:: BVFUNC_9 semantic presentation begin Lm1: for Y being non empty set for a, b being Function of Y,BOOLEAN holds a '&' b '<' a proof let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN holds a '&' b '<' a let a, b be Function of Y,BOOLEAN; ::_thesis: a '&' b '<' a let x be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a '&' b) . x = TRUE or a . x = TRUE ) assume (a '&' b) . x = TRUE ; ::_thesis: a . x = TRUE then (a . x) '&' (b . x) = TRUE by MARGREL1:def_20; hence a . x = TRUE by MARGREL1:12; ::_thesis: verum end; Lm2: for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ( (a '&' b) '&' c '<' a & (a '&' b) '&' c '<' b ) proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds ( (a '&' b) '&' c '<' a & (a '&' b) '&' c '<' b ) let a, b, c be Function of Y,BOOLEAN; ::_thesis: ( (a '&' b) '&' c '<' a & (a '&' b) '&' c '<' b ) ( (a '&' b) '&' c = (c '&' b) '&' a & ((c '&' b) '&' a) 'imp' a = I_el Y ) by BVFUNC_1:4, BVFUNC_6:38; hence (a '&' b) '&' c '<' a by BVFUNC_1:16; ::_thesis: (a '&' b) '&' c '<' b ( (a '&' b) '&' c = (a '&' c) '&' b & ((a '&' c) '&' b) 'imp' b = I_el Y ) by BVFUNC_1:4, BVFUNC_6:38; hence (a '&' b) '&' c '<' b by BVFUNC_1:16; ::_thesis: verum end; Lm3: for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN holds ( ((a '&' b) '&' c) '&' d '<' a & ((a '&' b) '&' c) '&' d '<' b ) proof let Y be non empty set ; ::_thesis: for a, b, c, d being Function of Y,BOOLEAN holds ( ((a '&' b) '&' c) '&' d '<' a & ((a '&' b) '&' c) '&' d '<' b ) let a, b, c, d be Function of Y,BOOLEAN; ::_thesis: ( ((a '&' b) '&' c) '&' d '<' a & ((a '&' b) '&' c) '&' d '<' b ) A1: (((d '&' c) '&' b) '&' a) 'imp' a = I_el Y by BVFUNC_6:38; ((a '&' b) '&' c) '&' d = (d '&' c) '&' (b '&' a) by BVFUNC_1:4 .= ((d '&' c) '&' b) '&' a by BVFUNC_1:4 ; hence ((a '&' b) '&' c) '&' d '<' a by A1, BVFUNC_1:16; ::_thesis: ((a '&' b) '&' c) '&' d '<' b A2: (((a '&' c) '&' d) '&' b) 'imp' b = I_el Y by BVFUNC_6:38; ((a '&' b) '&' c) '&' d = ((a '&' c) '&' b) '&' d by BVFUNC_1:4 .= ((a '&' c) '&' d) '&' b by BVFUNC_1:4 ; hence ((a '&' b) '&' c) '&' d '<' b by A2, BVFUNC_1:16; ::_thesis: verum end; Lm4: for Y being non empty set for a, b, c, d, e being Function of Y,BOOLEAN holds ( (((a '&' b) '&' c) '&' d) '&' e '<' a & (((a '&' b) '&' c) '&' d) '&' e '<' b ) proof let Y be non empty set ; ::_thesis: for a, b, c, d, e being Function of Y,BOOLEAN holds ( (((a '&' b) '&' c) '&' d) '&' e '<' a & (((a '&' b) '&' c) '&' d) '&' e '<' b ) let a, b, c, d, e be Function of Y,BOOLEAN; ::_thesis: ( (((a '&' b) '&' c) '&' d) '&' e '<' a & (((a '&' b) '&' c) '&' d) '&' e '<' b ) A1: ((((e '&' d) '&' c) '&' b) '&' a) 'imp' a = I_el Y by BVFUNC_6:38; (((a '&' b) '&' c) '&' d) '&' e = (e '&' d) '&' (c '&' (b '&' a)) by BVFUNC_1:4 .= ((e '&' d) '&' c) '&' (b '&' a) by BVFUNC_1:4 .= (((e '&' d) '&' c) '&' b) '&' a by BVFUNC_1:4 ; hence (((a '&' b) '&' c) '&' d) '&' e '<' a by A1, BVFUNC_1:16; ::_thesis: (((a '&' b) '&' c) '&' d) '&' e '<' b A2: ((((a '&' c) '&' d) '&' e) '&' b) 'imp' b = I_el Y by BVFUNC_6:38; (((a '&' b) '&' c) '&' d) '&' e = (((a '&' c) '&' b) '&' d) '&' e by BVFUNC_1:4 .= (((a '&' c) '&' d) '&' b) '&' e by BVFUNC_1:4 .= (((a '&' c) '&' d) '&' e) '&' b by BVFUNC_1:4 ; hence (((a '&' b) '&' c) '&' d) '&' e '<' b by A2, BVFUNC_1:16; ::_thesis: verum end; Lm5: for Y being non empty set for a, b, c, d, e, f being Function of Y,BOOLEAN holds ( ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' a & ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' b ) proof let Y be non empty set ; ::_thesis: for a, b, c, d, e, f being Function of Y,BOOLEAN holds ( ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' a & ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' b ) let a, b, c, d, e, f be Function of Y,BOOLEAN; ::_thesis: ( ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' a & ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' b ) A1: (((((f '&' e) '&' d) '&' c) '&' b) '&' a) 'imp' a = I_el Y by BVFUNC_6:38; ((((a '&' b) '&' c) '&' d) '&' e) '&' f = (f '&' e) '&' (d '&' (c '&' (b '&' a))) by BVFUNC_1:4 .= ((f '&' e) '&' d) '&' (c '&' (b '&' a)) by BVFUNC_1:4 .= (((f '&' e) '&' d) '&' c) '&' (b '&' a) by BVFUNC_1:4 .= ((((f '&' e) '&' d) '&' c) '&' b) '&' a by BVFUNC_1:4 ; hence ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' a by A1, BVFUNC_1:16; ::_thesis: ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' b A2: (((((f '&' e) '&' d) '&' c) '&' a) '&' b) 'imp' b = I_el Y by BVFUNC_6:38; ((((a '&' b) '&' c) '&' d) '&' e) '&' f = (f '&' e) '&' (d '&' (c '&' (b '&' a))) by BVFUNC_1:4 .= ((f '&' e) '&' d) '&' (c '&' (b '&' a)) by BVFUNC_1:4 .= (((f '&' e) '&' d) '&' c) '&' (b '&' a) by BVFUNC_1:4 .