:: BHSP_1 semantic presentation begin definition attrc1 is strict ; struct UNITSTR -> RLSStruct ; aggrUNITSTR(# carrier, ZeroF, addF, Mult, scalar #) -> UNITSTR ; sel scalar c1 -> Function of [: the carrier of c1, the carrier of c1:],REAL; end; registration cluster non empty strict for UNITSTR ; existence ex b1 being UNITSTR st ( not b1 is empty & b1 is strict ) proof set D = the non empty set ; set Z = the Element of the non empty set ; set a = the BinOp of the non empty set ; set m = the Function of [:REAL, the non empty set :], the non empty set ; set s = the Function of [: the non empty set , the non empty set :],REAL; take UNITSTR(# the non empty set , the Element of the non empty set , the BinOp of the non empty set , the Function of [:REAL, the non empty set :], the non empty set , the Function of [: the non empty set , the non empty set :],REAL #) ; ::_thesis: ( not UNITSTR(# the non empty set , the Element of the non empty set , the BinOp of the non empty set , the Function of [:REAL, the non empty set :], the non empty set , the Function of [: the non empty set , the non empty set :],REAL #) is empty & UNITSTR(# the non empty set , the Element of the non empty set , the BinOp of the non empty set , the Function of [:REAL, the non empty set :], the non empty set , the Function of [: the non empty set , the non empty set :],REAL #) is strict ) thus not the carrier of UNITSTR(# the non empty set , the Element of the non empty set , the BinOp of the non empty set , the Function of [:REAL, the non empty set :], the non empty set , the Function of [: the non empty set , the non empty set :],REAL #) is empty ; :: according to STRUCT_0:def_1 ::_thesis: UNITSTR(# the non empty set , the Element of the non empty set , the BinOp of the non empty set , the Function of [:REAL, the non empty set :], the non empty set , the Function of [: the non empty set , the non empty set :],REAL #) is strict thus UNITSTR(# the non empty set , the Element of the non empty set , the BinOp of the non empty set , the Function of [:REAL, the non empty set :], the non empty set , the Function of [: the non empty set , the non empty set :],REAL #) is strict ; ::_thesis: verum end; end; registration let D be non empty set ; let Z be Element of D; let a be BinOp of D; let m be Function of [:REAL,D:],D; let s be Function of [:D,D:],REAL; cluster UNITSTR(# D,Z,a,m,s #) -> non empty ; coherence not UNITSTR(# D,Z,a,m,s #) is empty ; end; deffunc H1( UNITSTR ) -> Element of the carrier of $1 = 0. $1; definition let X be non empty UNITSTR ; let x, y be Point of X; funcx .|. y -> Real equals :: BHSP_1:def 1 the scalar of X . [x,y]; correctness coherence the scalar of X . [x,y] is Real; ; end; :: deftheorem defines .|. BHSP_1:def_1_:_ for X being non empty UNITSTR for x, y being Point of X holds x .|. y = the scalar of X . [x,y]; set V0 = the RealLinearSpace; Lm1: the carrier of ((0). the RealLinearSpace) = {(0. the RealLinearSpace)} by RLSUB_1:def_3; reconsider nilfunc = [: the carrier of ((0). the RealLinearSpace), the carrier of ((0). the RealLinearSpace):] --> 0 as Function of [: the carrier of ((0). the RealLinearSpace), the carrier of ((0). the RealLinearSpace):],REAL by FUNCOP_1:45; ( ( for x, y being VECTOR of ((0). the RealLinearSpace) holds nilfunc . [x,y] = 0 ) & 0. the RealLinearSpace in the carrier of ((0). the RealLinearSpace) ) by Lm1, FUNCOP_1:7, TARSKI:def_1; then Lm2: nilfunc . [(0. the RealLinearSpace),(0. the RealLinearSpace)] = 0 ; Lm3: for u, v being VECTOR of ((0). the RealLinearSpace) holds nilfunc . [u,v] = nilfunc . [v,u] proof let u, v be VECTOR of ((0). the RealLinearSpace); ::_thesis: nilfunc . [u,v] = nilfunc . [v,u] ( u = 0. the RealLinearSpace & v = 0. the RealLinearSpace ) by Lm1, TARSKI:def_1; hence nilfunc . [u,v] = nilfunc . [v,u] ; ::_thesis: verum end; Lm4: for u, v, w being VECTOR of ((0). the RealLinearSpace) holds nilfunc . [(u + v),w] = (nilfunc . [u,w]) + (nilfunc . [v,w]) proof let u, v, w be VECTOR of ((0). the RealLinearSpace); ::_thesis: nilfunc . [(u + v),w] = (nilfunc . [u,w]) + (nilfunc . [v,w]) A1: w = 0. the RealLinearSpace by Lm1, TARSKI:def_1; ( u = 0. the RealLinearSpace & v = 0. the RealLinearSpace ) by Lm1, TARSKI:def_1; hence nilfunc . [(u + v),w] = (nilfunc . [u,w]) + (nilfunc . [v,w]) by A1, Lm1, Lm2, TARSKI:def_1; ::_thesis: verum end; Lm5: for u, v being VECTOR of ((0). the RealLinearSpace) for a being Real holds nilfunc . [(a * u),v] = a * (nilfunc . [u,v]) proof let u, v be VECTOR of ((0). the RealLinearSpace); ::_thesis: for a being Real holds nilfunc . [(a * u),v] = a * (nilfunc . [u,v]) let a be Real; ::_thesis: nilfunc . [(a * u),v] = a * (nilfunc . [u,v]) ( u = 0. the RealLinearSpace & v = 0. the RealLinearSpace ) by Lm1, TARSKI:def_1; hence nilfunc . [(a * u),v] = a * (nilfunc . [u,v]) by Lm1, Lm2, TARSKI:def_1; ::_thesis: verum end; set X0 = UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); Lm6: now__::_thesis:_for_x,_y,_z_being_Point_of_UNITSTR(#_the_carrier_of_((0)._the_RealLinearSpace),(0._((0)._the_RealLinearSpace)),_the_addF_of_((0)._the_RealLinearSpace),_the_Mult_of_((0)._the_RealLinearSpace),nilfunc_#) for_a_being_Real_holds_ (_(_x_.|._x_=_0_implies_x_=_H1(_UNITSTR(#_the_carrier_of_((0)._the_RealLinearSpace),(0._((0)._the_RealLinearSpace)),_the_addF_of_((0)._the_RealLinearSpace),_the_Mult_of_((0)._the_RealLinearSpace),nilfunc_#))_)_&_(_x_=_H1(_UNITSTR(#_the_carrier_of_((0)._the_RealLinearSpace),(0._((0)._the_RealLinearSpace)),_the_addF_of_((0)._the_RealLinearSpace),_the_Mult_of_((0)._the_RealLinearSpace),nilfunc_#))_implies_x_.|._x_=_0_)_&_0_<=_x_.|._x_&_x_.|._y_=_y_.|._x_&_(x_+_y)_.|._z_=_(x_.|._z)_+_(y_.|._z)_&_(a_*_x)_.|._y_=_a_*_(x_.|._y)_) let x, y, z be Point of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); ::_thesis: for a being Real holds ( ( x .|. x = 0 implies x = H1( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) ) & ( x = H1( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) implies x .|. x = 0 ) & 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) let a be Real; ::_thesis: ( ( x .|. x = 0 implies x = H1( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) ) & ( x = H1( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) implies x .|. x = 0 ) & 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) H1( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) = 0. the RealLinearSpace by RLSUB_1:11; hence ( x .|. x = 0 iff x = H1( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) ) by Lm1, FUNCOP_1:7, TARSKI:def_1; ::_thesis: ( 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) thus 0 <= x .|. x by FUNCOP_1:7; ::_thesis: ( x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) thus x .|. y = y .|. x by Lm3; ::_thesis: ( (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) thus (x + y) .|. z = (x .|. z) + (y .|. z) ::_thesis: (a * x) .|. y = a * (x .|. y) proof reconsider u = x, v = y, w = z as VECTOR of ((0). the RealLinearSpace) ; (x + y) .|. z = nilfunc . [(u + v),w] ; hence (x + y) .|. z = (x .|. z) + (y .|. z) by Lm4; ::_thesis: verum end; thus (a * x) .|. y = a * (x .