:: BVFUNC_3 semantic presentation begin theorem :: BVFUNC_3:1 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds a 'imp' b '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: a 'imp' b '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'imp' b) . z = TRUE or ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ) A1: ( 'not' (a . z) = TRUE or 'not' (a . z) = FALSE ) by XBOOLEAN:def_3; A2: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; assume (a 'imp' b) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then A3: ('not' (a . z)) 'or' (b . z) = TRUE by BVFUNC_1:def_8; percases ( 'not' (a . z) = TRUE or b . z = TRUE ) by A3, A1, BINARITH:3; suppose 'not' (a . z) = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then a . z = FALSE by MARGREL1:11; then (B_INF (a,(CompF (PA,G)))) . z = FALSE by A2, BVFUNC_1:def_16; then (All (a,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' FALSE) 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_8 .= TRUE 'or' ((Ex (b,PA,G)) . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose b . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by A2, BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((All (a,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:2 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) '&' (All (b,PA,G)) '<' a '&' b proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) '&' (All (b,PA,G)) '<' a '&' b let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) '&' (All (b,PA,G)) '<' a '&' b let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All (a,PA,G)) '&' (All (b,PA,G)) '<' a '&' b let PA be a_partition of Y; ::_thesis: (All (a,PA,G)) '&' (All (b,PA,G)) '<' a '&' b let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All (a,PA,G)) '&' (All (b,PA,G))) . z = TRUE or (a '&' b) . z = TRUE ) A1: ((All (a,PA,G)) '&' (All (b,PA,G))) . z = ((All (a,PA,G)) . z) '&' ((All (b,PA,G)) . z) by MARGREL1:def_20; assume A2: ((All (a,PA,G)) '&' (All (b,PA,G))) . z = TRUE ; ::_thesis: (a '&' b) . z = TRUE A3: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ a_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not a . x = TRUE ) ; ::_thesis: contradiction then (B_INF (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All (a,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A2, A1, MARGREL1:12; ::_thesis: verum end; A4: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ b_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) ; ::_thesis: contradiction then (B_INF (b,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All (b,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A2, A1, MARGREL1:12; ::_thesis: verum end; then A5: b . z = TRUE by A4; thus (a '&' b) . z = (a . z) '&' (b . z) by MARGREL1:def_20 .= TRUE '&' TRUE by A4, A3, A5 .= TRUE ; ::_thesis: verum end; theorem :: BVFUNC_3:3 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a '&' b '<' (Ex (a,PA,G)) '&' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a '&' b '<' (Ex (a,PA,G)) '&' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a '&' b '<' (Ex (a,PA,G)) '&' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds a '&' b '<' (Ex (a,PA,G)) '&' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: a '&' b '<' (Ex (a,PA,G)) '&' (Ex (b,PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a '&' b) . z = TRUE or ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) . z = TRUE ) A1: (a '&' b) . z = (a . z) '&' (b . z) by MARGREL1:def_20; assume A2: (a '&' b) . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) . z = TRUE then A3: ( Ex (a,PA,G) = B_SUP (a,(CompF (PA,G))) & a . z = TRUE ) by A1, BVFUNC_2:def_10, MARGREL1:12; A4: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; b . z = TRUE by A2, A1, MARGREL1:12; then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by A4, BVFUNC_1:def_17; then A5: (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; thus ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) . z = ((Ex (a,PA,G)) . z) '&' ((Ex (b,PA,G)) . z) by MARGREL1:def_20 .= TRUE '&' TRUE by A3, A4, A5, BVFUNC_1:def_17 .= TRUE ; ::_thesis: verum end; theorem :: BVFUNC_3:4 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds 'not' ((All (a,PA,G)) '&' (All (b,PA,G))) = (Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds 'not' ((All (a,PA,G)) '&' (All (b,PA,G))) = (Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds 'not' ((All (a,PA,G)) '&' (All (b,PA,G))) = (Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds 'not' ((All (a,PA,G)) '&' (All (b,PA,G))) = (Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G)) let PA be a_partition of Y; ::_thesis: 'not' ((All (a,PA,G)) '&' (All (b,PA,G))) = (Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G)) A1: All (b,PA,G) = B_INF (b,(CompF (PA,G))) by BVFUNC_2:def_9; A2: All (a,PA,G) = B_INF (a,(CompF (PA,G))) by BVFUNC_2:def_9; A3: (Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G)) '<' 'not' ((All (a,PA,G)) '&' (All (b,PA,G))) proof let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = TRUE or ('not' ((All (a,PA,G)) '&' (All (b,PA,G)))) . z = TRUE ) A4: ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = ((Ex (('not' a),PA,G)) . z) 'or' ((Ex (('not' b),PA,G)) . z) by BVFUNC_1:def_4; A5: ( (Ex (('not' b),PA,G)) . z = TRUE or (Ex (('not' b),PA,G)) . z = FALSE ) by XBOOLEAN:def_3; assume A6: ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = TRUE ; ::_thesis: ('not' ((All (a,PA,G)) '&' (All (b,PA,G)))) . z = TRUE percases ( (Ex (('not' a),PA,G)) . z = TRUE or (Ex (('not' b),PA,G)) . z = TRUE ) by A6, A4, A5, BINARITH:3; supposeA7: (Ex (('not' a),PA,G)) . z = TRUE ; ::_thesis: ('not' ((All (a,PA,G)) '&' (All (b,PA,G)))) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_('not'_a)_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not ('not' a) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (('not' a),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A7, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A8: x1 in EqClass (z,(CompF (PA,G))) and A9: ('not' a) . x1 = TRUE ; 'not' (a . x1) = TRUE by A9, MARGREL1:def_19; then A10: a . x1 = FALSE by MARGREL1:11; thus ('not' ((All (a,PA,G)) '&' (All (b,PA,G)))) . z = 'not' (((All (a,PA,G)) '&' (All (b,PA,G))) . z) by MARGREL1:def_19 .= 'not' (((All (a,PA,G)) . z) '&' ((All (b,PA,G)) . z)) by MARGREL1:def_20 .= 'not' (FALSE '&' ((All (b,PA,G)) . z)) by A2, A8, A10, BVFUNC_1:def_16 .= 'not' FALSE by MARGREL1:12 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; supposeA11: (Ex (('not' b),PA,G)) . z = TRUE ; ::_thesis: ('not' ((All (a,PA,G)) '&' (All (b,PA,G)))) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_('not'_b)_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not ('not' b) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (('not' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A11, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A12: x1 in EqClass (z,(CompF (PA,G))) and A13: ('not' b) . x1 = TRUE ; 'not' (b . x1) = TRUE by A13, MARGREL1:def_19; then A14: b . x1 = FALSE by MARGREL1:11; thus ('not' ((All (a,PA,G)) '&' (All (b,PA,G)))) . z = 'not' (((All (a,PA,G)) '&' (All (b,PA,G))) . z) by MARGREL1:def_19 .= 'not' (((All (a,PA,G)) . z) '&' ((All (b,PA,G)) . z)) by MARGREL1:def_20 .= 'not' (((All (a,PA,G)) . z) '&' FALSE) by A1, A12, A14, BVFUNC_1:def_16 .= 'not' FALSE by MARGREL1:12 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; end; end; 'not' ((All (a,PA,G)) '&' (All (b,PA,G))) '<' (Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G)) proof let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ('not' ((All (a,PA,G)) '&' (All (b,PA,G)))) . z = TRUE or ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = TRUE ) assume ('not' ((All (a,PA,G)) '&' (All (b,PA,G)))) . z = TRUE ; ::_thesis: ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = TRUE then A15: 'not' (((All (a,PA,G)) '&' (All (b,PA,G))) . z) = TRUE by MARGREL1:def_19; ((All (a,PA,G)) '&' (All (b,PA,G))) . z = ((All (a,PA,G)) . z) '&' ((All (b,PA,G)) . z) by MARGREL1:def_20; then A16: ((All (a,PA,G)) . z) '&' ((All (b,PA,G)) . z) = FALSE by A15, MARGREL1:11; percases ( (All (a,PA,G)) . z = FALSE or (All (b,PA,G)) . z = FALSE ) by A16, MARGREL1:12; suppose (All (a,PA,G)) . z = FALSE ; ::_thesis: ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = TRUE then consider x1 being Element of Y such that A17: x1 in EqClass (z,(CompF (PA,G))) and A18: a . x1 <> TRUE by A2, BVFUNC_1:def_16; a . x1 = FALSE by A18, XBOOLEAN:def_3; then 'not' (a . x1) = TRUE by MARGREL1:11; then ('not' a) . x1 = TRUE by MARGREL1:def_19; then (B_SUP (('not' a),(CompF (PA,G)))) . z = TRUE by A17, BVFUNC_1:def_17; then (Ex (('not' a),PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = TRUE 'or' ((Ex (('not' b),PA,G)) . z) by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose (All (b,PA,G)) . z = FALSE ; ::_thesis: ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = TRUE then consider x1 being Element of Y such that A19: x1 in EqClass (z,(CompF (PA,G))) and A20: b . x1 <> TRUE by A1, BVFUNC_1:def_16; b . x1 = FALSE by A20, XBOOLEAN:def_3; then 'not' (b . x1) = TRUE by MARGREL1:11; then ('not' b) . x1 = TRUE by MARGREL1:def_19; then (B_SUP (('not' b),(CompF (PA,G)))) . z = TRUE by A19, BVFUNC_1:def_17; then (Ex (('not' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G))) . z = ((Ex (('not' a),PA,G)) . z) 'or' TRUE by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; hence 'not' ((All (a,PA,G)) '&' (All (b,PA,G))) = (Ex (('not' a),PA,G)) 'or' (Ex (('not' b),PA,G)) by A3, BVFUNC_1:15; ::_thesis: verum end; theorem :: BVFUNC_3:5 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds 'not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) = (All (('not' a),PA,G)) 'or' (All (('not' b),PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds 'not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) = (All (('not' a),PA,G)) 'or' (All (('not' b),PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds 'not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) = (All (('not' a),PA,G)) 'or' (All (('not' b),PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds 'not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) = (All (('not' a),PA,G)) 'or' (All (('not' b),PA,G)) let PA be a_partition of Y; ::_thesis: 'not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) = (All (('not' a),PA,G)) 'or' (All (('not' b),PA,G)) A1: All (('not' b),PA,G) = B_INF (('not' b),(CompF (PA,G))) by BVFUNC_2:def_9; A2: Ex (b,PA,G) = B_SUP (b,(CompF (PA,G))) by BVFUNC_2:def_10; A3: Ex (a,PA,G) = B_SUP (a,(CompF (PA,G))) by BVFUNC_2:def_10; A4: (All (('not' a),PA,G)) 'or' (All (('not' b),PA,G)) '<' 'not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) proof let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All (('not' a),PA,G)) 'or' (All (('not' b),PA,G))) . z = TRUE or ('not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G)))) . z = TRUE ) A5: ( (All (('not' b),PA,G)) . z = TRUE or (All (('not' b),PA,G)) . z = FALSE ) by XBOOLEAN:def_3; assume ((All (('not' a),PA,G)) 'or' (All (('not' b),PA,G))) . z = TRUE ; ::_thesis: ('not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G)))) . z = TRUE then A6: ((All (('not' a),PA,G)) . z) 'or' ((All (('not' b),PA,G)) . z) = TRUE by BVFUNC_1:def_4; percases ( (All (('not' a),PA,G)) . z = TRUE or (All (('not' b),PA,G)) . z = TRUE ) by A6, A5, BINARITH:3; supposeA7: (All (('not' a),PA,G)) . z = TRUE ; ::_thesis: ('not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G)))) . z = TRUE A8: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ ('not'_a)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not ('not' a) . x = TRUE ) ; ::_thesis: contradiction then (B_INF (('not' a),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A7, BVFUNC_2:def_9; ::_thesis: verum end; A9: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ a_._x_<>_TRUE let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies a . x <> TRUE ) assume x in EqClass (z,(CompF (PA,G))) ; ::_thesis: a . x <> TRUE then ('not' a) . x = TRUE by A8; then 'not' (a . x) = TRUE by MARGREL1:def_19; hence a . x <> TRUE by MARGREL1:11; ::_thesis: verum end; thus ('not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G)))) . z = 'not' (((Ex (a,PA,G)) '&' (Ex (b,PA,G))) . z) by MARGREL1:def_19 .= 'not' (((Ex (a,PA,G)) . z) '&' ((Ex (b,PA,G)) . z)) by MARGREL1:def_20 .= 'not' (FALSE '&' ((Ex (b,PA,G)) . z)) by A3, A9, BVFUNC_1:def_17 .= 'not' FALSE by MARGREL1:12 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; supposeA10: (All (('not' b),PA,G)) . z = TRUE ; ::_thesis: ('not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G)))) . z = TRUE A11: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ ('not'_b)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not ('not' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF (('not' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A10, BVFUNC_2:def_9; ::_thesis: verum end; A12: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ b_._x_<>_TRUE let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies b . x <> TRUE ) assume x in EqClass (z,(CompF (PA,G))) ; ::_thesis: b . x <> TRUE then ('not' b) . x = TRUE by A11; then 'not' (b . x) = TRUE by MARGREL1:def_19; hence b . x <> TRUE by MARGREL1:11; ::_thesis: verum end; thus ('not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G)))) . z = 'not' (((Ex (a,PA,G)) '&' (Ex (b,PA,G))) . z) by MARGREL1:def_19 .= 'not' (((Ex (a,PA,G)) . z) '&' ((Ex (b,PA,G)) . z)) by MARGREL1:def_20 .= 'not' (((Ex (a,PA,G)) . z) '&' FALSE) by A2, A12, BVFUNC_1:def_17 .