= ((((f '&' e) '&' d) '&' c) '&' a) '&' b by BVFUNC_1:4 ; hence ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' b by A2, BVFUNC_1:16; ::_thesis: verum end; Lm6: for Y being non empty set for a, b, c, d, e, f, g being Function of Y,BOOLEAN holds ( (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' a & (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' b ) proof let Y be non empty set ; ::_thesis: for a, b, c, d, e, f, g being Function of Y,BOOLEAN holds ( (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' a & (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' b ) let a, b, c, d, e, f, g be Function of Y,BOOLEAN; ::_thesis: ( (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' a & (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' b ) A1: ((((((g '&' f) '&' e) '&' d) '&' c) '&' b) '&' a) 'imp' a = I_el Y by BVFUNC_6:38; (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g = (g '&' f) '&' (e '&' (d '&' (c '&' (b '&' a)))) by BVFUNC_1:4 .= ((g '&' f) '&' e) '&' (d '&' (c '&' (b '&' a))) by BVFUNC_1:4 .= (((g '&' f) '&' e) '&' d) '&' (c '&' (b '&' a)) by BVFUNC_1:4 .= ((((g '&' f) '&' e) '&' d) '&' c) '&' (b '&' a) by BVFUNC_1:4 .= (((((g '&' f) '&' e) '&' d) '&' c) '&' b) '&' a by BVFUNC_1:4 ; hence (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' a by A1, BVFUNC_1:16; ::_thesis: (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' b A2: ((((((a '&' g) '&' f) '&' e) '&' d) '&' c) '&' b) 'imp' b = I_el Y by BVFUNC_6:38; (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g = ((((a '&' (c '&' b)) '&' d) '&' e) '&' f) '&' g by BVFUNC_1:4 .= (((a '&' (d '&' (c '&' b))) '&' e) '&' f) '&' g by BVFUNC_1:4 .= ((a '&' (e '&' (d '&' (c '&' b)))) '&' f) '&' g by BVFUNC_1:4 .= (a '&' (f '&' (e '&' (d '&' (c '&' b))))) '&' g by BVFUNC_1:4 .= (a '&' g) '&' (f '&' (e '&' (d '&' (c '&' b)))) by BVFUNC_1:4 .= ((a '&' g) '&' f) '&' (e '&' (d '&' (c '&' b))) by BVFUNC_1:4 .= (((a '&' g) '&' f) '&' e) '&' (d '&' (c '&' b)) by BVFUNC_1:4 .= ((((a '&' g) '&' f) '&' e) '&' d) '&' (c '&' b) by BVFUNC_1:4 .= (((((a '&' g) '&' f) '&' e) '&' d) '&' c) '&' b by BVFUNC_1:4 ; hence (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' b by A2, BVFUNC_1:16; ::_thesis: verum end; theorem Th1: :: BVFUNC_9:1 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'or' b) '&' (b 'imp' c) '<' a 'or' c proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds (a 'or' b) '&' (b 'imp' c) '<' a 'or' c let a, b, c be Function of Y,BOOLEAN; ::_thesis: (a 'or' b) '&' (b 'imp' c) '<' a 'or' c let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'or' b) '&' (b 'imp' c)) . z = TRUE or (a 'or' c) . z = TRUE ) A1: ((a 'or' b) '&' (b 'imp' c)) . z = ((a 'or' b) . z) '&' ((b 'imp' c) . z) by MARGREL1:def_20 .= ((a 'or' b) . z) '&' ((('not' b) 'or' c) . z) by BVFUNC_4:8 .= ((a 'or' b) . z) '&' ((('not' b) . z) 'or' (c . z)) by BVFUNC_1:def_4 .= ((a . z) 'or' (b . z)) '&' ((('not' b) . z) 'or' (c . z)) by BVFUNC_1:def_4 ; assume A2: ((a 'or' b) '&' (b 'imp' c)) . z = TRUE ; ::_thesis: (a 'or' c) . z = TRUE now__::_thesis:_not_(a_'or'_c)_._z_<>_TRUE assume (a 'or' c) . z <> TRUE ; ::_thesis: contradiction then (a 'or' c) . z = FALSE by XBOOLEAN:def_3; then A3: (a . z) 'or' (c . z) = FALSE by BVFUNC_1:def_4; ( c . z = TRUE or c . z = FALSE ) by XBOOLEAN:def_3; then ((a . z) 'or' (b . z)) '&' ((('not' b) . z) 'or' (c . z)) = (b . z) '&' ('not' (b . z)) by A3, MARGREL1:def_19 .= FALSE by XBOOLEAN:138 ; hence contradiction by A2, A1; ::_thesis: verum end; hence (a 'or' c) . z = TRUE ; ::_thesis: verum end; theorem Th2: :: BVFUNC_9:2 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a '&' (a 'imp' b) '<' b proof let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN holds a '&' (a 'imp' b) '<' b let a, b be Function of Y,BOOLEAN; ::_thesis: a '&' (a 'imp' b) '<' b let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a '&' (a 'imp' b)) . z = TRUE or b . z = TRUE ) A1: (a '&' (a 'imp' b)) . z = (a . z) '&' ((a 'imp' b) . z) by MARGREL1:def_20 .= (a . z) '&' ((('not' a) 'or' b) . z) by BVFUNC_4:8 .= (a . z) '&' ((('not' a) . z) 'or' (b . z)) by BVFUNC_1:def_4 .= ((a . z) '&' (('not' a) . z)) 'or' ((a . z) '&' (b . z)) by XBOOLEAN:8 .= ((a . z) '&' ('not' (a . z))) 'or' ((a . z) '&' (b . z)) by MARGREL1:def_19 .= FALSE 'or' ((a . z) '&' (b . z)) by XBOOLEAN:138 .= (a . z) '&' (b . z) ; assume A2: (a '&' (a 'imp' b)) . z = TRUE ; ::_thesis: b . z = TRUE now__::_thesis:_not_b_._z_<>_TRUE assume b . z <> TRUE ; ::_thesis: contradiction then (a . z) '&' (b . z) = FALSE '&' (a . z) by XBOOLEAN:def_3 .= FALSE ; hence contradiction by A2, A1; ::_thesis: verum end; hence b . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:3 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) '&' ('not' b) '<' 'not' a proof let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN holds (a 'imp' b) '&' ('not' b) '<' 'not' a let a, b be Function of Y,BOOLEAN; ::_thesis: (a 'imp' b) '&' ('not' b) '<' 'not' a let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'imp' b) '&' ('not' b)) . z = TRUE or ('not' a) . z = TRUE ) reconsider bz = b . z as boolean set ; A1: ((a 'imp' b) '&' ('not' b)) . z = ((a 'imp' b) . z) '&' (('not' b) . z) by MARGREL1:def_20 .