ::_thesis: ex x4 being Element of A st ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) take x4 ; ::_thesis: ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) thus ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) ; ::_thesis: verum end; theorem Th22: :: ANPROJ_2:22 ex V being non trivial RealLinearSpace ex u, v, w, u1 being Element of V st ( ( for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for y being Element of V ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ) ) proof consider A being non empty set , x1, x2, x3, x4 being Element of A such that A1: ( A = {x1,x2,x3,x4} & x1 <> x2 & x1 <> x3 & x1 <> x4 & x2 <> x3 & x2 <> x4 & x3 <> x4 ) by Lm31; set V = RealVectSpace A; consider f, g, h, f1 being Element of Funcs (A,REAL) such that A2: for a, b, c, d being Real st (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) = RealFuncZero A holds ( a = 0 & b = 0 & c = 0 & d = 0 ) and A3: for h9 being Element of Funcs (A,REAL) ex a, b, c, d being Real st h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) by A1, Th21; reconsider u = f, v = g, w = h, u1 = f1 as Element of (RealVectSpace A) ; for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. (RealVectSpace A) holds ( a = 0 & b = 0 & c = 0 & d = 0 ) by A2; then not u is zero by Th2; then A4: u <> 0. (RealVectSpace A) ; A5: for y being Element of (RealVectSpace A) ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) proof let y be Element of (RealVectSpace A); ::_thesis: ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) reconsider h9 = y as Element of Funcs (A,REAL) ; consider a, b, c, d being Real such that A6: h9 = (RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncAdd A) . (((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [b,g]))),((RealFuncExtMult A) . [c,h]))),((RealFuncExtMult A) . [d,f1])) by A3; h9 = (((a * u) + (b * v)) + (c * w)) + (d * u1) by A6; hence ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ; ::_thesis: verum end; reconsider V = RealVectSpace A as non trivial RealLinearSpace by A4, STRUCT_0:def_18; take V ; ::_thesis: ex u, v, w, u1 being Element of V st ( ( for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for y being Element of V ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ) ) reconsider u = u, v = v, w = w, u1 = u1 as Element of V ; take u ; ::_thesis: ex v, w, u1 being Element of V st ( ( for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for y being Element of V ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ) ) take v ; ::_thesis: ex w, u1 being Element of V st ( ( for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for y being Element of V ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ) ) take w ; ::_thesis: ex u1 being Element of V st ( ( for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for y being Element of V ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ) ) take u1 ; ::_thesis: ( ( for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for y being Element of V ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ) ) thus ( ( for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for y being Element of V ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ) ) by A2, A5; ::_thesis: verum end; definition let IT be RealLinearSpace; attrIT is up-3-dimensional means :Def6: :: ANPROJ_2:def 6 ex u, v, w1 being Element of IT st for a, b, c being Real st ((a * u) + (b * v)) + (c * w1) = 0. IT holds ( a = 0 & b = 0 & c = 0 ); end; :: deftheorem Def6 defines up-3-dimensional ANPROJ_2:def_6_:_ for IT being RealLinearSpace holds ( IT is up-3-dimensional iff ex u, v, w1 being Element of IT st for a, b, c being Real st ((a * u) + (b * v)) + (c * w1) = 0. IT holds ( a = 0 & b = 0 & c = 0 ) ); registration cluster non empty V70() Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital up-3-dimensional for RLSStruct ; existence ex b1 being RealLinearSpace st b1 is up-3-dimensional proof consider V0 being non trivial RealLinearSpace such that A1: ex u, v, w being Element of V0 st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V0 holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V0 ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) by Th16; take V0 ; ::_thesis: V0 is up-3-dimensional thus V0 is up-3-dimensional by A1, Def6; ::_thesis: verum end; end; registration cluster non empty V70() Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital up-3-dimensional -> non trivial for RLSStruct ; coherence for b1 being RealLinearSpace st b1 is up-3-dimensional holds not b1 is trivial proof let V be RealLinearSpace; ::_thesis: ( V is up-3-dimensional implies not V is trivial ) given u, v, w1 being Element of V such that A1: for a, b, c being Real st ((a * u) + (b * v)) + (c * w1) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ; :: according to ANPROJ_2:def_6 ::_thesis: not V is trivial now__::_thesis:_not_w1_=_0._V assume w1 = 0. V ; ::_thesis: contradiction then A2: 0. V = 1 * w1 by RLVECT_1:10; ( 0. V = 0 * u & 0. V = 0 * v ) by RLVECT_1:10; then 0. V = (0 * u) + (0 * v) by RLVECT_1:4 .= ((0 * u) + (0 * v)) + (1 * w1) by A2, RLVECT_1:4 ; hence contradiction by A1; ::_thesis: verum end; hence not V is trivial by STRUCT_0:def_18; ::_thesis: verum end; end; definition let CS be non empty CollStr ; redefine attr CS is reflexive means :Def7: :: ANPROJ_2:def 7 for p, q, r being Element of CS holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ); compatibility ( CS is reflexive iff for p, q, r being Element of CS holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) ) proof hereby ::_thesis: ( ( for p, q, r being Element of CS holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) ) implies CS is reflexive ) assume A1: CS is reflexive ; ::_thesis: for p, q, r being Element of CS holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) let p, q, r be Element of CS; ::_thesis: ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) [p,q,p] in the Collinearity of CS by A1, COLLSP:def_3; hence p,q,p is_collinear by COLLSP:def_2; ::_thesis: ( p,p,q is_collinear & p,q,q is_collinear ) [p,p,q] in the Collinearity of CS by A1, COLLSP:def_3; hence p,p,q is_collinear by COLLSP:def_2; ::_thesis: p,q,q is_collinear [p,q,q] in the Collinearity of CS by A1, COLLSP:def_3; hence p,q,q is_collinear by COLLSP:def_2; ::_thesis: verum end; assume A2: for p, q, r being Element of CS holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) ; ::_thesis: CS is reflexive let p, q, r be Element of CS; :: according to COLLSP:def_3 ::_thesis: ( ( not p = q & not p = r & not q = r ) or [p,q,r] in the Collinearity of CS ) assume A3: ( p = q or p = r or q = r ) ; ::_thesis: [p,q,r] in the Collinearity of CS percases ( p = q or p = r or q = r ) by A3; suppose p = q ; ::_thesis: [p,q,r] in the Collinearity of CS then p,q,r is_collinear by A2; hence [p,q,r] in the Collinearity of CS by COLLSP:def_2; ::_thesis: verum end; suppose p = r ; ::_thesis: [p,q,r] in the Collinearity of CS then p,q,r is_collinear by A2; hence [p,q,r] in the Collinearity of CS by COLLSP:def_2; ::_thesis: verum end; suppose q = r ; ::_thesis: [p,q,r] in the Collinearity of CS then p,q,r is_collinear by A2; hence [p,q,r] in the Collinearity of CS by COLLSP:def_2; ::_thesis: verum end; end; end; redefine attr CS is transitive means :Def8: :: ANPROJ_2:def 8 for p, q, r, r1, r2 being Element of CS st p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear holds r,r1,r2 is_collinear ; compatibility ( CS is transitive iff for p, q, r, r1, r2 being Element of CS st p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear holds r,r1,r2 is_collinear ) proof hereby ::_thesis: ( ( for p, q, r, r1, r2 being Element of CS st p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear holds r,r1,r2 is_collinear ) implies CS is transitive ) assume A4: CS is transitive ; ::_thesis: for p, q, r, r1, r2 being Element of CS st p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear holds r,r1,r2 is_collinear let p, q, r, r1, r2 be Element of CS; ::_thesis: ( p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear implies r,r1,r2 is_collinear ) assume that A5: p <> q and A6: ( p,q,r is_collinear & p,q,r1 is_collinear ) and A7: p,q,r2 is_collinear ; ::_thesis: r,r1,r2 is_collinear A8: [p,q,r2] in the Collinearity of CS by A7, COLLSP:def_2; ( [p,q,r] in the Collinearity of CS & [p,q,r1] in the Collinearity of CS ) by A6, COLLSP:def_2; then [r,r1,r2] in the Collinearity of CS by A4, A5, A8, COLLSP:def_4; hence r,r1,r2 is_collinear by COLLSP:def_2; ::_thesis: verum end; assume A9: for p, q, r, r1, r2 being Element of CS st p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear holds r,r1,r2 is_collinear ; ::_thesis: CS is transitive let p, q, r, r1, r2 be Element of CS; :: according to COLLSP:def_4 ::_thesis: ( p = q or not [p,q,r] in the Collinearity of CS or not [p,q,r1] in the Collinearity of CS or not [p,q,r2] in the Collinearity of CS or [r,r1,r2] in the Collinearity of CS ) assume that A10: p <> q and A11: ( [p,q,r] in the Collinearity of CS & [p,q,r1] in the Collinearity of CS ) and A12: [p,q,r2] in the Collinearity of CS ; ::_thesis: [r,r1,r2] in the Collinearity of CS A13: p,q,r2 is_collinear by A12, COLLSP:def_2; ( p,q,r is_collinear & p,q,r1 is_collinear ) by A11, COLLSP:def_2; then r,r1,r2 is_collinear by A9, A10, A13; hence [r,r1,r2] in the Collinearity of CS by COLLSP:def_2; ::_thesis: verum end; end; :: deftheorem Def7 defines reflexive ANPROJ_2:def_7_:_ for CS being non empty CollStr holds ( CS is reflexive iff for p, q, r being Element of CS holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) ); :: deftheorem Def8 defines transitive ANPROJ_2:def_8_:_ for CS being non empty CollStr holds ( CS is transitive iff for p, q, r, r1, r2 being Element of CS st p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear holds r,r1,r2 is_collinear ); definition let IT be non empty CollStr ; attrIT is Vebleian means :Def9: :: ANPROJ_2:def 9 for p, p1, p2, r, r1 being Element of IT st p,p1,r is_collinear & p1,p2,r1 is_collinear holds ex r2 being Element of IT st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ); attrIT is at_least_3rank means :Def10: :: ANPROJ_2:def 10 for p, q being Element of IT ex r being Element of IT st ( p <> r & q <> r & p,q,r is_collinear ); end; :: deftheorem Def9 defines Vebleian ANPROJ_2:def_9_:_ for IT being non empty CollStr holds ( IT is Vebleian iff for p, p1, p2, r, r1 being Element of IT st p,p1,r is_collinear & p1,p2,r1 is_collinear holds ex r2 being Element of IT st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) ); :: deftheorem Def10 defines at_least_3rank ANPROJ_2:def_10_:_ for IT being non empty CollStr holds ( IT is at_least_3rank iff for p, q being Element of IT ex r being Element of IT st ( p <> r & q <> r & p,q,r is_collinear ) ); theorem Th23: :: ANPROJ_2:23 for V being non trivial RealLinearSpace for p, q, r being Element of (ProjectiveSpace V) holds ( p,q,r is_collinear iff ex u, v, w being Element of V st ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) ) proof let V be non trivial RealLinearSpace; ::_thesis: for p, q, r being Element of (ProjectiveSpace V) holds ( p,q,r is_collinear iff ex u, v, w being Element of V st ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) ) let p, q, r be Element of (ProjectiveSpace V); ::_thesis: ( p,q,r is_collinear iff ex u, v, w being Element of V st ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) ) A1: now__::_thesis:_(_p,q,r_is_collinear_implies_ex_u,_v,_w_being_Element_of_V_st_ (_p_=_Dir_u_&_q_=_Dir_v_&_r_=_Dir_w_&_not_u_is_zero_&_not_v_is_zero_&_not_w_is_zero_&_u,v,w_are_LinDep_)_) assume p,q,r is_collinear ; ::_thesis: ex u, v, w being Element of V st ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) then [p,q,r] in the Collinearity of (ProjectiveSpace V) by COLLSP:def_2; then consider u, v, w being Element of V such that A2: ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) by ANPROJ_1:24; take u = u; ::_thesis: ex v, w being Element of V st ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) take v = v; ::_thesis: ex w being Element of V st ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) take w = w; ::_thesis: ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) thus ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) by A2; ::_thesis: verum end; now__::_thesis:_(_ex_u,_v,_w_being_Element_of_V_st_ (_p_=_Dir_u_&_q_=_Dir_v_&_r_=_Dir_w_&_not_u_is_zero_&_not_v_is_zero_&_not_w_is_zero_&_u,v,w_are_LinDep_)_implies_p,q,r_is_collinear_) assume ex u, v, w being Element of V st ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) ; ::_thesis: p,q,r is_collinear then [p,q,r] in the Collinearity of (ProjectiveSpace V) by ANPROJ_1:25; hence p,q,r is_collinear by COLLSP:def_2; ::_thesis: verum end; hence ( p,q,r is_collinear iff ex u, v, w being Element of V st ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero & u,v,w are_LinDep ) ) by A1; ::_thesis: verum end; Lm32: for V being non trivial RealLinearSpace holds ProjectiveSpace V is reflexive proof let V be non trivial RealLinearSpace; ::_thesis: ProjectiveSpace V is reflexive let p be Element of (ProjectiveSpace V); :: according to ANPROJ_2:def_7 ::_thesis: for q, r being Element of (ProjectiveSpace V) holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) let q be Element of (ProjectiveSpace V); ::_thesis: for r being Element of (ProjectiveSpace V) holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) consider u being Element of V such that A1: ( not u is zero & p = Dir u ) by ANPROJ_1:26; consider v being Element of V such that A2: ( not v is zero & q = Dir v ) by ANPROJ_1:26; A3: u,v,v are_LinDep by ANPROJ_1:11; ( u,v,u are_LinDep & u,u,v are_LinDep ) by ANPROJ_1:11; hence for r being Element of (ProjectiveSpace V) holds ( p,q,p is_collinear & p,p,q is_collinear & p,q,q is_collinear ) by A1, A2, A3, Th23; ::_thesis: verum end; Lm33: for V being non trivial RealLinearSpace holds ProjectiveSpace V is transitive proof let V be non trivial RealLinearSpace; ::_thesis: ProjectiveSpace V is transitive let p be Element of (ProjectiveSpace V); :: according to ANPROJ_2:def_8 ::_thesis: for q, r, r1, r2 being Element of (ProjectiveSpace V) st p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear holds r,r1,r2 is_collinear let q, r, r1, r2 be Element of (ProjectiveSpace V); ::_thesis: ( p <> q & p,q,r is_collinear & p,q,r1 is_collinear & p,q,r2 is_collinear implies r,r1,r2 is_collinear ) assume that A1: p <> q and A2: p,q,r is_collinear and A3: p,q,r1 is_collinear and A4: p,q,r2 is_collinear ; ::_thesis: r,r1,r2 is_collinear consider u1, v1, w1 being Element of V such that A5: p = Dir u1 and A6: q = Dir v1 and A7: r = Dir w1 and A8: not u1 is zero and A9: not v1 is zero and A10: not w1 is zero and A11: u1,v1,w1 are_LinDep by A2, Th23; consider v being Element of V such that A12: not v is zero and A13: q = Dir v by ANPROJ_1:26; A14: are_Prop v1,v by A12, A13, A6, A9, ANPROJ_1:22; consider u3, v3, w3 being Element of V such that A15: p = Dir u3 and A16: q = Dir v3 and A17: r2 = Dir w3 and A18: not u3 is zero and A19: not v3 is zero and A20: not w3 is zero and A21: u3,v3,w3 are_LinDep by A4, Th23; A22: are_Prop v3,v by A12, A13, A16, A19, ANPROJ_1:22; consider u2, v2, w2 being Element of V such that A23: p = Dir u2 and A24: q = Dir v2 and A25: r1 = Dir w2 and A26: not u2 is zero and A27: not v2 is zero and A28: not w2 is zero and A29: u2,v2,w2 are_LinDep by A3, Th23; A30: are_Prop v2,v by A12, A13, A24, A27, ANPROJ_1:22; consider u being Element of V such that A31: not u is zero and A32: p = Dir u by ANPROJ_1:26; are_Prop u1,u by A31, A32, A5, A8, ANPROJ_1:22; then A33: u,v,w1 are_LinDep by A11, A14, ANPROJ_1:4; are_Prop u3,u by A31, A32, A15, A18, ANPROJ_1:22; then A34: u,v,w3 are_LinDep by A21, A22, ANPROJ_1:4; are_Prop u2,u by A31, A32, A23, A26, ANPROJ_1:22; then A35: u,v,w2 are_LinDep by A29, A30, ANPROJ_1:4; not are_Prop u,v by A1, A31, A32, A12, A13, ANPROJ_1:22; then w1,w2,w3 are_LinDep by A31, A12, A33, A35, A34, ANPROJ_1:14; hence r,r1,r2 is_collinear by A7, A10, A25, A28, A17, A20, Th23; ::_thesis: verum end; registration let V be non trivial RealLinearSpace; cluster ProjectiveSpace V -> reflexive transitive ; coherence ( ProjectiveSpace V is reflexive & ProjectiveSpace V is transitive ) by Lm32, Lm33; end; theorem Th24: :: ANPROJ_2:24 for V being non trivial RealLinearSpace for p, q, r being Element of (ProjectiveSpace V) st p,q,r is_collinear holds ( p,r,q is_collinear & q,p,r is_collinear & r,q,p is_collinear & r,p,q is_collinear & q,r,p is_collinear ) proof let V be non trivial RealLinearSpace; ::_thesis: for p, q, r being Element of (ProjectiveSpace V) st p,q,r is_collinear holds ( p,r,q is_collinear & q,p,r is_collinear & r,q,p is_collinear & r,p,q is_collinear & q,r,p is_collinear ) let p, q, r be Element of (ProjectiveSpace V); ::_thesis: ( p,q,r is_collinear implies ( p,r,q is_collinear & q,p,r is_collinear & r,q,p is_collinear & r,p,q is_collinear & q,r,p is_collinear ) ) assume p,q,r is_collinear ; ::_thesis: ( p,r,q is_collinear & q,p,r is_collinear & r,q,p is_collinear & r,p,q is_collinear & q,r,p is_collinear ) then consider u, v, w being Element of V such that A1: ( p = Dir u & q = Dir v & r = Dir w & not u is zero & not v is zero & not w is zero ) and A2: u,v,w are_LinDep by Th23; A3: ( w,v,u are_LinDep & w,u,v are_LinDep ) by A2, ANPROJ_1:5; A4: v,w,u are_LinDep by A2, ANPROJ_1:5; ( u,w,v are_LinDep & v,u,w are_LinDep ) by A2, ANPROJ_1:5; hence ( p,r,q is_collinear & q,p,r is_collinear & r,q,p is_collinear & r,p,q is_collinear & q,r,p is_collinear ) by A1, A3, A4, Th23; ::_thesis: verum end; Lm34: for V being non trivial RealLinearSpace for p, p1, p2, r, r1 being Element of (ProjectiveSpace V) st p,p1,p2 is_collinear & p,p1,r is_collinear & p1,p2,r1 is_collinear holds ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) proof let V be non trivial RealLinearSpace; ::_thesis: for p, p1, p2, r, r1 being Element of (ProjectiveSpace V) st p,p1,p2 is_collinear & p,p1,r is_collinear & p1,p2,r1 is_collinear holds ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) let p, p1, p2, r, r1 be Element of (ProjectiveSpace V); ::_thesis: ( p,p1,p2 is_collinear & p,p1,r is_collinear & p1,p2,r1 is_collinear implies ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) ) assume that A1: p,p1,p2 is_collinear and A2: p,p1,r is_collinear and A3: p1,p2,r1 is_collinear ; ::_thesis: ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) A4: now__::_thesis:_(_p_<>_p2_implies_ex_r2_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p2,r2_is_collinear_&_r,r1,r2_is_collinear_)_) A5: now__::_thesis:_(_p1_<>_p_implies_ex_r,_r2_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p2,r2_is_collinear_&_r,r1,r2_is_collinear_)_) assume A6: p1 <> p ; ::_thesis: ex r, r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) take r = r; ::_thesis: ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) A7: r,r1,r is_collinear by Def7; p,p1,p is_collinear by Def7; then p,p2,r is_collinear by A1, A2, A6, Def8; hence ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) by A7; ::_thesis: verum end; A8: now__::_thesis:_(_p1_<>_p2_implies_ex_r1,_r2_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p2,r2_is_collinear_&_r,r1,r2_is_collinear_)_) assume A9: p1 <> p2 ; ::_thesis: ex r1, r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) take r1 = r1; ::_thesis: ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) A10: r,r1,r1 is_collinear by Def7; ( p1,p2,p is_collinear & p1,p2,p2 is_collinear ) by A1, Def7, Th24; then p,p2,r1 is_collinear by A3, A9, Def8; hence ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) by A10; ::_thesis: verum end; assume p <> p2 ; ::_thesis: ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) hence ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) by A5, A8; ::_thesis: verum end; now__::_thesis:_(_p_=_p2_implies_ex_r,_r2_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p2,r2_is_collinear_&_r,r1,r2_is_collinear_)_) assume p = p2 ; ::_thesis: ex r, r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) then A11: p,p2,r is_collinear by Def7; take r = r; ::_thesis: ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) r,r1,r is_collinear by Def7; hence ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) by A11; ::_thesis: verum end; hence ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) by A4; ::_thesis: verum end; Lm35: for V being non trivial RealLinearSpace for p, p1, p2, r, r1 being Element of (ProjectiveSpace V) st not p,p1,p2 is_collinear & p,p1,r is_collinear & p1,p2,r1 is_collinear holds ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) proof let V be non trivial RealLinearSpace; ::_thesis: for p, p1, p2, r, r1 being Element of (ProjectiveSpace V) st not p,p1,p2 is_collinear & p,p1,r is_collinear & p1,p2,r1 is_collinear holds ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) let p, p1, p2, r, r1 be Element of (ProjectiveSpace V); ::_thesis: ( not p,p1,p2 is_collinear & p,p1,r is_collinear & p1,p2,r1 is_collinear implies ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) ) assume that A1: not p,p1,p2 is_collinear and A2: p,p1,r is_collinear and A3: p1,p2,r1 is_collinear ; ::_thesis: ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) consider u, v, t being Element of V such that A4: p = Dir u and A5: p1 = Dir v and A6: r = Dir t and A7: not u is zero and A8: not v is zero and A9: not t is zero and A10: u,v,t are_LinDep by A2, Th23; consider v1, w, s being Element of V such that A11: p1 = Dir v1 and A12: p2 = Dir w and A13: r1 = Dir s and A14: not v1 is zero and A15: not w is zero and A16: not s is zero and A17: v1,w,s are_LinDep by A3, Th23; are_Prop v1,v by A5, A8, A11, A14, ANPROJ_1:22; then A18: v,w,s are_LinDep by A17, ANPROJ_1:4; not u,v,w are_LinDep by A1, A4, A5, A7, A8, A12, A15, Th23; then consider y being Element of V such that A19: ( u,w,y are_LinDep & t,s,y are_LinDep ) and A20: not y is zero by A10, A18, ANPROJ_1:15; reconsider r2 = Dir y as Element of (ProjectiveSpace V) by A20, ANPROJ_1:26; take r2 ; ::_thesis: ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) thus ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) by A4, A6, A7, A9, A12, A13, A15, A16, A19, A20, Th23; ::_thesis: verum end; Lm36: for V being non trivial RealLinearSpace holds ProjectiveSpace V is Vebleian proof let V be non trivial RealLinearSpace; ::_thesis: ProjectiveSpace V is Vebleian let p be Element of (ProjectiveSpace V); :: according to ANPROJ_2:def_9 ::_thesis: for p1, p2, r, r1 being Element of (ProjectiveSpace V) st p,p1,r is_collinear & p1,p2,r1 is_collinear holds ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) let p1, p2, r, r1 be Element of (ProjectiveSpace V); ::_thesis: ( p,p1,r is_collinear & p1,p2,r1 is_collinear implies ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) ) assume A1: ( p,p1,r is_collinear & p1,p2,r1 is_collinear ) ; ::_thesis: ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) then ( p,p1,p2 is_collinear implies ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) ) by Lm34; hence ex r2 being Element of (ProjectiveSpace V) st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) by A1, Lm35; ::_thesis: verum end; registration let V be non trivial RealLinearSpace; cluster ProjectiveSpace V -> Vebleian ; coherence ProjectiveSpace V is Vebleian by Lm36; end; Lm37: for V being non trivial RealLinearSpace st V is up-3-dimensional holds ProjectiveSpace V is proper proof let V be non trivial RealLinearSpace; ::_thesis: ( V is up-3-dimensional implies ProjectiveSpace V is proper ) given u, v, w being Element of V such that A1: for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ; :: according to ANPROJ_2:def_6 ::_thesis: ProjectiveSpace V is proper A2: not u,v,w are_LinDep by A1, Th1; A3: not w is zero by A1, Th1; A4: ( not u is zero & not v is zero ) by A1, Th1; then reconsider p = Dir u, q = Dir v, r = Dir w as Element of (ProjectiveSpace V) by A3, ANPROJ_1:26; take p ; :: according to COLLSP:def_6 ::_thesis: not for b1, b2 being Element of the U1 of (ProjectiveSpace V) holds p,b1,b2 is_collinear take q ; ::_thesis: not for b1 being Element of the U1 of (ProjectiveSpace V) holds p,q,b1 is_collinear take r ; ::_thesis: not p,q,r is_collinear assume p,q,r is_collinear ; ::_thesis: contradiction then [(Dir u),(Dir v),(Dir w)] in the Collinearity of (ProjectiveSpace V) by COLLSP:def_2; hence contradiction by A4, A3, A2, ANPROJ_1:25; ::_thesis: verum end; registration let V be up-3-dimensional RealLinearSpace; cluster ProjectiveSpace V -> proper ; coherence ProjectiveSpace V is proper by Lm37; end; theorem Th25: :: ANPROJ_2:25 for V being non trivial RealLinearSpace st ex u, v being Element of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) holds ProjectiveSpace V is at_least_3rank proof let V be non trivial RealLinearSpace; ::_thesis: ( ex u, v being Element of V st for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) implies ProjectiveSpace V is at_least_3rank ) given u, v being Element of V such that A1: for a, b being Real st (a * u) + (b * v) = 0. V holds ( a = 0 & b = 0 ) ; ::_thesis: ProjectiveSpace V is at_least_3rank A2: not are_Prop u,v by A1, Lm1; let p be Element of (ProjectiveSpace V); :: according to ANPROJ_2:def_10 ::_thesis: for q being Element of (ProjectiveSpace V) ex r being Element of (ProjectiveSpace V) st ( p <> r & q <> r & p,q,r is_collinear ) let q be Element of (ProjectiveSpace V); ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p <> r & q <> r & p,q,r is_collinear ) consider y being Element of V such that A3: ( not y is zero & p = Dir y ) by ANPROJ_1:26; consider w being Element of V such that A4: ( not w is zero & q = Dir w ) by ANPROJ_1:26; ( not u is zero & not v is zero ) by A1, Lm1; then consider z being Element of V such that A5: not z is zero and A6: y,w,z are_LinDep and A7: not are_Prop y,z and A8: not are_Prop w,z by A2, ANPROJ_1:16; reconsider r = Dir z as Element of (ProjectiveSpace V) by A5, ANPROJ_1:26; take r ; ::_thesis: ( p <> r & q <> r & p,q,r is_collinear ) thus p <> r by A3, A5, A7, ANPROJ_1:22; ::_thesis: ( q <> r & p,q,r is_collinear ) thus q <> r by A4, A5, A8, ANPROJ_1:22; ::_thesis: p,q,r is_collinear thus p,q,r is_collinear by A3, A4, A5, A6, Th23; ::_thesis: verum end; Lm38: for V being non trivial RealLinearSpace st V is up-3-dimensional holds ProjectiveSpace V is at_least_3rank proof let V be non trivial RealLinearSpace; ::_thesis: ( V is up-3-dimensional implies ProjectiveSpace V is at_least_3rank ) given u, v, w1 being Element of V such that A1: for a, b, c being Real st ((a * u) + (b * v)) + (c * w1) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ; :: according to ANPROJ_2:def_6 ::_thesis: ProjectiveSpace V is at_least_3rank now__::_thesis:_for_a,_b_being_Real_st_(a_*_u)_+_(b_*_v)_=_0._V_holds_ (_a_=_0_&_b_=_0_) let a, b be Real; ::_thesis: ( (a * u) + (b * v) = 0. V implies ( a = 0 & b = 0 ) ) assume (a * u) + (b * v) = 0. V ; ::_thesis: ( a = 0 & b = 0 ) then 0. V = ((a * u) + (b * v)) + (0. V) by RLVECT_1:4 .= ((a * u) + (b * v)) + (0 * w1) by RLVECT_1:10 ; hence ( a = 0 & b = 0 ) by A1; ::_thesis: verum end; hence ProjectiveSpace V is at_least_3rank by Th25; ::_thesis: verum end; registration let V be up-3-dimensional RealLinearSpace; cluster ProjectiveSpace V -> at_least_3rank ; coherence ProjectiveSpace V is at_least_3rank by Lm38; end; registration cluster non empty reflexive transitive proper Vebleian at_least_3rank for CollStr ; existence ex b1 being non empty CollStr st ( b1 is transitive & b1 is reflexive & b1 is proper & b1 is Vebleian & b1 is at_least_3rank ) proof set V0 = the up-3-dimensional RealLinearSpace; take ProjectiveSpace the up-3-dimensional RealLinearSpace ; ::_thesis: ( ProjectiveSpace the up-3-dimensional RealLinearSpace is transitive & ProjectiveSpace the up-3-dimensional RealLinearSpace is reflexive & ProjectiveSpace the up-3-dimensional RealLinearSpace is proper & ProjectiveSpace the up-3-dimensional RealLinearSpace is Vebleian & ProjectiveSpace the up-3-dimensional RealLinearSpace is at_least_3rank ) thus ( ProjectiveSpace the up-3-dimensional RealLinearSpace is transitive & ProjectiveSpace the up-3-dimensional RealLinearSpace is reflexive & ProjectiveSpace the up-3-dimensional RealLinearSpace is proper & ProjectiveSpace the up-3-dimensional RealLinearSpace is Vebleian & ProjectiveSpace the up-3-dimensional RealLinearSpace is at_least_3rank ) ; ::_thesis: verum end; end; definition mode CollProjectiveSpace is non empty reflexive transitive proper Vebleian at_least_3rank CollStr ; end; definition let IT be CollProjectiveSpace; attrIT is Fanoian means :Def11: :: ANPROJ_2:def 11 for p1, r2, q, r1, q1, p, r being Element of IT st p1,r2,q is_collinear & r1,q1,q is_collinear & p1,r1,p is_collinear & r2,q1,p is_collinear & p1,q1,r is_collinear & r2,r1,r is_collinear & p,q,r is_collinear & not p1,r2,q1 is_collinear & not p1,r2,r1 is_collinear & not p1,r1,q1 is_collinear holds r2,r1,q1 is_collinear ; attrIT is Desarguesian means :: ANPROJ_2:def 12 for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being Element of IT st o <> q1 & p1 <> q1 & o <> q2 & p2 <> q2 & o <> q3 & p3 <> q3 & not o,p1,p2 is_collinear & not o,p1,p3 is_collinear & not o,p2,p3 is_collinear & p1,p2,r3 is_collinear & q1,q2,r3 is_collinear & p2,p3,r1 is_collinear & q2,q3,r1 is_collinear & p1,p3,r2 is_collinear & q1,q3,r2 is_collinear & o,p1,q1 is_collinear & o,p2,q2 is_collinear & o,p3,q3 is_collinear holds r1,r2,r3 is_collinear ; attrIT is Pappian means :: ANPROJ_2:def 13 for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being Element of IT st o <> p2 & o <> p3 & p2 <> p3 & p1 <> p2 & p1 <> p3 & o <> q2 & o <> q3 & q2 <> q3 & q1 <> q2 & q1 <> q3 & not o,p1,q1 is_collinear & o,p1,p2 is_collinear & o,p1,p3 is_collinear & o,q1,q2 is_collinear & o,q1,q3 is_collinear & p1,q2,r3 is_collinear & q1,p2,r3 is_collinear & p1,q3,r2 is_collinear & p3,q1,r2 is_collinear & p2,q3,r1 is_collinear & p3,q2,r1 is_collinear holds r1,r2,r3 is_collinear ; end; :: deftheorem Def11 defines Fanoian ANPROJ_2:def_11_:_ for IT being CollProjectiveSpace holds ( IT is Fanoian iff for p1, r2, q, r1, q1, p, r being Element of IT st p1,r2,q is_collinear & r1,q1,q is_collinear & p1,r1,p is_collinear & r2,q1,p is_collinear & p1,q1,r is_collinear & r2,r1,r is_collinear & p,q,r is_collinear & not p1,r2,q1 is_collinear & not p1,r2,r1 is_collinear & not p1,r1,q1 is_collinear holds r2,r1,q1 is_collinear ); :: deftheorem defines Desarguesian ANPROJ_2:def_12_:_ for IT being CollProjectiveSpace holds ( IT is Desarguesian iff for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being Element of IT st o <> q1 & p1 <> q1 & o <> q2 & p2 <> q2 & o <> q3 & p3 <> q3 & not o,p1,p2 is_collinear & not o,p1,p3 is_collinear & not o,p2,p3 is_collinear & p1,p2,r3 is_collinear & q1,q2,r3 is_collinear & p2,p3,r1 is_collinear & q2,q3,r1 is_collinear & p1,p3,r2 is_collinear & q1,q3,r2 is_collinear & o,p1,q1 is_collinear & o,p2,q2 is_collinear & o,p3,q3 is_collinear holds r1,r2,r3 is_collinear ); :: deftheorem defines Pappian ANPROJ_2:def_13_:_ for IT being CollProjectiveSpace holds ( IT is Pappian iff for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being Element of IT st o <> p2 & o <> p3 & p2 <> p3 & p1 <> p2 & p1 <> p3 & o <> q2 & o <> q3 & q2 <> q3 & q1 <> q2 & q1 <> q3 & not o,p1,q1 is_collinear & o,p1,p2 is_collinear & o,p1,p3 is_collinear & o,q1,q2 is_collinear & o,q1,q3 is_collinear & p1,q2,r3 is_collinear & q1,p2,r3 is_collinear & p1,q3,r2 is_collinear & p3,q1,r2 is_collinear & p2,q3,r1 is_collinear & p3,q2,r1 is_collinear holds r1,r2,r3 is_collinear ); definition let IT be CollProjectiveSpace; attrIT is 2-dimensional means :Def14: :: ANPROJ_2:def 14 for p, p1, q, q1 being Element of IT ex r being Element of IT st ( p,p1,r is_collinear & q,q1,r is_collinear ); end; :: deftheorem Def14 defines 2-dimensional ANPROJ_2:def_14_:_ for IT being CollProjectiveSpace holds ( IT is 2-dimensional iff for p, p1, q, q1 being Element of IT ex r being Element of IT st ( p,p1,r is_collinear & q,q1,r is_collinear ) ); notation let IT be CollProjectiveSpace; antonym up-3-dimensional IT for 2-dimensional ; end; definition let IT be CollProjectiveSpace; attrIT is at_most-3-dimensional means :Def15: :: ANPROJ_2:def 15 for p, p1, q, q1, r2 being Element of IT ex r, r1 being Element of IT st ( p,q,r is_collinear & p1,q1,r1 is_collinear & r2,r,r1 is_collinear ); end; :: deftheorem Def15 defines at_most-3-dimensional ANPROJ_2:def_15_:_ for IT being CollProjectiveSpace holds ( IT is at_most-3-dimensional iff for p, p1, q, q1, r2 being Element of IT ex r, r1 being Element of IT st ( p,q,r is_collinear & p1,q1,r1 is_collinear & r2,r,r1 is_collinear ) ); theorem Th26: :: ANPROJ_2:26 for V being non trivial RealLinearSpace for p1, r2, q, r1, q1, p, r being Element of (ProjectiveSpace V) st p1,r2,q is_collinear & r1,q1,q is_collinear & p1,r1,p is_collinear & r2,q1,p is_collinear & p1,q1,r is_collinear & r2,r1,r is_collinear & p,q,r is_collinear & not p1,r2,q1 is_collinear & not p1,r2,r1 is_collinear & not p1,r1,q1 is_collinear holds r2,r1,q1 is_collinear proof let V be non trivial RealLinearSpace; ::_thesis: for p1, r2, q, r1, q1, p, r being Element of (ProjectiveSpace V) st p1,r2,q is_collinear & r1,q1,q is_collinear & p1,r1,p is_collinear & r2,q1,p is_collinear & p1,q1,r is_collinear & r2,r1,r is_collinear & p,q,r is_collinear & not p1,r2,q1 is_collinear & not p1,r2,r1 is_collinear & not p1,r1,q1 is_collinear holds r2,r1,q1 is_collinear let p1, r2, q, r1, q1, p, r be Element of (ProjectiveSpace V); ::_thesis: ( p1,r2,q is_collinear & r1,q1,q is_collinear & p1,r1,p is_collinear & r2,q1,p is_collinear & p1,q1,r is_collinear & r2,r1,r is_collinear & p,q,r is_collinear & not p1,r2,q1 is_collinear & not p1,r2,r1 is_collinear & not p1,r1,q1 is_collinear implies r2,r1,q1 is_collinear ) assume that A1: p1,r2,q is_collinear and A2: r1,q1,q is_collinear and A3: p1,r1,p is_collinear and A4: r2,q1,p is_collinear and A5: p1,q1,r is_collinear and A6: r2,r1,r is_collinear and A7: p,q,r is_collinear ; ::_thesis: ( p1,r2,q1 is_collinear or p1,r2,r1 is_collinear or p1,r1,q1 is_collinear or r2,r1,q1 is_collinear ) consider u1, w1, x being Element of V such that A8: p1 = Dir u1 and A9: r1 = Dir w1 and A10: p = Dir x and A11: not u1 is zero and A12: not w1 is zero and A13: not x is zero and A14: u1,w1,x are_LinDep by A3, Th23; consider u, v, z being Element of V such that A15: p1 = Dir u and A16: r2 = Dir v and A17: q = Dir z and A18: not u is zero and A19: not v is zero and A20: not z is zero and A21: u,v,z are_LinDep by A1, Th23; consider w, y, z1 being Element of V such that A22: r1 = Dir w and A23: q1 = Dir y and A24: q = Dir z1 and A25: not w is zero and A26: not y is zero and A27: not z1 is zero and A28: w,y,z1 are_LinDep by A2, Th23; A29: are_Prop w1,w by A22, A25, A9, A12, ANPROJ_1:22; are_Prop z1,z by A17, A20, A24, A27, ANPROJ_1:22; then A30: w,y,z are_LinDep by A28, ANPROJ_1:4; consider x2, z2, t2 being Element of V such that A31: p = Dir x2 and A32: q = Dir z2 and A33: r = Dir t2 and A34: not x2 is zero and A35: not z2 is zero and A36: not t2 is zero and A37: x2,z2,t2 are_LinDep by A7, Th23; A38: are_Prop x2,x by A10, A13, A31, A34, ANPROJ_1:22; consider u2, y2, t being Element of V such that A39: p1 = Dir u2 and A40: q1 = Dir y2 and A41: r = Dir t and A42: not u2 is zero and A43: not y2 is zero and A44: not t is zero and A45: u2,y2,t are_LinDep by A5, Th23; A46: are_Prop y2,y by A23, A26, A40, A43, ANPROJ_1:22; A47: are_Prop t2,t by A41, A44, A33, A36, ANPROJ_1:22; are_Prop z2,z by A17, A20, A32, A35, ANPROJ_1:22; then A48: x,z,t are_LinDep by A37, A38, A47, ANPROJ_1:4; are_Prop u2,u by A15, A18, A39, A42, ANPROJ_1:22; then A49: u,y,t are_LinDep by A45, A46, ANPROJ_1:4; consider v2, w2, t1 being Element of V such that A50: r2 = Dir v2 and A51: r1 = Dir w2 and A52: r = Dir t1 and A53: not v2 is zero and A54: not w2 is zero and A55: not t1 is zero and A56: v2,w2,t1 are_LinDep by A6, Th23; A57: are_Prop t1,t by A41, A44, A52, A55, ANPROJ_1:22; are_Prop u1,u by A15, A18, A8, A11, ANPROJ_1:22; then A58: u,w,x are_LinDep by A14, A29, ANPROJ_1:4; consider v1, y1, x1 being Element of V such that A59: r2 = Dir v1 and A60: q1 = Dir y1 and A61: p = Dir x1 and A62: not v1 is zero and A63: not y1 is zero and A64: not x1 is zero and A65: v1,y1,x1 are_LinDep by A4, Th23; A66: are_Prop x1,x by A10, A13, A61, A64, ANPROJ_1:22; A67: are_Prop w2,w by A22, A25, A51, A54, ANPROJ_1:22; are_Prop