= 'not' FALSE by MARGREL1:12 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; end; end; A13: All (('not' a),PA,G) = B_INF (('not' a),(CompF (PA,G))) by BVFUNC_2:def_9; 'not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) '<' (All (('not' a),PA,G)) 'or' (All (('not' b),PA,G)) proof let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ('not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G)))) . z = TRUE or ((All (('not' a),PA,G)) 'or' (All (('not' b),PA,G))) . z = TRUE ) assume ('not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G)))) . z = TRUE ; ::_thesis: ((All (('not' a),PA,G)) 'or' (All (('not' b),PA,G))) . z = TRUE then 'not' (((Ex (a,PA,G)) '&' (Ex (b,PA,G))) . z) = TRUE by MARGREL1:def_19; then ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) . z = FALSE by MARGREL1:11; then A14: ((Ex (a,PA,G)) . z) '&' ((Ex (b,PA,G)) . z) = FALSE by MARGREL1:def_20; percases ( (Ex (a,PA,G)) . z = FALSE or (Ex (b,PA,G)) . z = FALSE ) by A14, MARGREL1:12; supposeA15: (Ex (a,PA,G)) . z = FALSE ; ::_thesis: ((All (('not' a),PA,G)) 'or' (All (('not' b),PA,G))) . z = TRUE A16: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ ('not'_a)_._x_=_TRUE let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies ('not' a) . x = TRUE ) assume x in EqClass (z,(CompF (PA,G))) ; ::_thesis: ('not' a) . x = TRUE then a . x <> TRUE by A3, A15, BVFUNC_1:def_17; then a . x = FALSE by XBOOLEAN:def_3; then 'not' (a . x) = TRUE by MARGREL1:11; hence ('not' a) . x = TRUE by MARGREL1:def_19; ::_thesis: verum end; thus ((All (('not' a),PA,G)) 'or' (All (('not' b),PA,G))) . z = ((All (('not' a),PA,G)) . z) 'or' ((All (('not' b),PA,G)) . z) by BVFUNC_1:def_4 .= TRUE 'or' ((All (('not' b),PA,G)) . z) by A13, A16, BVFUNC_1:def_16 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA17: (Ex (b,PA,G)) . z = FALSE ; ::_thesis: ((All (('not' a),PA,G)) 'or' (All (('not' b),PA,G))) . z = TRUE A18: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ ('not'_b)_._x_=_TRUE let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies ('not' b) . x = TRUE ) assume x in EqClass (z,(CompF (PA,G))) ; ::_thesis: ('not' b) . x = TRUE then b . x <> TRUE by A2, A17, BVFUNC_1:def_17; then b . x = FALSE by XBOOLEAN:def_3; then 'not' (b . x) = TRUE by MARGREL1:11; hence ('not' b) . x = TRUE by MARGREL1:def_19; ::_thesis: verum end; thus ((All (('not' a),PA,G)) 'or' (All (('not' b),PA,G))) . z = ((All (('not' a),PA,G)) . z) 'or' ((All (('not' b),PA,G)) . z) by BVFUNC_1:def_4 .= ((All (('not' a),PA,G)) . z) 'or' TRUE by A1, A18, BVFUNC_1:def_16 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; hence 'not' ((Ex (a,PA,G)) '&' (Ex (b,PA,G))) = (All (('not' a),PA,G)) 'or' (All (('not' b),PA,G)) by A4, BVFUNC_1:15; ::_thesis: verum end; theorem :: BVFUNC_3:6 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'or' (All (b,PA,G)) '<' a 'or' b proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'or' (All (b,PA,G)) '<' a 'or' b let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'or' (All (b,PA,G)) '<' a 'or' b let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All (a,PA,G)) 'or' (All (b,PA,G)) '<' a 'or' b let PA be a_partition of Y; ::_thesis: (All (a,PA,G)) 'or' (All (b,PA,G)) '<' a 'or' b let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE or (a 'or' b) . z = TRUE ) A1: ( (All (a,PA,G)) . z = TRUE or (All (a,PA,G)) . z = FALSE ) by XBOOLEAN:def_3; A2: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; assume ((All (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE ; ::_thesis: (a 'or' b) . z = TRUE then A3: ((All (a,PA,G)) . z) 'or' ((All (b,PA,G)) . z) = TRUE by BVFUNC_1:def_4; percases ( (All (a,PA,G)) . z = TRUE or (All (b,PA,G)) . z = TRUE ) by A3, A1, BINARITH:3; supposeA4: (All (a,PA,G)) . z = TRUE ; ::_thesis: (a 'or' b) . z = TRUE A5: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ a_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not a . x = TRUE ) ; ::_thesis: contradiction then (B_INF (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A4, BVFUNC_2:def_9; ::_thesis: verum end; thus (a 'or' b) . z = (a . z) 'or' (b . z) by BVFUNC_1:def_4 .= TRUE 'or' (b . z) by A2, A5 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA6: (All (b,PA,G)) . z = TRUE ; ::_thesis: (a 'or' b) . z = TRUE A7: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ b_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) ; ::_thesis: contradiction then (B_INF (b,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A6, BVFUNC_2:def_9; ::_thesis: verum end; thus (a 'or' b) . z = (a . z) 'or' (b . z) by BVFUNC_1:def_4 .= (a . z) 'or' TRUE by A2, A7 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:7 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'or' b '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'or' b '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'or' b '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds a 'or' b '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: a 'or' b '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) A1: Ex (a,PA,G) = B_SUP (a,(CompF (PA,G))) by BVFUNC_2:def_10; let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'or' b) . z = TRUE or ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE ) A2: Ex (b,PA,G) = B_SUP (b,(CompF (PA,G))) by BVFUNC_2:def_10; A3: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; assume (a 'or' b) . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE then A4: (a . z) 'or' (b . z) = TRUE by BVFUNC_1:def_4; A5: ( b . z = TRUE or b . z = FALSE ) by XBOOLEAN:def_3; percases ( a . z = TRUE or b . z = TRUE ) by A4, A5, BINARITH:3; supposeA6: a . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE thus ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = ((Ex (a,PA,G)) . z) 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_4 .= TRUE 'or' ((Ex (b,PA,G)) . z) by A1, A3, A6, BVFUNC_1:def_17 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA7: b . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE thus ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = ((Ex (a,PA,G)) . z) 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_4 .= ((Ex (a,PA,G)) . z) 'or' TRUE by A2, A3, A7, BVFUNC_1:def_17 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:8 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'xor' b '<' ('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'xor' b '<' ('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'xor' b '<' ('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds a 'xor' b '<' ('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) let PA be a_partition of Y; ::_thesis: a 'xor' b '<' ('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) A1: Ex (('not' a),PA,G) = B_SUP (('not' a),(CompF (PA,G))) by BVFUNC_2:def_10; let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'xor' b) . z = TRUE or (('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))))) . z = TRUE ) A2: Ex (('not' b),PA,G) = B_SUP (('not' b),(CompF (PA,G))) by BVFUNC_2:def_10; A3: ( (a . z) '&' ('not' (b . z)) = TRUE or (a . z) '&' ('not' (b . z)) = FALSE ) by XBOOLEAN:def_3; A4: (a 'xor' b) . z = (a . z) 'xor' (b . z) by BVFUNC_1:def_5 .= (('not' (a . z)) '&' (b . z)) 'or' ((a . z) '&' ('not' (b . z))) ; A5: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; A6: FALSE '&' TRUE = FALSE by MARGREL1:13; assume A7: (a 'xor' b) . z = TRUE ; ::_thesis: (('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))))) . z = TRUE percases ( ('not' (a . z)) '&' (b . z) = TRUE or (a . z) '&' ('not' (b . z)) = TRUE ) by A7, A4, A3, BINARITH:3; supposeA8: ('not' (a . z)) '&' (b . z) = TRUE ; ::_thesis: (('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))))) . z = TRUE then 'not' (a . z) = TRUE by MARGREL1:12; then ('not' a) . z = TRUE by MARGREL1:def_19; then A9: (B_SUP (('not' a),(CompF (PA,G)))) . z = TRUE by A5, BVFUNC_1:def_17; A10: ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) . z = 'not' (((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))) . z) by MARGREL1:def_19; b . z = TRUE by A8, MARGREL1:12; then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by A5, BVFUNC_1:def_17; then A11: (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; A12: ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G))) . z = ((Ex (('not' a),PA,G)) . z) 'xor' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_5 .= FALSE by A1, A6, A9, A11, MARGREL1:11 ; thus (('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))))) . z = (('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) . z) 'or' (('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) . z) by BVFUNC_1:def_4 .= ('not' FALSE) 'or' ('not' (((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))) . z)) by A12, A10, MARGREL1:def_19 .= TRUE 'or' ('not' (((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))) . z)) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA13: (a . z) '&' ('not' (b . z)) = TRUE ; ::_thesis: (('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))))) . z = TRUE then a . z = TRUE by MARGREL1:12; then (B_SUP (a,(CompF (PA,G)))) . z = TRUE by A5, BVFUNC_1:def_17; then A14: (Ex (a,PA,G)) . z = TRUE by BVFUNC_2:def_10; A15: ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) . z = 'not' (((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))) . z) by MARGREL1:def_19; 'not' (b . z) = TRUE by A13, MARGREL1:12; then ('not' b) . z = TRUE by MARGREL1:def_19; then A16: (B_SUP (('not' b),(CompF (PA,G)))) . z = TRUE by A5, BVFUNC_1:def_17; A17: ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))) . z = ((Ex (a,PA,G)) . z) 'xor' ((Ex (('not' b),PA,G)) . z) by BVFUNC_1:def_5 .= FALSE by A2, A6, A16, A14, MARGREL1:11 ; thus (('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) 'or' ('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G))))) . z = (('not' ((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G)))) . z) 'or' (('not' ((Ex (a,PA,G)) 'xor' (Ex (('not' b),PA,G)))) . z) by BVFUNC_1:def_4 .= ('not' (((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G))) . z)) 'or' ('not' FALSE) by A17, A15, MARGREL1:def_19 .= ('not' (((Ex (('not' a),PA,G)) 'xor' (Ex (b,PA,G))) . z)) 'or' TRUE by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:9 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (All (a,PA,G)) 'or' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (All (a,PA,G)) 'or' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (All (a,PA,G)) 'or' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (All (a,PA,G)) 'or' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: All ((a 'or' b),PA,G) '<' (All (a,PA,G)) 'or' (Ex (b,PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (All ((a 'or' b),PA,G)) . z = TRUE or ((All (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE ) assume A1: (All ((a 'or' b),PA,G)) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE A2: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'or'_b)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (a 'or' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((a 'or' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A1, BVFUNC_2:def_9; ::_thesis: verum end; percases ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & b . x = TRUE ) or ( ( for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) or ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ) ; suppose ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & b . x = TRUE ) ; ::_thesis: ((All (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((All (a,PA,G)) 'or' (Ex (b,PA,G))) . z = ((All (a,PA,G)) . z) 'or' TRUE by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( ( for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ; ::_thesis: ((All (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE then (B_INF (a,(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; then (All (a,PA,G)) . z = TRUE by BVFUNC_2:def_9; hence ((All (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA3: ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ; ::_thesis: ((All (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE then consider x1 being Element of Y such that A4: x1 in EqClass (z,(CompF (PA,G))) and A5: a . x1 <> TRUE ; A6: b . x1 <> TRUE by A3, A4; A7: a . x1 = FALSE by A5, XBOOLEAN:def_3; (a 'or' b) . x1 = (a . x1) 'or' (b . x1) by BVFUNC_1:def_4 .= FALSE 'or' FALSE by A6, A7, XBOOLEAN:def_3 .= FALSE ; hence ((All (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE by A2, A4; ::_thesis: verum end; end; end; Lm1: now__::_thesis:_for_Y_being_non_empty_set_ for_a,_b_being_Function_of_Y,BOOLEAN for_G_being_Subset_of_(PARTITIONS_Y) for_PA_being_a_partition_of_Y for_z_being_Element_of_Y_st_(All_((a_'or'_b),PA,G))_._z_=_TRUE_holds_ for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'or'_b)_._x_=_TRUE let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN for G being Subset of (PARTITIONS Y) for PA being a_partition of Y for z being Element of Y st (All ((a 'or' b),PA,G)) . z = TRUE holds for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'or' b) . x = TRUE let a, b be Function of Y,BOOLEAN; ::_thesis: for G being Subset of (PARTITIONS Y) for PA being a_partition of Y for z being Element of Y st (All ((a 'or' b),PA,G)) . z = TRUE holds for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'or' b) . x = TRUE let G be Subset of (PARTITIONS Y); ::_thesis: for PA being a_partition of Y for z being Element of Y st (All ((a 'or' b),PA,G)) . z = TRUE holds for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'or' b) . x = TRUE let PA be a_partition of Y; ::_thesis: for z being Element of Y st (All ((a 'or' b),PA,G)) . z = TRUE holds for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'or' b) . x = TRUE let z be Element of Y; ::_thesis: ( (All ((a 'or' b),PA,G)) . z = TRUE implies for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'or' b) . x = TRUE ) assume A1: (All ((a 'or' b),PA,G)) . z = TRUE ; ::_thesis: for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'or' b) . x = TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (a 'or' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((a 'or' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A1, BVFUNC_2:def_9; ::_thesis: verum end; theorem :: BVFUNC_3:10 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (All (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (All (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (All (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (All (b,PA,G)) let PA be a_partition of Y; ::_thesis: All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (All (b,PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (All ((a 'or' b),PA,G)) . z = TRUE or ((Ex (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE ) assume A1: (All ((a 'or' b),PA,G)) . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE percases ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & a . x = TRUE ) or ( ( for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds b . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ) ) or ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ) ) ) ; suppose ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & a . x = TRUE ) ; ::_thesis: ((Ex (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE then (B_SUP (a,(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_17; then (Ex (a,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((Ex (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE 'or' ((All (b,PA,G)) . z) by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( ( for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds b . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ) ) ; ::_thesis: ((Ex (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE then (B_INF (b,(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; then (All (b,PA,G)) . z = TRUE by BVFUNC_2:def_9; hence ((Ex (a,PA,G)) 'or' (All (b,PA,G))) . z = ((Ex (a,PA,G)) . z) 'or' TRUE by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA2: ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ) ) ; ::_thesis: ((Ex (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE then consider x1 being Element of Y such that A3: x1 in EqClass (z,(CompF (PA,G))) and A4: b . x1 <> TRUE ; A5: a . x1 <> TRUE by A2, A3; A6: b . x1 = FALSE by A4, XBOOLEAN:def_3; (a 'or' b) . x1 = (a . x1) 'or' (b . x1) by BVFUNC_1:def_4 .= FALSE 'or' FALSE by A5, A6, XBOOLEAN:def_3 .= FALSE ; hence ((Ex (a,PA,G)) 'or' (All (b,PA,G))) . z = TRUE by A1, A3, Lm1; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:11 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: All ((a 'or' b),PA,G) '<' (Ex (a,PA,G)) 'or' (Ex (b,PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (All ((a 'or' b),PA,G)) . z = TRUE or ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE ) A1: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; assume (All ((a 'or' b),PA,G)) . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE then (a 'or' b) . z = TRUE by A1, Lm1; then A2: (a . z) 'or' (b . z) = TRUE by BVFUNC_1:def_4; A3: ( a . z = TRUE or a . z = FALSE ) by XBOOLEAN:def_3; percases ( a . z = TRUE or b . z = TRUE ) by A2, A3, BINARITH:3; suppose a . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE then (B_SUP (a,(CompF (PA,G)))) . z = TRUE by A1, BVFUNC_1:def_17; then (Ex (a,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose b . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = TRUE then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by A1, BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((Ex (a,PA,G)) 'or' (Ex (b,PA,G))) . z = ((Ex (a,PA,G)) . z) 'or' TRUE by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:12 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' (All (b,PA,G)) '<' Ex ((a '&' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' (All (b,PA,G)) '<' Ex ((a '&' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' (All (b,PA,G)) '<' Ex ((a '&' b),PA,G) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (Ex (a,PA,G)) '&' (All (b,PA,G)) '<' Ex ((a '&' b),PA,G) let PA be a_partition of Y; ::_thesis: (Ex (a,PA,G)) '&' (All (b,PA,G)) '<' Ex ((a '&' b),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((Ex (a,PA,G)) '&' (All (b,PA,G))) . z = TRUE or (Ex ((a '&' b),PA,G)) . z = TRUE ) assume ((Ex (a,PA,G)) '&' (All (b,PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then A1: ((Ex (a,PA,G)) . z) '&' ((All (b,PA,G)) . z) = TRUE by MARGREL1:def_20; A2: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ b_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) ; ::_thesis: contradiction then (B_INF (b,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All (b,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_a_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex (a,PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A3: x1 in EqClass (z,(CompF (PA,G))) and A4: a . x1 = TRUE ; (a '&' b) . x1 = (a . x1) '&' (b . x1) by MARGREL1:def_20 .= TRUE '&' TRUE by A3, A4, A2 .= TRUE ; then (B_SUP ((a '&' b),(CompF (PA,G)))) . z = TRUE by A3, BVFUNC_1:def_17; hence (Ex ((a '&' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; theorem :: BVFUNC_3:13 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) '&' (Ex (b,PA,G)) '<' Ex ((a '&' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) '&' (Ex (b,PA,G)) '<' Ex ((a '&' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) '&' (Ex (b,PA,G)) '<' Ex ((a '&' b),PA,G) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All (a,PA,G)) '&' (Ex (b,PA,G)) '<' Ex ((a '&' b),PA,G) let PA be a_partition of Y; ::_thesis: (All (a,PA,G)) '&' (Ex (b,PA,G)) '<' Ex ((a '&' b),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All (a,PA,G)) '&' (Ex (b,PA,G))) . z = TRUE or (Ex ((a '&' b),PA,G)) . z = TRUE ) assume ((All (a,PA,G)) '&' (Ex (b,PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then A1: ((All (a,PA,G)) . z) '&' ((Ex (b,PA,G)) . z) = TRUE by MARGREL1:def_20; A2: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ a_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not a . x = TRUE ) ; ::_thesis: contradiction then (B_INF (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All (a,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_b_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (b,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A3: x1 in EqClass (z,(CompF (PA,G))) and A4: b . x1 = TRUE ; (a '&' b) . x1 = (a . x1) '&' (b . x1) by MARGREL1:def_20 .= TRUE '&' TRUE by A3, A4, A2 .= TRUE ; then (B_SUP ((a '&' b),(CompF (PA,G)))) . z = TRUE by A3, BVFUNC_1:def_17; hence (Ex ((a '&' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; Lm2: now__::_thesis:_for_Y_being_non_empty_set_ for_a,_b_being_Function_of_Y,BOOLEAN for_G_being_Subset_of_(PARTITIONS_Y) for_PA_being_a_partition_of_Y for_z_being_Element_of_Y_st_(All_((a_'imp'_b),PA,G))_._z_=_TRUE_holds_ for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'imp'_b)_._x_=_TRUE let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN for G being Subset of (PARTITIONS Y) for PA being a_partition of Y for z being Element of Y st (All ((a 'imp' b),PA,G)) . z = TRUE holds for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE let a, b be Function of Y,BOOLEAN; ::_thesis: for G being Subset of (PARTITIONS Y) for PA being a_partition of Y for z being Element of Y st (All ((a 'imp' b),PA,G)) . z = TRUE holds for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE let G be Subset of (PARTITIONS Y); ::_thesis: for PA being a_partition of Y for z being Element of Y st (All ((a 'imp' b),PA,G)) . z = TRUE holds for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE let PA be a_partition of Y; ::_thesis: for z being Element of Y st (All ((a 'imp' b),PA,G)) . z = TRUE holds for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE let z be Element of Y; ::_thesis: ( (All ((a 'imp' b),PA,G)) . z = TRUE implies for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE ) assume A1: (All ((a 'imp' b),PA,G)) . z = TRUE ; ::_thesis: for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (a 'imp' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A1, BVFUNC_2:def_9; ::_thesis: verum end; theorem :: BVFUNC_3:14 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds All ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: All ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) A1: All (a,PA,G) = B_INF (a,(CompF (PA,G))) by BVFUNC_2:def_9; let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (All ((a 'imp' b),PA,G)) . z = TRUE or ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ) assume A2: (All ((a 'imp' b),PA,G)) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE A3: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; percases ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & b . x = TRUE ) or ( ( for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) or ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ) ; suppose ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & b . x = TRUE ) ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((All (a,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( ( for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then A4: ( b . z <> TRUE & a . z = TRUE ) by A3; (a 'imp' b) . z = ('not' (a . z)) 'or' (b . z) by BVFUNC_1:def_8 .= ('not' TRUE) 'or' FALSE by A4, XBOOLEAN:def_3 .= FALSE 'or' FALSE by MARGREL1:11 .= FALSE ; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE by A2, A3, Lm2; ::_thesis: verum end; supposeA5: ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE thus ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((All (a,PA,G)) . z)) 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_8 .= ('not' FALSE) 'or' ((Ex (b,PA,G)) . z) by A1, A5, BVFUNC_1:def_16 .= TRUE 'or' ((Ex (b,PA,G)) . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:15 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) '<' (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) '<' (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) '<' (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds All ((a 'imp' b),PA,G) '<' (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: All ((a 'imp' b),PA,G) '<' (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) A1: Ex (a,PA,G) = B_SUP (a,(CompF (PA,G))) by BVFUNC_2:def_10; let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (All ((a 'imp' b),PA,G)) . z = TRUE or ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ) assume A2: (All ((a 'imp' b),PA,G)) . z = TRUE ; ::_thesis: ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE percases ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & b . x = TRUE ) or ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) or ( ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ) ; suppose ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & b . x = TRUE ) ; ::_thesis: ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((Ex (a,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA3: ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & a . x = TRUE ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ; ::_thesis: ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then consider x1 being Element of Y such that A4: x1 in EqClass (z,(CompF (PA,G))) and A5: a . x1 = TRUE ; A6: b . x1 <> TRUE by A3, A4; (a 'imp' b) . x1 = ('not' (a . x1)) 'or' (b . x1) by BVFUNC_1:def_8 .= ('not' TRUE) 'or' FALSE by A5, A6, XBOOLEAN:def_3 .= FALSE 'or' FALSE by MARGREL1:11 .= FALSE ; hence ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE by A2, A4, Lm2; ::_thesis: verum end; supposeA7: ( ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ) & ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ) ) ; ::_thesis: ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE thus ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((Ex (a,PA,G)) . z)) 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_8 .= ('not' FALSE) 'or' ((Ex (b,PA,G)) . z) by A1, A7, BVFUNC_1:def_17 .= TRUE 'or' ((Ex (b,PA,G)) . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:16 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' (All (b,PA,G)) '<' All ((a 'imp' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' (All (b,PA,G)) '<' All ((a 'imp' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' (All (b,PA,G)) '<' All ((a 'imp' b),PA,G) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' (All (b,PA,G)) '<' All ((a 'imp' b),PA,G) let PA be a_partition of Y; ::_thesis: (Ex (a,PA,G)) 'imp' (All (b,PA,G)) '<' All ((a 'imp' b),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((Ex (a,PA,G)) 'imp' (All (b,PA,G))) . z = TRUE or (All ((a 'imp' b),PA,G)) . z = TRUE ) assume ((Ex (a,PA,G)) 'imp' (All (b,PA,G))) . z = TRUE ; ::_thesis: (All ((a 'imp' b),PA,G)) . z = TRUE then A1: ('not' ((Ex (a,PA,G)) . z)) 'or' ((All (b,PA,G)) . z) = TRUE by BVFUNC_1:def_8; percases ( for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds b . x = TRUE or ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & a . x = TRUE ) & ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) ) or ( ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ) & ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) ) ) ; supposeA2: for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds b . x = TRUE ; ::_thesis: (All ((a 'imp' b),PA,G)) . z = TRUE for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE proof let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies (a 'imp' b) . x = TRUE ) assume A3: x in EqClass (z,(CompF (PA,G))) ; ::_thesis: (a 'imp' b) . x = TRUE thus (a 'imp' b) . x = ('not' (a . x)) 'or' (b . x) by BVFUNC_1:def_8 .= ('not' (a . x)) 'or' TRUE by A2, A3 .