= ((('not' a) 'or' b) . z) '&' (('not' b) . z) by BVFUNC_4:8 .= (('not' b) . z) '&' ((('not' a) . z) 'or' (b . z)) by BVFUNC_1:def_4 .= ((('not' b) . z) '&' (('not' a) . z)) 'or' ((('not' b) . z) '&' (b . z)) by XBOOLEAN:8 .= ((('not' b) . z) '&' (('not' a) . z)) 'or' (('not' bz) '&' bz) by MARGREL1:def_19 .= ((('not' b) . z) '&' (('not' a) . z)) 'or' FALSE by XBOOLEAN:138 .= (('not' b) . z) '&' (('not' a) . z) ; assume A2: ((a 'imp' b) '&' ('not' b)) . z = TRUE ; ::_thesis: ('not' a) . z = TRUE now__::_thesis:_not_('not'_a)_._z_<>_TRUE assume ('not' a) . z <> TRUE ; ::_thesis: contradiction then (('not' b) . z) '&' (('not' a) . z) = FALSE '&' (('not' b) . z) by XBOOLEAN:def_3 .= FALSE ; hence contradiction by A2, A1; ::_thesis: verum end; hence ('not' a) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:4 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'or' b) '&' ('not' a) '<' b proof let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN holds (a 'or' b) '&' ('not' a) '<' b let a, b be Function of Y,BOOLEAN; ::_thesis: (a 'or' b) '&' ('not' a) '<' b let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'or' b) '&' ('not' a)) . z = TRUE or b . z = TRUE ) reconsider az = a . z as boolean set ; A1: ((a 'or' b) '&' ('not' a)) . z = ((a 'or' b) . z) '&' (('not' a) . z) by MARGREL1:def_20 .= (('not' a) . z) '&' ((a . z) 'or' (b . z)) by BVFUNC_1:def_4 .= ((('not' a) . z) '&' (a . z)) 'or' ((('not' a) . z) '&' (b . z)) by XBOOLEAN:8 .= (('not' az) '&' az) 'or' ((('not' a) . z) '&' (b . z)) by MARGREL1:def_19 .= FALSE 'or' ((('not' a) . z) '&' (b . z)) by XBOOLEAN:138 .= (('not' a) . z) '&' (b . z) ; assume A2: ((a 'or' b) '&' ('not' a)) . z = TRUE ; ::_thesis: b . z = TRUE now__::_thesis:_not_b_._z_<>_TRUE assume b . z <> TRUE ; ::_thesis: contradiction then (('not' a) . z) '&' (b . z) = FALSE '&' (('not' a) . z) by XBOOLEAN:def_3 .= FALSE ; hence contradiction by A2, A1; ::_thesis: verum end; hence b . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:5 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) '&' (('not' a) 'imp' b) '<' b proof let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN holds (a 'imp' b) '&' (('not' a) 'imp' b) '<' b let a, b be Function of Y,BOOLEAN; ::_thesis: (a 'imp' b) '&' (('not' a) 'imp' b) '<' b let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'imp' b) '&' (('not' a) 'imp' b)) . z = TRUE or b . z = TRUE ) reconsider az = a . z as boolean set ; A1: ((a 'imp' b) '&' (('not' a) 'imp' b)) . z = ((a 'imp' b) . z) '&' ((('not' a) 'imp' b) . z) by MARGREL1:def_20 .= ((('not' a) 'or' b) . z) '&' ((('not' a) 'imp' b) . z) by BVFUNC_4:8 .= ((('not' a) 'or' b) . z) '&' ((('not' ('not' a)) 'or' b) . z) by BVFUNC_4:8 .= ((('not' a) . z) 'or' (b . z)) '&' ((a 'or' b) . z) by BVFUNC_1:def_4 .= ((('not' a) . z) 'or' (b . z)) '&' ((a . z) 'or' (b . z)) by BVFUNC_1:def_4 ; assume A2: ((a 'imp' b) '&' (('not' a) 'imp' b)) . z = TRUE ; ::_thesis: b . z = TRUE now__::_thesis:_not_b_._z_<>_TRUE assume b . z <> TRUE ; ::_thesis: contradiction then b . z = FALSE by XBOOLEAN:def_3; then ((('not' a) . z) 'or' (b . z)) '&' ((a . z) 'or' (b . z)) = ('not' az) '&' az by MARGREL1:def_19 .= FALSE by XBOOLEAN:138 ; hence contradiction by A2, A1; ::_thesis: verum end; hence b . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:6 for Y being non empty set for a, b being Function of Y,BOOLEAN holds (a 'imp' b) '&' (a 'imp' ('not' b)) '<' 'not' a proof let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN holds (a 'imp' b) '&' (a 'imp' ('not' b)) '<' 'not' a let a, b be Function of Y,BOOLEAN; ::_thesis: (a 'imp' b) '&' (a 'imp' ('not' b)) '<' 'not' a let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'imp' b) '&' (a 'imp' ('not' b))) . z = TRUE or ('not' a) . z = TRUE ) A1: ((a 'imp' b) '&' (a 'imp' ('not' b))) . z = ((a 'imp' b) . z) '&' ((a 'imp' ('not' b)) . z) by MARGREL1:def_20 .= ((('not' a) 'or' b) . z) '&' ((a 'imp' ('not' b)) . z) by BVFUNC_4:8 .= ((('not' a) 'or' b) . z) '&' ((('not' a) 'or' ('not' b)) . z) by BVFUNC_4:8 .= ((('not' a) . z) 'or' (b . z)) '&' ((('not' a) 'or' ('not' b)) . z) by BVFUNC_1:def_4 .= ((('not' a) . z) 'or' (b . z)) '&' ((('not' a) . z) 'or' (('not' b) . z)) by BVFUNC_1:def_4 ; assume A2: ((a 'imp' b) '&' (a 'imp' ('not' b))) . z = TRUE ; ::_thesis: ('not' a) . z = TRUE now__::_thesis:_not_('not'_a)_._z_<>_TRUE assume ('not' a) . z <> TRUE ; ::_thesis: contradiction then ('not' a) . z = FALSE by XBOOLEAN:def_3; then ((('not' a) . z) 'or' (b . z)) '&' ((('not' a) . z) 'or' (('not' b) . z)) = (b . z) '&' ('not' (b . z)) by MARGREL1:def_19 .