|. y) ::_thesis: verum proof reconsider u = x, v = y as VECTOR of ((0). the RealLinearSpace) ; (a * x) .|. y = nilfunc . [(a * u),v] ; hence (a * x) .|. y = a * (x .|. y) by Lm5; ::_thesis: verum end; end; definition let IT be non empty UNITSTR ; attrIT is RealUnitarySpace-like means :Def2: :: BHSP_1:def 2 for x, y, z being Point of IT for a being Real holds ( ( x .|. x = 0 implies x = 0. IT ) & ( x = 0. IT implies x .|. x = 0 ) & 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ); end; :: deftheorem Def2 defines RealUnitarySpace-like BHSP_1:def_2_:_ for IT being non empty UNITSTR holds ( IT is RealUnitarySpace-like iff for x, y, z being Point of IT for a being Real holds ( ( x .|. x = 0 implies x = 0. IT ) & ( x = 0. IT implies x .|. x = 0 ) & 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) ); registration cluster non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital strict RealUnitarySpace-like for UNITSTR ; existence ex b1 being non empty UNITSTR st ( b1 is RealUnitarySpace-like & b1 is vector-distributive & b1 is scalar-distributive & b1 is scalar-associative & b1 is scalar-unital & b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is strict ) proof take UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) ; ::_thesis: ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is RealUnitarySpace-like & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is vector-distributive & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-distributive & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-unital & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is Abelian & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is add-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_zeroed & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_complementable & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is strict ) thus UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is RealUnitarySpace-like by Def2, Lm6; ::_thesis: ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is vector-distributive & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-distributive & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-unital & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is Abelian & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is add-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_zeroed & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_complementable & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is strict ) thus ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is vector-distributive & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-distributive & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-unital ) ::_thesis: ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is Abelian & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is add-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_zeroed & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_complementable & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is strict ) proof thus for a being real number for v, w being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds a * (v + w) = (a * v) + (a * w) :: according to RLVECT_1:def_5 ::_thesis: ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-distributive & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-unital ) proof let a be real number ; ::_thesis: for v, w being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds a * (v + w) = (a * v) + (a * w) let v, w be VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); ::_thesis: a * (v + w) = (a * v) + (a * w) reconsider v9 = v, w9 = w as VECTOR of ((0). the RealLinearSpace) ; thus a * (v + w) = a * (v9 + w9) .= (a * v9) + (a * w9) by RLVECT_1:def_5 .= (a * v) + (a * w) ; ::_thesis: verum end; thus for a, b being real number for v being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds (a + b) * v = (a * v) + (b * v) :: according to RLVECT_1:def_6 ::_thesis: ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-unital ) proof let a, b be real number ; ::_thesis: for v being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds (a + b) * v = (a * v) + (b * v) let v be VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); ::_thesis: (a + b) * v = (a * v) + (b * v) reconsider v9 = v as VECTOR of ((0). the RealLinearSpace) ; thus (a + b) * v = (a + b) * v9 .= (a * v9) + (b * v9) by RLVECT_1:def_6 .= (a * v) + (b * v) ; ::_thesis: verum end; thus for a, b being real number for v being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds (a * b) * v = a * (b * v) :: according to RLVECT_1:def_7 ::_thesis: UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is scalar-unital proof let a, b be real number ; ::_thesis: for v being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds (a * b) * v = a * (b * v) let v be VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); ::_thesis: (a * b) * v = a * (b * v) reconsider v9 = v as VECTOR of ((0). the RealLinearSpace) ; thus (a * b) * v = (a * b) * v9 .= a * (b * v9) by RLVECT_1:def_7 .= a * (b * v) ; ::_thesis: verum end; let v be VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); :: according to RLVECT_1:def_8 ::_thesis: 1 * v = v reconsider v9 = v as VECTOR of ((0). the RealLinearSpace) ; thus 1 * v = 1 * v9 .= v by RLVECT_1:def_8 ; ::_thesis: verum end; A1: for x, y being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) for x9, y9 being VECTOR of ((0). the RealLinearSpace) st x = x9 & y = y9 holds ( x + y = x9 + y9 & ( for a being Real holds a * x = a * x9 ) ) ; thus for v, w being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds v + w = w + v :: according to RLVECT_1:def_2 ::_thesis: ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is add-associative & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_zeroed & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_complementable & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is strict ) proof let v, w be VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); ::_thesis: v + w = w + v reconsider v9 = v, w9 = w as VECTOR of ((0). the RealLinearSpace) ; thus v + w = w9 + v9 by A1 .= w + v ; ::_thesis: verum end; thus for u, v, w being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds (u + v) + w = u + (v + w) :: according to RLVECT_1:def_3 ::_thesis: ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_zeroed & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_complementable & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is strict ) proof let u, v, w be VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); ::_thesis: (u + v) + w = u + (v + w) reconsider u9 = u, v9 = v, w9 = w as VECTOR of ((0). the RealLinearSpace) ; thus (u + v) + w = (u9 + v9) + w9 .= u9 + (v9 + w9) by RLVECT_1:def_3 .