= TRUE by BINARITH:10 ; ::_thesis: verum end; then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; hence (All ((a 'imp' b),PA,G)) . z = TRUE by BVFUNC_2:def_9; ::_thesis: verum end; supposeA4: ( ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & a . x = TRUE ) & ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) ) ; ::_thesis: (All ((a 'imp' b),PA,G)) . z = TRUE then (B_SUP (a,(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_17; then (Ex (a,PA,G)) . z = TRUE by BVFUNC_2:def_10; then A5: 'not' ((Ex (a,PA,G)) . z) = FALSE by MARGREL1:11; (B_INF (b,(CompF (PA,G)))) . z = FALSE by A4, BVFUNC_1:def_16; then (All (b,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence (All ((a 'imp' b),PA,G)) . z = TRUE by A1, A5; ::_thesis: verum end; supposeA6: ( ( for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ) & ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) ) ; ::_thesis: (All ((a 'imp' b),PA,G)) . z = TRUE now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'imp'_b)_._x_=_TRUE let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies (a 'imp' b) . x = TRUE ) assume x in EqClass (z,(CompF (PA,G))) ; ::_thesis: (a 'imp' b) . x = TRUE then A7: a . x <> TRUE by A6; thus (a 'imp' b) . x = ('not' (a . x)) 'or' (b . x) by BVFUNC_1:def_8 .= ('not' FALSE) 'or' (b . x) by A7, XBOOLEAN:def_3 .= TRUE 'or' (b . x) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; hence (All ((a 'imp' b),PA,G)) . z = TRUE by BVFUNC_2:def_9; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:17 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' a 'imp' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' a 'imp' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' a 'imp' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds a 'imp' b '<' a 'imp' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: a 'imp' b '<' a 'imp' (Ex (b,PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'imp' b) . z = TRUE or (a 'imp' (Ex (b,PA,G))) . z = TRUE ) A1: ( 'not' (a . z) = TRUE or 'not' (a . z) = FALSE ) by XBOOLEAN:def_3; A2: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; assume (a 'imp' b) . z = TRUE ; ::_thesis: (a 'imp' (Ex (b,PA,G))) . z = TRUE then A3: ('not' (a . z)) 'or' (b . z) = TRUE by BVFUNC_1:def_8; percases ( 'not' (a . z) = TRUE or b . z = TRUE ) by A3, A1, BINARITH:3; suppose 'not' (a . z) = TRUE ; ::_thesis: (a 'imp' (Ex (b,PA,G))) . z = TRUE hence (a 'imp' (Ex (b,PA,G))) . z = TRUE 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose b . z = TRUE ; ::_thesis: (a 'imp' (Ex (b,PA,G))) . z = TRUE then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by A2, BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence (a 'imp' (Ex (b,PA,G))) . z = ('not' (a . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:18 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' (All (a,PA,G)) 'imp' b proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' (All (a,PA,G)) 'imp' b let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds a 'imp' b '<' (All (a,PA,G)) 'imp' b let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds a 'imp' b '<' (All (a,PA,G)) 'imp' b let PA be a_partition of Y; ::_thesis: a 'imp' b '<' (All (a,PA,G)) 'imp' b let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'imp' b) . z = TRUE or ((All (a,PA,G)) 'imp' b) . z = TRUE ) A1: ( 'not' (a . z) = TRUE or 'not' (a . z) = FALSE ) by XBOOLEAN:def_3; A2: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; assume (a 'imp' b) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' b) . z = TRUE then A3: ('not' (a . z)) 'or' (b . z) = TRUE by BVFUNC_1:def_8; percases ( 'not' (a . z) = TRUE or b . z = TRUE ) by A3, A1, BINARITH:3; suppose 'not' (a . z) = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' b) . z = TRUE then a . z = FALSE by MARGREL1:11; then (B_INF (a,(CompF (PA,G)))) . z = FALSE by A2, BVFUNC_1:def_16; then (All (a,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence ((All (a,PA,G)) 'imp' b) . z = ('not' FALSE) 'or' (b . z) by BVFUNC_1:def_8 .= TRUE 'or' (b . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose b . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' b) . z = TRUE hence ((All (a,PA,G)) 'imp' b) . z = ('not' ((All (a,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:19 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds Ex ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: Ex ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (Ex ((a 'imp' b),PA,G)) . z = TRUE or ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ) assume A1: (Ex ((a 'imp' b),PA,G)) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_(a_'imp'_b)_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not (a 'imp' b) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP ((a 'imp' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A1, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A2: x1 in EqClass (z,(CompF (PA,G))) and A3: (a 'imp' b) . x1 = TRUE ; A4: ('not' (a . x1)) 'or' (b . x1) = TRUE by A3, BVFUNC_1:def_8; A5: ( b . x1 = TRUE or b . x1 = FALSE ) by XBOOLEAN:def_3; percases ( 'not' (a . x1) = TRUE or b . x1 = TRUE ) by A4, A5, BINARITH:3; suppose 'not' (a . x1) = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then a . x1 = FALSE by MARGREL1:11; then (B_INF (a,(CompF (PA,G)))) . z = FALSE by A2, BVFUNC_1:def_16; then (All (a,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' FALSE) 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_8 .= TRUE 'or' ((Ex (b,PA,G)) . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose b . x1 = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by A2, BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((All (a,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:20 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All (a,PA,G) '<' (Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All (a,PA,G) '<' (Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All (a,PA,G) '<' (Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds All (a,PA,G) '<' (Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G)) let PA be a_partition of Y; ::_thesis: All (a,PA,G) '<' (Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (All (a,PA,G)) . z = TRUE or ((Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G))) . z = TRUE ) assume A1: (All (a,PA,G)) . z = TRUE ; ::_thesis: ((Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G))) . z = TRUE A2: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ a_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not a . x = TRUE ) ; ::_thesis: contradiction then (B_INF (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A1, BVFUNC_2:def_9; ::_thesis: verum end; percases ( (Ex (b,PA,G)) . z = TRUE or (Ex (b,PA,G)) . z <> TRUE ) ; supposeA3: (Ex (b,PA,G)) . z = TRUE ; ::_thesis: ((Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G))) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_b_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (b,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A3, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A4: x1 in EqClass (z,(CompF (PA,G))) and A5: b . x1 = TRUE ; (a '&' b) . x1 = (a . x1) '&' (b . x1) by MARGREL1:def_20 .= TRUE '&' TRUE by A2, A4, A5 .= TRUE ; then (B_SUP ((a '&' b),(CompF (PA,G)))) . z = TRUE by A4, BVFUNC_1:def_17; then (Ex ((a '&' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G))) . z = ('not' ((Ex (b,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose (Ex (b,PA,G)) . z <> TRUE ; ::_thesis: ((Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G))) . z = TRUE then (Ex (b,PA,G)) . z = FALSE by XBOOLEAN:def_3; hence ((Ex (b,PA,G)) 'imp' (Ex ((a '&' b),PA,G))) . z = ('not' FALSE) 'or' ((Ex ((a '&' b),PA,G)) . z) by BVFUNC_1:def_8 .= TRUE 'or' ((Ex ((a '&' b),PA,G)) . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:21 for Y being non empty set for G being Subset of (PARTITIONS Y) for u, a being Function of Y,BOOLEAN for PA being a_partition of Y st u is_independent_of PA,G holds Ex ((u 'imp' a),PA,G) '<' u 'imp' (Ex (a,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for u, a being Function of Y,BOOLEAN for PA being a_partition of Y st u is_independent_of PA,G holds Ex ((u 'imp' a),PA,G) '<' u 'imp' (Ex (a,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for u, a being Function of Y,BOOLEAN for PA being a_partition of Y st u is_independent_of PA,G holds Ex ((u 'imp' a),PA,G) '<' u 'imp' (Ex (a,PA,G)) let u, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y st u is_independent_of PA,G holds Ex ((u 'imp' a),PA,G) '<' u 'imp' (Ex (a,PA,G)) let PA be a_partition of Y; ::_thesis: ( u is_independent_of PA,G implies Ex ((u 'imp' a),PA,G) '<' u 'imp' (Ex (a,PA,G)) ) assume u is_independent_of PA,G ; ::_thesis: Ex ((u 'imp' a),PA,G) '<' u 'imp' (Ex (a,PA,G)) then A1: u is_dependent_of CompF (PA,G) by BVFUNC_2:def_8; let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (Ex ((u 'imp' a),PA,G)) . z = TRUE or (u 'imp' (Ex (a,PA,G))) . z = TRUE ) A2: ( z in EqClass (z,(CompF (PA,G))) & EqClass (z,(CompF (PA,G))) in CompF (PA,G) ) by EQREL_1:def_6; assume A3: (Ex ((u 'imp' a),PA,G)) . z = TRUE ; ::_thesis: (u 'imp' (Ex (a,PA,G))) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_(u_'imp'_a)_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not (u 'imp' a) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP ((u 'imp' a),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A3, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A4: x1 in EqClass (z,(CompF (PA,G))) and A5: (u 'imp' a) . x1 = TRUE ; A6: ('not' (u . x1)) 'or' (a . x1) = TRUE by A5, BVFUNC_1:def_8; A7: ( 'not' (u . x1) = TRUE or 'not' (u . x1) = FALSE ) by XBOOLEAN:def_3; percases ( 'not' (u . x1) = TRUE or a . x1 = TRUE ) by A6, A7, BINARITH:3; supposeA8: 'not' (u . x1) = TRUE ; ::_thesis: (u 'imp' (Ex (a,PA,G))) . z = TRUE u . x1 = u . z by A1, A4, A2, BVFUNC_1:def_15; then u . z = FALSE by A8, MARGREL1:11; hence (u 'imp' (Ex (a,PA,G))) . z = ('not' FALSE) 'or' ((Ex (a,PA,G)) . z) by BVFUNC_1:def_8 .= TRUE 'or' ((Ex (a,PA,G)) . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose a . x1 = TRUE ; ::_thesis: (u 'imp' (Ex (a,PA,G))) . z = TRUE then (B_SUP (a,(CompF (PA,G)))) . z = TRUE by A4, BVFUNC_1:def_17; then (Ex (a,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence (u 'imp' (Ex (a,PA,G))) . z = ('not' (u . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:22 for Y being non empty set for G being Subset of (PARTITIONS Y) for u, a being Function of Y,BOOLEAN for PA being a_partition of Y st u is_independent_of PA,G holds Ex ((a 'imp' u),PA,G) '<' (All (a,PA,G)) 'imp' u proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for u, a being Function of Y,BOOLEAN for PA being a_partition of Y st u is_independent_of PA,G holds Ex ((a 'imp' u),PA,G) '<' (All (a,PA,G)) 'imp' u let G be Subset of (PARTITIONS Y); ::_thesis: for u, a being Function of Y,BOOLEAN for PA being a_partition of Y st u is_independent_of PA,G holds Ex ((a 'imp' u),PA,G) '<' (All (a,PA,G)) 'imp' u let u, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y st u is_independent_of PA,G holds Ex ((a 'imp' u),PA,G) '<' (All (a,PA,G)) 'imp' u let PA be a_partition of Y; ::_thesis: ( u is_independent_of PA,G implies Ex ((a 'imp' u),PA,G) '<' (All (a,PA,G)) 'imp' u ) assume u is_independent_of PA,G ; ::_thesis: Ex ((a 'imp' u),PA,G) '<' (All (a,PA,G)) 'imp' u then A1: u is_dependent_of CompF (PA,G) by BVFUNC_2:def_8; let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (Ex ((a 'imp' u),PA,G)) . z = TRUE or ((All (a,PA,G)) 'imp' u) . z = TRUE ) A2: ( z in EqClass (z,(CompF (PA,G))) & EqClass (z,(CompF (PA,G))) in CompF (PA,G) ) by EQREL_1:def_6; assume A3: (Ex ((a 'imp' u),PA,G)) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' u) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_(a_'imp'_u)_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not (a 'imp' u) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP ((a 'imp' u),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A3, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A4: x1 in EqClass (z,(CompF (PA,G))) and A5: (a 'imp' u) . x1 = TRUE ; A6: ('not' (a . x1)) 'or' (u . x1) = TRUE by A5, BVFUNC_1:def_8; A7: ( 'not' (a . x1) = TRUE or 'not' (a . x1) = FALSE ) by XBOOLEAN:def_3; percases ( 'not' (a . x1) = TRUE or u . x1 = TRUE ) by A6, A7, BINARITH:3; suppose 'not' (a . x1) = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' u) . z = TRUE then a . x1 = FALSE by MARGREL1:11; then (B_INF (a,(CompF (PA,G)))) . z = FALSE by A4, BVFUNC_1:def_16; then (All (a,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence ((All (a,PA,G)) 'imp' u) . z = ('not' FALSE) 'or' (u . z) by BVFUNC_1:def_8 .= TRUE 'or' (u . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA8: u . x1 = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' u) . z = TRUE u . x1 = u . z by A1, A4, A2, BVFUNC_1:def_15; hence ((All (a,PA,G)) 'imp' u) . z = ('not' ((All (a,PA,G)) . z)) 'or' TRUE by A8, BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:23 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'imp' (Ex (b,PA,G)) = Ex ((a 'imp' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'imp' (Ex (b,PA,G)) = Ex ((a 'imp' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'imp' (Ex (b,PA,G)) = Ex ((a 'imp' b),PA,G) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All (a,PA,G)) 'imp' (Ex (b,PA,G)) = Ex ((a 'imp' b),PA,G) let PA be a_partition of Y; ::_thesis: (All (a,PA,G)) 'imp' (Ex (b,PA,G)) = Ex ((a 'imp' b),PA,G) A1: All (a,PA,G) = B_INF (a,(CompF (PA,G))) by BVFUNC_2:def_9; A2: (All (a,PA,G)) 'imp' (Ex (b,PA,G)) '<' Ex ((a 'imp' b),PA,G) proof let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE or (Ex ((a 'imp' b),PA,G)) . z = TRUE ) A3: ( 'not' ((All (a,PA,G)) . z) = TRUE or 'not' ((All (a,PA,G)) . z) = FALSE ) by XBOOLEAN:def_3; assume ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ; ::_thesis: (Ex ((a 'imp' b),PA,G)) . z = TRUE then A4: ('not' ((All (a,PA,G)) . z)) 'or' ((Ex (b,PA,G)) . z) = TRUE by BVFUNC_1:def_8; percases ( 'not' ((All (a,PA,G)) . z) = TRUE or (Ex (b,PA,G)) . z = TRUE ) by A4, A3, BINARITH:3; suppose 'not' ((All (a,PA,G)) . z) = TRUE ; ::_thesis: (Ex ((a 'imp' b),PA,G)) . z = TRUE then (All (a,PA,G)) . z = FALSE by MARGREL1:11; then consider x1 being Element of Y such that A5: x1 in EqClass (z,(CompF (PA,G))) and A6: a . x1 <> TRUE by A1, BVFUNC_1:def_16; (a 'imp' b) . x1 = ('not' (a . x1)) 'or' (b . x1) by BVFUNC_1:def_8 .