v2,v by A16, A19, A50, A53, ANPROJ_1:22; then A68: v,w,t are_LinDep by A56, A67, A57, ANPROJ_1:4; A69: are_Prop y1,y by A23, A26, A60, A63, ANPROJ_1:22; are_Prop v1,v by A16, A19, A59, A62, ANPROJ_1:22; then v,y,x are_LinDep by A65, A69, A66, ANPROJ_1:4; then ( u,v,y are_LinDep or u,v,w are_LinDep or u,w,y are_LinDep or v,w,y are_LinDep ) by A20, A21, A13, A44, A30, A58, A49, A68, A48, ANPROJ_1:18; hence ( p1,r2,q1 is_collinear or p1,r2,r1 is_collinear or p1,r1,q1 is_collinear or r2,r1,q1 is_collinear ) by A15, A16, A18, A19, A22, A23, A25, A26, Th23; ::_thesis: verum end; Lm39: for V being up-3-dimensional RealLinearSpace holds ProjectiveSpace V is Fanoian proof let V be up-3-dimensional RealLinearSpace; ::_thesis: ProjectiveSpace V is Fanoian for p1, r2, q, r1, q1, p, r being Element of (ProjectiveSpace V) st p1,r2,q is_collinear & r1,q1,q is_collinear & p1,r1,p is_collinear & r2,q1,p is_collinear & p1,q1,r is_collinear & r2,r1,r is_collinear & p,q,r is_collinear & not p1,r2,q1 is_collinear & not p1,r2,r1 is_collinear & not p1,r1,q1 is_collinear holds r2,r1,q1 is_collinear by Th26; hence ProjectiveSpace V is Fanoian by Def11; ::_thesis: verum end; Lm40: for V being up-3-dimensional RealLinearSpace holds ProjectiveSpace V is Desarguesian proof let V be up-3-dimensional RealLinearSpace; ::_thesis: ProjectiveSpace V is Desarguesian let o, p1, p2, p3, q1, q2, q3, r1, r2, r3 be Element of (ProjectiveSpace V); :: according to ANPROJ_2:def_12 ::_thesis: ( o <> q1 & p1 <> q1 & o <> q2 & p2 <> q2 & o <> q3 & p3 <> q3 & not o,p1,p2 is_collinear & not o,p1,p3 is_collinear & not o,p2,p3 is_collinear & p1,p2,r3 is_collinear & q1,q2,r3 is_collinear & p2,p3,r1 is_collinear & q2,q3,r1 is_collinear & p1,p3,r2 is_collinear & q1,q3,r2 is_collinear & o,p1,q1 is_collinear & o,p2,q2 is_collinear & o,p3,q3 is_collinear implies r1,r2,r3 is_collinear ) assume that A1: o <> q1 and A2: p1 <> q1 and A3: o <> q2 and A4: p2 <> q2 and A5: o <> q3 and A6: p3 <> q3 and A7: not o,p1,p2 is_collinear and A8: ( not o,p1,p3 is_collinear & not o,p2,p3 is_collinear ) and A9: p1,p2,r3 is_collinear and A10: q1,q2,r3 is_collinear and A11: p2,p3,r1 is_collinear and A12: q2,q3,r1 is_collinear and A13: p1,p3,r2 is_collinear and A14: q1,q3,r2 is_collinear and A15: o,p1,q1 is_collinear and A16: o,p2,q2 is_collinear and A17: o,p3,q3 is_collinear ; ::_thesis: r1,r2,r3 is_collinear consider q19, q29, r399 being Element of V such that A18: q1 = Dir q19 and A19: q2 = Dir q29 and A20: r3 = Dir r399 and A21: not q19 is zero and A22: not q29 is zero and A23: not r399 is zero and A24: q19,q29,r399 are_LinDep by A10, Th23; consider q299, q39, r199 being Element of V such that A25: q2 = Dir q299 and A26: q3 = Dir q39 and A27: r1 = Dir r199 and A28: not q299 is zero and A29: not q39 is zero and A30: not r199 is zero and A31: q299,q39,r199 are_LinDep by A12, Th23; A32: are_Prop q299,q29 by A19, A22, A25, A28, ANPROJ_1:22; consider p299, p39, r19 being Element of V such that A33: p2 = Dir p299 and A34: p3 = Dir p39 and A35: r1 = Dir r19 and A36: not p299 is zero and A37: not p39 is zero and A38: not r19 is zero and A39: p299,p39,r19 are_LinDep by A11, Th23; A40: not are_Prop p39,q39 by A6, A34, A37, A26, A29, ANPROJ_1:22; are_Prop r199,r19 by A35, A38, A27, A30, ANPROJ_1:22; then A41: q29,q39,r19 are_LinDep by A31, A32, ANPROJ_1:4; consider p199, p399, r29 being Element of V such that A42: p1 = Dir p199 and A43: p3 = Dir p399 and A44: r2 = Dir r29 and A45: not p199 is zero and A46: not p399 is zero and A47: not r29 is zero and A48: p199,p399,r29 are_LinDep by A13, Th23; A49: are_Prop p399,p39 by A34, A37, A43, A46, ANPROJ_1:22; consider o9 being Element of V such that A50: not o9 is zero and A51: o = Dir o9 by ANPROJ_1:26; A52: not are_Prop o9,q39 by A5, A50, A51, A26, A29, ANPROJ_1:22; consider p19, p29, r39 being Element of V such that A53: p1 = Dir p19 and A54: p2 = Dir p29 and A55: r3 = Dir r39 and A56: not p19 is zero and A57: not p29 is zero and A58: not r39 is zero and A59: p19,p29,r39 are_LinDep by A9, Th23; A60: ( not are_Prop p19,q19 & not are_Prop p29,q29 ) by A2, A4, A53, A54, A56, A57, A18, A19, A21, A22, ANPROJ_1:22; A61: ( not are_Prop o9,q19 & not are_Prop o9,q29 ) by A1, A3, A50, A51, A18, A19, A21, A22, ANPROJ_1:22; consider o999, p2999, q2999 being Element of V such that A62: o = Dir o999 and A63: p2 = Dir p2999 and A64: q2 = Dir q2999 and A65: not o999 is zero and A66: not p2999 is zero and A67: not q2999 is zero and A68: o999,p2999,q2999 are_LinDep by A16, Th23; A69: are_Prop q2999,q29 by A19, A22, A64, A67, ANPROJ_1:22; A70: are_Prop o999,o9 by A50, A51, A62, A65, ANPROJ_1:22; are_Prop p2999,p29 by A54, A57, A63, A66, ANPROJ_1:22; then A71: o9,p29,q29 are_LinDep by A68, A70, A69, ANPROJ_1:4; consider q199, q399, r299 being Element of V such that A72: q1 = Dir q199 and A73: q3 = Dir q399 and A74: r2 = Dir r299 and A75: not q199 is zero and A76: not q399 is zero and A77: not r299 is zero and A78: q199,q399,r299 are_LinDep by A14, Th23; A79: are_Prop q199,q19 by A18, A21, A72, A75, ANPROJ_1:22; A80: not o9,p19,p29 are_LinDep by A7, A50, A51, A53, A54, A56, A57, Th23; are_Prop r399,r39 by A55, A58, A20, A23, ANPROJ_1:22; then A81: q19,q29,r39 are_LinDep by A24, ANPROJ_1:4; A82: are_Prop q399,q39 by A26, A29, A73, A76, ANPROJ_1:22; consider o9999, p3999, q3999 being Element of V such that A83: o = Dir o9999 and A84: p3 = Dir p3999 and A85: q3 = Dir q3999 and A86: not o9999 is zero and A87: not p3999 is zero and A88: not q3999 is zero and A89: o9999,p3999,q3999 are_LinDep by A17, Th23; A90: are_Prop q3999,q39 by A26, A29, A85, A88, ANPROJ_1:22; are_Prop p299,p29 by A54, A57, A33, A36, ANPROJ_1:22; then A91: p29,p39,r19 are_LinDep by A39, ANPROJ_1:4; are_Prop p199,p19 by A53, A56, A42, A45, ANPROJ_1:22; then p19,p39,r29 are_LinDep by A48, A49, ANPROJ_1:4; then A92: p19,p29,p39,r19,r29,r39 lie_on_a_triangle by A59, A91, Def2; A93: q19,q29,q39 are_Prop_Vect by A21, A22, A29, Def1; consider o99, p1999, q1999 being Element of V such that A94: o = Dir o99 and A95: p1 = Dir p1999 and A96: q1 = Dir q1999 and A97: not o99 is zero and A98: not p1999 is zero and A99: not q1999 is zero and A100: o99,p1999,q1999 are_LinDep by A15, Th23; A101: are_Prop q1999,q19 by A18, A21, A96, A99, ANPROJ_1:22; A102: ( not o9,p19,p39 are_LinDep & not o9,p29,p39 are_LinDep ) by A8, A50, A51, A53, A54, A56, A57, A34, A37, Th23; A103: p19,p29,p39 are_Prop_Vect by A56, A57, A37, Def1; A104: are_Prop o9999,o9 by A50, A51, A83, A86, ANPROJ_1:22; are_Prop p3999,p39 by A34, A37, A84, A87, ANPROJ_1:22; then A105: o9,p39,q39 are_LinDep by A89, A104, A90, ANPROJ_1:4; A106: are_Prop o99,o9 by A50, A51, A94, A97, ANPROJ_1:22; are_Prop p1999,p19 by A53, A56, A95, A98, ANPROJ_1:22; then o9,p19,q19 are_LinDep by A100, A106, A101, ANPROJ_1:4; then A107: o9,p19,p29,p39,q19,q29,q39 are_perspective by A71, A105, Def3; are_Prop r299,r29 by A44, A47, A74, A77, ANPROJ_1:22; then q19,q39,r29 are_LinDep by A78, A79, A82, ANPROJ_1:4; then A108: q19,q29,q39,r19,r29,r39 lie_on_a_triangle by A81, A41, Def2; r19,r29,r39 are_Prop_Vect by A58, A38, A47, Def1; then r19,r29,r39 are_LinDep by A50, A61, A52, A60, A40, A103, A93, A107, A80, A102, A92, A108, Th8; hence r1,r2,r3 is_collinear by A55, A58, A35, A38, A44, A47, Th23; ::_thesis: verum end; Lm41: for V being up-3-dimensional RealLinearSpace holds ProjectiveSpace V is Pappian proof let V be up-3-dimensional RealLinearSpace; ::_thesis: ProjectiveSpace V is Pappian let o, p1, p2, p3, q1, q2, q3, r1, r2, r3 be Element of (ProjectiveSpace V); :: according to ANPROJ_2:def_13 ::_thesis: ( o <> p2 & o <> p3 & p2 <> p3 & p1 <> p2 & p1 <> p3 & o <> q2 & o <> q3 & q2 <> q3 & q1 <> q2 & q1 <> q3 & not o,p1,q1 is_collinear & o,p1,p2 is_collinear & o,p1,p3 is_collinear & o,q1,q2 is_collinear & o,q1,q3 is_collinear & p1,q2,r3 is_collinear & q1,p2,r3 is_collinear & p1,q3,r2 is_collinear & p3,q1,r2 is_collinear & p2,q3,r1 is_collinear & p3,q2,r1 is_collinear implies r1,r2,r3 is_collinear ) assume that A1: o <> p2 and A2: o <> p3 and A3: p2 <> p3 and A4: p1 <> p2 and A5: p1 <> p3 and A6: o <> q2 and A7: o <> q3 and A8: q2 <> q3 and A9: q1 <> q2 and A10: q1 <> q3 and A11: not o,p1,q1 is_collinear and A12: o,p1,p2 is_collinear and A13: o,p1,p3 is_collinear and A14: o,q1,q2 is_collinear and A15: o,q1,q3 is_collinear and A16: p1,q2,r3 is_collinear and A17: q1,p2,r3 is_collinear and A18: p1,q3,r2 is_collinear and A19: p3,q1,r2 is_collinear and A20: p2,q3,r1 is_collinear and A21: p3,q2,r1 is_collinear ; ::_thesis: r1,r2,r3 is_collinear consider o999, q19, q29 being Element of V such that A22: o = Dir o999 and A23: q1 = Dir q19 and A24: q2 = Dir q29 and A25: not o999 is zero and A26: not q19 is zero and A27: not q29 is zero and A28: o999,q19,q29 are_LinDep by A14, Th23; A29: not are_Prop q19,q29 by A9, A23, A24, A26, A27, ANPROJ_1:22; consider o9999, q199, q39 being Element of V such that A30: o = Dir o9999 and A31: q1 = Dir q199 and A32: q3 = Dir q39 and A33: not o9999 is zero and A34: not q199 is zero and A35: not q39 is zero and A36: o9999,q199,q39 are_LinDep by A15, Th23; A37: are_Prop q199,q19 by A23, A26, A31, A34, ANPROJ_1:22; consider o99, p199, p39 being Element of V such that A38: ( o = Dir o99 & p1 = Dir p199 ) and A39: p3 = Dir p39 and A40: ( not o99 is zero & not p199 is zero ) and A41: not p39 is zero and A42: o99,p199,p39 are_LinDep by A13, Th23; consider o9, p19, p29 being Element of V such that A43: o = Dir o9 and A44: p1 = Dir p19 and A45: p2 = Dir p29 and A46: not o9 is zero and A47: not p19 is zero and A48: not p29 is zero and A49: o9,p19,p29 are_LinDep by A12, Th23; A50: ( not are_Prop o9,p39 & not are_Prop p19,p39 ) by A2, A5, A43, A44, A46, A47, A39, A41, ANPROJ_1:22; A51: ( not are_Prop q19,q39 & not are_Prop q29,q39 ) by A8, A10, A23, A24, A26, A27, A32, A35, ANPROJ_1:22; A52: not are_Prop p29,p39 by A3, A45, A48, A39, A41, ANPROJ_1:22; A53: not are_Prop o9,q39 by A7, A43, A46, A32, A35, ANPROJ_1:22; A54: not are_Prop o9,q29 by A6, A43, A46, A24, A27, ANPROJ_1:22; ( not are_Prop o9,p29 & not are_Prop p19,p29 ) by A1, A4, A43, A44, A45, A46, A47, A48, ANPROJ_1:22; then A55: o9,p19,p29,p39,q19,q29,q39 are_half_mutually_not_Prop by A54, A53, A50, A29, A52, A51, Def5; consider q1999, p2999, r399 being Element of V such that A56: q1 = Dir q1999 and A57: p2 = Dir p2999 and A58: r3 = Dir r399 and A59: not q1999 is zero and A60: not p2999 is zero and A61: not r399 is zero and A62: q1999,p2999,r399 are_LinDep by A17, Th23; A63: are_Prop q1999,q19 by A23, A26, A56, A59, ANPROJ_1:22; consider p29999, q3999, r19 being Element of V such that A64: p2 = Dir p29999 and A65: q3 = Dir q3999 and A66: r1 = Dir r19 and A67: not p29999 is zero and A68: not q3999 is zero and A69: not r19 is zero and A70: p29999,q3999,r19 are_LinDep by A20, Th23; A71: are_Prop q3999,q39 by A32, A35, A65, A68, ANPROJ_1:22; are_Prop o999,o9 by A43, A46, A22, A25, ANPROJ_1:22; then A72: o9,q19,q29 are_LinDep by A28, ANPROJ_1:4; are_Prop o9999,o9 by A43, A46, A30, A33, ANPROJ_1:22; then A73: o9,q19,q39 are_LinDep by A36, A37, ANPROJ_1:4; ( are_Prop o99,o9 & are_Prop p199,p19 ) by A43, A44, A46, A47, A38, A40, ANPROJ_1:22; then A74: o9,p19,p39 are_LinDep by A42, ANPROJ_1:4; not o9,p19,q19 are_LinDep by A11, A43, A44, A46, A47, A23, A26, Th23; then A75: o9,p19,p29,p39,q19,q29,q39 lie_on_an_angle by A49, A74, A72, A73, Def4; consider p19999, q399, r29 being Element of V such that A76: p1 = Dir p19999 and A77: q3 = Dir q399 and A78: r2 = Dir r29 and A79: not p19999 is zero and A80: not q399 is zero and A81: not r29 is zero and A82: p19999,q399,r29 are_LinDep by A18, Th23; A83: are_Prop q399,q39 by A32, A35, A77, A80, ANPROJ_1:22; consider p3999, q29999, r199 being Element of V such that A84: p3 = Dir p3999 and A85: q2 = Dir q29999 and A86: r1 = Dir r199 and A87: not p3999 is zero and A88: not q29999 is zero and A89: not r199 is zero and A90: p3999,q29999,r199 are_LinDep by A21, Th23; A91: are_Prop p3999,p39 by A39, A41, A84, A87, ANPROJ_1:22; A92: are_Prop q29999,q29 by A24, A27, A85, A88, ANPROJ_1:22; are_Prop r199,r19 by A66, A69, A86, A89, ANPROJ_1:22; then A93: p39,q29,r19 are_LinDep by A90, A91, A92, ANPROJ_1:4; A94: q19,q29,q39 