= u + (v + w) ; ::_thesis: verum end; thus for v being VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) holds v + (0. UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) = v :: according to RLVECT_1:def_4 ::_thesis: ( UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_complementable & UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is strict ) proof let v be VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); ::_thesis: v + (0. UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) = v reconsider v9 = v as VECTOR of ((0). the RealLinearSpace) ; thus v + (0. UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #)) = v9 + (0. ((0). the RealLinearSpace)) .= v by RLVECT_1:4 ; ::_thesis: verum end; thus UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is right_complementable ::_thesis: UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is strict proof let v be VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #); :: according to ALGSTR_0:def_16 ::_thesis: v is right_complementable reconsider v9 = v as VECTOR of ((0). the RealLinearSpace) ; consider w9 being VECTOR of ((0). the RealLinearSpace) such that A2: v9 + w9 = 0. ((0). the RealLinearSpace) by ALGSTR_0:def_11; reconsider w = w9 as VECTOR of UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) ; take w ; :: according to ALGSTR_0:def_11 ::_thesis: v + w = 0. UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) thus v + w = 0. UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) by A2; ::_thesis: verum end; thus UNITSTR(# the carrier of ((0). the RealLinearSpace),(0. ((0). the RealLinearSpace)), the addF of ((0). the RealLinearSpace), the Mult of ((0). the RealLinearSpace),nilfunc #) is strict ; ::_thesis: verum end; end; definition mode RealUnitarySpace is non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like UNITSTR ; end; definition let X be RealUnitarySpace; let x, y be Point of X; :: original: .|. redefine funcx .|. y -> Real; commutativity for x, y being Point of X holds x .|. y = y .|. x by Def2; end; theorem :: BHSP_1:1 for X being RealUnitarySpace holds (0. X) .|. (0. X) = 0 by Def2; theorem :: BHSP_1:2 for X being RealUnitarySpace for x, y, z being Point of X holds x .|. (y + z) = (x .|. y) + (x .|. z) by Def2; theorem :: BHSP_1:3 for a being Real for X being RealUnitarySpace for x, y being Point of X holds x .|. (a * y) = a * (x .|. y) by Def2; theorem :: BHSP_1:4 for a being Real for X being RealUnitarySpace for x, y being Point of X holds (a * x) .|. y = x .|. (a * y) proof let a be Real; ::_thesis: for X being RealUnitarySpace for x, y being Point of X holds (a * x) .|. y = x .|. (a * y) let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds (a * x) .|. y = x .|. (a * y) let x, y be Point of X; ::_thesis: (a * x) .|. y = x .|. (a * y) (a * x) .|. y = a * (x .|. y) by Def2; hence (a * x) .|. y = x .|. (a * y) by Def2; ::_thesis: verum end; theorem Th5: :: BHSP_1:5 for a, b being Real for X being RealUnitarySpace for x, y, z being Point of X holds ((a * x) + (b * y)) .|. z = (a * (x .|. z)) + (b * (y .|. z)) proof let a, b be Real; ::_thesis: for X being RealUnitarySpace for x, y, z being Point of X holds ((a * x) + (b * y)) .|. z = (a * (x .|. z)) + (b * (y .|. z)) let X be RealUnitarySpace; ::_thesis: for x, y, z being Point of X holds ((a * x) + (b * y)) .|. z = (a * (x .|. z)) + (b * (y .|. z)) let x, y, z be Point of X; ::_thesis: ((a * x) + (b * y)) .|. z = (a * (x .|. z)) + (b * (y .|. z)) ((a * x) + (b * y)) .|. z = ((a * x) .|. z) + ((b * y) .|. z) by Def2 .= (a * (x .|. z)) + ((b * y) .|. z) by Def2 ; hence ((a * x) + (b * y)) .|. z = (a * (x .|. z)) + (b * (y .|. z)) by Def2; ::_thesis: verum end; theorem :: BHSP_1:6 for a, b being Real for X being RealUnitarySpace for x, y, z being Point of X holds x .|. ((a * y) + (b * z)) = (a * (x .|. y)) + (b * (x .|. z)) by Th5; theorem :: BHSP_1:7 for X being RealUnitarySpace for x, y being Point of X holds (- x) .|. y = x .|. (- y) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds (- x) .|. y = x .|. (- y) let x, y be Point of X; ::_thesis: (- x) .|. y = x .|. (- y) (- x) .|. y = ((- 1) * x) .|. y by RLVECT_1:16 .= (- 1) * (x .|. y) by Def2 .= x .|. ((- 1) * y) by Def2 ; hence (- x) .|. y = x .|. (- y) by RLVECT_1:16; ::_thesis: verum end; theorem Th8: :: BHSP_1:8 for X being RealUnitarySpace for x, y being Point of X holds (- x) .|. y = - (x .|. y) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds (- x) .|. y = - (x .|. y) let x, y be Point of X; ::_thesis: (- x) .|. y = - (x .|. y) (- x) .|. y = ((- 1) * x) .|. y by RLVECT_1:16 .= (- 1) * (x .|. y) by Def2 ; hence (- x) .|. y = - (x .|. y) ; ::_thesis: verum end; theorem :: BHSP_1:9 for X being RealUnitarySpace for x, y being Point of X holds x .|. (- y) = - (x .|. y) by Th8; theorem Th10: :: BHSP_1:10 for X being RealUnitarySpace for x, y being Point of X holds (- x) .|. (- y) = x .|. y proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds (- x) .|. (- y) = x .|. y let x, y be Point of X; ::_thesis: (- x) .|. (- y) = x .|. y (- x) .|. (- y) = - (x .|. (- y)) by Th8 .= - (- (x .|. y)) by Th8 ; hence (- x) .|. (- y) = x .|. y ; ::_thesis: verum end; theorem Th11: :: BHSP_1:11 for X being RealUnitarySpace for x, y, z being Point of X holds (x - y) .|. z = (x .|. z) - (y .|. z) proof let X be RealUnitarySpace; ::_thesis: for x, y, z being Point of X holds (x - y) .|. z = (x .|. z) - (y .|. z) let x, y, z be Point of X; ::_thesis: (x - y) .|. z = (x .|. z) - (y .|. z) (x - y) .|. z = (x .|. z) + ((- y) .|. z) by Def2 .= (x .|. z) + (- (y .|. z)) by Th8 ; hence (x - y) .|. z = (x .|. z) - (y .|. z) ; ::_thesis: verum end; theorem Th12: :: BHSP_1:12 for X being RealUnitarySpace for x, y, z being Point of X holds x .|. (y - z) = (x .|. y) - (x .|. z) proof let X be RealUnitarySpace; ::_thesis: for x, y, z being Point of X holds x .|. (y - z) = (x .|. y) - (x .|. z) let x, y, z be Point of X; ::_thesis: x .|. (y - z) = (x .|. y) - (x .|. z) x .|. (y - z) = (x .|. y) + (x .|. (- z)) by Def2 .= (x .|. y) + (- (x .|. z)) by Th8 ; hence x .|. (y - z) = (x .|. y) - (x .|. z) ; ::_thesis: verum end; theorem :: BHSP_1:13 for X being RealUnitarySpace for x, y, u, v being Point of X holds (x - y) .|. (u - v) = (((x .|. u) - (x .|. v)) - (y .|. u)) + (y .|. v) proof let X be RealUnitarySpace; ::_thesis: for x, y, u, v being Point of X holds (x - y) .|. (u - v) = (((x .|. u) - (x .|. v)) - (y .|. u)) + (y .|. v) let x, y, u, v be Point of X; ::_thesis: (x - y) .|. (u - v) = (((x .|. u) - (x .|. v)) - (y .|. u)) + (y .|. v) (x - y) .|. (u - v) = (x .|. (u - v)) - (y .|. (u - v)) by Th11 .= ((x .|. u) - (x .|. v)) - (y .|. (u - v)) by Th12 .= ((x .|. u) - (x .|. v)) - ((y .|. u) - (y .|. v)) by Th12 ; hence (x - y) .|. (u - v) = (((x .|. u) - (x .|. v)) - (y .|. u)) + (y .|. v) ; ::_thesis: verum end; theorem Th14: :: BHSP_1:14 for X being RealUnitarySpace for x being Point of X holds (0. X) .|. x = 0 proof let X be RealUnitarySpace; ::_thesis: for x being Point of X holds (0. X) .|. x = 0 let x be Point of X; ::_thesis: (0. X) .|. x = 0 H1(X) .|. x = (x + (- x)) .|. x by RLVECT_1:5 .= (x .|. x) + ((- x) .|. x) by Def2 .= (x .|. x) + (- (x .|. x)) by Th8 ; hence (0. X) .|. x = 0 ; ::_thesis: verum end; theorem :: BHSP_1:15 for X being RealUnitarySpace for x being Point of X holds x .