= FALSE by XBOOLEAN:138 ; hence contradiction by A2, A1; ::_thesis: verum end; hence ('not' a) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:7 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'imp' (b '&' c) '<' a 'imp' b proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds a 'imp' (b '&' c) '<' a 'imp' b let a, b, c be Function of Y,BOOLEAN; ::_thesis: a 'imp' (b '&' c) '<' a 'imp' b let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'imp' (b '&' c)) . z = TRUE or (a 'imp' b) . z = TRUE ) A1: (a 'imp' (b '&' c)) . z = (('not' a) 'or' (b '&' c)) . z by BVFUNC_4:8 .= (('not' a) . z) 'or' ((b '&' c) . z) by BVFUNC_1:def_4 .= (('not' a) . z) 'or' ((b . z) '&' (c . z)) by MARGREL1:def_20 ; assume A2: (a 'imp' (b '&' c)) . z = TRUE ; ::_thesis: (a 'imp' b) . z = TRUE now__::_thesis:_not_(a_'imp'_b)_._z_<>_TRUE assume (a 'imp' b) . z <> TRUE ; ::_thesis: contradiction then (a 'imp' b) . z = FALSE by XBOOLEAN:def_3; then (('not' a) 'or' b) . z = FALSE by BVFUNC_4:8; then A3: (('not' a) . z) 'or' (b . z) = FALSE by BVFUNC_1:def_4; (('not' a) . z) 'or' ((b . z) '&' (c . z)) = ((('not' a) . z) 'or' (b . z)) '&' ((('not' a) . z) 'or' (c . z)) by XBOOLEAN:9 .= FALSE by A3 ; hence contradiction by A2, A1; ::_thesis: verum end; hence (a 'imp' b) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:8 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'or' b) 'imp' c '<' a 'imp' c proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds (a 'or' b) 'imp' c '<' a 'imp' c let a, b, c be Function of Y,BOOLEAN; ::_thesis: (a 'or' b) 'imp' c '<' a 'imp' c let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'or' b) 'imp' c) . z = TRUE or (a 'imp' c) . z = TRUE ) A1: ((a 'or' b) 'imp' c) . z = (('not' (a 'or' b)) 'or' c) . z by BVFUNC_4:8 .= ((('not' a) '&' ('not' b)) 'or' c) . z by BVFUNC_1:13 .= ((('not' a) '&' ('not' b)) . z) 'or' (c . z) by BVFUNC_1:def_4 .= ((('not' a) . z) '&' (('not' b) . z)) 'or' (c . z) by MARGREL1:def_20 ; assume A2: ((a 'or' b) 'imp' c) . z = TRUE ; ::_thesis: (a 'imp' c) . z = TRUE now__::_thesis:_not_(a_'imp'_c)_._z_<>_TRUE assume (a 'imp' c) . z <> TRUE ; ::_thesis: contradiction then (a 'imp' c) . z = FALSE by XBOOLEAN:def_3; then (('not' a) 'or' c) . z = FALSE by BVFUNC_4:8; then A3: (('not' a) . z) 'or' (c . z) = FALSE by BVFUNC_1:def_4; ((('not' a) . z) '&' (('not' b) . z)) 'or' (c . z) = ((c . z) 'or' (('not' a) . z)) '&' ((c . z) 'or' (('not' b) . z)) by XBOOLEAN:9 .= FALSE by A3 ; hence contradiction by A2, A1; ::_thesis: verum end; hence (a 'imp' c) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:9 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'imp' b '<' (a '&' c) 'imp' b proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds a 'imp' b '<' (a '&' c) 'imp' b let a, b, c be Function of Y,BOOLEAN; ::_thesis: a 'imp' b '<' (a '&' c) 'imp' b let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'imp' b) . z = TRUE or ((a '&' c) 'imp' b) . z = TRUE ) A1: (a 'imp' b) . z = (('not' a) 'or' b) . z by BVFUNC_4:8 .= (('not' a) . z) 'or' (b . z) by BVFUNC_1:def_4 ; assume A2: (a 'imp' b) . z = TRUE ; ::_thesis: ((a '&' c) 'imp' b) . z = TRUE now__::_thesis:_not_((a_'&'_c)_'imp'_b)_._z_<>_TRUE assume ((a '&' c) 'imp' b) . z <> TRUE ; ::_thesis: contradiction then ((a '&' c) 'imp' b) . z = FALSE by XBOOLEAN:def_3; then (('not' (a '&' c)) 'or' b) . z = FALSE by BVFUNC_4:8; then (('not' (a '&' c)) . z) 'or' (b . z) = FALSE by BVFUNC_1:def_4; then ((('not' a) 'or' ('not' c)) . z) 'or' (b . z) = FALSE by BVFUNC_1:14; then ((('not' c) . z) 'or' (('not' a) . z)) 'or' (b . z) = FALSE by BVFUNC_1:def_4; then (('not' c) . z) 'or' ((('not' a) . z) 'or' (b . z)) = FALSE ; hence contradiction by A2, A1; ::_thesis: verum end; hence ((a '&' c) 'imp' b) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:10 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'imp' b '<' (a '&' c) 'imp' (b '&' c) proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds a 'imp' b '<' (a '&' c) 'imp' (b '&' c) let a, b, c be Function of Y,BOOLEAN; ::_thesis: a 'imp' b '<' (a '&' c) 'imp' (b '&' c) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'imp' b) . z = TRUE or ((a '&' c) 'imp' (b '&' c)) . z = TRUE ) A1: (a 'imp' b) . z = (('not' a) 'or' b) . z by BVFUNC_4:8 .= (('not' a) . z) 'or' (b . z) by BVFUNC_1:def_4 ; assume A2: (a 'imp' b) . z = TRUE ; ::_thesis: ((a '&' c) 'imp' (b '&' c)) . z = TRUE now__::_thesis:_not_((a_'&'_c)_'imp'_(b_'&'_c))_._z_<>_TRUE assume ((a '&' c) 'imp' (b '&' c)) . z <> TRUE ; ::_thesis: contradiction then ((a '&' c) 'imp' (b '&' c)) . z = FALSE by XBOOLEAN:def_3; then (('not' (a '&' c)) 'or' (b '&' c)) . z = FALSE by BVFUNC_4:8; then (('not' (a '&' c)) . z) 'or' ((b '&' c) . z) = FALSE by BVFUNC_1:def_4; then ((('not' a) 'or' ('not' c)) . z) 'or' ((b '&' c) . z) = FALSE by BVFUNC_1:14; then ((('not' c) . z) 'or' (('not' a) . z)) 'or' ((b '&' c) . z) = FALSE by BVFUNC_1:def_4; then (('not' c) . z) 'or' ((('not' a) . z) 'or' ((b '&' c) . z)) = FALSE ; then A3: (('not' c) . z) 'or' ((('not' a) . z) 'or' ((b . z) '&' (c . z))) = FALSE by MARGREL1:def_20; (('not' c) . z) 'or' (((('not' a) . z) 'or' (b . z)) '&' ((('not' a) . z) 'or' (c . z))) = ((('not' c) . z) 'or' (c . z)) 'or' (('not' a) . z) by A2, A1 .