= ('not' FALSE) 'or' (b . x1) by A6, XBOOLEAN:def_3 .= TRUE 'or' (b . x1) by MARGREL1:11 .= TRUE by BINARITH:10 ; then (B_SUP ((a 'imp' b),(CompF (PA,G)))) . z = TRUE by A5, BVFUNC_1:def_17; hence (Ex ((a 'imp' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; supposeA7: (Ex (b,PA,G)) . z = TRUE ; ::_thesis: (Ex ((a 'imp' b),PA,G)) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_b_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (b,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A7, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A8: x1 in EqClass (z,(CompF (PA,G))) and A9: b . x1 = TRUE ; (a 'imp' b) . x1 = ('not' (a . x1)) 'or' TRUE by A9, BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; then (B_SUP ((a 'imp' b),(CompF (PA,G)))) . z = TRUE by A8, BVFUNC_1:def_17; hence (Ex ((a 'imp' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; end; end; Ex ((a 'imp' b),PA,G) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) proof let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (Ex ((a 'imp' b),PA,G)) . z = TRUE or ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ) assume A10: (Ex ((a 'imp' b),PA,G)) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_(a_'imp'_b)_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not (a 'imp' b) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP ((a 'imp' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A10, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A11: x1 in EqClass (z,(CompF (PA,G))) and A12: (a 'imp' b) . x1 = TRUE ; A13: ('not' (a . x1)) 'or' (b . x1) = TRUE by A12, BVFUNC_1:def_8; A14: ( 'not' (a . x1) = TRUE or 'not' (a . x1) = FALSE ) by XBOOLEAN:def_3; percases ( 'not' (a . x1) = TRUE or b . x1 = TRUE ) by A13, A14, BINARITH:3; suppose 'not' (a . x1) = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then a . x1 = FALSE by MARGREL1:11; then (B_INF (a,(CompF (PA,G)))) . z = FALSE by A11, BVFUNC_1:def_16; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' FALSE) 'or' ((Ex (b,PA,G)) . z) by A1, BVFUNC_1:def_8 .= TRUE 'or' ((Ex (b,PA,G)) . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose b . x1 = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by A11, BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((All (a,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; hence (All (a,PA,G)) 'imp' (Ex (b,PA,G)) = Ex ((a 'imp' b),PA,G) by A2, BVFUNC_1:15; ::_thesis: verum end; theorem :: BVFUNC_3:24 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'imp' (All (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'imp' (All (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All (a,PA,G)) 'imp' (All (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All (a,PA,G)) 'imp' (All (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: (All (a,PA,G)) 'imp' (All (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All (a,PA,G)) 'imp' (All (b,PA,G))) . z = TRUE or ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ) A1: ( 'not' ((All (a,PA,G)) . z) = TRUE or 'not' ((All (a,PA,G)) . z) = FALSE ) by XBOOLEAN:def_3; A2: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; assume ((All (a,PA,G)) 'imp' (All (b,PA,G))) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then A3: ('not' ((All (a,PA,G)) . z)) 'or' ((All (b,PA,G)) . z) = TRUE by BVFUNC_1:def_8; percases ( 'not' ((All (a,PA,G)) . z) = TRUE or (All (b,PA,G)) . z = TRUE ) by A3, A1, BINARITH:3; suppose 'not' ((All (a,PA,G)) . z) = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA4: (All (b,PA,G)) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ b_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not b . x = TRUE ) ; ::_thesis: contradiction then (B_INF (b,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A4, BVFUNC_2:def_9; ::_thesis: verum end; then b . z = TRUE by A2; then (B_SUP (b,(CompF (PA,G)))) . z = TRUE by A2, BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = TRUE by BVFUNC_2:def_10; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((All (a,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:25 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) let PA be a_partition of Y; ::_thesis: (Ex (a,PA,G)) 'imp' (Ex (b,PA,G)) '<' (All (a,PA,G)) 'imp' (Ex (b,PA,G)) A1: Ex (a,PA,G) = B_SUP (a,(CompF (PA,G))) by BVFUNC_2:def_10; let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE or ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ) A2: ( 'not' ((Ex (a,PA,G)) . z) = TRUE or 'not' ((Ex (a,PA,G)) . z) = FALSE ) by XBOOLEAN:def_3; assume ((Ex (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then A3: ('not' ((Ex (a,PA,G)) . z)) 'or' ((Ex (b,PA,G)) . z) = TRUE by BVFUNC_1:def_8; A4: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def_6; percases ( 'not' ((Ex (a,PA,G)) . z) = TRUE or (Ex (b,PA,G)) . z = TRUE ) by A3, A2, BINARITH:3; suppose 'not' ((Ex (a,PA,G)) . z) = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE then (Ex (a,PA,G)) . z = FALSE by MARGREL1:11; then a . z <> TRUE by A1, A4, BVFUNC_1:def_17; then (B_INF (a,(CompF (PA,G)))) . z = FALSE by A4, BVFUNC_1:def_16; then (All (a,PA,G)) . z = FALSE by BVFUNC_2:def_9; hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' FALSE) 'or' ((Ex (b,PA,G)) . z) by BVFUNC_1:def_8 .= TRUE 'or' ((Ex (b,PA,G)) . z) by MARGREL1:11 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose (Ex (b,PA,G)) . z = TRUE ; ::_thesis: ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = TRUE hence ((All (a,PA,G)) 'imp' (Ex (b,PA,G))) . z = ('not' ((All (a,PA,G)) . z)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; theorem Th26: :: BVFUNC_3:26 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) = All ((('not' a) 'or' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) = All ((('not' a) 'or' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) = All ((('not' a) 'or' b),PA,G) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds All ((a 'imp' b),PA,G) = All ((('not' a) 'or' b),PA,G) let PA be a_partition of Y; ::_thesis: All ((a 'imp' b),PA,G) = All ((('not' a) 'or' b),PA,G) A1: All ((('not' a) 'or' b),PA,G) '<' All ((a 'imp' b),PA,G) proof let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (All ((('not' a) 'or' b),PA,G)) . z = TRUE or (All ((a 'imp' b),PA,G)) . z = TRUE ) assume A2: (All ((('not' a) 'or' b),PA,G)) . z = TRUE ; ::_thesis: (All ((a 'imp' b),PA,G)) . z = TRUE A3: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (('not'_a)_'or'_b)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (('not' a) 'or' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((('not' a) 'or' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A2, BVFUNC_2:def_9; ::_thesis: verum end; for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE proof let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies (a 'imp' b) . x = TRUE ) A4: ( ('not' a) . x = TRUE or ('not' a) . x = FALSE ) by XBOOLEAN:def_3; assume x in EqClass (z,(CompF (PA,G))) ; ::_thesis: (a 'imp' b) . x = TRUE then (('not' a) 'or' b) . x = TRUE by A3; then A5: (('not' a) . x) 'or' (b . x) = TRUE by BVFUNC_1:def_4; percases ( ('not' a) . x = TRUE or b . x = TRUE ) by A5, A4, BINARITH:3; suppose ('not' a) . x = TRUE ; ::_thesis: (a 'imp' b) . x = TRUE then 'not' (a . x) = TRUE by MARGREL1:def_19; hence (a 'imp' b) . x = TRUE 'or' (b . x) by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose b . x = TRUE ; ::_thesis: (a 'imp' b) . x = TRUE hence (a 'imp' b) . x = ('not' (a . x)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; hence (All ((a 'imp' b),PA,G)) . z = TRUE by BVFUNC_2:def_9; ::_thesis: verum end; All ((a 'imp' b),PA,G) '<' All ((('not' a) 'or' b),PA,G) proof let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (All ((a 'imp' b),PA,G)) . z = TRUE or (All ((('not' a) 'or' b),PA,G)) . z = TRUE ) assume A6: (All ((a 'imp' b),PA,G)) . z = TRUE ; ::_thesis: (All ((('not' a) 'or' b),PA,G)) . z = TRUE A7: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'imp'_b)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (a 'imp' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; hence contradiction by A6, BVFUNC_2:def_9; ::_thesis: verum end; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (('not'_a)_'or'_b)_._x_=_TRUE let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies (('not' a) 'or' b) . b1 = TRUE ) A8: ( 'not' (a . x) = TRUE or 'not' (a . x) = FALSE ) by XBOOLEAN:def_3; assume x in EqClass (z,(CompF (PA,G))) ; ::_thesis: (('not' a) 'or' b) . b1 = TRUE then (a 'imp' b) . x = TRUE by A7; then A9: ('not' (a . x)) 'or' (b . x) = TRUE by BVFUNC_1:def_8; percases ( 'not' (a . x) = TRUE or b . x = TRUE ) by A9, A8, BINARITH:3; suppose 'not' (a . x) = TRUE ; ::_thesis: (('not' a) 'or' b) . b1 = TRUE then ('not' a) . x = TRUE by MARGREL1:def_19; hence (('not' a) 'or' b) . x = TRUE 'or' (b . x) by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose b . x = TRUE ; ::_thesis: (('not' a) 'or' b) . b1 = TRUE hence (('not' a) 'or' b) . x = (('not' a) . x) 'or' TRUE by BVFUNC_1:def_4 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; then (B_INF ((('not' a) 'or' b),(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; hence (All ((('not' a) 'or' b),PA,G)) . z = TRUE by BVFUNC_2:def_9; ::_thesis: verum end; hence All ((a 'imp' b),PA,G) = All ((('not' a) 'or' b),PA,G) by A1, BVFUNC_1:15; ::_thesis: verum end; theorem :: BVFUNC_3:27 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) = 'not' (Ex ((a '&' ('not' b)),PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) = 'not' (Ex ((a '&' ('not' b)),PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds All ((a 'imp' b),PA,G) = 'not' (Ex ((a '&' ('not' b)),PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds All ((a 'imp' b),PA,G) = 'not' (Ex ((a '&' ('not' b)),PA,G)) let PA be a_partition of Y; ::_thesis: All ((a 'imp' b),PA,G) = 'not' (Ex ((a '&' ('not' b)),PA,G)) ( 'not' (All ((('not' a) 'or' b),PA,G)) = Ex (('not' (('not' a) 'or' b)),PA,G) & 'not' (('not' a) 'or' b) = ('not' ('not' a)) '&' ('not' b) ) by BVFUNC_1:13, BVFUNC_2:18; hence All ((a 'imp' b),PA,G) = 'not' (Ex ((a '&' ('not' b)),PA,G)) by Th26; ::_thesis: verum end; theorem :: BVFUNC_3:28 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex (a,PA,G) '<' 'not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G))) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex (a,PA,G) '<' 'not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G))) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex (a,PA,G) '<' 'not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G))) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds Ex (a,PA,G) '<' 'not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G))) let PA be a_partition of Y; ::_thesis: Ex (a,PA,G) '<' 'not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G))) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (Ex (a,PA,G)) . z = TRUE or ('not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G)))) . z = TRUE ) A1: ('not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G)))) . z = 'not' (((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G))) . z) by MARGREL1:def_19 .= 'not' (((All ((a 'imp' b),PA,G)) . z) '&' ((All ((a 'imp' ('not' b)),PA,G)) . z)) by MARGREL1:def_20 ; assume A2: (Ex (a,PA,G)) . z = TRUE ; ::_thesis: ('not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G)))) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_a_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A2, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A3: x1 in EqClass (z,(CompF (PA,G))) and A4: a . x1 = TRUE ; A5: (a 'imp' b) . x1 = ('not' TRUE) 'or' (b . x1) by A4, BVFUNC_1:def_8 .= FALSE 'or' (b . x1) by MARGREL1:11 .= b . x1 by BINARITH:3 ; A6: (a 'imp' ('not' b)) . x1 = ('not' TRUE) 'or' (('not' b) . x1) by A4, BVFUNC_1:def_8 .= FALSE 'or' (('not' b) . x1) by MARGREL1:11 .= ('not' b) . x1 by BINARITH:3 ; percases ( b . x1 = TRUE or b . x1 = FALSE ) by XBOOLEAN:def_3; suppose b . x1 = TRUE ; ::_thesis: ('not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G)))) . z = TRUE then (a 'imp' ('not' b)) . x1 = 'not' TRUE by A6, MARGREL1:def_19 .= FALSE by MARGREL1:11 ; then (B_INF ((a 'imp' ('not' b)),(CompF (PA,G)))) . z = FALSE by A3, BVFUNC_1:def_16; hence ('not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G)))) . z = 'not' (((All ((a 'imp' b),PA,G)) . z) '&' FALSE) by A1, BVFUNC_2:def_9 .= 'not' FALSE by MARGREL1:12 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; suppose b . x1 = FALSE ; ::_thesis: ('not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G)))) . z = TRUE then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = FALSE by A3, A5, BVFUNC_1:def_16; hence ('not' ((All ((a 'imp' b),PA,G)) '&' (All ((a 'imp' ('not' b)),PA,G)))) . z = 'not' (FALSE '&' ((All ((a 'imp' ('not' b)),PA,G)) . z)) by A1, BVFUNC_2:def_9 .= 'not' FALSE by MARGREL1:12 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:29 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex (a,PA,G) '<' 'not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G)))) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex (a,PA,G) '<' 'not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G)))) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds Ex (a,PA,G) '<' 'not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G)))) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds Ex (a,PA,G) '<' 'not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G)))) let PA be a_partition of Y; ::_thesis: Ex (a,PA,G) '<' 'not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G)))) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (Ex (a,PA,G)) . z = TRUE or ('not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G))))) . z = TRUE ) A1: ('not' (Ex ((a '&' ('not' b)),PA,G))) . z = 'not' ((Ex ((a '&' ('not' b)),PA,G)) . z) by MARGREL1:def_19; A2: ('not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G))))) . z = 'not' ((('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G)))) . z) by MARGREL1:def_19 .