are_Prop_Vect by A26, A27, A35, Def1; A95: p19,p29,p39 are_Prop_Vect by A47, A48, A41, Def1; are_Prop p29999,p29 by A45, A48, A64, A67, ANPROJ_1:22; then A96: p29,q39,r19 are_LinDep by A70, A71, ANPROJ_1:4; consider p399, q1999, r299 being Element of V such that A97: p3 = Dir p399 and A98: q1 = Dir q1999 and A99: r2 = Dir r299 and A100: not p399 is zero and A101: not q1999 is zero and A102: not r299 is zero and A103: p399,q1999,r299 are_LinDep by A19, Th23; A104: are_Prop q1999,q19 by A23, A26, A98, A101, ANPROJ_1:22; are_Prop p19999,p19 by A44, A47, A76, A79, ANPROJ_1:22; then A105: p19,q39,r29 are_LinDep by A82, A83, ANPROJ_1:4; consider p1999, q2999, r39 being Element of V such that A106: p1 = Dir p1999 and A107: q2 = Dir q2999 and A108: r3 = Dir r39 and A109: not p1999 is zero and A110: not q2999 is zero and A111: not r39 is zero and A112: p1999,q2999,r39 are_LinDep by A16, Th23; A113: are_Prop q2999,q29 by A24, A27, A107, A110, ANPROJ_1:22; A114: are_Prop p2999,p29 by A45, A48, A57, A60, ANPROJ_1:22; are_Prop r399,r39 by A108, A111, A58, A61, ANPROJ_1:22; then A115: q19,p29,r39 are_LinDep by A62, A63, A114, ANPROJ_1:4; are_Prop p1999,p19 by A44, A47, A106, A109, ANPROJ_1:22; then A116: p19,q29,r39 are_LinDep by A112, A113, ANPROJ_1:4; A117: are_Prop p399,p39 by A39, A41, A97, A100, ANPROJ_1:22; are_Prop r299,r29 by A78, A81, A99, A102, ANPROJ_1:22; then A118: p39,q19,r29 are_LinDep by A103, A117, A104, ANPROJ_1:4; r19,r29,r39 are_Prop_Vect by A111, A81, A69, Def1; then r19,r29,r39 are_LinDep by A46, A75, A55, A95, A94, A116, A115, A105, A118, A96, A93, Th9; hence r1,r2,r3 is_collinear by A108, A111, A78, A81, A66, A69, Th23; ::_thesis: verum end; registration let V be up-3-dimensional RealLinearSpace; cluster ProjectiveSpace V -> Fanoian Desarguesian Pappian ; coherence ( ProjectiveSpace V is Fanoian & ProjectiveSpace V is Desarguesian & ProjectiveSpace V is Pappian ) by Lm39, Lm40, Lm41; end; theorem Th27: :: ANPROJ_2:27 for V being non trivial RealLinearSpace st ex u, v, w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) holds ex x1, x2 being Element of (ProjectiveSpace V) st ( x1 <> x2 & ( for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ) ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ex u, v, w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) implies ex x1, x2 being Element of (ProjectiveSpace V) st ( x1 <> x2 & ( for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ) ) ) given p, q, r being Element of V such that A1: for a, b, c being Real st ((a * p) + (b * q)) + (c * r) = 0. V holds ( a = 0 & b = 0 & c = 0 ) and A2: for y being Element of V ex a, b, c being Real st y = ((a * p) + (b * q)) + (c * r) ; ::_thesis: ex x1, x2 being Element of (ProjectiveSpace V) st ( x1 <> x2 & ( for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ) ) A3: ( not p is zero & not q is zero ) by A1, Th1; then reconsider x1 = Dir p, x2 = Dir q as Element of (ProjectiveSpace V) by ANPROJ_1:26; take x1 ; ::_thesis: ex x2 being Element of (ProjectiveSpace V) st ( x1 <> x2 & ( for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ) ) take x2 ; ::_thesis: ( x1 <> x2 & ( for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ) ) not are_Prop p,q by A1, Th1; hence x1 <> x2 by A3, ANPROJ_1:22; ::_thesis: for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) let r1, r2 be Element of (ProjectiveSpace V); ::_thesis: ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) consider u being Element of V such that A4: ( not u is zero & r1 = Dir u ) by ANPROJ_1:26; consider u1 being Element of V such that A5: ( not u1 is zero & r2 = Dir u1 ) by ANPROJ_1:26; consider y being Element of V such that A6: p,q,y are_LinDep and A7: u,u1,y are_LinDep and A8: not y is zero by A1, A2, Th3; reconsider q = Dir y as Element of (ProjectiveSpace V) by A8, ANPROJ_1:26; take q ; ::_thesis: ( x1,x2,q is_collinear & r1,r2,q is_collinear ) thus x1,x2,q is_collinear by A3, A6, A8, Th23; ::_thesis: r1,r2,q is_collinear thus r1,r2,q is_collinear by A4, A5, A7, A8, Th23; ::_thesis: verum end; theorem Th28: :: ANPROJ_2:28 for V being non trivial RealLinearSpace st ex x1, x2 being Element of (ProjectiveSpace V) st ( x1 <> x2 & ( for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ) ) holds for p, p1, q, q1 being Element of (ProjectiveSpace V) ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ex x1, x2 being Element of (ProjectiveSpace V) st ( x1 <> x2 & ( for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ) ) implies for p, p1, q, q1 being Element of (ProjectiveSpace V) ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) ) given x1, x2 being Element of (ProjectiveSpace V) such that A1: x1 <> x2 and A2: for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ; ::_thesis: for p, p1, q, q1 being Element of (ProjectiveSpace V) ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) let p, p1, q, q1 be Element of (ProjectiveSpace V); ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) consider p3 being Element of (ProjectiveSpace V) such that A3: x1,x2,p3 is_collinear and A4: p,p1,p3 is_collinear by A2; consider q3 being Element of (ProjectiveSpace V) such that A5: x1,x2,q3 is_collinear and A6: q,q1,q3 is_collinear by A2; consider s2 being Element of (ProjectiveSpace V) such that A7: x1,x2,s2 is_collinear and A8: p,q,s2 is_collinear by A2; A9: s2,p,q is_collinear by A8, Th24; consider s4 being Element of (ProjectiveSpace V) such that A10: x1,x2,s4 is_collinear and A11: p,q1,s4 is_collinear by A2; A12: s4,q1,p is_collinear by A11, Th24; p3,s2,q3 is_collinear by A1, A3, A5, A7, Def8; then consider s3 being Element of (ProjectiveSpace V) such that A13: p3,p,s3 is_collinear and A14: q3,q,s3 is_collinear by A9, Def9; consider s being Element of (ProjectiveSpace V) such that A15: x1,x2,s is_collinear and A16: p1,q1,s is_collinear by A2; q3,s4,p3 is_collinear by A1, A3, A5, A10, Def8; then consider s5 being Element of (ProjectiveSpace V) such that A17: q3,q1,s5 is_collinear and A18: p3,p,s5 is_collinear by A12, Def9; A19: p1,s,q1 is_collinear by A16, Th24; consider s6 being Element of (ProjectiveSpace V) such that A20: x1,x2,s6 is_collinear and A21: p1,q,s6 is_collinear by A2; A22: s6,p1,q is_collinear by A21, Th24; p3,s6,q3 is_collinear by A1, A3, A5, A20, Def8; then consider s7 being Element of (ProjectiveSpace V) such that A23: p3,p1,s7 is_collinear and A24: q3,q,s7 is_collinear by A22, Def9; s,p3,q3 is_collinear by A1, A3, A5, A15, Def8; then consider s1 being Element of (ProjectiveSpace V) such that A25: p1,p3,s1 is_collinear and A26: q1,q3,s1 is_collinear by A19, Def9; A27: now__::_thesis:_(_p_<>_p1_&_q_<>_q1_implies_ex_r_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p1,r_is_collinear_&_q,q1,r_is_collinear_)_) A28: now__::_thesis:_(_p3_<>_p1_&_q3_<>_q1_implies_ex_s1,_r_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p1,r_is_collinear_&_q,q1,r_is_collinear_)_) A29: q3,q1,s1 is_collinear by A26, Th24; assume that A30: p3 <> p1 and A31: q3 <> q1 ; ::_thesis: ex s1, r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) ( q3,q1,q is_collinear & q3,q1,q1 is_collinear ) by A6, Def7, Th24; then A32: q,q1,s1 is_collinear by A31, A29, Def8; take s1 = s1; ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) A33: p3,p1,s1 is_collinear by A25, Th24; ( p3,p1,p is_collinear & p3,p1,p1 is_collinear ) by A4, Def7, Th24; then p,p1,s1 is_collinear by A30, A33, Def8; hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A32; ::_thesis: verum end; A34: now__::_thesis:_(_p3_<>_p_&_q3_<>_q_implies_ex_s3,_r_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p1,r_is_collinear_&_q,q1,r_is_collinear_)_) assume that A35: p3 <> p and A36: q3 <> q ; ::_thesis: ex s3, r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) take s3 = s3; ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) ( q3,q,q is_collinear & q3,q,q1 is_collinear ) by A6, Def7, Th24; then A37: q,q1,s3 is_collinear by A14, A36, Def8; ( p3,p,p is_collinear & p3,p,p1 is_collinear ) by A4, Def7, Th24; then p,p1,s3 is_collinear by A13, A35, Def8; hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A37; ::_thesis: verum end; A38: now__::_thesis:_(_p3_<>_p1_&_q3_<>_q_implies_ex_s7,_r_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p1,r_is_collinear_&_q,q1,r_is_collinear_)_) assume that A39: p3 <> p1 and A40: q3 <> q ; ::_thesis: ex s7, r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) take s7 = s7; ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) ( q3,q,q is_collinear & q3,q,q1 is_collinear ) by A6, Def7, Th24; then A41: q,q1,s7 is_collinear by A24, A40, Def8; ( p3,p1,p is_collinear & p3,p1,p1 is_collinear ) by A4, Def7, Th24; then p,p1,s7 is_collinear by A23, A39, Def8; hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A41; ::_thesis: verum end; A42: now__::_thesis:_(_p3_<>_p_&_q3_<>_q1_implies_ex_s5,_r_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p1,r_is_collinear_&_q,q1,r_is_collinear_)_) assume that A43: p3 <> p and A44: q3 <> q1 ; ::_thesis: ex s5, r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) take s5 = s5; ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) ( q3,q1,q is_collinear & q3,q1,q1 is_collinear ) by A6, Def7, Th24; then A45: q,q1,s5 is_collinear by A17, A44, Def8; ( p3,p,p is_collinear & p3,p,p1 is_collinear ) by A4, Def7, Th24; then p,p1,s5 is_collinear by A18, A43, Def8; hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A45; ::_thesis: verum end; assume ( p <> p1 & q <> q1 ) ; ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A34, A42, A38, A28; ::_thesis: verum end; now__::_thesis:_(_(_p_=_p1_or_q_=_q1_)_implies_ex_r_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p1,r_is_collinear_&_q,q1,r_is_collinear_)_) A46: now__::_thesis:_(_p_=_p1_implies_ex_q3,_r_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p1,r_is_collinear_&_q,q1,r_is_collinear_)_) assume A47: p = p1 ; ::_thesis: ex q3, r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) take q3 = q3; ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) p,p1,q3 is_collinear by A47, Def7; hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A6; ::_thesis: verum end; A48: now__::_thesis:_(_q_=_q1_implies_ex_p3,_r_being_Element_of_(ProjectiveSpace_V)_st_ (_p,p1,r_is_collinear_&_q,q1,r_is_collinear_)_) assume A49: q = q1 ; ::_thesis: ex p3, r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) take p3 = p3; ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) q,q1,p3 is_collinear by A49, Def7; hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A4; ::_thesis: verum end; assume ( p = p1 or q = q1 ) ; ::_thesis: ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A48, A46; ::_thesis: verum end; hence ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by A27; ::_thesis: verum end; theorem Th29: :: ANPROJ_2:29 for V being non trivial RealLinearSpace st ex u, v, w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) holds ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is 2-dimensional ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ex u, v, w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) implies ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is 2-dimensional ) ) given u, v, w being Element of V such that A1: for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) and A2: for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ; ::_thesis: ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is 2-dimensional ) reconsider V9 = V as up-3-dimensional RealLinearSpace by A1, Def6; take ProjectiveSpace V9 ; ::_thesis: ( ProjectiveSpace V9 = ProjectiveSpace V & ProjectiveSpace V9 is 2-dimensional ) ex x1, x2 being Element of (ProjectiveSpace V) st ( x1 <> x2 & ( for r1, r2 being Element of (ProjectiveSpace V) ex q being Element of (ProjectiveSpace V) st ( x1,x2,q is_collinear & r1,r2,q is_collinear ) ) ) by A1, A2, Th27; then for p, p1, q, q1 being Element of (ProjectiveSpace V) ex r being Element of (ProjectiveSpace V) st ( p,p1,r is_collinear & q,q1,r is_collinear ) by Th28; hence ( ProjectiveSpace V9 = ProjectiveSpace V & ProjectiveSpace V9 is 2-dimensional ) by Def14; ::_thesis: verum end; Lm42: for V being non trivial RealLinearSpace st ex y, u, v, w being Element of V st for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) holds V is up-3-dimensional proof let V be non trivial RealLinearSpace; ::_thesis: ( ex y, u, v, w being Element of V st for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) implies V is up-3-dimensional ) given y, u, v, w being Element of V such that A1: for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ; ::_thesis: V is up-3-dimensional take y ; :: according to ANPROJ_2:def_6 ::_thesis: ex v, w1 being Element of V st for a, b, c being Real st ((a * y) + (b * v)) + (c * w1) = 0. V holds ( a = 0 & b = 0 & c = 0 ) take u ; ::_thesis: ex w1 being Element of V st for a, b, c being Real st ((a * y) + (b * u)) + (c * w1) = 0. V holds ( a = 0 & b = 0 & c = 0 ) take v ; ::_thesis: for a, b, c being Real st ((a * y) + (b * u)) + (c * v) = 0. V holds ( a = 0 & b = 0 & c = 0 ) let a, b, a1 be Real; ::_thesis: ( ((a * y) + (b * u)) + (a1 * v) = 0. V implies ( a = 0 & b = 0 & a1 = 0 ) ) assume ((a * y) + (b * u)) + (a1 * v) = 0. V ; ::_thesis: ( a = 0 & b = 0 & a1 = 0 ) then 0. V = (((a * y) + (b * u)) + (a1 * v)) + (0. V) by RLVECT_1:4 .