|. (0. X) = 0 by Th14; theorem Th16: :: BHSP_1:16 for X being RealUnitarySpace for x, y being Point of X holds (x + y) .|. (x + y) = ((x .|. x) + (2 * (x .|. y))) + (y .|. y) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds (x + y) .|. (x + y) = ((x .|. x) + (2 * (x .|. y))) + (y .|. y) let x, y be Point of X; ::_thesis: (x + y) .|. (x + y) = ((x .|. x) + (2 * (x .|. y))) + (y .|. y) (x + y) .|. (x + y) = (x .|. (x + y)) + (y .|. (x + y)) by Def2 .= ((x .|. x) + (x .|. y)) + (y .|. (x + y)) by Def2 .= ((x .|. x) + (x .|. y)) + ((x .|. y) + (y .|. y)) by Def2 .= ((x .|. x) + ((x .|. y) + (x .|. y))) + (y .|. y) ; hence (x + y) .|. (x + y) = ((x .|. x) + (2 * (x .|. y))) + (y .|. y) ; ::_thesis: verum end; theorem :: BHSP_1:17 for X being RealUnitarySpace for x, y being Point of X holds (x + y) .|. (x - y) = (x .|. x) - (y .|. y) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds (x + y) .|. (x - y) = (x .|. x) - (y .|. y) let x, y be Point of X; ::_thesis: (x + y) .|. (x - y) = (x .|. x) - (y .|. y) (x + y) .|. (x - y) = (x .|. (x - y)) + (y .|. (x - y)) by Def2 .= ((x .|. x) - (x .|. y)) + (y .|. (x - y)) by Th12 .= ((x .|. x) - (x .|. y)) + ((x .|. y) - (y .|. y)) by Th12 ; hence (x + y) .|. (x - y) = (x .|. x) - (y .|. y) ; ::_thesis: verum end; theorem Th18: :: BHSP_1:18 for X being RealUnitarySpace for x, y being Point of X holds (x - y) .|. (x - y) = ((x .|. x) - (2 * (x .|. y))) + (y .|. y) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds (x - y) .|. (x - y) = ((x .|. x) - (2 * (x .|. y))) + (y .|. y) let x, y be Point of X; ::_thesis: (x - y) .|. (x - y) = ((x .|. x) - (2 * (x .|. y))) + (y .|. y) (x - y) .|. (x - y) = (x .|. (x - y)) - (y .|. (x - y)) by Th11 .= ((x .|. x) - (x .|. y)) - (y .|. (x - y)) by Th12 .= ((x .|. x) - (x .|. y)) - ((x .|. y) - (y .|. y)) by Th12 .= ((x .|. x) - ((x .|. y) + (x .|. y))) + (y .|. y) ; hence (x - y) .|. (x - y) = ((x .|. x) - (2 * (x .|. y))) + (y .|. y) ; ::_thesis: verum end; theorem Th19: :: BHSP_1:19 for X being RealUnitarySpace for x, y being Point of X holds abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) let x, y be Point of X; ::_thesis: abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) A1: ( x <> H1(X) implies abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) ) proof A2: for t being real number holds (((x .|. x) * (t ^2)) + ((2 * (x .|. y)) * t)) + (y .|. y) >= 0 proof let t be real number ; ::_thesis: (((x .|. x) * (t ^2)) + ((2 * (x .|. y)) * t)) + (y .|. y) >= 0 reconsider t = t as Real by XREAL_0:def_1; ((t * x) + y) .|. ((t * x) + y) >= 0 by Def2; then (((t * x) .|. (t * x)) + (2 * ((t * x) .|. y))) + (y .|. y) >= 0 by Th16; then ((t * (x .|. (t * x))) + (2 * ((t * x) .|. y))) + (y .|. y) >= 0 by Def2; then ((t * (t * (x .|. x))) + (2 * ((t * x) .|. y))) + (y .|. y) >= 0 by Def2; then (((x .|. x) * (t ^2)) + (2 * ((x .|. y) * t))) + (y .|. y) >= 0 by Def2; hence (((x .|. x) * (t ^2)) + ((2 * (x .|. y)) * t)) + (y .|. y) >= 0 ; ::_thesis: verum end; A3: x .|. x >= 0 by Def2; assume x <> H1(X) ; ::_thesis: abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) then x .|. x <> 0 by Def2; then delta ((x .|. x),(2 * (x .|. y)),(y .|. y)) <= 0 by A3, A2, QUIN_1:10; then ((2 * (x .|. y)) ^2) - ((4 * (x .|. x)) * (y .|. y)) <= 0 by QUIN_1:def_1; then 4 * (((x .|. y) ^2) - ((x .|. x) * (y .|. y))) <= 0 ; then ((x .|. y) ^2) - ((x .|. x) * (y .|. y)) <= 0 / 4 by XREAL_1:77; then (x .|. y) ^2 <= (x .|. x) * (y .|. y) by XREAL_1:50; then ( (abs (x .|. y)) ^2 >= 0 & (abs (x .|. y)) ^2 <= (x .|. x) * (y .|. y) ) by COMPLEX1:75, XREAL_1:63; then sqrt ((abs (x .|. y)) ^2) <= sqrt ((x .|. x) * (y .|. y)) by SQUARE_1:26; then A4: abs (x .|. y) <= sqrt ((x .|. x) * (y .|. y)) by COMPLEX1:46, SQUARE_1:22; y .|. y >= 0 by Def2; hence abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) by A3, A4, SQUARE_1:29; ::_thesis: verum end; ( x = H1(X) implies abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) ) proof assume x = H1(X) ; ::_thesis: abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) then ( x .|. y = 0 & sqrt (x .|. x) = 0 ) by Th14, SQUARE_1:17; hence abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) by ABSVALUE:2; ::_thesis: verum end; hence abs (x .|. y) <= (sqrt (x .|. x)) * (sqrt (y .|. y)) by A1; ::_thesis: verum end; definition let X be RealUnitarySpace; let x, y be Point of X; predx,y are_orthogonal means :Def3: :: BHSP_1:def 3 x .|. y = 0 ; symmetry for x, y being Point of X st x .|. y = 0 holds y .|. x = 0 ; end; :: deftheorem Def3 defines are_orthogonal BHSP_1:def_3_:_ for X being RealUnitarySpace for x, y being Point of X holds ( x,y are_orthogonal iff x .|. y = 0 ); theorem :: BHSP_1:20 for X being RealUnitarySpace for x, y being Point of X st x,y are_orthogonal holds x, - y are_orthogonal proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X st x,y are_orthogonal holds x, - y are_orthogonal let x, y be Point of X; ::_thesis: ( x,y are_orthogonal implies x, - y are_orthogonal ) assume x,y are_orthogonal ; ::_thesis: x, - y are_orthogonal then - (x .|. y) = - 0 by Def3; then x .|. (- y) = 0 by Th8; hence x, - y are_orthogonal by Def3; ::_thesis: verum end; theorem :: BHSP_1:21 for X being RealUnitarySpace for x, y being Point of X st x,y are_orthogonal holds - x,y are_orthogonal proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X st x,y are_orthogonal holds - x,y are_orthogonal let x, y be Point of X; ::_thesis: ( x,y are_orthogonal implies - x,y are_orthogonal ) assume x,y are_orthogonal ; ::_thesis: - x,y are_orthogonal then - (x .|. y) = - 0 by Def3; then (- x) .|. y = 0 by Th8; hence - x,y are_orthogonal by Def3; ::_thesis: verum end; theorem :: BHSP_1:22 for X being RealUnitarySpace for x, y being Point of X st x,y are_orthogonal holds - x, - y are_orthogonal proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X st x,y are_orthogonal holds - x, - y are_orthogonal let x, y be Point of X; ::_thesis: ( x,y are_orthogonal implies - x, - y are_orthogonal ) assume x,y are_orthogonal ; ::_thesis: - x, - y are_orthogonal then x .|. y = 0 by Def3; then (- x) .|. (- y) = 0 by Th10; hence - x, - y are_orthogonal by Def3; ::_thesis: verum end; theorem :: BHSP_1:23 for X being RealUnitarySpace for x being Point of X holds x, 0. X are_orthogonal proof let X be RealUnitarySpace; ::_thesis: for x being Point of X holds x, 0. X are_orthogonal let x be Point of X; ::_thesis: x, 0. X are_orthogonal x .|. H1(X) = 0 by Th14; hence x, 0. X are_orthogonal by Def3; ::_thesis: verum end; theorem :: BHSP_1:24 for X being RealUnitarySpace for x, y being Point of X st x,y are_orthogonal holds (x + y) .|. (x + y) = (x .|. x) + (y .|. y) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X st x,y are_orthogonal holds (x + y) .|. (x + y) = (x .|. x) + (y .|. y) let x, y be Point of X; ::_thesis: ( x,y are_orthogonal implies (x + y) .|. (x + y) = (x .|. x) + (y .|. y) ) assume x,y are_orthogonal ; ::_thesis: (x + y) .|. (x + y) = (x .|. x) + (y .|. y) then A1: x .|. y = 0 by Def3; (x + y) .|. (x + y) = ((x .|. x) + (2 * (x .|. y))) + (y .|. y) by Th16; hence (x + y) .|. (x + y) = (x .|. x) + (y .