= 'not' ((('not' (Ex ((a '&' b),PA,G))) . z) '&' (('not' (Ex ((a '&' ('not' b)),PA,G))) . z)) by MARGREL1:def_20 .= 'not' (('not' ((Ex ((a '&' b),PA,G)) . z)) '&' ('not' ((Ex ((a '&' ('not' b)),PA,G)) . z))) by A1, MARGREL1:def_19 ; assume A3: (Ex (a,PA,G)) . z = TRUE ; ::_thesis: ('not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G))))) . z = TRUE now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_a_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; hence contradiction by A3, BVFUNC_2:def_10; ::_thesis: verum end; then consider x1 being Element of Y such that A4: x1 in EqClass (z,(CompF (PA,G))) and A5: a . x1 = TRUE ; A6: (a '&' b) . x1 = TRUE '&' (b . x1) by A5, MARGREL1:def_20 .= b . x1 by MARGREL1:14 ; A7: (a '&' ('not' b)) . x1 = TRUE '&' (('not' b) . x1) by A5, MARGREL1:def_20 .= ('not' b) . x1 by MARGREL1:14 ; percases ( b . x1 = TRUE or b . x1 = FALSE ) by XBOOLEAN:def_3; suppose b . x1 = TRUE ; ::_thesis: ('not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G))))) . z = TRUE then (B_SUP ((a '&' b),(CompF (PA,G)))) . z = TRUE by A4, A6, BVFUNC_1:def_17; hence ('not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G))))) . z = 'not' (('not' TRUE) '&' ('not' ((Ex ((a '&' ('not' b)),PA,G)) . z))) by A2, BVFUNC_2:def_10 .= 'not' (FALSE '&' ('not' ((Ex ((a '&' ('not' b)),PA,G)) . z))) by MARGREL1:11 .= 'not' FALSE by MARGREL1:12 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; suppose b . x1 = FALSE ; ::_thesis: ('not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G))))) . z = TRUE then (a '&' ('not' b)) . x1 = 'not' FALSE by A7, MARGREL1:def_19; then (a '&' ('not' b)) . x1 = TRUE by MARGREL1:11; then (B_SUP ((a '&' ('not' b)),(CompF (PA,G)))) . z = TRUE by A4, BVFUNC_1:def_17; hence ('not' (('not' (Ex ((a '&' b),PA,G))) '&' ('not' (Ex ((a '&' ('not' b)),PA,G))))) . z = 'not' (('not' ((Ex ((a '&' b),PA,G)) . z)) '&' ('not' TRUE)) by A2, BVFUNC_2:def_10 .= 'not' (('not' ((Ex ((a '&' b),PA,G)) . z)) '&' FALSE) by MARGREL1:11 .= 'not' FALSE by MARGREL1:12 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:30 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' (All ((a 'imp' b),PA,G)) '<' Ex ((a '&' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' (All ((a 'imp' b),PA,G)) '<' Ex ((a '&' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' (All ((a 'imp' b),PA,G)) '<' Ex ((a '&' b),PA,G) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (Ex (a,PA,G)) '&' (All ((a 'imp' b),PA,G)) '<' Ex ((a '&' b),PA,G) let PA be a_partition of Y; ::_thesis: (Ex (a,PA,G)) '&' (All ((a 'imp' b),PA,G)) '<' Ex ((a '&' b),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((Ex (a,PA,G)) '&' (All ((a 'imp' b),PA,G))) . z = TRUE or (Ex ((a '&' b),PA,G)) . z = TRUE ) A1: 'not' FALSE = TRUE by MARGREL1:11; assume ((Ex (a,PA,G)) '&' (All ((a 'imp' b),PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then A2: ((Ex (a,PA,G)) . z) '&' ((All ((a 'imp' b),PA,G)) . z) = TRUE by MARGREL1:def_20; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_a_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex (a,PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A2, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A3: x1 in EqClass (z,(CompF (PA,G))) and A4: a . x1 = TRUE ; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'imp'_b)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (a 'imp' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((a 'imp' b),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A2, MARGREL1:12; ::_thesis: verum end; then (a 'imp' b) . x1 = TRUE by A3; then A5: ('not' (a . x1)) 'or' (b . x1) = TRUE by BVFUNC_1:def_8; (a '&' b) . x1 = (a . x1) '&' (b . x1) by MARGREL1:def_20 .= TRUE '&' TRUE by A4, A5, A1, BINARITH:3 .= TRUE ; then (B_SUP ((a '&' b),(CompF (PA,G)))) . z = TRUE by A3, BVFUNC_1:def_17; hence (Ex ((a '&' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; theorem :: BVFUNC_3:31 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' ('not' (Ex ((a '&' b),PA,G))) '<' 'not' (All ((a 'imp' b),PA,G)) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' ('not' (Ex ((a '&' b),PA,G))) '<' 'not' (All ((a 'imp' b),PA,G)) let G be Subset of (PARTITIONS Y); ::_thesis: for a, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (Ex (a,PA,G)) '&' ('not' (Ex ((a '&' b),PA,G))) '<' 'not' (All ((a 'imp' b),PA,G)) let a, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (Ex (a,PA,G)) '&' ('not' (Ex ((a '&' b),PA,G))) '<' 'not' (All ((a 'imp' b),PA,G)) let PA be a_partition of Y; ::_thesis: (Ex (a,PA,G)) '&' ('not' (Ex ((a '&' b),PA,G))) '<' 'not' (All ((a 'imp' b),PA,G)) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((Ex (a,PA,G)) '&' ('not' (Ex ((a '&' b),PA,G)))) . z = TRUE or ('not' (All ((a 'imp' b),PA,G))) . z = TRUE ) assume ((Ex (a,PA,G)) '&' ('not' (Ex ((a '&' b),PA,G)))) . z = TRUE ; ::_thesis: ('not' (All ((a 'imp' b),PA,G))) . z = TRUE then A1: ((Ex (a,PA,G)) . z) '&' (('not' (Ex ((a '&' b),PA,G))) . z) = TRUE by MARGREL1:def_20; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_a_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not a . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (a,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex (a,PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A2: x1 in EqClass (z,(CompF (PA,G))) and A3: a . x1 = TRUE ; ('not' (Ex ((a '&' b),PA,G))) . z = TRUE by A1, MARGREL1:12; then 'not' ((Ex ((a '&' b),PA,G)) . z) = TRUE by MARGREL1:def_19; then ( Ex ((a '&' b),PA,G) = B_SUP ((a '&' b),(CompF (PA,G))) & (Ex ((a '&' b),PA,G)) . z = FALSE ) by BVFUNC_2:def_10, MARGREL1:11; then (a '&' b) . x1 <> TRUE by A2, BVFUNC_1:def_17; then (a '&' b) . x1 = FALSE by XBOOLEAN:def_3; then A4: (a . x1) '&' (b . x1) = FALSE by MARGREL1:def_20; percases ( a . x1 = FALSE or b . x1 = FALSE ) by A4, MARGREL1:12; suppose a . x1 = FALSE ; ::_thesis: ('not' (All ((a 'imp' b),PA,G))) . z = TRUE hence ('not' (All ((a 'imp' b),PA,G))) . z = TRUE by A3; ::_thesis: verum end; suppose b . x1 = FALSE ; ::_thesis: ('not' (All ((a 'imp' b),PA,G))) . z = TRUE then (a 'imp' b) . x1 = ('not' TRUE) 'or' FALSE by A3, BVFUNC_1:def_8 .= FALSE 'or' FALSE by MARGREL1:11 .= FALSE ; then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = FALSE by A2, BVFUNC_1:def_16; then (All ((a 'imp' b),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence ('not' (All ((a 'imp' b),PA,G))) . z = 'not' FALSE by MARGREL1:def_19 .= TRUE by MARGREL1:11 ; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:32 for Y being non empty set for G being Subset of (PARTITIONS Y) for a, c, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((a 'imp' c),PA,G)) '&' (All ((c 'imp' b),PA,G)) '<' All ((a 'imp' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for a, c, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((a 'imp' c),PA,G)) '&' (All ((c 'imp' b),PA,G)) '<' All ((a 'imp' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for a, c, b being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((a 'imp' c),PA,G)) '&' (All ((c 'imp' b),PA,G)) '<' All ((a 'imp' b),PA,G) let a, c, b be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All ((a 'imp' c),PA,G)) '&' (All ((c 'imp' b),PA,G)) '<' All ((a 'imp' b),PA,G) let PA be a_partition of Y; ::_thesis: (All ((a 'imp' c),PA,G)) '&' (All ((c 'imp' b),PA,G)) '<' All ((a 'imp' b),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All ((a 'imp' c),PA,G)) '&' (All ((c 'imp' b),PA,G))) . z = TRUE or (All ((a 'imp' b),PA,G)) . z = TRUE ) assume ((All ((a 'imp' c),PA,G)) '&' (All ((c 'imp' b),PA,G))) . z = TRUE ; ::_thesis: (All ((a 'imp' b),PA,G)) . z = TRUE then A1: ((All ((a 'imp' c),PA,G)) . z) '&' ((All ((c 'imp' b),PA,G)) . z) = TRUE by MARGREL1:def_20; A2: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (c_'imp'_b)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (c 'imp' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((c 'imp' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((c 'imp' b),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; A3: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'imp'_c)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (a 'imp' c) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((a 'imp' c),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((a 'imp' c),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' b) . x = TRUE proof let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies (a 'imp' b) . x = TRUE ) A4: ( 'not' (a . x) = TRUE or 'not' (a . x) = FALSE ) by XBOOLEAN:def_3; A5: ( 'not' (c . x) = TRUE or 'not' (c . x) = FALSE ) by XBOOLEAN:def_3; assume A6: x in EqClass (z,(CompF (PA,G))) ; ::_thesis: (a 'imp' b) . x = TRUE then (a 'imp' c) . x = TRUE by A3; then A7: ('not' (a . x)) 'or' (c . x) = TRUE by BVFUNC_1:def_8; (c 'imp' b) . x = TRUE by A2, A6; then A8: ('not' (c . x)) 'or' (b . x) = TRUE by BVFUNC_1:def_8; percases ( ( 'not' (a . x) = TRUE & 'not' (c . x) = TRUE ) or ( 'not' (a . x) = TRUE & b . x = TRUE ) or ( c . x = TRUE & 'not' (c . x) = TRUE ) or ( c . x = TRUE & b . x = TRUE ) ) by A7, A4, A8, A5, BINARITH:3; suppose ( 'not' (a . x) = TRUE & 'not' (c . x) = TRUE ) ; ::_thesis: (a 'imp' b) . x = TRUE hence (a 'imp' b) . x = TRUE 'or' (b . x) by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( 'not' (a . x) = TRUE & b . x = TRUE ) ; ::_thesis: (a 'imp' b) . x = TRUE hence (a 'imp' b) . x = TRUE 'or' (b . x) by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( c . x = TRUE & 'not' (c . x) = TRUE ) ; ::_thesis: (a 'imp' b) . x = TRUE hence (a 'imp' b) . x = TRUE by MARGREL1:11; ::_thesis: verum end; suppose ( c . x = TRUE & b . x = TRUE ) ; ::_thesis: (a 'imp' b) . x = TRUE hence (a 'imp' b) . x = ('not' (a . x)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; then (B_INF ((a 'imp' b),(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; hence (All ((a 'imp' b),PA,G)) . z = TRUE by BVFUNC_2:def_9; ::_thesis: verum end; theorem :: BVFUNC_3:33 for Y being non empty set for G being Subset of (PARTITIONS Y) for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((c 'imp' b),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((c 'imp' b),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((c 'imp' b),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' b),PA,G) let c, b, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All ((c 'imp' b),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' b),PA,G) let PA be a_partition of Y; ::_thesis: (All ((c 'imp' b),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' b),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All ((c 'imp' b),PA,G)) '&' (Ex ((a '&' c),PA,G))) . z = TRUE or (Ex ((a '&' b),PA,G)) . z = TRUE ) assume ((All ((c 'imp' b),PA,G)) '&' (Ex ((a '&' c),PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then A1: ((All ((c 'imp' b),PA,G)) . z) '&' ((Ex ((a '&' c),PA,G)) . z) = TRUE by MARGREL1:def_20; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_(a_'&'_c)_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not (a '&' c) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP ((a '&' c),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex ((a '&' c),PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A2: x1 in EqClass (z,(CompF (PA,G))) and A3: (a '&' c) . x1 = TRUE ; A4: (a . x1) '&' (c . x1) = TRUE by A3, MARGREL1:def_20; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (c_'imp'_b)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (c 'imp' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((c 'imp' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((c 'imp' b),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then (c 'imp' b) . x1 = TRUE by A2; then A5: ('not' (c . x1)) 'or' (b . x1) = TRUE by BVFUNC_1:def_8; A6: ( 'not' (c . x1) = TRUE or 'not' (c . x1) = FALSE ) by XBOOLEAN:def_3; percases ( ( a . x1 = TRUE & c . x1 = TRUE & 'not' (c . x1) = TRUE ) or ( a . x1 = TRUE & c . x1 = TRUE & b . x1 = TRUE ) ) by A5, A6, A4, BINARITH:3, MARGREL1:12; suppose ( a . x1 = TRUE & c . x1 = TRUE & 'not' (c . x1) = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE hence (Ex ((a '&' b),PA,G)) . z = TRUE by MARGREL1:11; ::_thesis: verum end; suppose ( a . x1 = TRUE & c . x1 = TRUE & b . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then (a '&' b) . x1 = TRUE '&' TRUE by MARGREL1:def_20 .