= (('not' (c . z)) 'or' (c . z)) 'or' (('not' a) . z) by MARGREL1:def_19 .= TRUE 'or' (('not' a) . z) by XBOOLEAN:102 .= TRUE ; hence contradiction by A3, XBOOLEAN:9; ::_thesis: verum end; hence ((a '&' c) 'imp' (b '&' c)) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:11 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'imp' b '<' a 'imp' (b 'or' c) proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds a 'imp' b '<' a 'imp' (b 'or' c) let a, b, c be Function of Y,BOOLEAN; ::_thesis: a 'imp' b '<' a 'imp' (b 'or' c) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'imp' b) . z = TRUE or (a 'imp' (b 'or' c)) . z = TRUE ) A1: (a 'imp' b) . z = (('not' a) 'or' b) . z by BVFUNC_4:8 .= (('not' a) . z) 'or' (b . z) by BVFUNC_1:def_4 ; assume A2: (a 'imp' b) . z = TRUE ; ::_thesis: (a 'imp' (b 'or' c)) . z = TRUE now__::_thesis:_not_(a_'imp'_(b_'or'_c))_._z_<>_TRUE assume A3: (a 'imp' (b 'or' c)) . z <> TRUE ; ::_thesis: contradiction (a 'imp' (b 'or' c)) . z = (('not' a) 'or' (b 'or' c)) . z by BVFUNC_4:8 .= (('not' a) . z) 'or' ((b 'or' c) . z) by BVFUNC_1:def_4 .= (('not' a) . z) 'or' ((b . z) 'or' (c . z)) by BVFUNC_1:def_4 .= ((('not' a) . z) 'or' (b . z)) 'or' (c . z) .= TRUE by A2, A1 ; hence contradiction by A3; ::_thesis: verum end; hence (a 'imp' (b 'or' c)) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:12 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds a 'imp' b '<' (a 'or' c) 'imp' (b 'or' c) proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds a 'imp' b '<' (a 'or' c) 'imp' (b 'or' c) let a, b, c be Function of Y,BOOLEAN; ::_thesis: a 'imp' b '<' (a 'or' c) 'imp' (b 'or' c) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not (a 'imp' b) . z = TRUE or ((a 'or' c) 'imp' (b 'or' c)) . z = TRUE ) A1: (a 'imp' b) . z = (('not' a) 'or' b) . z by BVFUNC_4:8 .= (('not' a) . z) 'or' (b . z) by BVFUNC_1:def_4 ; assume A2: (a 'imp' b) . z = TRUE ; ::_thesis: ((a 'or' c) 'imp' (b 'or' c)) . z = TRUE now__::_thesis:_not_((a_'or'_c)_'imp'_(b_'or'_c))_._z_<>_TRUE assume A3: ((a 'or' c) 'imp' (b 'or' c)) . z <> TRUE ; ::_thesis: contradiction ((a 'or' c) 'imp' (b 'or' c)) . z = (('not' (a 'or' c)) 'or' (b 'or' c)) . z by BVFUNC_4:8 .= (('not' (a 'or' c)) . z) 'or' ((b 'or' c) . z) by BVFUNC_1:def_4 .= (('not' (a 'or' c)) . z) 'or' ((b . z) 'or' (c . z)) by BVFUNC_1:def_4 .= ((('not' (a 'or' c)) . z) 'or' (b . z)) 'or' (c . z) .= (((('not' a) '&' ('not' c)) . z) 'or' (b . z)) 'or' (c . z) by BVFUNC_1:13 .= ((b . z) 'or' ((('not' a) . z) '&' (('not' c) . z))) 'or' (c . z) by MARGREL1:def_20 .= (((('not' a) . z) 'or' (b . z)) '&' ((b . z) 'or' (('not' c) . z))) 'or' (c . z) by XBOOLEAN:9 .= (b . z) 'or' ((('not' c) . z) 'or' (c . z)) by A2, A1 .= (b . z) 'or' (('not' (c . z)) 'or' (c . z)) by MARGREL1:def_19 .= (b . z) 'or' TRUE by XBOOLEAN:102 .= TRUE ; hence contradiction by A3; ::_thesis: verum end; hence ((a 'or' c) 'imp' (b 'or' c)) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:13 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a '&' b) 'or' c '<' a 'or' c proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds (a '&' b) 'or' c '<' a 'or' c let a, b, c be Function of Y,BOOLEAN; ::_thesis: (a '&' b) 'or' c '<' a 'or' c let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a '&' b) 'or' c) . z = TRUE or (a 'or' c) . z = TRUE ) A1: ((a '&' b) 'or' c) . z = ((a '&' b) . z) 'or' (c . z) by BVFUNC_1:def_4 .= ((a . z) '&' (b . z)) 'or' (c . z) by MARGREL1:def_20 ; assume A2: ((a '&' b) 'or' c) . z = TRUE ; ::_thesis: (a 'or' c) . z = TRUE now__::_thesis:_not_(a_'or'_c)_._z_<>_TRUE assume (a 'or' c) . z <> TRUE ; ::_thesis: contradiction then (a 'or' c) . z = FALSE by XBOOLEAN:def_3; then A3: (a . z) 'or' (c . z) = FALSE by BVFUNC_1:def_4; ((a . z) '&' (b . z)) 'or' (c . z) = ((c . z) 'or' (a . z)) '&' ((c . z) 'or' (b . z)) by XBOOLEAN:9 .= FALSE by A3 ; hence contradiction by A2, A1; ::_thesis: verum end; hence (a 'or' c) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:14 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN holds (a '&' b) 'or' (c '&' d) '<' a 'or' c proof let Y be non empty set ; ::_thesis: for a, b, c, d being Function of Y,BOOLEAN holds (a '&' b) 'or' (c '&' d) '<' a 'or' c let a, b, c, d be Function of Y,BOOLEAN; ::_thesis: (a '&' b) 'or' (c '&' d) '<' a 'or' c let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a '&' b) 'or' (c '&' d)) . z = TRUE or (a 'or' c) . z = TRUE ) A1: ((a '&' b) 'or' (c '&' d)) . z = ((a '&' b) . z) 'or' ((c '&' d) . z) by BVFUNC_1:def_4 .= ((a . z) '&' (b . z)) 'or' ((c '&' d) . z) by MARGREL1:def_20 .