= (((a * y) + (b * u)) + (a1 * v)) + (0 * w) by RLVECT_1:10 ; hence ( a = 0 & b = 0 & a1 = 0 ) by A1; ::_thesis: verum end; Lm43: for V being non trivial RealLinearSpace st ex y, u, v, w being Element of V st for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) holds ( ProjectiveSpace V is proper & ProjectiveSpace V is at_least_3rank ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ex y, u, v, w being Element of V st for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) implies ( ProjectiveSpace V is proper & ProjectiveSpace V is at_least_3rank ) ) given y, u, v, w being Element of V such that A1: for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ; ::_thesis: ( ProjectiveSpace V is proper & ProjectiveSpace V is at_least_3rank ) V is up-3-dimensional by A1, Lm42; hence ( ProjectiveSpace V is proper & ProjectiveSpace V is at_least_3rank ) ; ::_thesis: verum end; theorem Th30: :: ANPROJ_2:30 for V being non trivial RealLinearSpace st ex y, u, v, w being Element of V st ( ( for w1 being Element of V ex a, b, a1, b1 being Real st w1 = (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) ) & ( for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) ) holds ex p, q1, q2 being Element of (ProjectiveSpace V) st ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ex y, u, v, w being Element of V st ( ( for w1 being Element of V ex a, b, a1, b1 being Real st w1 = (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) ) & ( for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) ) implies ex p, q1, q2 being Element of (ProjectiveSpace V) st ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) ) given y, u, v, w being Element of V such that A1: for w1 being Element of V ex a, b, a1, b1 being Real st w1 = (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) and A2: for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ; ::_thesis: ex p, q1, q2 being Element of (ProjectiveSpace V) st ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) A3: ( not u is zero & not v is zero ) by A2, Th2; A4: not y is zero by A2, Th2; then reconsider p = Dir y, q1 = Dir u, q2 = Dir v as Element of (ProjectiveSpace V) by A3, ANPROJ_1:26; take p ; ::_thesis: ex q1, q2 being Element of (ProjectiveSpace V) st ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) take q1 ; ::_thesis: ex q2 being Element of (ProjectiveSpace V) st ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) take q2 ; ::_thesis: ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) A5: not y,u,v are_LinDep by A2, Th2; now__::_thesis:_not_p,q1,q2_is_collinear assume p,q1,q2 is_collinear ; ::_thesis: contradiction then [p,q1,q2] in the Collinearity of (ProjectiveSpace V) by COLLSP:def_2; hence contradiction by A4, A3, A5, ANPROJ_1:25; ::_thesis: verum end; hence not p,q1,q2 is_collinear ; ::_thesis: for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) let r1, r2 be Element of (ProjectiveSpace V); ::_thesis: ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) consider u1 being Element of V such that A6: not u1 is zero and A7: r1 = Dir u1 by ANPROJ_1:26; consider u2 being Element of V such that A8: not u2 is zero and A9: r2 = Dir u2 by ANPROJ_1:26; consider w1, w2 being Element of V such that A10: u1,u2,w2 are_LinDep and A11: u,v,w1 are_LinDep and A12: y,w2,w1 are_LinDep and A13: not w1 is zero and A14: not w2 is zero by A1, A2, A6, A8, Th4; reconsider q3 = Dir w1, r3 = Dir w2 as Element of (ProjectiveSpace V) by A13, A14, ANPROJ_1:26; take q3 ; ::_thesis: ex r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) take r3 ; ::_thesis: ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) thus r1,r2,r3 is_collinear by A6, A7, A8, A9, A10, A14, Th23; ::_thesis: ( q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) thus q1,q2,q3 is_collinear by A3, A11, A13, Th23; ::_thesis: p,r3,q3 is_collinear thus p,r3,q3 is_collinear by A4, A12, A13, A14, Th23; ::_thesis: verum end; Lm44: for V being non trivial RealLinearSpace for x, d, b, b9, d9, q being Element of (ProjectiveSpace V) st not q,b,d is_collinear & b,d,x is_collinear & q,b9,b is_collinear & q,d9,d is_collinear holds ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) proof let V be non trivial RealLinearSpace; ::_thesis: for x, d, b, b9, d9, q being Element of (ProjectiveSpace V) st not q,b,d is_collinear & b,d,x is_collinear & q,b9,b is_collinear & q,d9,d is_collinear holds ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) let x, d, b, b9, d9, q be Element of (ProjectiveSpace V); ::_thesis: ( not q,b,d is_collinear & b,d,x is_collinear & q,b9,b is_collinear & q,d9,d is_collinear implies ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) ) assume that A1: not q,b,d is_collinear and A2: b,d,x is_collinear and A3: q,b9,b is_collinear and A4: q,d9,d is_collinear ; ::_thesis: ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) A5: b9,q,b is_collinear by A3, Th24; A6: b <> d by A1, Def7; A7: now__::_thesis:_(_b_<>_b9_implies_ex_o_being_Element_of_(ProjectiveSpace_V)_st_ (_b9,d9,o_is_collinear_&_q,x,o_is_collinear_)_) A8: b,b9,q is_collinear by A3, Th24; consider z being Element of (ProjectiveSpace V) such that A9: b9,d9,z is_collinear and A10: b,d,z is_collinear by A4, A5, Def9; A11: z,b9,b9 is_collinear by Def7; b,d,b is_collinear by Def7; then z,b,x is_collinear by A2, A6, A10, Def8; then consider o being Element of (ProjectiveSpace V) such that A12: z,b9,o is_collinear and A13: x,q,o is_collinear by A8, Def9; A14: q,x,o is_collinear by A13, Th24; assume A15: b <> b9 ; ::_thesis: ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) A16: z <> b9 proof assume not z <> b9 ; ::_thesis: contradiction then A17: b,b9,d is_collinear by A10, Th24; ( b,b9,q is_collinear & b,b9,b is_collinear ) by A3, Def7, Th24; hence contradiction by A1, A15, A17, Def8; ::_thesis: verum end; z,b9,d9 is_collinear by A9, Th24; then b9,d9,o is_collinear by A12, A16, A11, Def8; hence ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) by A14; ::_thesis: verum end; now__::_thesis:_(_b_=_b9_implies_ex_o_being_Element_of_(ProjectiveSpace_V)_st_ (_b9,d9,o_is_collinear_&_q,x,o_is_collinear_)_) assume b = b9 ; ::_thesis: ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) then A18: d,b9,x is_collinear by A2, Th24; d9,d,q is_collinear by A4, Th24; then consider o being Element of (ProjectiveSpace V) such that A19: d9,b9,o is_collinear and A20: q,x,o is_collinear by A18, Def9; b9,d9,o is_collinear by A19, Th24; hence ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) by A20; ::_thesis: verum end; hence ex o being Element of (ProjectiveSpace V) st ( b9,d9,o is_collinear & q,x,o is_collinear ) by A7; ::_thesis: verum end; theorem Th31: :: ANPROJ_2:31 for V being non trivial RealLinearSpace st ProjectiveSpace V is proper & ProjectiveSpace V is at_least_3rank & ex p, q1, q2 being Element of (ProjectiveSpace V) st ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) holds ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ProjectiveSpace V is proper & ProjectiveSpace V is at_least_3rank & ex p, q1, q2 being Element of (ProjectiveSpace V) st ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) implies ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) ) assume that A1: ProjectiveSpace V is proper and A2: for p, q being Element of (ProjectiveSpace V) ex r being Element of (ProjectiveSpace V) st ( p <> r & q <> r & p,q,r is_collinear ) ; :: according to ANPROJ_2:def_10 ::_thesis: ( for p, q1, q2 being Element of (ProjectiveSpace V) holds ( p,q1,q2 is_collinear or ex r1, r2 being Element of (ProjectiveSpace V) st for q3, r3 being Element of (ProjectiveSpace V) holds ( not r1,r2,r3 is_collinear or not q1,q2,q3 is_collinear or not p,r3,q3 is_collinear ) ) or ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) ) defpred S1[ Element of (ProjectiveSpace V), Element of (ProjectiveSpace V), Element of (ProjectiveSpace V)] means for y1, y2 being Element of (ProjectiveSpace V) ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & $2,$3,x2 is_collinear & $1,x1,x2 is_collinear ); A3: for p, q1, q2 being Element of (ProjectiveSpace V) st q1,q2,p is_collinear holds S1[p,q1,q2] proof let p, q1, q2 be Element of (ProjectiveSpace V); ::_thesis: ( q1,q2,p is_collinear implies S1[p,q1,q2] ) assume A4: q1,q2,p is_collinear ; ::_thesis: S1[p,q1,q2] now__::_thesis:_for_y1,_y2_being_Element_of_(ProjectiveSpace_V)_ex_x2,_x1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,x1_is_collinear_&_q1,q2,x2_is_collinear_&_p,x1,x2_is_collinear_) let y1, y2 be Element of (ProjectiveSpace V); ::_thesis: ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & q1,q2,x2 is_collinear & p,x1,x2 is_collinear ) ( y1,y2,y2 is_collinear & p,y2,p is_collinear ) by Def7; hence ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & q1,q2,x2 is_collinear & p,x1,x2 is_collinear ) by A4; ::_thesis: verum end; hence S1[p,q1,q2] ; ::_thesis: verum end; A5: for q, q1, q2, p1, p2, x being Element of (ProjectiveSpace V) st S1[q,q1,q2] & not q1,q2,q is_collinear & q1,q2,x is_collinear & not p1,p2,q is_collinear & p1,p2,x is_collinear holds S1[q,p1,p2] proof let q, q1, q2, p1, p2, x be Element of (ProjectiveSpace V); ::_thesis: ( S1[q,q1,q2] & not q1,q2,q is_collinear & q1,q2,x is_collinear & not p1,p2,q is_collinear & p1,p2,x is_collinear implies S1[q,p1,p2] ) assume that A6: S1[q,q1,q2] and A7: not q1,q2,q is_collinear and A8: q1,q2,x is_collinear and A9: not p1,p2,q is_collinear and A10: p1,p2,x is_collinear ; ::_thesis: S1[q,p1,p2] A11: q1 <> q2 by A7, Def7; A12: p1 <> p2 by A9, Def7; now__::_thesis:_for_y1,_y2_being_Element_of_(ProjectiveSpace_V)_ex_z2,_z1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,z1_is_collinear_&_p1,p2,z2_is_collinear_&_q,z1,z2_is_collinear_) let y1, y2 be Element of (ProjectiveSpace V); ::_thesis: ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) A13: now__::_thesis:_(_y1_<>_y2_implies_ex_z2,_z1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,z1_is_collinear_&_p1,p2,z2_is_collinear_&_q,z1,z2_is_collinear_)_) ex a being Element of (ProjectiveSpace V) st ( p1,p2,a is_collinear & x <> a ) proof A14: now__::_thesis:_(_x_<>_p2_implies_ex_p2,_a_being_Element_of_(ProjectiveSpace_V)_st_ (_p1,p2,a_is_collinear_&_x_<>_a_)_) assume A15: x <> p2 ; ::_thesis: ex p2, a being Element of (ProjectiveSpace V) st ( p1,p2,a is_collinear & x <> a ) take p2 = p2; ::_thesis: ex a being Element of (ProjectiveSpace V) st ( p1,p2,a is_collinear & x <> a ) p1,p2,p2 is_collinear by Def7; hence ex a being Element of (ProjectiveSpace V) st ( p1,p2,a is_collinear & x <> a ) by A15; ::_thesis: verum end; now__::_thesis:_(_x_<>_p1_implies_ex_p1,_a_being_Element_of_(ProjectiveSpace_V)_st_ (_p1,p2,a_is_collinear_&_x_<>_a_)_) assume A16: x <> p1 ; ::_thesis: ex p1, a being Element of (ProjectiveSpace V) st ( p1,p2,a is_collinear & x <> a ) take p1 = p1; ::_thesis: ex a being Element of (ProjectiveSpace V) st ( p1,p2,a is_collinear & x <> a ) p1,p2,p1 is_collinear by Def7; hence ex a being Element of (ProjectiveSpace V) st ( p1,p2,a is_collinear & x <> a ) by A16; ::_thesis: verum