|. y) by A1; ::_thesis: verum end; theorem :: BHSP_1:25 for X being RealUnitarySpace for x, y being Point of X st x,y are_orthogonal holds (x - y) .|. (x - y) = (x .|. x) + (y .|. y) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X st x,y are_orthogonal holds (x - y) .|. (x - y) = (x .|. x) + (y .|. y) let x, y be Point of X; ::_thesis: ( x,y are_orthogonal implies (x - y) .|. (x - y) = (x .|. x) + (y .|. y) ) assume x,y are_orthogonal ; ::_thesis: (x - y) .|. (x - y) = (x .|. x) + (y .|. y) then A1: x .|. y = 0 by Def3; (x - y) .|. (x - y) = ((x .|. x) - (2 * (x .|. y))) + (y .|. y) by Th18 .= ((x .|. x) + (y .|. y)) - 0 by A1 ; hence (x - y) .|. (x - y) = (x .|. x) + (y .|. y) ; ::_thesis: verum end; definition let X be RealUnitarySpace; let x be Point of X; func||.x.|| -> Real equals :: BHSP_1:def 4 sqrt (x .|. x); correctness coherence sqrt (x .|. x) is Real; ; end; :: deftheorem defines ||. BHSP_1:def_4_:_ for X being RealUnitarySpace for x being Point of X holds ||.x.|| = sqrt (x .|. x); theorem Th26: :: BHSP_1:26 for X being RealUnitarySpace for x being Point of X holds ( ||.x.|| = 0 iff x = 0. X ) proof let X be RealUnitarySpace; ::_thesis: for x being Point of X holds ( ||.x.|| = 0 iff x = 0. X ) let x be Point of X; ::_thesis: ( ||.x.|| = 0 iff x = 0. X ) thus ( ||.x.|| = 0 implies x = H1(X) ) ::_thesis: ( x = 0. X implies ||.x.|| = 0 ) proof assume A1: ||.x.|| = 0 ; ::_thesis: x = H1(X) 0 <= x .|. x by Def2; then x .|. x = 0 by A1, SQUARE_1:24; hence x = H1(X) by Def2; ::_thesis: verum end; assume x = H1(X) ; ::_thesis: ||.x.|| = 0 hence ||.x.|| = 0 by Def2, SQUARE_1:17; ::_thesis: verum end; theorem Th27: :: BHSP_1:27 for a being Real for X being RealUnitarySpace for x being Point of X holds ||.(a * x).|| = (abs a) * ||.x.|| proof let a be Real; ::_thesis: for X being RealUnitarySpace for x being Point of X holds ||.(a * x).|| = (abs a) * ||.x.|| let X be RealUnitarySpace; ::_thesis: for x being Point of X holds ||.(a * x).|| = (abs a) * ||.x.|| let x be Point of X; ::_thesis: ||.(a * x).|| = (abs a) * ||.x.|| A1: ( 0 <= a ^2 & 0 <= x .|. x ) by Def2, XREAL_1:63; ||.(a * x).|| = sqrt (a * (x .|. (a * x))) by Def2 .= sqrt (a * (a * (x .|. x))) by Def2 .= sqrt ((a ^2) * (x .|. x)) .= (sqrt (a ^2)) * (sqrt (x .|. x)) by A1, SQUARE_1:29 .= (abs a) * (sqrt (x .|. x)) by COMPLEX1:72 ; hence ||.(a * x).|| = (abs a) * ||.x.|| ; ::_thesis: verum end; theorem Th28: :: BHSP_1:28 for X being RealUnitarySpace for x being Point of X holds 0 <= ||.x.|| proof let X be RealUnitarySpace; ::_thesis: for x being Point of X holds 0 <= ||.x.|| let x be Point of X; ::_thesis: 0 <= ||.x.|| 0 <= x .|. x by Def2; hence 0 <= ||.x.|| by SQUARE_1:def_2; ::_thesis: verum end; theorem :: BHSP_1:29 for X being RealUnitarySpace for x, y being Point of X holds abs (x .|. y) <= ||.x.|| * ||.y.|| by Th19; theorem Th30: :: BHSP_1:30 for X being RealUnitarySpace for x, y being Point of X holds ||.(x + y).|| <= ||.x.|| + ||.y.|| proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds ||.(x + y).|| <= ||.x.|| + ||.y.|| let x, y be Point of X; ::_thesis: ||.(x + y).|| <= ||.x.|| + ||.y.|| A1: sqrt (||.(x + y).|| ^2) = sqrt ((x + y) .|. (x + y)) by Th28, SQUARE_1:22; ( (x + y) .|. (x + y) >= 0 & ||.(x + y).|| ^2 >= 0 ) by Def2, XREAL_1:63; then ||.(x + y).|| ^2 = (x + y) .|. (x + y) by A1, SQUARE_1:28; then A2: ||.(x + y).|| ^2 = ((x .|. x) + (2 * (x .|. y))) + (y .|. y) by Th16; x .|. x >= 0 by Def2; then A3: ||.(x + y).|| ^2 = (((sqrt (x .|. x)) ^2) + (2 * (x .|. y))) + (y .|. y) by A2, SQUARE_1:def_2; A4: ( ||.x.|| >= 0 & ||.y.|| >= 0 ) by Th28; ( abs (x .|. y) <= ||.x.|| * ||.y.|| & x .|. y <= abs (x .|. y) ) by Th19, ABSVALUE:4; then x .|. y <= ||.x.|| * ||.y.|| by XXREAL_0:2; then 2 * (x .|. y) <= 2 * (||.x.|| * ||.y.||) by XREAL_1:64; then (||.x.|| ^2) + (2 * (x .|. y)) <= (||.x.|| ^2) + ((2 * ||.x.||) * ||.y.||) by XREAL_1:7; then A5: ((||.x.|| ^2) + (2 * (x .|. y))) + (||.y.|| ^2) <= ((||.x.|| ^2) + ((2 * ||.x.||) * ||.y.||)) + (||.y.|| ^2) by XREAL_1:6; y .|. y >= 0 by Def2; then ||.(x + y).|| ^2 <= (||.x.|| + ||.y.||) ^2 by A3, A5, SQUARE_1:def_2; hence ||.(x + y).|| <= ||.x.|| + ||.y.|| by A4, SQUARE_1:16; ::_thesis: verum end; theorem Th31: :: BHSP_1:31 for X being RealUnitarySpace for x being Point of X holds ||.(- x).|| = ||.x.|| proof let X be RealUnitarySpace; ::_thesis: for x being Point of X holds ||.(- x).|| = ||.x.|| let x be Point of X; ::_thesis: ||.(- x).|| = ||.x.|| A1: abs (- 1) = - (- 1) by ABSVALUE:def_1; ||.(- x).|| = ||.((- 1) * x).|| by RLVECT_1:16 .= 1 * ||.x.|| by A1, Th27 ; hence ||.(- x).|| = ||.x.|| ; ::_thesis: verum end; theorem Th32: :: BHSP_1:32 for X being RealUnitarySpace for x, y being Point of X holds ||.x.|| - ||.y.|| <= ||.(x - y).|| proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds ||.x.|| - ||.y.|| <= ||.(x - y).|| let x, y be Point of X; ::_thesis: ||.x.|| - ||.y.|| <= ||.(x - y).|| (x - y) + y = x - (y - y) by RLVECT_1:29 .= x - H1(X) by RLVECT_1:15 .= x by RLVECT_1:13 ; then ||.x.|| <= ||.(x - y).|| + ||.y.|| by Th30; hence ||.x.|| - ||.y.|| <= ||.(x - y).|| by XREAL_1:20; ::_thesis: verum end; theorem :: BHSP_1:33 for X being RealUnitarySpace for x, y being Point of X holds abs (||.x.|| - ||.y.||) <= ||.(x - y).|| proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds abs (||.x.|| - ||.y.||) <= ||.(x - y).|| let x, y be Point of X; ::_thesis: abs (||.x.|| - ||.y.||) <= ||.(x - y).|| (y - x) + x = y - (x - x) by RLVECT_1:29 .= y - H1(X) by RLVECT_1:15 .= y by RLVECT_1:13 ; then ||.y.|| <= ||.(y - x).|| + ||.x.|| by Th30; then ||.y.|| - ||.x.|| <= ||.(y - x).|| by XREAL_1:20; then ||.y.|| - ||.x.|| <= ||.(- (x - y)).|| by RLVECT_1:33; then ||.y.|| - ||.x.|| <= ||.(x - y).|| by Th31; then A1: - ||.(x - y).|| <= - (||.y.|| - ||.x.||) by XREAL_1:24; ||.x.|| - ||.y.|| <= ||.(x - y).|| by Th32; hence abs (||.x.|| - ||.y.||) <= ||.(x - y).|| by A1, ABSVALUE:5; ::_thesis: verum end; definition let X be RealUnitarySpace; let x, y be Point of X; func dist (x,y) -> Real equals :: BHSP_1:def 5 ||.(x - y).||; correctness coherence ||.(x - y).|| is Real; ; commutativity for b1 being Real for x, y being Point of X st b1 = ||.(x - y).|| holds b1 = ||.(y - x).|| proof let IT be Real; ::_thesis: for x, y being Point of X st IT = ||.(x - y).|| holds IT = ||.(y - x).|| let x, y be Point of X; ::_thesis: ( IT = ||.(x - y).|| implies IT = ||.(y - x).|| ) ||.(x - y).|| = ||.(- (y - x)).|| by RLVECT_1:33 .= ||.(y - x).|| by Th31 ; hence ( IT = ||.(x - y).|| implies IT = ||.(y - x).|| ) ; ::_thesis: verum end; end; :: deftheorem defines dist BHSP_1:def_5_:_ for X being RealUnitarySpace for x, y being Point of X holds dist (x,y) = ||.(x - y).||; theorem Th34: :: BHSP_1:34 for X being RealUnitarySpace for x being Point of X holds dist (x,x) = 0 proof let X be RealUnitarySpace; ::_thesis: for x being Point of X holds dist (x,x) = 0 let x be Point of X; ::_thesis: dist (x,x) = 0 thus dist (x,x) = ||.H1(X).|| by RLVECT_1:15 .