= ((a . z) '&' (b . z)) 'or' ((c . z) '&' (d . z)) by MARGREL1:def_20 ; assume A2: ((a '&' b) 'or' (c '&' d)) . z = TRUE ; ::_thesis: (a 'or' c) . z = TRUE now__::_thesis:_not_(a_'or'_c)_._z_<>_TRUE assume (a 'or' c) . z <> TRUE ; ::_thesis: contradiction then (a 'or' c) . z = FALSE by XBOOLEAN:def_3; then A3: (a . z) 'or' (c . z) = FALSE by BVFUNC_1:def_4; ((a . z) '&' (b . z)) 'or' ((c . z) '&' (d . z)) = ((c . z) 'or' ((a . z) '&' (b . z))) '&' (((a . z) '&' (b . z)) 'or' (d . z)) by XBOOLEAN:9 .= (((a . z) 'or' (c . z)) '&' ((c . z) 'or' (b . z))) '&' (((a . z) '&' (b . z)) 'or' (d . z)) by XBOOLEAN:9 .= FALSE by A3 ; hence contradiction by A2, A1; ::_thesis: verum end; hence (a 'or' c) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:15 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'or' b) '&' (b 'imp' c) '<' a 'or' c by Th1; theorem :: BVFUNC_9:16 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) '&' (('not' a) 'imp' c) '<' b 'or' c proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) '&' (('not' a) 'imp' c) '<' b 'or' c let a, b, c be Function of Y,BOOLEAN; ::_thesis: (a 'imp' b) '&' (('not' a) 'imp' c) '<' b 'or' c let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'imp' b) '&' (('not' a) 'imp' c)) . z = TRUE or (b 'or' c) . z = TRUE ) A1: ((a 'imp' b) '&' (('not' a) 'imp' c)) . z = ((('not' a) 'or' b) '&' (('not' a) 'imp' c)) . z by BVFUNC_4:8 .= ((('not' a) 'or' b) '&' (('not' ('not' a)) 'or' c)) . z by BVFUNC_4:8 .= ((('not' a) 'or' b) . z) '&' ((a 'or' c) . z) by MARGREL1:def_20 .= ((('not' a) . z) 'or' (b . z)) '&' ((a 'or' c) . z) by BVFUNC_1:def_4 .= ((('not' a) . z) 'or' (b . z)) '&' ((a . z) 'or' (c . z)) by BVFUNC_1:def_4 ; assume A2: ((a 'imp' b) '&' (('not' a) 'imp' c)) . z = TRUE ; ::_thesis: (b 'or' c) . z = TRUE now__::_thesis:_not_(b_'or'_c)_._z_<>_TRUE reconsider az = a . z as boolean set ; assume (b 'or' c) . z <> TRUE ; ::_thesis: contradiction then (b 'or' c) . z = FALSE by XBOOLEAN:def_3; then A3: (b . z) 'or' (c . z) = FALSE by BVFUNC_1:def_4; ( c . z = TRUE or c . z = FALSE ) by XBOOLEAN:def_3; then ((('not' a) . z) 'or' (b . z)) '&' ((a . z) 'or' (c . z)) = ('not' az) '&' az by A3, MARGREL1:def_19 .= FALSE by XBOOLEAN:138 ; hence contradiction by A2, A1; ::_thesis: verum end; hence (b 'or' c) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:17 for Y being non empty set for a, c, b being Function of Y,BOOLEAN holds (a 'imp' c) '&' (b 'imp' ('not' c)) '<' ('not' a) 'or' ('not' b) proof let Y be non empty set ; ::_thesis: for a, c, b being Function of Y,BOOLEAN holds (a 'imp' c) '&' (b 'imp' ('not' c)) '<' ('not' a) 'or' ('not' b) let a, c, b be Function of Y,BOOLEAN; ::_thesis: (a 'imp' c) '&' (b 'imp' ('not' c)) '<' ('not' a) 'or' ('not' b) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'imp' c) '&' (b 'imp' ('not' c))) . z = TRUE or (('not' a) 'or' ('not' b)) . z = TRUE ) A1: ((a 'imp' c) '&' (b 'imp' ('not' c))) . z = ((a 'imp' c) . z) '&' ((b 'imp' ('not' c)) . z) by MARGREL1:def_20 .= ((('not' a) 'or' c) . z) '&' ((b 'imp' ('not' c)) . z) by BVFUNC_4:8 .= ((('not' a) 'or' c) . z) '&' ((('not' b) 'or' ('not' c)) . z) by BVFUNC_4:8 .= ((('not' a) . z) 'or' (c . z)) '&' ((('not' b) 'or' ('not' c)) . z) by BVFUNC_1:def_4 .= ((('not' a) . z) 'or' (c . z)) '&' ((('not' b) . z) 'or' (('not' c) . z)) by BVFUNC_1:def_4 ; assume A2: ((a 'imp' c) '&' (b 'imp' ('not' c))) . z = TRUE ; ::_thesis: (('not' a) 'or' ('not' b)) . z = TRUE now__::_thesis:_not_(('not'_a)_'or'_('not'_b))_._z_<>_TRUE assume (('not' a) 'or' ('not' b)) . z <> TRUE ; ::_thesis: contradiction then (('not' a) 'or' ('not' b)) . z = FALSE by XBOOLEAN:def_3; then A3: (('not' a) . z) 'or' (('not' b) . z) = FALSE by BVFUNC_1:def_4; ( ('not' b) . z = TRUE or ('not' b) . z = FALSE ) by XBOOLEAN:def_3; then ((('not' a) . z) 'or' (c . z)) '&' ((('not' b) . z) 'or' (('not' c) . z)) = (c . z) '&' ('not' (c . z)) by A3, MARGREL1:def_19 .= FALSE by XBOOLEAN:138 ; hence contradiction by A2, A1; ::_thesis: verum end; hence (('not' a) 'or' ('not' b)) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:18 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'or' b) '&' (('not' a) 'or' c) '<' b 'or' c proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds (a 'or' b) '&' (('not' a) 'or' c) '<' b 'or' c let a, b, c be Function of Y,BOOLEAN; ::_thesis: (a 'or' b) '&' (('not' a) 'or' c) '<' b 'or' c let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'or' b) '&' (('not' a) 'or' c)) . z = TRUE or (b 'or' c) . z = TRUE ) A1: ((a 'or' b) '&' (('not' a) 'or' c)) . z = ((a 'or' b) . z) '&' ((('not' a) 'or' c) . z) by MARGREL1:def_20 .= ((a . z) 'or' (b . z)) '&' ((('not' a) 'or' c) . z) by BVFUNC_1:def_4 .