end; hence ex a being Element of (ProjectiveSpace V) st ( p1,p2,a is_collinear & x <> a ) by A9, A14, Def7; ::_thesis: verum end; then consider x1 being Element of (ProjectiveSpace V) such that A17: p1,p2,x1 is_collinear and A18: x <> x1 ; consider b, b9 being Element of (ProjectiveSpace V) such that A19: y1,y2,b9 is_collinear and A20: q1,q2,b is_collinear and A21: q,b9,b is_collinear by A6; assume A22: y1 <> y2 ; ::_thesis: ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) ex a being Element of (ProjectiveSpace V) st ( y1,y2,a is_collinear & b9 <> a ) proof A23: now__::_thesis:_(_b9_<>_y2_implies_ex_y2,_a_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,a_is_collinear_&_b9_<>_a_)_) assume A24: b9 <> y2 ; ::_thesis: ex y2, a being Element of (ProjectiveSpace V) st ( y1,y2,a is_collinear & b9 <> a ) take y2 = y2; ::_thesis: ex a being Element of (ProjectiveSpace V) st ( y1,y2,a is_collinear & b9 <> a ) y1,y2,y2 is_collinear by Def7; hence ex a being Element of (ProjectiveSpace V) st ( y1,y2,a is_collinear & b9 <> a ) by A24; ::_thesis: verum end; now__::_thesis:_(_b9_<>_y1_implies_ex_y1,_a_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,a_is_collinear_&_b9_<>_a_)_) assume A25: b9 <> y1 ; ::_thesis: ex y1, a being Element of (ProjectiveSpace V) st ( y1,y2,a is_collinear & b9 <> a ) take y1 = y1; ::_thesis: ex a being Element of (ProjectiveSpace V) st ( y1,y2,a is_collinear & b9 <> a ) y1,y2,y1 is_collinear by Def7; hence ex a being Element of (ProjectiveSpace V) st ( y1,y2,a is_collinear & b9 <> a ) by A25; ::_thesis: verum end; hence ex a being Element of (ProjectiveSpace V) st ( y1,y2,a is_collinear & b9 <> a ) by A22, A23; ::_thesis: verum end; then consider x3 being Element of (ProjectiveSpace V) such that A26: b9 <> x3 and A27: y1,y2,x3 is_collinear ; consider d, d9 being Element of (ProjectiveSpace V) such that A28: x1,x3,d9 is_collinear and A29: q1,q2,d is_collinear and A30: q,d9,d is_collinear by A6; A31: b,d,x is_collinear by A8, A11, A20, A29, Def8; A32: now__::_thesis:_(_b_<>_d_implies_ex_z2,_z1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,z1_is_collinear_&_p1,p2,z2_is_collinear_&_q,z1,z2_is_collinear_)_) assume A33: b <> d ; ::_thesis: ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) not q,b,d is_collinear proof q1,q2,q2 is_collinear by Def7; then A34: b,d,q2 is_collinear by A11, A20, A29, Def8; assume q,b,d is_collinear ; ::_thesis: contradiction then A35: b,d,q is_collinear by Th24; q1,q2,q1 is_collinear by Def7; then b,d,q1 is_collinear by A11, A20, A29, Def8; hence contradiction by A7, A33, A35, A34, Def8; ::_thesis: verum end; then consider o being Element of (ProjectiveSpace V) such that A36: b9,d9,o is_collinear and A37: q,x,o is_collinear by A21, A30, A31, Lm44; A38: o,x,q is_collinear by A37, Th24; d9,x3,x1 is_collinear by A28, Th24; then consider z1 being Element of (ProjectiveSpace V) such that A39: b9,x3,z1 is_collinear and A40: o,x1,z1 is_collinear by A36, Def9; x1,o,z1 is_collinear by A40, Th24; then consider z2 being Element of (ProjectiveSpace V) such that A41: x1,x,z2 is_collinear and A42: z1,q,z2 is_collinear by A38, Def9; A43: q,z1,z2 is_collinear by A42, Th24; p1,p2,p2 is_collinear by Def7; then A44: x1,x,p2 is_collinear by A10, A12, A17, Def8; y1,y2,y2 is_collinear by Def7; then A45: b9,x3,y2 is_collinear by A22, A19, A27, Def8; p1,p2,p1 is_collinear by Def7; then x1,x,p1 is_collinear by A10, A12, A17, Def8; then A46: p1,p2,z2 is_collinear by A18, A41, A44, Def8; y1,y2,y1 is_collinear by Def7; then b9,x3,y1 is_collinear by A22, A19, A27, Def8; then y1,y2,z1 is_collinear by A26, A39, A45, Def8; hence ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) by A46, A43; ::_thesis: verum end; now__::_thesis:_(_b_=_d_implies_ex_z2,_z1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,z1_is_collinear_&_p1,p2,z2_is_collinear_&_q,z1,z2_is_collinear_)_) assume b = d ; ::_thesis: ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) then A47: b,q,d9 is_collinear by A30, Th24; y1,y2,y2 is_collinear by Def7; then A48: b9,x3,y2 is_collinear by A22, A19, A27, Def8; A49: d9,x3,x1 is_collinear by A28, Th24; ( b,q,b9 is_collinear & b,q,q is_collinear ) by A21, Def7, Th24; then b9,d9,q is_collinear by A7, A20, A47, Def8; then consider z1 being Element of (ProjectiveSpace V) such that A50: b9,x3,z1 is_collinear and A51: q,x1,z1 is_collinear by A49, Def9; A52: q,z1,x1 is_collinear by A51, Th24; y1,y2,y1 is_collinear by Def7; then b9,x3,y1 is_collinear by A22, A19, A27, Def8; then y1,y2,z1 is_collinear by A26, A50, A48, Def8; hence ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) by A17, A52; ::_thesis: verum end; hence ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) by A32; ::_thesis: verum end; now__::_thesis:_(_y1_=_y2_implies_ex_z2,_z1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,z1_is_collinear_&_p1,p2,z2_is_collinear_&_q,z1,z2_is_collinear_)_) assume y1 = y2 ; ::_thesis: ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) then A53: y1,y2,q is_collinear by Def7; ( p1,p2,p1 is_collinear & q,q,p1 is_collinear ) by Def7; hence ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) by A53; ::_thesis: verum end; hence ex z2, z1 being Element of (ProjectiveSpace V) st ( y1,y2,z1 is_collinear & p1,p2,z2 is_collinear & q,z1,z2 is_collinear ) by A13; ::_thesis: verum end; hence S1[q,p1,p2] ; ::_thesis: verum end; A54: for q1, q2, p1, p2, q being Element of (ProjectiveSpace V) st not q1,q2,q is_collinear & not p1,p2,q is_collinear & ( for x being Element of (ProjectiveSpace V) holds ( not q1,q2,x is_collinear or not p1,p2,x is_collinear ) ) holds ex q3, p3 being Element of (ProjectiveSpace V) st ( p1,p2,p3 is_collinear & q1,q2,q3 is_collinear & not q3,p3,q is_collinear ) proof let q1, q2, p1, p2, q be Element of (ProjectiveSpace V); ::_thesis: ( not q1,q2,q is_collinear & not p1,p2,q is_collinear & ( for x being Element of (ProjectiveSpace V) holds ( not q1,q2,x is_collinear or not p1,p2,x is_collinear ) ) implies ex q3, p3 being Element of (ProjectiveSpace V) st ( p1,p2,p3 is_collinear & q1,q2,q3 is_collinear & not q3,p3,q is_collinear ) ) assume that A55: not q1,q2,q is_collinear and A56: not p1,p2,q is_collinear and for x being Element of (ProjectiveSpace V) holds ( not q1,q2,x is_collinear or not p1,p2,x is_collinear ) ; ::_thesis: ex q3, p3 being Element of (ProjectiveSpace V) st ( p1,p2,p3 is_collinear & q1,q2,q3 is_collinear & not q3,p3,q is_collinear ) A57: q <> q1 by A55, Def7; A58: ( not q1,p1,q is_collinear or not q1,p2,q is_collinear ) proof assume ( q1,p1,q is_collinear & q1,p2,q is_collinear ) ; ::_thesis: contradiction then A59: ( q,q1,p1 is_collinear & q,q1,p2 is_collinear ) by Th24; q,q1,q is_collinear by Def7; hence contradiction by A56, A57, A59, Def8; ::_thesis: verum end; A60: p1,p2,p2 is_collinear by Def7; ( q1,q2,q1 is_collinear & p1,p2,p1 is_collinear ) by Def7; hence ex q3, p3 being Element of (ProjectiveSpace V) st ( p1,p2,p3 is_collinear & q1,q2,q3 is_collinear & not q3,p3,q is_collinear ) by A60, A58; ::_thesis: verum end; A61: for q, q1, q2, p1, p2 being Element of (ProjectiveSpace V) st S1[q,q1,q2] & not q1,q2,q is_collinear & not p1,p2,q is_collinear & ( for x being Element of (ProjectiveSpace V) holds ( not q1,q2,x is_collinear or not p1,p2,x is_collinear ) ) holds S1[q,p1,p2] proof let q, q1, q2, p1, p2 be Element of (ProjectiveSpace V); ::_thesis: ( S1[q,q1,q2] & not q1,q2,q is_collinear & not p1,p2,q is_collinear & ( for x being Element of (ProjectiveSpace V) holds ( not q1,q2,x is_collinear or not p1,p2,x is_collinear ) ) implies S1[q,p1,p2] ) assume that A62: S1[q,q1,q2] and A63: not q1,q2,q is_collinear and A64: not p1,p2,q is_collinear and A65: for x being Element of (ProjectiveSpace V) holds ( not q1,q2,x is_collinear or not p1,p2,x is_collinear ) ; ::_thesis: S1[q,p1,p2] consider q3, p3 being Element of (ProjectiveSpace V) such that A66: p1,p2,p3 is_collinear and A67: q1,q2,q3 is_collinear and A68: not q3,p3,q is_collinear by A54, A63, A64, A65; q3,p3,q3 is_collinear by Def7; then A69: S1[q,q3,p3] by A5, A62, A63, A67, A68; q3,p3,p3 is_collinear by Def7; hence S1[q,p1,p2] by A5, A64, A66, A68, A69; ::_thesis: verum end; A70: for q, q1, q2 being Element of (ProjectiveSpace V) st S1[q,q1,q2] & not q1,q2,q is_collinear holds for p1, p2 being Element of (ProjectiveSpace V) holds S1[q,p1,p2] proof let q, q1, q2 be Element of (ProjectiveSpace V); ::_thesis: ( S1[q,q1,q2] & not q1,q2,q is_collinear implies for p1, p2 being Element of (ProjectiveSpace V) holds S1[q,p1,p2] ) assume A71: ( S1[q,q1,q2] & not q1,q2,q is_collinear ) ; ::_thesis: for p1, p2 being Element of (ProjectiveSpace V) holds S1[q,p1,p2] let p1, p2 be Element of (ProjectiveSpace V); ::_thesis: S1[q,p1,p2] A72: ( not p1,p2,q is_collinear & ( for x being Element of (ProjectiveSpace V) holds ( not q1,q2,x is_collinear or not p1,p2,x is_collinear ) ) implies S1[q,p1,p2] ) by A61, A71; ( not p1,p2,q is_collinear & ex x being Element of (ProjectiveSpace V) st ( q1,q2,x is_collinear & p1,p2,x is_collinear ) implies S1[q,p1,p2] ) by A5, A71; hence S1[q,p1,p2] by A3, A72; ::_thesis: verum end; reconsider CS = ProjectiveSpace V as CollProjectiveSpace by A1, A2, Def10; given p, q1, q2 being Element of (ProjectiveSpace V) such that A73: not p,q1,q2 is_collinear and A74: for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ; ::_thesis: ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) take CS ; ::_thesis: ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) A75: for q, q1, q2, x, q3 being Element of (ProjectiveSpace V) st S1[q,q1,q2] & not q1,q2,q is_collinear & q1,q2,x is_collinear & q,q3,x is_collinear holds S1[q3,q1,q2] proof let q, q1, q2, x, q3 be Element of (ProjectiveSpace V); ::_thesis: ( S1[q,q1,q2] & not q1,q2,q is_collinear & q1,q2,x is_collinear & q,q3,x is_collinear implies S1[q3,q1,q2] ) assume that A76: S1[q,q1,q2] and A77: not q1,q2,q is_collinear and A78: q1,q2,x is_collinear and A79: q,q3,x is_collinear ; ::_thesis: S1[q3,q1,q2] now__::_thesis:_for_y1,_y2_being_Element_of_(ProjectiveSpace_V)_ex_x2,_x1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,x1_is_collinear_&_q1,q2,x2_is_collinear_&_q3,x1,x2_is_collinear_) let y1, y2 be Element of (ProjectiveSpace V); ::_thesis: ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & q1,q2,x2 is_collinear & q3,x1,x2 is_collinear ) consider z2, z1 being Element of (ProjectiveSpace V) such that A80: y1,y2,z1 is_collinear and A81: q1,q2,z2 is_collinear and A82: q,z1,z2 is_collinear by A76; A83: now__::_thesis:_(_x_<>_z2_implies_ex_x2,_x1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,x1_is_collinear_&_q1,q2,x2_is_collinear_&_q3,x1,x2_is_collinear_)_) q3,q,x is_collinear by A79, Th24; then consider x2 being Element of (ProjectiveSpace V) such that A84: q3,z1,x2 is_collinear and A85: x,z2,x2 is_collinear by A82, Def9; A86: q1 <> q2 by A77, Def7; q1,q2,q2 is_collinear by Def7; then A87: x,z2,q2 is_collinear by A78, A81, A86, Def8; q1,q2,q1 is_collinear by Def7; then A88: x,z2,q1 is_collinear by A78, A81, A86, Def8; assume x <> z2 ; ::_thesis: ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & q1,q2,x2 is_collinear & q3,x1,x2 is_collinear ) then q1,q2,x2 is_collinear by A85, A88, A87, Def8; hence ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & q1,q2,x2 is_collinear & q3,x1,x2 is_collinear ) by A80, A84; ::_thesis: verum end; now__::_thesis:_(_x_=_z2_implies_ex_x2,_x1_being_Element_of_(ProjectiveSpace_V)_st_ (_y1,y2,x1_is_collinear_&_q1,q2,x2_is_collinear_&_q3,x1,x2_is_collinear_)_) A89: ( q,x,q3 is_collinear & q,x,x is_collinear ) by A79, Def7, Th24; assume A90: x = z2 ; ::_thesis: ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & q1,q2,x2 is_collinear & q3,x1,x2 is_collinear ) then q,x,z1 is_collinear by A82, Th24; then q3,z1,z2 is_collinear by A77, A78, A90, A89, Def8; hence ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & q1,q2,x2 is_collinear & q3,x1,x2 is_collinear ) by A80, A81; ::_thesis: verum end; hence ex x2, x1 being Element of (ProjectiveSpace V) st ( y1,y2,x1 is_collinear & q1,q2,x2 is_collinear & q3,x1,x2 is_collinear ) by A83; ::_thesis: verum end; hence S1[q3,q1,q2] ; ::_thesis: verum end; A91: for q, p