= 0 by Th26 ; ::_thesis: verum end; theorem :: BHSP_1:35 for X being RealUnitarySpace for x, z, y being Point of X holds dist (x,z) <= (dist (x,y)) + (dist (y,z)) proof let X be RealUnitarySpace; ::_thesis: for x, z, y being Point of X holds dist (x,z) <= (dist (x,y)) + (dist (y,z)) let x, z, y be Point of X; ::_thesis: dist (x,z) <= (dist (x,y)) + (dist (y,z)) dist (x,z) = ||.((x - z) + H1(X)).|| by RLVECT_1:4 .= ||.((x - z) + (y - y)).|| by RLVECT_1:15 .= ||.(x - (z - (y - y))).|| by RLVECT_1:29 .= ||.(x - (y + (z - y))).|| by RLVECT_1:29 .= ||.((x - y) - (z - y)).|| by RLVECT_1:27 .= ||.((x - y) + (y - z)).|| by RLVECT_1:33 ; hence dist (x,z) <= (dist (x,y)) + (dist (y,z)) by Th30; ::_thesis: verum end; theorem Th36: :: BHSP_1:36 for X being RealUnitarySpace for x, y being Point of X holds ( x <> y iff dist (x,y) <> 0 ) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds ( x <> y iff dist (x,y) <> 0 ) let x, y be Point of X; ::_thesis: ( x <> y iff dist (x,y) <> 0 ) thus ( x <> y implies dist (x,y) <> 0 ) ::_thesis: ( dist (x,y) <> 0 implies x <> y ) proof assume that A1: x <> y and A2: dist (x,y) = 0 ; ::_thesis: contradiction x - y = H1(X) by A2, Th26; hence contradiction by A1, RLVECT_1:21; ::_thesis: verum end; thus ( dist (x,y) <> 0 implies x <> y ) by Th34; ::_thesis: verum end; theorem :: BHSP_1:37 for X being RealUnitarySpace for x, y being Point of X holds dist (x,y) >= 0 by Th28; theorem :: BHSP_1:38 for X being RealUnitarySpace for x, y being Point of X holds ( x <> y iff dist (x,y) > 0 ) proof let X be RealUnitarySpace; ::_thesis: for x, y being Point of X holds ( x <> y iff dist (x,y) > 0 ) let x, y be Point of X; ::_thesis: ( x <> y iff dist (x,y) > 0 ) thus ( x <> y implies dist (x,y) > 0 ) ::_thesis: ( dist (x,y) > 0 implies x <> y ) proof assume x <> y ; ::_thesis: dist (x,y) > 0 then dist (x,y) <> 0 by Th36; hence dist (x,y) > 0 by Th28; ::_thesis: verum end; thus ( dist (x,y) > 0 implies x <> y ) by Th34; ::_thesis: verum end; theorem :: BHSP_1:39 for X being RealUnitarySpace for x, y being Point of X holds dist (x,y) = sqrt ((x - y) .|. (x - y)) ; theorem :: BHSP_1:40 for X being RealUnitarySpace for x, y, u, v being Point of X holds dist ((x + y),(u + v)) <= (dist (x,u)) + (dist (y,v)) proof let X be RealUnitarySpace; ::_thesis: for x, y, u, v being Point of X holds dist ((x + y),(u + v)) <= (dist (x,u)) + (dist (y,v)) let x, y, u, v be Point of X; ::_thesis: dist ((x + y),(u + v)) <= (dist (x,u)) + (dist (y,v)) dist ((x + y),(u + v)) = ||.(((- u) + (- v)) + (x + y)).|| by RLVECT_1:31 .= ||.((x + ((- u) + (- v))) + y).|| by RLVECT_1:def_3 .= ||.(((x - u) + (- v)) + y).|| by RLVECT_1:def_3 .= ||.((x - u) + (y - v)).|| by RLVECT_1:def_3 ; hence dist ((x + y),(u + v)) <= (dist (x,u)) + (dist (y,v)) by Th30; ::_thesis: verum end; theorem :: BHSP_1:41 for X being RealUnitarySpace for x, y, u, v being Point of X holds dist ((x - y),(u - v)) <= (dist (x,u)) + (dist (y,v)) proof let X be RealUnitarySpace; ::_thesis: for x, y, u, v being Point of X holds dist ((x - y),(u - v)) <= (dist (x,u)) + (dist (y,v)) let x, y, u, v be Point of X; ::_thesis: dist ((x - y),(u - v)) <= (dist (x,u)) + (dist (y,v)) dist ((x - y),(u - v)) = ||.(((x - y) - u) + v).|| by RLVECT_1:29 .= ||.((x - (u + y)) + v).|| by RLVECT_1:27 .= ||.(((x - u) - y) + v).|| by RLVECT_1:27 .= ||.((x - u) - (y - v)).|| by RLVECT_1:29 .= ||.((x - u) + (- (y - v))).|| ; then dist ((x - y),(u - v)) <= ||.(x - u).|| + ||.(- (y - v)).|| by Th30; hence dist ((x - y),(u - v)) <= (dist (x,u)) + (dist (y,v)) by Th31; ::_thesis: verum end; theorem :: BHSP_1:42 for X being RealUnitarySpace for x, z, y being Point of X holds dist ((x - z),(y - z)) = dist (x,y) proof let X be RealUnitarySpace; ::_thesis: for x, z, y being Point of X holds dist ((x - z),(y - z)) = dist (x,y) let x, z, y be Point of X; ::_thesis: dist ((x - z),(y - z)) = dist (x,y) thus dist ((x - z),(y - z)) = ||.(((x - z) - y) + z).|| by RLVECT_1:29 .= ||.((x - (y + z)) + z).|| by RLVECT_1:27 .= ||.(((x - y) - z) + z).|| by RLVECT_1:27 .= ||.((x - y) - (z - z)).|| by RLVECT_1:29 .= ||.((x - y) - H1(X)).|| by RLVECT_1:15 .= dist (x,y) by RLVECT_1:13 ; ::_thesis: verum end; theorem :: BHSP_1:43 for X being RealUnitarySpace for x, z, y being Point of X holds dist ((x - z),(y - z)) <= (dist (z,x)) + (dist (z,y)) proof let X be RealUnitarySpace; ::_thesis: for x, z, y being Point of X holds dist ((x - z),(y - z)) <= (dist (z,x)) + (dist (z,y)) let x, z, y be Point of X; ::_thesis: dist ((x - z),(y - z)) <= (dist (z,x)) + (dist (z,y)) dist ((x - z),(y - z)) = ||.((x - z) + (z - y)).|| by RLVECT_1:33 .= ||.((- (z - x)) + (z - y)).|| by RLVECT_1:33 ; then dist ((x - z),(y - z)) <= ||.(- (z - x)).|| + ||.(z - y).|| by Th30; hence dist ((x - z),(y - z)) <= (dist (z,x)) + (dist (z,y)) by Th31; ::_thesis: verum end; definition let X be non empty addLoopStr ; let seq be sequence of X; let x be Point of X; funcseq + x -> sequence of X means :Def6: :: BHSP_1:def 6 for n being Element of NAT holds it . n = (seq . n) + x; existence ex b1 being sequence of X st for n being Element of NAT holds b1 . n = (seq . n) + x proof deffunc H2( Element of NAT ) -> Element of the carrier of X = (seq . $1) + x; ex seq being sequence of X st for n being Element of NAT holds seq . n = H2(n) from FUNCT_2:sch_4(); hence ex b1 being sequence of X st for n being Element of NAT holds b1 . n = (seq . n) + x ; ::_thesis: verum end; uniqueness for b1, b2 being sequence of X st ( for n being Element of NAT holds b1 . n = (seq . n) + x ) & ( for n being Element of NAT holds b2 . n = (seq . n) + x ) holds b1 = b2 proof let seq1, seq2 be sequence of X; ::_thesis: ( ( for n being Element of NAT holds seq1 . n = (seq . n) + x ) & ( for n being Element of NAT holds seq2 . n = (seq . n) + x ) implies seq1 = seq2 ) assume that A1: for n being Element of NAT holds seq1 . n = (seq . n) + x and A2: for n being Element of NAT holds seq2 . n = (seq . n) + x ; ::_thesis: seq1 = seq2 let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: seq1 . n = seq2 . n seq1 . n = (seq . n) + x by A1; hence seq1 . n = seq2 . n by A2; ::_thesis: verum end; end; :: deftheorem Def6 defines + BHSP_1:def_6_:_ for X being non empty addLoopStr for seq being sequence of X for x being Point of X for b4 being sequence of X holds ( b4 = seq + x iff for n being Element of NAT holds b4 . n = (seq . n) + x ); theorem Th44: :: BHSP_1:44 for n being Element of NAT for X being non empty addLoopStr for seq being sequence of X holds (- seq) . n = - (seq . n) proof let n be Element of NAT ; ::_thesis: for X being non empty addLoopStr for seq being sequence of X holds (- seq) . n = - (seq . n) let X be non empty addLoopStr ; ::_thesis: for seq being sequence of X holds (- seq) . n = - (seq . n) let seq be sequence of X; ::_thesis: (- seq) . n = - (seq . n) A1: dom (- seq) = NAT by FUNCT_2:def_1; thus (- seq) . n = (- seq) /. n .= - (seq /. n) by A1, VFUNCT_1:def_5 .= - (seq . n) ; ::_thesis: verum end; definition let X be RealUnitarySpace; let seq1, seq2 be sequence of X; :: original: + redefine funcseq1 + seq2 -> Element of bool [:NAT, the carrier of X:]; commutativity for seq1, seq2 being sequence of X holds seq1 + seq2 = seq2 + seq1 proof let seq1, seq2 be sequence of X; ::_thesis: seq1 + seq2 = seq2 + seq1 let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (seq1 + seq2) . n = (seq2 + seq1) . n thus (seq1 + seq2) . n = (seq2 . n) + (seq1 . n) by NORMSP_1:def_2 .