= ((a . z) 'or' (b . z)) '&' ((('not' a) . z) 'or' (c . z)) by BVFUNC_1:def_4 ; assume A2: ((a 'or' b) '&' (('not' a) 'or' c)) . z = TRUE ; ::_thesis: (b 'or' c) . z = TRUE now__::_thesis:_not_(b_'or'_c)_._z_<>_TRUE assume (b 'or' c) . z <> TRUE ; ::_thesis: contradiction then (b 'or' c) . z = FALSE by XBOOLEAN:def_3; then A3: (b . z) 'or' (c . z) = FALSE by BVFUNC_1:def_4; ( c . z = TRUE or c . z = FALSE ) by XBOOLEAN:def_3; then ((a . z) 'or' (b . z)) '&' ((('not' a) . z) 'or' (c . z)) = (a . z) '&' ('not' (a . z)) by A3, MARGREL1:def_19 .= FALSE by XBOOLEAN:138 ; hence contradiction by A2, A1; ::_thesis: verum end; hence (b 'or' c) . z = TRUE ; ::_thesis: verum end; theorem Th19: :: BVFUNC_9:19 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN holds (a 'imp' b) '&' (c 'imp' d) '<' (a '&' c) 'imp' (b '&' d) proof let Y be non empty set ; ::_thesis: for a, b, c, d being Function of Y,BOOLEAN holds (a 'imp' b) '&' (c 'imp' d) '<' (a '&' c) 'imp' (b '&' d) let a, b, c, d be Function of Y,BOOLEAN; ::_thesis: (a 'imp' b) '&' (c 'imp' d) '<' (a '&' c) 'imp' (b '&' d) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'imp' b) '&' (c 'imp' d)) . z = TRUE or ((a '&' c) 'imp' (b '&' d)) . z = TRUE ) A1: ((a 'imp' b) '&' (c 'imp' d)) . z = ((a 'imp' b) . z) '&' ((c 'imp' d) . z) by MARGREL1:def_20 .= ((('not' a) 'or' b) . z) '&' ((c 'imp' d) . z) by BVFUNC_4:8 .= ((('not' a) 'or' b) . z) '&' ((('not' c) 'or' d) . z) by BVFUNC_4:8 .= ((('not' a) . z) 'or' (b . z)) '&' ((('not' c) 'or' d) . z) by BVFUNC_1:def_4 .= ((('not' a) . z) 'or' (b . z)) '&' ((('not' c) . z) 'or' (d . z)) by BVFUNC_1:def_4 ; assume A2: ((a 'imp' b) '&' (c 'imp' d)) . z = TRUE ; ::_thesis: ((a '&' c) 'imp' (b '&' d)) . z = TRUE now__::_thesis:_(_((a_'&'_c)_'imp'_(b_'&'_d))_._z_<>_TRUE_implies_((a_'&'_c)_'imp'_(b_'&'_d))_._z_=_TRUE_) A3: ( ('not' c) . z = TRUE or ('not' c) . z = FALSE ) by XBOOLEAN:def_3; A4: ( (('not' a) . z) 'or' (('not' c) . z) = TRUE or (('not' a) . z) 'or' (('not' c) . z) = FALSE ) by XBOOLEAN:def_3; A5: ( (b . z) '&' (d . z) = TRUE or (b . z) '&' (d . z) = FALSE ) by XBOOLEAN:def_3; A6: ((a '&' c) 'imp' (b '&' d)) . z = (('not' (a '&' c)) 'or' (b '&' d)) . z by BVFUNC_4:8 .= (('not' (a '&' c)) . z) 'or' ((b '&' d) . z) by BVFUNC_1:def_4 .= ((('not' a) 'or' ('not' c)) . z) 'or' ((b '&' d) . z) by BVFUNC_1:14 .= ((('not' a) . z) 'or' (('not' c) . z)) 'or' ((b '&' d) . z) by BVFUNC_1:def_4 .= ((('not' a) . z) 'or' (('not' c) . z)) 'or' ((b . z) '&' (d . z)) by MARGREL1:def_20 ; assume A7: ((a '&' c) 'imp' (b '&' d)) . z <> TRUE ; ::_thesis: ((a '&' c) 'imp' (b '&' d)) . z = TRUE now__::_thesis:_(_(_b_._z_=_FALSE_&_((a_'&'_c)_'imp'_(b_'&'_d))_._z_=_TRUE_)_or_(_d_._z_=_FALSE_&_((a_'&'_c)_'imp'_(b_'&'_d))_._z_=_TRUE_)_) percases ( b . z = FALSE or d . z = FALSE ) by A7, A6, A5, MARGREL1:12; case b . z = FALSE ; ::_thesis: ((a '&' c) 'imp' (b '&' d)) . z = TRUE thus ((a '&' c) 'imp' (b '&' d)) . z = TRUE by A2, A1, A6, A4, A3; ::_thesis: verum end; case d . z = FALSE ; ::_thesis: ((a '&' c) 'imp' (b '&' d)) . z = TRUE thus ((a '&' c) 'imp' (b '&' d)) . z = TRUE by A2, A1, A6, A4, A3; ::_thesis: verum end; end; end; hence ((a '&' c) 'imp' (b '&' d)) . z = TRUE ; ::_thesis: verum end; hence ((a '&' c) 'imp' (b '&' d)) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:20 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b '&' c) proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b '&' c) let a, b, c be Function of Y,BOOLEAN; ::_thesis: (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b '&' c) (a 'imp' b) '&' (a 'imp' c) '<' (a '&' a) 'imp' (b '&' c) by Th19; hence (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b '&' c) ; ::_thesis: verum end; theorem Th21: :: BVFUNC_9:21 for Y being non empty set for a, c, b being Function of Y,BOOLEAN holds (a 'imp' c) '&' (b 'imp' c) '<' (a 'or' b) 'imp' c proof let Y be non empty set ; ::_thesis: for a, c, b being Function of Y,BOOLEAN holds (a 'imp' c) '&' (b 'imp' c) '<' (a 'or' b) 'imp' c let a, c, b be Function of Y,BOOLEAN; ::_thesis: (a 'imp' c) '&' (b 'imp' c) '<' (a 'or' b) 'imp' c ((a 'imp' c) '&' (b 'imp' c)) 'imp' ((a 'or' b) 'imp' c) = I_el Y by BVFUNC_6:9; hence (a 'imp' c) '&' (b 'imp' c) '<' (a 'or' b) 'imp' c by BVFUNC_1:16; ::_thesis: verum end; theorem Th22: :: BVFUNC_9:22 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN holds (a 'imp' b) '&' (c 'imp' d) '<' (a 'or' c) 'imp' (b 'or' d) proof let Y be non empty set ; ::_thesis: for a, b, c, d being Function of Y,BOOLEAN holds (a 'imp' b) '&' (c 'imp' d) '<' (a 'or' c) 'imp' (b 'or' d) let a, b, c, d be Function of Y,BOOLEAN; ::_thesis: (a 'imp' b) '&' (c 'imp' d) '<' (a 'or' c) 'imp' (b 'or' d) let z be Element of Y; :: according to BVFUNC_1:def_12 ::_thesis: ( not ((a 'imp' b) '&' (c 'imp' d)) . z = TRUE or ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE ) A1: ((a 'imp' b) '&' (c 'imp' d)) . z = ((('not' a) 'or' b) '&' (c 'imp' d)) . z by BVFUNC_4:8 .= ((('not' a) 'or' b) '&' (('not' c) 'or' d)) . z by BVFUNC_4:8 .= ((('not' a) 'or' b) . z) '&' ((('not' c) 'or' d) . z) by MARGREL1:def_20 .= ((('not' a) . z) 'or' (b . z)) '&' ((('not' c) 'or' d) . z) by BVFUNC_1:def_4 .