= TRUE ; then (B_SUP ((a '&' b),(CompF (PA,G)))) . z = TRUE by A2, BVFUNC_1:def_17; hence (Ex ((a '&' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:34 for Y being non empty set for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' ('not' c)),PA,G)) '&' (All ((a 'imp' c),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' ('not' c)),PA,G)) '&' (All ((a 'imp' c),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' ('not' c)),PA,G)) '&' (All ((a 'imp' c),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let b, c, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All ((b 'imp' ('not' c)),PA,G)) '&' (All ((a 'imp' c),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let PA be a_partition of Y; ::_thesis: (All ((b 'imp' ('not' c)),PA,G)) '&' (All ((a 'imp' c),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All ((b 'imp' ('not' c)),PA,G)) '&' (All ((a 'imp' c),PA,G))) . z = TRUE or (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE ) assume ((All ((b 'imp' ('not' c)),PA,G)) '&' (All ((a 'imp' c),PA,G))) . z = TRUE ; ::_thesis: (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE then A1: ((All ((b 'imp' ('not' c)),PA,G)) . z) '&' ((All ((a 'imp' c),PA,G)) . z) = TRUE by MARGREL1:def_20; A2: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'imp'_c)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (a 'imp' c) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((a 'imp' c),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((a 'imp' c),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; A3: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (b_'imp'_('not'_c))_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (b 'imp' ('not' c)) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((b 'imp' ('not' c)),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((b 'imp' ('not' c)),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' ('not' b)) . x = TRUE proof let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies (a 'imp' ('not' b)) . x = TRUE ) A4: ( 'not' (b . x) = TRUE or 'not' (b . x) = FALSE ) by XBOOLEAN:def_3; A5: ( 'not' (a . x) = TRUE or 'not' (a . x) = FALSE ) by XBOOLEAN:def_3; assume A6: x in EqClass (z,(CompF (PA,G))) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then (b 'imp' ('not' c)) . x = TRUE by A3; then A7: ('not' (b . x)) 'or' (('not' c) . x) = TRUE by BVFUNC_1:def_8; (a 'imp' c) . x = TRUE by A2, A6; then A8: ('not' (a . x)) 'or' (c . x) = TRUE by BVFUNC_1:def_8; percases ( ( 'not' (b . x) = TRUE & 'not' (a . x) = TRUE ) or ( 'not' (b . x) = TRUE & c . x = TRUE ) or ( ('not' c) . x = TRUE & 'not' (a . x) = TRUE ) or ( ('not' c) . x = TRUE & c . x = TRUE ) ) by A7, A4, A8, A5, BINARITH:3; supposeA9: ( 'not' (b . x) = TRUE & 'not' (a . x) = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then ('not' b) . x = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = TRUE 'or' TRUE by A9, BVFUNC_1:def_8 .= TRUE ; ::_thesis: verum end; suppose ( 'not' (b . x) = TRUE & c . x = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then ('not' b) . x = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = ('not' (a . x)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( ('not' c) . x = TRUE & 'not' (a . x) = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE hence (a 'imp' ('not' b)) . x = TRUE 'or' (('not' b) . x) by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA10: ( ('not' c) . x = TRUE & c . x = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then 'not' (c . x) = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = TRUE by A10, MARGREL1:11; ::_thesis: verum end; end; end; then (B_INF ((a 'imp' ('not' b)),(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; hence (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE by BVFUNC_2:def_9; ::_thesis: verum end; theorem :: BVFUNC_3:35 for Y being non empty set for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (All ((a 'imp' ('not' c)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (All ((a 'imp' ('not' c)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (All ((a 'imp' ('not' c)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let b, c, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (All ((a 'imp' ('not' c)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let PA be a_partition of Y; ::_thesis: (All ((b 'imp' c),PA,G)) '&' (All ((a 'imp' ('not' c)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All ((b 'imp' c),PA,G)) '&' (All ((a 'imp' ('not' c)),PA,G))) . z = TRUE or (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE ) assume ((All ((b 'imp' c),PA,G)) '&' (All ((a 'imp' ('not' c)),PA,G))) . z = TRUE ; ::_thesis: (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE then A1: ((All ((b 'imp' c),PA,G)) . z) '&' ((All ((a 'imp' ('not' c)),PA,G)) . z) = TRUE by MARGREL1:def_20; A2: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (a_'imp'_('not'_c))_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (a 'imp' ('not' c)) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((a 'imp' ('not' c)),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((a 'imp' ('not' c)),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; A3: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (b_'imp'_c)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (b 'imp' c) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((b 'imp' c),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((b 'imp' c),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' ('not' b)) . x = TRUE proof let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies (a 'imp' ('not' b)) . x = TRUE ) A4: ( 'not' (b . x) = TRUE or 'not' (b . x) = FALSE ) by XBOOLEAN:def_3; A5: ( 'not' (a . x) = TRUE or 'not' (a . x) = FALSE ) by XBOOLEAN:def_3; assume A6: x in EqClass (z,(CompF (PA,G))) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then (b 'imp' c) . x = TRUE by A3; then A7: ('not' (b . x)) 'or' (c . x) = TRUE by BVFUNC_1:def_8; (a 'imp' ('not' c)) . x = TRUE by A2, A6; then A8: ('not' (a . x)) 'or' (('not' c) . x) = TRUE by BVFUNC_1:def_8; percases ( ( 'not' (b . x) = TRUE & 'not' (a . x) = TRUE ) or ( 'not' (b . x) = TRUE & ('not' c) . x = TRUE ) or ( c . x = TRUE & 'not' (a . x) = TRUE ) or ( c . x = TRUE & ('not' c) . x = TRUE ) ) by A7, A4, A8, A5, BINARITH:3; supposeA9: ( 'not' (b . x) = TRUE & 'not' (a . x) = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then ('not' b) . x = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = TRUE 'or' TRUE by A9, BVFUNC_1:def_8 .= TRUE ; ::_thesis: verum end; suppose ( 'not' (b . x) = TRUE & ('not' c) . x = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then ('not' b) . x = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = ('not' (a . x)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( c . x = TRUE & 'not' (a . x) = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE hence (a 'imp' ('not' b)) . x = TRUE 'or' (('not' b) . x) by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; supposeA10: ( c . x = TRUE & ('not' c) . x = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then 'not' (c . x) = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = TRUE by A10, MARGREL1:11; ::_thesis: verum end; end; end; then (B_INF ((a 'imp' ('not' b)),(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; hence (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE by BVFUNC_2:def_9; ::_thesis: verum end; theorem :: BVFUNC_3:36 for Y being non empty set for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' ('not' c)),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' ('not' c)),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' ('not' c)),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let b, c, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All ((b 'imp' ('not' c)),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let PA be a_partition of Y; ::_thesis: (All ((b 'imp' ('not' c)),PA,G)) '&' (Ex ((a '&' c),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All ((b 'imp' ('not' c)),PA,G)) '&' (Ex ((a '&' c),PA,G))) . z = TRUE or (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE ) assume ((All ((b 'imp' ('not' c)),PA,G)) '&' (Ex ((a '&' c),PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE then A1: ((All ((b 'imp' ('not' c)),PA,G)) . z) '&' ((Ex ((a '&' c),PA,G)) . z) = TRUE by MARGREL1:def_20; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_(a_'&'_c)_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not (a '&' c) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP ((a '&' c),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex ((a '&' c),PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A2: x1 in EqClass (z,(CompF (PA,G))) and A3: (a '&' c) . x1 = TRUE ; A4: (a . x1) '&' (c . x1) = TRUE by A3, MARGREL1:def_20; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (b_'imp'_('not'_c))_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (b 'imp' ('not' c)) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((b 'imp' ('not' c)),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((b 'imp' ('not' c)),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then (b 'imp' ('not' c)) . x1 = TRUE by A2; then A5: ('not' (b . x1)) 'or' (('not' c) . x1) = TRUE by BVFUNC_1:def_8; A6: ( 'not' (b . x1) = TRUE or 'not' (b . x1) = FALSE ) by XBOOLEAN:def_3; percases ( ( a . x1 = TRUE & c . x1 = TRUE & 'not' (b . x1) = TRUE ) or ( a . x1 = TRUE & c . x1 = TRUE & ('not' c) . x1 = TRUE ) ) by A5, A6, A4, BINARITH:3, MARGREL1:12; supposeA7: ( a . x1 = TRUE & c . x1 = TRUE & 'not' (b . x1) = TRUE ) ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE (a '&' ('not' b)) . x1 = (a . x1) '&' (('not' b) . x1) by MARGREL1:def_20 .= TRUE '&' TRUE by A7, MARGREL1:def_19 .= TRUE ; then (B_SUP ((a '&' ('not' b)),(CompF (PA,G)))) . z = TRUE by A2, BVFUNC_1:def_17; hence (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; supposeA8: ( a . x1 = TRUE & c . x1 = TRUE & ('not' c) . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE then 'not' (c . x1) = TRUE by MARGREL1:def_19; hence (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE by A8, MARGREL1:11; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:37 for Y being non empty set for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (Ex ((a '&' ('not' c)),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (Ex ((a '&' ('not' c)),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (Ex ((a '&' ('not' c)),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let b, c, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (Ex ((a '&' ('not' c)),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let PA be a_partition of Y; ::_thesis: (All ((b 'imp' c),PA,G)) '&' (Ex ((a '&' ('not' c)),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All ((b 'imp' c),PA,G)) '&' (Ex ((a '&' ('not' c)),PA,G))) . z = TRUE or (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE ) assume ((All ((b 'imp' c),PA,G)) '&' (Ex ((a '&' ('not' c)),PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE then A1: ((All ((b 'imp' c),PA,G)) . z) '&' ((Ex ((a '&' ('not' c)),PA,G)) . z) = TRUE by MARGREL1:def_20; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_(a_'&'_('not'_c))_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not (a '&' ('not' c)) . x = TRUE ) ; ::_thesis: contradiction then (B_SUP ((a '&' ('not' c)),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex ((a '&' ('not' c)),PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A2: x1 in EqClass (z,(CompF (PA,G))) and A3: (a '&' ('not' c)) . x1 = TRUE ; A4: (a . x1) '&' (('not' c) . x1) = TRUE by A3, MARGREL1:def_20; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (b_'imp'_c)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (b 'imp' c) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((b 'imp' c),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((b 'imp' c),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then (b 'imp' c) . x1 = TRUE by A2; then A5: ('not' (b . x1)) 'or' (c . x1) = TRUE by BVFUNC_1:def_8; A6: ( 'not' (b . x1) = TRUE or 'not' (b . x1) = FALSE ) by XBOOLEAN:def_3; percases ( ( a . x1 = TRUE & ('not' c) . x1 = TRUE & 'not' (b . x1) = TRUE ) or ( a . x1 = TRUE & ('not' c) . x1 = TRUE & c . x1 = TRUE ) ) by A5, A6, A4, BINARITH:3, MARGREL1:12; supposeA7: ( a . x1 = TRUE & ('not' c) . x1 = TRUE & 'not' (b . x1) = TRUE ) ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE (a '&' ('not' b)) . x1 = (a . x1) '&' (('not' b) . x1) by MARGREL1:def_20 .= TRUE '&' TRUE by A7, MARGREL1:def_19 .= TRUE ; then (B_SUP ((a '&' ('not' b)),(CompF (PA,G)))) . z = TRUE by A2, BVFUNC_1:def_17; hence (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; supposeA8: ( a . x1 = TRUE & ('not' c) . x1 = TRUE & c . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE then 'not' (c . x1) = TRUE by MARGREL1:def_19; hence (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE by A8, MARGREL1:11; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:38 for Y being non empty set for G being Subset of (PARTITIONS Y) for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (c,PA,G)) '&' (All ((c 'imp' b),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (c,PA,G)) '&' (All ((c 'imp' b),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (c,PA,G)) '&' (All ((c 'imp' b),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) let c, b, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds ((Ex (c,PA,G)) '&' (All ((c 'imp' b),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) let PA be a_partition of Y; ::_thesis: ((Ex (c,PA,G)) '&' (All ((c 'imp' b),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (((Ex (c,PA,G)) '&' (All ((c 'imp' b),PA,G))) '&' (All ((c 'imp' a),PA,G))) . z = TRUE or (Ex ((a '&' b),PA,G)) . z = TRUE ) assume (((Ex (c,PA,G)) '&' (All ((c 'imp' b),PA,G))) '&' (All ((c 'imp' a),PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then A1: (((Ex (c,PA,G)) '&' (All ((c 'imp' b),PA,G))) . z) '&' ((All ((c 'imp' a),PA,G)) . z) = TRUE by MARGREL1:def_20; then (((Ex (c,PA,G)) . z) '&' ((All ((c 'imp' b),PA,G)) . z)) '&' ((All ((c 'imp' a),PA,G)) . z) = TRUE by MARGREL1:def_20; then A2: ((Ex (c,PA,G)) . z) '&' ((All ((c 'imp' b),PA,G)) . z) = TRUE by MARGREL1:12; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_c_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not c . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (c,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex (c,PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A2, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A3: x1 in EqClass (z,(CompF (PA,G))) and A4: c . x1 = TRUE ; A5: ( 'not' (c . x1) = TRUE or 'not' (c . x1) = FALSE ) by XBOOLEAN:def_3; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (c_'imp'_b)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (c 'imp' b) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((c 'imp' b),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((c 'imp' b),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A2, MARGREL1:12; ::_thesis: verum end; then (c 'imp' b) . x1 = TRUE by A3; then A6: ('not' (c . x1)) 'or' (b . x1) = TRUE by BVFUNC_1:def_8; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (c_'imp'_a)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (c 'imp' a) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((c 'imp' a),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((c 'imp' a),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then (c 'imp' a) . x1 = TRUE by A3; then A7: ('not' (c . x1)) 'or' (a . x1) = TRUE by BVFUNC_1:def_8; percases ( 'not' (c . x1) = TRUE or ( 'not' (c . x1) = TRUE & b . x1 = TRUE ) or ( a . x1 = TRUE & 'not' (c . x1) = TRUE ) or ( a . x1 = TRUE & b . x1 = TRUE ) ) by A7, A5, A6, BINARITH:3; suppose 'not' (c . x1) = TRUE ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE hence (Ex ((a '&' b),PA,G)) . z = TRUE by A4, MARGREL1:11; ::_thesis: verum end; suppose ( 'not' (c . x1) = TRUE & b . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE hence (Ex ((a '&' b),PA,G)) . z = TRUE by A4, MARGREL1:11; ::_thesis: verum end; suppose ( a . x1 = TRUE & 'not' (c . x1) = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE hence (Ex ((a '&' b),PA,G)) . z = TRUE by A4, MARGREL1:11; ::_thesis: verum end; suppose ( a . x1 = TRUE & b . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then (a '&' b) . x1 = TRUE '&' TRUE by MARGREL1:def_20 .= TRUE ; then (B_SUP ((a '&' b),(CompF (PA,G)))) . z = TRUE by A3, BVFUNC_1:def_17; hence (Ex ((a '&' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:39 for Y being non empty set for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (All ((c 'imp' ('not' a)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (All ((c 'imp' ('not' a)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (All ((c 'imp' ('not' a)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let b, c, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds (All ((b 'imp' c),PA,G)) '&' (All ((c 'imp' ('not' a)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let PA be a_partition of Y; ::_thesis: (All ((b 'imp' c),PA,G)) '&' (All ((c 'imp' ('not' a)),PA,G)) '<' All ((a 'imp' ('not' b)),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((All ((b 'imp' c),PA,G)) '&' (All ((c 'imp' ('not' a)),PA,G))) . z = TRUE or (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE ) assume ((All ((b 'imp' c),PA,G)) '&' (All ((c 'imp' ('not' a)),PA,G))) . z = TRUE ; ::_thesis: (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE then A1: ((All ((b 'imp' c),PA,G)) . z) '&' ((All ((c 'imp' ('not' a)),PA,G)) . z) = TRUE by MARGREL1:def_20; A2: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (b_'imp'_c)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (b 'imp' c) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((b 'imp' c),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((b 'imp' c),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; A3: now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (c_'imp'_('not'_a))_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (c 'imp' ('not' a)) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((c 'imp' ('not' a)),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((c 'imp' ('not' a)),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; for x being Element of Y st x in EqClass (z,(CompF (PA,G))) holds (a 'imp' ('not' b)) . x = TRUE proof let x be Element of Y; ::_thesis: ( x in EqClass (z,(CompF (PA,G))) implies (a 'imp' ('not' b)) . x = TRUE ) A4: ( 'not' (c . x) = TRUE or 'not' (c . x) = FALSE ) by XBOOLEAN:def_3; A5: ( 'not' (b . x) = TRUE or 'not' (b . x) = FALSE ) by XBOOLEAN:def_3; assume A6: x in EqClass (z,(CompF (PA,G))) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then (c 'imp' ('not' a)) . x = TRUE by A3; then A7: ('not' (c . x)) 'or' (('not' a) . x) = TRUE by BVFUNC_1:def_8; (b 'imp' c) . x = TRUE by A2, A6; then A8: ('not' (b . x)) 'or' (c . x) = TRUE by BVFUNC_1:def_8; percases ( ( 'not' (c . x) = TRUE & 'not' (b . x) = TRUE ) or ( 'not' (c . x) = TRUE & c . x = TRUE ) or ( ('not' a) . x = TRUE & 'not' (b . x) = TRUE ) or ( ('not' a) . x = TRUE & c . x = TRUE ) ) by A7, A4, A8, A5, BINARITH:3; suppose ( 'not' (c . x) = TRUE & 'not' (b . x) = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then ('not' b) . x = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = ('not' (a . x)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( 'not' (c . x) = TRUE & c . x = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE hence (a 'imp' ('not' b)) . x = TRUE by MARGREL1:11; ::_thesis: verum end; suppose ( ('not' a) . x = TRUE & 'not' (b . x) = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then ('not' b) . x = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = ('not' (a . x)) 'or' TRUE by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; suppose ( ('not' a) . x = TRUE & c . x = TRUE ) ; ::_thesis: (a 'imp' ('not' b)) . x = TRUE then 'not' (a . x) = TRUE by MARGREL1:def_19; hence (a 'imp' ('not' b)) . x = TRUE 'or' (('not' b) . x) by BVFUNC_1:def_8 .= TRUE by BINARITH:10 ; ::_thesis: verum end; end; end; then (B_INF ((a 'imp' ('not' b)),(CompF (PA,G)))) . z = TRUE by BVFUNC_1:def_16; hence (All ((a 'imp' ('not' b)),PA,G)) . z = TRUE by BVFUNC_2:def_9; ::_thesis: verum end; theorem :: BVFUNC_3:40 for Y being non empty set for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (b,PA,G)) '&' (All ((b 'imp' c),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (b,PA,G)) '&' (All ((b 'imp' c),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for b, c, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (b,PA,G)) '&' (All ((b 'imp' c),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) let b, c, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds ((Ex (b,PA,G)) '&' (All ((b 'imp' c),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) let PA be a_partition of Y; ::_thesis: ((Ex (b,PA,G)) '&' (All ((b 'imp' c),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' b),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (((Ex (b,PA,G)) '&' (All ((b 'imp' c),PA,G))) '&' (All ((c 'imp' a),PA,G))) . z = TRUE or (Ex ((a '&' b),PA,G)) . z = TRUE ) assume (((Ex (b,PA,G)) '&' (All ((b 'imp' c),PA,G))) '&' (All ((c 'imp' a),PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then A1: (((Ex (b,PA,G)) '&' (All ((b 'imp' c),PA,G))) . z) '&' ((All ((c 'imp' a),PA,G)) . z) = TRUE by MARGREL1:def_20; then (((Ex (b,PA,G)) . z) '&' ((All ((b 'imp' c),PA,G)) . z)) '&' ((All ((c 'imp' a),PA,G)) . z) = TRUE by MARGREL1:def_20; then A2: ((Ex (b,PA,G)) . z) '&' ((All ((b 'imp' c),PA,G)) . z) = TRUE by MARGREL1:12; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_b_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not b . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (b,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex (b,PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A2, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A3: x1 in EqClass (z,(CompF (PA,G))) and A4: b . x1 = TRUE ; A5: ( 'not' (c . x1) = TRUE or 'not' (c . x1) = FALSE ) by XBOOLEAN:def_3; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (c_'imp'_a)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (c 'imp' a) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((c 'imp' a),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((c 'imp' a),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then (c 'imp' a) . x1 = TRUE by A3; then A6: ('not' (c . x1)) 'or' (a . x1) = TRUE by BVFUNC_1:def_8; A7: ( 'not' (b . x1) = TRUE or 'not' (b . x1) = FALSE ) by XBOOLEAN:def_3; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (b_'imp'_c)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (b 'imp' c) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((b 'imp' c),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((b 'imp' c),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A2, MARGREL1:12; ::_thesis: verum end; then (b 'imp' c) . x1 = TRUE by A3; then A8: ('not' (b . x1)) 'or' (c . x1) = TRUE by BVFUNC_1:def_8; percases ( ( 'not' (c . x1) = TRUE & 'not' (b . x1) = TRUE ) or ( 'not' (c . x1) = TRUE & c . x1 = TRUE ) or ( a . x1 = TRUE & 'not' (b . x1) = TRUE ) or ( a . x1 = TRUE & c . x1 = TRUE ) ) by A6, A5, A8, A7, BINARITH:3; suppose ( 'not' (c . x1) = TRUE & 'not' (b . x1) = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE hence (Ex ((a '&' b),PA,G)) . z = TRUE by A4, MARGREL1:11; ::_thesis: verum end; suppose ( 'not' (c . x1) = TRUE & c . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE hence (Ex ((a '&' b),PA,G)) . z = TRUE by MARGREL1:11; ::_thesis: verum end; suppose ( a . x1 = TRUE & 'not' (b . x1) = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE hence (Ex ((a '&' b),PA,G)) . z = TRUE by A4, MARGREL1:11; ::_thesis: verum end; suppose ( a . x1 = TRUE & c . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' b),PA,G)) . z = TRUE then (a '&' b) . x1 = TRUE '&' TRUE by A4, MARGREL1:def_20 .= TRUE ; then (B_SUP ((a '&' b),(CompF (PA,G)))) . z = TRUE by A3, BVFUNC_1:def_17; hence (Ex ((a '&' b),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; end; end; theorem :: BVFUNC_3:41 for Y being non empty set for G being Subset of (PARTITIONS Y) for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (c,PA,G)) '&' (All ((b 'imp' ('not' c)),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) proof let Y be non empty set ; ::_thesis: for G being Subset of (PARTITIONS Y) for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (c,PA,G)) '&' (All ((b 'imp' ('not' c)),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let G be Subset of (PARTITIONS Y); ::_thesis: for c, b, a being Function of Y,BOOLEAN for PA being a_partition of Y holds ((Ex (c,PA,G)) '&' (All ((b 'imp' ('not' c)),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let c, b, a be Function of Y,BOOLEAN; ::_thesis: for PA being a_partition of Y holds ((Ex (c,PA,G)) '&' (All ((b 'imp' ('not' c)),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let PA be a_partition of Y; ::_thesis: ((Ex (c,PA,G)) '&' (All ((b 'imp' ('not' c)),PA,G))) '&' (All ((c 'imp' a),PA,G)) '<' Ex ((a '&' ('not' b)),PA,G) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (((Ex (c,PA,G)) '&' (All ((b 'imp' ('not' c)),PA,G))) '&' (All ((c 'imp' a),PA,G))) . z = TRUE or (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE ) assume (((Ex (c,PA,G)) '&' (All ((b 'imp' ('not' c)),PA,G))) '&' (All ((c 'imp' a),PA,G))) . z = TRUE ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE then A1: (((Ex (c,PA,G)) '&' (All ((b 'imp' ('not' c)),PA,G))) . z) '&' ((All ((c 'imp' a),PA,G)) . z) = TRUE by MARGREL1:def_20; then (((Ex (c,PA,G)) . z) '&' ((All ((b 'imp' ('not' c)),PA,G)) . z)) '&' ((All ((c 'imp' a),PA,G)) . z) = TRUE by MARGREL1:def_20; then A2: ((Ex (c,PA,G)) . z) '&' ((All ((b 'imp' ('not' c)),PA,G)) . z) = TRUE by MARGREL1:12; now__::_thesis:_ex_x_being_Element_of_Y_st_ (_x_in_EqClass_(z,(CompF_(PA,G)))_&_c_._x_=_TRUE_) assume for x being Element of Y holds ( not x in EqClass (z,(CompF (PA,G))) or not c . x = TRUE ) ; ::_thesis: contradiction then (B_SUP (c,(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_17; then (Ex (c,PA,G)) . z = FALSE by BVFUNC_2:def_10; hence contradiction by A2, MARGREL1:12; ::_thesis: verum end; then consider x1 being Element of Y such that A3: x1 in EqClass (z,(CompF (PA,G))) and A4: c . x1 = TRUE ; A5: ( 'not' (c . x1) = TRUE or 'not' (c . x1) = FALSE ) by XBOOLEAN:def_3; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (c_'imp'_a)_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (c 'imp' a) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((c 'imp' a),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((c 'imp' a),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A1, MARGREL1:12; ::_thesis: verum end; then (c 'imp' a) . x1 = TRUE by A3; then A6: ('not' (c . x1)) 'or' (a . x1) = TRUE by BVFUNC_1:def_8; A7: ( 'not' (b . x1) = TRUE or 'not' (b . x1) = FALSE ) by XBOOLEAN:def_3; now__::_thesis:_for_x_being_Element_of_Y_st_x_in_EqClass_(z,(CompF_(PA,G)))_holds_ (b_'imp'_('not'_c))_._x_=_TRUE assume ex x being Element of Y st ( x in EqClass (z,(CompF (PA,G))) & not (b 'imp' ('not' c)) . x = TRUE ) ; ::_thesis: contradiction then (B_INF ((b 'imp' ('not' c)),(CompF (PA,G)))) . z = FALSE by BVFUNC_1:def_16; then (All ((b 'imp' ('not' c)),PA,G)) . z = FALSE by BVFUNC_2:def_9; hence contradiction by A2, MARGREL1:12; ::_thesis: verum end; then (b 'imp' ('not' c)) . x1 = TRUE by A3; then A8: ('not' (b . x1)) 'or' (('not' c) . x1) = TRUE by BVFUNC_1:def_8; percases ( ( 'not' (c . x1) = TRUE & 'not' (b . x1) = TRUE ) or ( 'not' (c . x1) = TRUE & ('not' c) . x1 = TRUE ) or ( a . x1 = TRUE & 'not' (b . x1) = TRUE ) or ( a . x1 = TRUE & ('not' c) . x1 = TRUE ) ) by A6, A5, A8, A7, BINARITH:3; suppose ( 'not' (c . x1) = TRUE & 'not' (b . x1) = TRUE ) ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE hence (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE by A4, MARGREL1:11; ::_thesis: verum end; suppose ( 'not' (c . x1) = TRUE & ('not' c) . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE hence (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE by A4, MARGREL1:11; ::_thesis: verum end; supposeA9: ( a . x1 = TRUE & 'not' (b . x1) = TRUE ) ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE (a '&' ('not' b)) . x1 = (a . x1) '&' (('not' b) . x1) by MARGREL1:def_20 .= TRUE '&' TRUE by A9, MARGREL1:def_19 .= TRUE ; then (B_SUP ((a '&' ('not' b)),(CompF (PA,G)))) . z = TRUE by A3, BVFUNC_1:def_17; hence (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE by BVFUNC_2:def_10; ::_thesis: verum end; suppose ( a . x1 = TRUE & ('not' c) . x1 = TRUE ) ; ::_thesis: (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE then 'not' (c . x1) = TRUE by MARGREL1:def_19; hence (Ex ((a '&' ('not' b)),PA,G)) . z = TRUE by A4, MARGREL1:11; ::_thesis: verum end; end; end;