= (seq2 + seq1) . n by NORMSP_1:def_2 ; ::_thesis: verum end; end; theorem :: BHSP_1:45 for X being RealUnitarySpace for seq1, seq2, seq3 being sequence of X holds seq1 + (seq2 + seq3) = (seq1 + seq2) + seq3 proof let X be RealUnitarySpace; ::_thesis: for seq1, seq2, seq3 being sequence of X holds seq1 + (seq2 + seq3) = (seq1 + seq2) + seq3 let seq1, seq2, seq3 be sequence of X; ::_thesis: seq1 + (seq2 + seq3) = (seq1 + seq2) + seq3 let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (seq1 + (seq2 + seq3)) . n = ((seq1 + seq2) + seq3) . n thus (seq1 + (seq2 + seq3)) . n = (seq1 . n) + ((seq2 + seq3) . n) by NORMSP_1:def_2 .= (seq1 . n) + ((seq2 . n) + (seq3 . n)) by NORMSP_1:def_2 .= ((seq1 . n) + (seq2 . n)) + (seq3 . n) by RLVECT_1:def_3 .= ((seq1 + seq2) . n) + (seq3 . n) by NORMSP_1:def_2 .= ((seq1 + seq2) + seq3) . n by NORMSP_1:def_2 ; ::_thesis: verum end; theorem :: BHSP_1:46 for X being RealUnitarySpace for seq1, seq2 being sequence of X st seq1 is constant & seq2 is constant holds seq1 + seq2 is constant proof let X be RealUnitarySpace; ::_thesis: for seq1, seq2 being sequence of X st seq1 is constant & seq2 is constant holds seq1 + seq2 is constant let seq1, seq2 be sequence of X; ::_thesis: ( seq1 is constant & seq2 is constant implies seq1 + seq2 is constant ) assume that A1: seq1 is constant and A2: seq2 is constant ; ::_thesis: seq1 + seq2 is constant set seq = seq1 + seq2; consider x being Point of X such that A3: for n being Nat holds seq1 . n = x by A1, VALUED_0:def_18; consider y being Point of X such that A4: for n being Nat holds seq2 . n = y by A2, VALUED_0:def_18; take z = x + y; :: according to VALUED_0:def_20 ::_thesis: for b1 being set holds (seq1 + seq2) . b1 = z let n be Nat; ::_thesis: (seq1 + seq2) . n = z n in NAT by ORDINAL1:def_12; hence (seq1 + seq2) . n = (seq1 . n) + (seq2 . n) by NORMSP_1:def_2 .= x + (seq2 . n) by A3 .= z by A4 ; ::_thesis: verum end; theorem :: BHSP_1:47 for X being RealUnitarySpace for seq1, seq2 being sequence of X st seq1 is constant & seq2 is constant holds seq1 - seq2 is constant proof let X be RealUnitarySpace; ::_thesis: for seq1, seq2 being sequence of X st seq1 is constant & seq2 is constant holds seq1 - seq2 is constant let seq1, seq2 be sequence of X; ::_thesis: ( seq1 is constant & seq2 is constant implies seq1 - seq2 is constant ) assume that A1: seq1 is constant and A2: seq2 is constant ; ::_thesis: seq1 - seq2 is constant set seq = seq1 - seq2; consider x being Point of X such that A3: for n being Nat holds seq1 . n = x by A1, VALUED_0:def_18; consider y being Point of X such that A4: for n being Nat holds seq2 . n = y by A2, VALUED_0:def_18; take z = x - y; :: according to VALUED_0:def_20 ::_thesis: for b1 being set holds (seq1 - seq2) . b1 = z let n be Nat; ::_thesis: (seq1 - seq2) . n = z n in NAT by ORDINAL1:def_12; hence (seq1 - seq2) . n = (seq1 . n) - (seq2 . n) by NORMSP_1:def_3 .= x - (seq2 . n) by A3 .= z by A4 ; ::_thesis: verum end; theorem :: BHSP_1:48 for a being Real for X being RealUnitarySpace for seq1 being sequence of X st seq1 is constant holds a * seq1 is constant proof let a be Real; ::_thesis: for X being RealUnitarySpace for seq1 being sequence of X st seq1 is constant holds a * seq1 is constant let X be RealUnitarySpace; ::_thesis: for seq1 being sequence of X st seq1 is constant holds a * seq1 is constant let seq1 be sequence of X; ::_thesis: ( seq1 is constant implies a * seq1 is constant ) assume A1: seq1 is constant ; ::_thesis: a * seq1 is constant set seq = a * seq1; consider x being Point of X such that A2: for n being Nat holds seq1 . n = x by A1, VALUED_0:def_18; take z = a * x; :: according to VALUED_0:def_20 ::_thesis: for b1 being set holds (a * seq1) . b1 = z let n be Nat; ::_thesis: (a * seq1) . n = z n in NAT by ORDINAL1:def_12; hence (a * seq1) . n = a * (seq1 . n) by NORMSP_1:def_5 .= z by A2 ; ::_thesis: verum end; theorem :: BHSP_1:49 for X being RealUnitarySpace for seq1, seq2 being sequence of X holds seq1 - seq2 = seq1 + (- seq2) proof let X be RealUnitarySpace; ::_thesis: for seq1, seq2 being sequence of X holds seq1 - seq2 = seq1 + (- seq2) let seq1, seq2 be sequence of X; ::_thesis: seq1 - seq2 = seq1 + (- seq2) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (seq1 - seq2) . n = (seq1 + (- seq2)) . n thus (seq1 - seq2) . n = (seq1 . n) - (seq2 . n) by NORMSP_1:def_3 .= (seq1 . n) + ((- seq2) . n) by Th44 .= (seq1 + (- seq2)) . n by NORMSP_1:def_2 ; ::_thesis: verum end; theorem :: BHSP_1:50 for X being RealUnitarySpace for seq being sequence of X holds seq = seq + (0. X) proof let X be RealUnitarySpace; ::_thesis: for seq being sequence of X holds seq = seq + (0. X) let seq be sequence of X; ::_thesis: seq = seq + (0. X) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: seq . n = (seq + (0. X)) . n thus (seq + H1(X)) . n = (seq . n) + H1(X) by Def6 .= seq . n by RLVECT_1:4 ; ::_thesis: verum end; theorem :: BHSP_1:51 for a being Real for X being RealUnitarySpace for seq1, seq2 being sequence of X holds a * (seq1 + seq2) = (a * seq1) + (a * seq2) proof let a be Real; ::_thesis: for X being RealUnitarySpace for seq1, seq2 being sequence of X holds a * (seq1 + seq2) = (a * seq1) + (a * seq2) let X be RealUnitarySpace; ::_thesis: for seq1, seq2 being sequence of X holds a * (seq1 + seq2) = (a * seq1) + (a * seq2) let seq1, seq2 be sequence of X; ::_thesis: a * (seq1 + seq2) = (a * seq1) + (a * seq2) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (a * (seq1 + seq2)) . n = ((a * seq1) + (a * seq2)) . n thus (a * (seq1 + seq2)) . n = a * ((seq1 + seq2) . n) by NORMSP_1:def_5 .= a * ((seq1 . n) + (seq2 . n)) by NORMSP_1:def_2 .= (a * (seq1 . n)) + (a * (seq2 . n)) by RLVECT_1:def_5 .= ((a * seq1) . n) + (a * (seq2 . n)) by NORMSP_1:def_5 .= ((a * seq1) . n) + ((a * seq2) . n) by NORMSP_1:def_5 .= ((a * seq1) + (a * seq2)) . n by NORMSP_1:def_2 ; ::_thesis: verum end; theorem :: BHSP_1:52 for a, b being Real for X being RealUnitarySpace for seq being sequence of X holds (a + b) * seq = (a * seq) + (b * seq) proof let a, b be Real; ::_thesis: for X being RealUnitarySpace for seq being sequence of X holds (a + b) * seq = (a * seq) + (b * seq) let X be RealUnitarySpace; ::_thesis: for seq being sequence of X holds (a + b) * seq = (a * seq) + (b * seq) let seq be sequence of X; ::_thesis: (a + b) * seq = (a * seq) + (b * seq) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: ((a + b) * seq) . n = ((a * seq) + (b * seq)) . n thus ((a + b) * seq) . n = (a + b) * (seq . n) by NORMSP_1:def_5 .= (a * (seq . n)) + (b * (seq . n)) by RLVECT_1:def_6 .= ((a * seq) . n) + (b * (seq . n)) by NORMSP_1:def_5 .= ((a * seq) . n) + ((b * seq) . n) by NORMSP_1:def_5 .