being Element of (ProjectiveSpace V) st ( for q1, q2 being Element of (ProjectiveSpace V) holds S1[q,q1,q2] ) holds ex p1, p2 being Element of (ProjectiveSpace V) st ( S1[p,p1,p2] & not p1,p2,p is_collinear ) proof let q, p be Element of (ProjectiveSpace V); ::_thesis: ( ( for q1, q2 being Element of (ProjectiveSpace V) holds S1[q,q1,q2] ) implies ex p1, p2 being Element of (ProjectiveSpace V) st ( S1[p,p1,p2] & not p1,p2,p is_collinear ) ) assume A92: for q1, q2 being Element of (ProjectiveSpace V) holds S1[q,q1,q2] ; ::_thesis: ex p1, p2 being Element of (ProjectiveSpace V) st ( S1[p,p1,p2] & not p1,p2,p is_collinear ) consider x1 being Element of (ProjectiveSpace V) such that A93: p <> x1 and A94: q <> x1 and A95: p,q,x1 is_collinear by A2; consider x2 being Element of (ProjectiveSpace V) such that A96: not p,x1,x2 is_collinear by A1, A93, COLLSP:12; A97: not x1,x2,q is_collinear proof assume x1,x2,q is_collinear ; ::_thesis: contradiction then A98: q,x1,x2 is_collinear by Th24; ( q,x1,x1 is_collinear & q,x1,p is_collinear ) by A95, Def7, Th24; hence contradiction by A94, A96, A98, Def8; ::_thesis: verum end; A99: x1,x2,x1 is_collinear by Def7; A100: not x1,x2,p is_collinear by A96, Th24; A101: S1[q,x1,x2] by A92; q,p,x1 is_collinear by A95, Th24; then S1[p,x1,x2] by A75, A97, A99, A101; hence ex p1, p2 being Element of (ProjectiveSpace V) st ( S1[p,p1,p2] & not p1,p2,p is_collinear ) by A100; ::_thesis: verum end; A102: for x, y1, z being Element of (ProjectiveSpace V) holds S1[x,y1,z] proof let x, y1, z be Element of (ProjectiveSpace V); ::_thesis: S1[x,y1,z] not q1,q2,p is_collinear by A73, Th24; then for p1, p2 being Element of (ProjectiveSpace V) holds S1[p,p1,p2] by A74, A70; then ex r1, r2 being Element of (ProjectiveSpace V) st ( S1[x,r1,r2] & not r1,r2,x is_collinear ) by A91; hence S1[x,y1,z] by A70; ::_thesis: verum end; for p4, p1, q, q4, r2 being Element of (ProjectiveSpace V) ex r, r1 being Element of (ProjectiveSpace V) st ( p4,q,r is_collinear & p1,q4,r1 is_collinear & r2,r,r1 is_collinear ) proof let p4, p1, q, q4, r2 be Element of (ProjectiveSpace V); ::_thesis: ex r, r1 being Element of (ProjectiveSpace V) st ( p4,q,r is_collinear & p1,q4,r1 is_collinear & r2,r,r1 is_collinear ) ex r1, r being Element of (ProjectiveSpace V) st ( p4,q,r is_collinear & p1,q4,r1 is_collinear & r2,r,r1 is_collinear ) by A102; hence ex r, r1 being Element of (ProjectiveSpace V) st ( p4,q,r is_collinear & p1,q4,r1 is_collinear & r2,r,r1 is_collinear ) ; ::_thesis: verum end; hence ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) by Def15; ::_thesis: verum end; theorem Th32: :: ANPROJ_2:32 for V being non trivial RealLinearSpace st ex y, u, v, w being Element of V st ( ( for w1 being Element of V ex a, b, c, c1 being Real st w1 = (((a * y) + (b * u)) + (c * v)) + (c1 * w) ) & ( for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) ) holds ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ex y, u, v, w being Element of V st ( ( for w1 being Element of V ex a, b, c, c1 being Real st w1 = (((a * y) + (b * u)) + (c * v)) + (c1 * w) ) & ( for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) ) implies ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) ) given y, u, v, w being Element of V such that A1: ( ( for w1 being Element of V ex a, b, c, c1 being Real st w1 = (((a * y) + (b * u)) + (c * v)) + (c1 * w) ) & ( for a, b, a1, b1 being Real st (((a * y) + (b * u)) + (a1 * v)) + (b1 * w) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) ) ; ::_thesis: ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) ( ProjectiveSpace V is proper & ProjectiveSpace V is at_least_3rank & ex p, q1, q2 being Element of (ProjectiveSpace V) st ( not p,q1,q2 is_collinear & ( for r1, r2 being Element of (ProjectiveSpace V) ex q3, r3 being Element of (ProjectiveSpace V) st ( r1,r2,r3 is_collinear & q1,q2,q3 is_collinear & p,r3,q3 is_collinear ) ) ) ) by A1, Lm43, Th30; hence ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is at_most-3-dimensional ) by Th31; ::_thesis: verum end; theorem Th33: :: ANPROJ_2:33 for V being non trivial RealLinearSpace st ex u, v, u1, v1 being Element of V st for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) holds ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & not CS is 2-dimensional ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ex u, v, u1, v1 being Element of V st for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) implies ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & not CS is 2-dimensional ) ) given u, v, u1, v1 being Element of V such that A1: for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ; ::_thesis: ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & not CS is 2-dimensional ) V is up-3-dimensional by A1, Lm42; then reconsider CS = ProjectiveSpace V as CollProjectiveSpace ; take CS ; ::_thesis: ( CS = ProjectiveSpace V & not CS is 2-dimensional ) thus CS = ProjectiveSpace V ; ::_thesis: not CS is 2-dimensional A2: ( not u1 is zero & not v1 is zero ) by A1, Th2; A3: ( not u is zero & not v is zero ) by A1, Th2; then reconsider p = Dir u, p1 = Dir v, q = Dir u1, q1 = Dir v1 as Element of CS by A2, ANPROJ_1:26; take p ; :: according to ANPROJ_2:def_14 ::_thesis: ex p1, q, q1 being Element of CS st for r being Element of CS holds ( not p,p1,r is_collinear or not q,q1,r is_collinear ) take p1 ; ::_thesis: ex q, q1 being Element of CS st for r being Element of CS holds ( not p,p1,r is_collinear or not q,q1,r is_collinear ) take q ; ::_thesis: ex q1 being Element of CS st for r being Element of CS holds ( not p,p1,r is_collinear or not q,q1,r is_collinear ) take q1 ; ::_thesis: for r being Element of CS holds ( not p,p1,r is_collinear or not q,q1,r is_collinear ) thus for r being Element of CS holds ( not p,p1,r is_collinear or not q,q1,r is_collinear ) ::_thesis: verum proof assume ex r being Element of CS st ( p,p1,r is_collinear & q,q1,r is_collinear ) ; ::_thesis: contradiction then consider r being Element of CS such that A4: p,p1,r is_collinear and A5: q,q1,r is_collinear ; consider y being Element of V such that A6: not y is zero and A7: r = Dir y by ANPROJ_1:26; [q,q1,r] in the Collinearity of (ProjectiveSpace V) by A5, COLLSP:def_2; then A8: u1,v1,y are_LinDep by A2, A6, A7, ANPROJ_1:25; [p,p1,r] in the Collinearity of (ProjectiveSpace V) by A4, COLLSP:def_2; then u,v,y are_LinDep by A3, A6, A7, ANPROJ_1:25; hence contradiction by A1, A6, A8, Th5; ::_thesis: verum end; end; theorem Th34: :: ANPROJ_2:34 for V being non trivial RealLinearSpace st ex u, v, u1, v1 being Element of V st ( ( for w being Element of V ex a, b, a1, b1 being Real st w = (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) ) & ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) ) holds ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is up-3-dimensional & CS is at_most-3-dimensional ) proof let V be non trivial RealLinearSpace; ::_thesis: ( ex u, v, u1, v1 being Element of V st ( ( for w being Element of V ex a, b, a1, b1 being Real st w = (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) ) & ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) ) implies ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is up-3-dimensional & CS is at_most-3-dimensional ) ) assume ex u, v, u1, v1 being Element of V st ( ( for w being Element of V ex a, b, a1, b1 being Real st w = (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) ) & ( for a, b, a1, b1 being Real st (((a * u) + (b * v)) + (a1 * u1)) + (b1 * v1) = 0. V holds ( a = 0 & b = 0 & a1 = 0 & b1 = 0 ) ) ) ; ::_thesis: ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is up-3-dimensional & CS is at_most-3-dimensional ) then ( ex CS1 being CollProjectiveSpace st ( CS1 = ProjectiveSpace V & CS1 is up-3-dimensional ) & ex CS2 being CollProjectiveSpace st ( CS2 = ProjectiveSpace V & CS2 is at_most-3-dimensional ) ) by Th32, Th33; hence ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is up-3-dimensional & CS is at_most-3-dimensional ) ; ::_thesis: verum end; registration cluster non empty strict reflexive transitive proper Vebleian at_least_3rank Fanoian Desarguesian Pappian 2-dimensional for CollStr ; existence ex b1 being CollProjectiveSpace st ( b1 is strict & b1 is Fanoian & b1 is Desarguesian & b1 is Pappian & b1 is 2-dimensional ) proof consider V being non trivial RealLinearSpace such that A1: ex u, v, w being Element of V st ( ( for a, b, c being Real st ((a * u) + (b * v)) + (c * w) = 0. V holds ( a = 0 & b = 0 & c = 0 ) ) & ( for y being Element of V ex a, b, c being Real st y = ((a * u) + (b * v)) + (c * w) ) ) by Th16; reconsider V = V as up-3-dimensional RealLinearSpace by A1, Def6; take CS = ProjectiveSpace V; ::_thesis: ( CS is strict & CS is Fanoian & CS is Desarguesian & CS is Pappian & CS is 2-dimensional ) thus ( CS is strict & CS is Fanoian & CS is Desarguesian & CS is Pappian ) ; ::_thesis: CS is 2-dimensional ex CS1 being CollProjectiveSpace st ( CS1 = ProjectiveSpace V & CS1 is 2-dimensional ) by A1, Th29; hence CS is 2-dimensional ; ::_thesis: verum end; cluster non empty strict reflexive transitive proper Vebleian at_least_3rank Fanoian Desarguesian Pappian up-3-dimensional at_most-3-dimensional for CollStr ; existence ex b1 being CollProjectiveSpace st ( b1 is strict & b1 is Fanoian & b1 is Desarguesian & b1 is Pappian & b1 is at_most-3-dimensional & b1 is up-3-dimensional ) proof consider V being non trivial RealLinearSpace such that A2: ex u, v, w, u1 being Element of V st ( ( for a, b, c, d being Real st (((a * u) + (b * v)) + (c * w)) + (d * u1) = 0. V holds ( a = 0 & b = 0 & c = 0 & d = 0 ) ) & ( for y being Element of V ex a, b, c, d being Real st y = (((a * u) + (b * v)) + (c * w)) + (d * u1) ) ) by Th22; reconsider V = V as up-3-dimensional RealLinearSpace by A2, Lm42; take CS = ProjectiveSpace V; ::_thesis: ( CS is strict & CS is Fanoian & CS is Desarguesian & CS is Pappian & CS is at_most-3-dimensional & CS is up-3-dimensional ) thus ( CS is strict & CS is Fanoian & CS is Desarguesian & CS is Pappian ) ; ::_thesis: ( CS is at_most-3-dimensional & CS is up-3-dimensional ) ex CS being CollProjectiveSpace st ( CS = ProjectiveSpace V & CS is up-3-dimensional & CS is at_most-3-dimensional ) by A2, Th34; hence ( CS is at_most-3-dimensional & CS is up-3-dimensional ) ; ::_thesis: verum end; end; definition mode CollProjectivePlane is 2-dimensional CollProjectiveSpace; end; theorem :: ANPROJ_2:35 for CS being non empty CollStr holds ( CS is 2-dimensional CollProjectiveSpace iff ( CS is proper at_least_3rank CollSp & ( for p, p1, q, q1 being Element of CS ex r being Element of CS st ( p,p1,r is_collinear & q,q1,r is_collinear ) ) ) ) proof let CS be non empty CollStr ; ::_thesis: ( CS is 2-dimensional CollProjectiveSpace iff ( CS is proper at_least_3rank CollSp & ( for p, p1, q, q1 being Element of CS ex r being Element of CS st ( p,p1,r is_collinear & q,q1,r is_collinear ) ) ) ) thus ( CS is 2-dimensional CollProjectiveSpace implies ( CS is proper at_least_3rank CollSp & ( for p, p1, q, q1 being Element of CS ex r being Element of CS st ( p,p1,r is_collinear & q,q1,r is_collinear ) ) ) ) by Def14; ::_thesis: ( CS is proper at_least_3rank CollSp & ( for p, p1, q, q1 being Element of CS ex r being Element of CS st ( p,p1,r is_collinear & q,q1,r is_collinear ) ) implies CS is 2-dimensional CollProjectiveSpace ) assume that A1: CS is proper at_least_3rank CollSp and A2: for p, p1, q, q1 being Element of CS ex r being Element of CS st ( p,p1,r is_collinear & q,q1,r is_collinear ) ; ::_thesis: CS is 2-dimensional CollProjectiveSpace CS is Vebleian proof let p, p1, p2, r, r1 be Element of CS; :: according to ANPROJ_2:def_9 ::_thesis: ( p,p1,r is_collinear & p1,p2,r1 is_collinear implies ex r2 being Element of CS st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) ) assume that p,p1,r is_collinear and p1,p2,r1 is_collinear ; ::_thesis: ex r2 being Element of CS st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) thus ex r2 being Element of CS st ( p,p2,r2 is_collinear & r,r1,r2 is_collinear ) by A2; ::_thesis: verum end; hence CS is 2-dimensional CollProjectiveSpace by A1, A2, Def14; ::_thesis: verum end;