= ((a * seq) + (b * seq)) . n by NORMSP_1:def_2 ; ::_thesis: verum end; theorem :: BHSP_1:53 for a, b being Real for X being RealUnitarySpace for seq being sequence of X holds (a * b) * seq = a * (b * seq) proof let a, b be Real; ::_thesis: for X being RealUnitarySpace for seq being sequence of X holds (a * b) * seq = a * (b * seq) let X be RealUnitarySpace; ::_thesis: for seq being sequence of X holds (a * b) * seq = a * (b * seq) let seq be sequence of X; ::_thesis: (a * b) * seq = a * (b * seq) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: ((a * b) * seq) . n = (a * (b * seq)) . n thus ((a * b) * seq) . n = (a * b) * (seq . n) by NORMSP_1:def_5 .= a * (b * (seq . n)) by RLVECT_1:def_7 .= a * ((b * seq) . n) by NORMSP_1:def_5 .= (a * (b * seq)) . n by NORMSP_1:def_5 ; ::_thesis: verum end; theorem :: BHSP_1:54 for X being RealUnitarySpace for seq being sequence of X holds 1 * seq = seq proof let X be RealUnitarySpace; ::_thesis: for seq being sequence of X holds 1 * seq = seq let seq be sequence of X; ::_thesis: 1 * seq = seq let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (1 * seq) . n = seq . n thus (1 * seq) . n = 1 * (seq . n) by NORMSP_1:def_5 .= seq . n by RLVECT_1:def_8 ; ::_thesis: verum end; theorem :: BHSP_1:55 for X being RealUnitarySpace for seq being sequence of X holds (- 1) * seq = - seq proof let X be RealUnitarySpace; ::_thesis: for seq being sequence of X holds (- 1) * seq = - seq let seq be sequence of X; ::_thesis: (- 1) * seq = - seq let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: ((- 1) * seq) . n = (- seq) . n thus ((- 1) * seq) . n = (- 1) * (seq . n) by NORMSP_1:def_5 .= - (seq . n) by RLVECT_1:16 .= (- seq) . n by Th44 ; ::_thesis: verum end; theorem :: BHSP_1:56 for X being RealUnitarySpace for x being Point of X for seq being sequence of X holds seq - x = seq + (- x) proof let X be RealUnitarySpace; ::_thesis: for x being Point of X for seq being sequence of X holds seq - x = seq + (- x) let x be Point of X; ::_thesis: for seq being sequence of X holds seq - x = seq + (- x) let seq be sequence of X; ::_thesis: seq - x = seq + (- x) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (seq - x) . n = (seq + (- x)) . n thus (seq - x) . n = (seq . n) - x by NORMSP_1:def_4 .= (seq + (- x)) . n by Def6 ; ::_thesis: verum end; theorem :: BHSP_1:57 for X being RealUnitarySpace for seq1, seq2 being sequence of X holds seq1 - seq2 = - (seq2 - seq1) proof let X be RealUnitarySpace; ::_thesis: for seq1, seq2 being sequence of X holds seq1 - seq2 = - (seq2 - seq1) let seq1, seq2 be sequence of X; ::_thesis: seq1 - seq2 = - (seq2 - seq1) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (seq1 - seq2) . n = (- (seq2 - seq1)) . n thus (seq1 - seq2) . n = (seq1 . n) - (seq2 . n) by NORMSP_1:def_3 .= - ((seq2 . n) - (seq1 . n)) by RLVECT_1:33 .= - ((seq2 - seq1) . n) by NORMSP_1:def_3 .= (- (seq2 - seq1)) . n by Th44 ; ::_thesis: verum end; theorem :: BHSP_1:58 for X being RealUnitarySpace for seq being sequence of X holds seq = seq - (0. X) proof let X be RealUnitarySpace; ::_thesis: for seq being sequence of X holds seq = seq - (0. X) let seq be sequence of X; ::_thesis: seq = seq - (0. X) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: seq . n = (seq - (0. X)) . n thus (seq - H1(X)) . n = (seq . n) - H1(X) by NORMSP_1:def_4 .= seq . n by RLVECT_1:13 ; ::_thesis: verum end; theorem :: BHSP_1:59 for X being RealUnitarySpace for seq being sequence of X holds seq = - (- seq) proof let X be RealUnitarySpace; ::_thesis: for seq being sequence of X holds seq = - (- seq) let seq be sequence of X; ::_thesis: seq = - (- seq) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: seq . n = (- (- seq)) . n thus (- (- seq)) . n = - ((- seq) . n) by Th44 .= - (- (seq . n)) by Th44 .= seq . n by RLVECT_1:17 ; ::_thesis: verum end; theorem :: BHSP_1:60 for X being RealUnitarySpace for seq1, seq2, seq3 being sequence of X holds seq1 - (seq2 + seq3) = (seq1 - seq2) - seq3 proof let X be RealUnitarySpace; ::_thesis: for seq1, seq2, seq3 being sequence of X holds seq1 - (seq2 + seq3) = (seq1 - seq2) - seq3 let seq1, seq2, seq3 be sequence of X; ::_thesis: seq1 - (seq2 + seq3) = (seq1 - seq2) - seq3 let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (seq1 - (seq2 + seq3)) . n = ((seq1 - seq2) - seq3) . n thus (seq1 - (seq2 + seq3)) . n = (seq1 . n) - ((seq2 + seq3) . n) by NORMSP_1:def_3 .= (seq1 . n) - ((seq2 . n) + (seq3 . n)) by NORMSP_1:def_2 .= ((seq1 . n) - (seq2 . n)) - (seq3 . n) by RLVECT_1:27 .= ((seq1 - seq2) . n) - (seq3 . n) by NORMSP_1:def_3 .= ((seq1 - seq2) - seq3) . n by NORMSP_1:def_3 ; ::_thesis: verum end; theorem :: BHSP_1:61 for X being RealUnitarySpace for seq1, seq2, seq3 being sequence of X holds (seq1 + seq2) - seq3 = seq1 + (seq2 - seq3) proof let X be RealUnitarySpace; ::_thesis: for seq1, seq2, seq3 being sequence of X holds (seq1 + seq2) - seq3 = seq1 + (seq2 - seq3) let seq1, seq2, seq3 be sequence of X; ::_thesis: (seq1 + seq2) - seq3 = seq1 + (seq2 - seq3) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: ((seq1 + seq2) - seq3) . n = (seq1 + (seq2 - seq3)) . n thus ((seq1 + seq2) - seq3) . n = ((seq1 + seq2) . n) - (seq3 . n) by NORMSP_1:def_3 .= ((seq1 . n) + (seq2 . n)) - (seq3 . n) by NORMSP_1:def_2 .= (seq1 . n) + ((seq2 . n) - (seq3 . n)) by RLVECT_1:def_3 .= (seq1 . n) + ((seq2 - seq3) . n) by NORMSP_1:def_3 .= (seq1 + (seq2 - seq3)) . n by NORMSP_1:def_2 ; ::_thesis: verum end; theorem :: BHSP_1:62 for X being RealUnitarySpace for seq1, seq2, seq3 being sequence of X holds seq1 - (seq2 - seq3) = (seq1 - seq2) + seq3 proof let X be RealUnitarySpace; ::_thesis: for seq1, seq2, seq3 being sequence of X holds seq1 - (seq2 - seq3) = (seq1 - seq2) + seq3 let seq1, seq2, seq3 be sequence of X; ::_thesis: seq1 - (seq2 - seq3) = (seq1 - seq2) + seq3 let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (seq1 - (seq2 - seq3)) . n = ((seq1 - seq2) + seq3) . n thus (seq1 - (seq2 - seq3)) . n = (seq1 . n) - ((seq2 - seq3) . n) by NORMSP_1:def_3 .= (seq1 . n) - ((seq2 . n) - (seq3 . n)) by NORMSP_1:def_3 .= ((seq1 . n) - (seq2 . n)) + (seq3 . n) by RLVECT_1:29 .= ((seq1 - seq2) . n) + (seq3 . n) by NORMSP_1:def_3 .= ((seq1 - seq2) + seq3) . n by NORMSP_1:def_2 ; ::_thesis: verum end; theorem :: BHSP_1:63 for a being Real for X being RealUnitarySpace for seq1, seq2 being sequence of X holds a * (seq1 - seq2) = (a * seq1) - (a * seq2) proof let a be Real; ::_thesis: for X being RealUnitarySpace for seq1, seq2 being sequence of X holds a * (seq1 - seq2) = (a * seq1) - (a * seq2) let X be RealUnitarySpace; ::_thesis: for seq1, seq2 being sequence of X holds a * (seq1 - seq2) = (a * seq1) - (a * seq2) let seq1, seq2 be sequence of X; ::_thesis: a * (seq1 - seq2) = (a * seq1) - (a * seq2) let n be Element of NAT ; :: according to FUNCT_2:def_8 ::_thesis: (a * (seq1 - seq2)) . n = ((a * seq1) - (a * seq2)) . n thus (a * (seq1 - seq2)) . n = a * ((seq1 - seq2) . n) by NORMSP_1:def_5 .= a * ((seq1 . n) - (seq2 . n)) by NORMSP_1:def_3 .= (a * (seq1 . n)) - (a * (seq2 . n)) by RLVECT_1:34 .= ((a * seq1) . n) - (a * (seq2 . n)) by NORMSP_1:def_5 .= ((a * seq1) . n) - ((a * seq2) . n) by NORMSP_1:def_5 .= ((a * seq1) - (a * seq2)) . n by NORMSP_1:def_3 ; ::_thesis: verum end;