= ((('not' a) . z) 'or' (b . z)) '&' ((('not' c) . z) 'or' (d . z)) by BVFUNC_1:def_4 ; assume A2: ((a 'imp' b) '&' (c 'imp' d)) . z = TRUE ; ::_thesis: ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE now__::_thesis:_(_((a_'or'_c)_'imp'_(b_'or'_d))_._z_<>_TRUE_implies_((a_'or'_c)_'imp'_(b_'or'_d))_._z_=_TRUE_) A3: ( d . z = TRUE or d . z = FALSE ) by XBOOLEAN:def_3; A4: ( (b . z) 'or' (d . z) = TRUE or (b . z) 'or' (d . z) = FALSE ) by XBOOLEAN:def_3; A5: ( (('not' a) . z) '&' (('not' c) . z) = TRUE or (('not' a) . z) '&' (('not' c) . z) = FALSE ) by XBOOLEAN:def_3; A6: ((a 'or' c) 'imp' (b 'or' d)) . z = (('not' (a 'or' c)) 'or' (b 'or' d)) . z by BVFUNC_4:8 .= ((('not' a) '&' ('not' c)) 'or' (b 'or' d)) . z by BVFUNC_1:13 .= ((('not' a) '&' ('not' c)) . z) 'or' ((b 'or' d) . z) by BVFUNC_1:def_4 .= ((('not' a) . z) '&' (('not' c) . z)) 'or' ((b 'or' d) . z) by MARGREL1:def_20 .= ((('not' a) . z) '&' (('not' c) . z)) 'or' ((b . z) 'or' (d . z)) by BVFUNC_1:def_4 ; assume A7: ((a 'or' c) 'imp' (b 'or' d)) . z <> TRUE ; ::_thesis: ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE now__::_thesis:_(_(_('not'_a)_._z_=_FALSE_&_((a_'or'_c)_'imp'_(b_'or'_d))_._z_=_TRUE_)_or_(_('not'_c)_._z_=_FALSE_&_((a_'or'_c)_'imp'_(b_'or'_d))_._z_=_TRUE_)_) percases ( ('not' a) . z = FALSE or ('not' c) . z = FALSE ) by A7, A6, A5, MARGREL1:12; case ('not' a) . z = FALSE ; ::_thesis: ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE thus ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE by A2, A1, A6, A4, A3; ::_thesis: verum end; case ('not' c) . z = FALSE ; ::_thesis: ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE thus ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE by A2, A1, A6, A4, A3; ::_thesis: verum end; end; end; hence ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE ; ::_thesis: verum end; hence ((a 'or' c) 'imp' (b 'or' d)) . z = TRUE ; ::_thesis: verum end; theorem :: BVFUNC_9:23 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b 'or' c) proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN holds (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b 'or' c) let a, b, c be Function of Y,BOOLEAN; ::_thesis: (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b 'or' c) (a 'imp' b) '&' (a 'imp' c) '<' (a 'or' a) 'imp' (b 'or' c) by Th22; hence (a 'imp' b) '&' (a 'imp' c) '<' a 'imp' (b 'or' c) ; ::_thesis: verum end; theorem Th24: :: BVFUNC_9:24 for Y being non empty set for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds ((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2)) '<' a2 'imp' a1 proof let Y be non empty set ; ::_thesis: for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds ((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2)) '<' a2 'imp' a1 let a1, b1, c1, a2, b2, c2 be Function of Y,BOOLEAN; ::_thesis: ((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2)) '<' a2 'imp' a1 A1: ((((b1 'or' c1) 'imp' (b2 'or' c2)) '&' ((b2 'or' c2) 'imp' ('not' a2))) '&' ((b1 'or' c1) 'imp' ('not' a2))) 'imp' ((b1 'or' c1) 'imp' ('not' a2)) = I_el Y by BVFUNC_6:38; A2: (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' (c1 'imp' c2) = I_el Y by BVFUNC_1:16, Lm4; A3: ((b1 'imp' b2) '&' (c1 'imp' c2)) 'imp' ((b1 'or' c1) 'imp' (b2 'or' c2)) = I_el Y by BVFUNC_1:16, Th22; (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' (b1 'imp' b2) = I_el Y by BVFUNC_1:16, Lm4; then (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' ((b1 'imp' b2) '&' (c1 'imp' c2)) = I_el Y by A2, BVFUNC_6:18; then A4: (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' ((b1 'or' c1) 'imp' (b2 'or' c2)) = I_el Y by A3, BVFUNC_5:9; A5: (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' ('not' (a2 '&' c2)) = I_el Y by BVFUNC_1:16, Lm1; (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' ('not' (a2 '&' b2)) = I_el Y by BVFUNC_1:16, Lm2; then (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' (('not' (a2 '&' b2)) '&' ('not' (a2 '&' c2))) = I_el Y by A5, BVFUNC_6:18; then A6: (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' (((b1 'or' c1) 'imp' (b2 'or' c2)) '&' (('not' (a2 '&' b2)) '&' ('not' (a2 '&' c2)))) = I_el Y by A4, BVFUNC_6:18; ('not' (a2 '&' b2)) '&' ('not' (a2 '&' c2)) = (('not' a2) 'or' ('not' b2)) '&' ('not' (a2 '&' c2)) by BVFUNC_1:14 .= (('not' b2) 'or' ('not' a2)) '&' (('not' c2) 'or' ('not' a2)) by BVFUNC_1:14 .= (b2 'imp' ('not' a2)) '&' (('not' c2) 'or' ('not' a2)) by BVFUNC_4:8 .= (b2 'imp' ('not' a2)) '&' (c2 'imp' ('not' a2)) by BVFUNC_4:8 .= (b2 'or' c2) 'imp' ('not' a2) by BVFUNC_7:5 ; then (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' ((((b1 'or' c1) 'imp' (b2 'or' c2)) '&' ((b2 'or' c2) 'imp' ('not' a2))) '&' ((b1 'or' c1) 'imp' ('not' a2))) = I_el Y by A6, BVFUNC_7:12; then A7: (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' ((b1 'or' c1) 'imp' ('not' a2)) = I_el Y by A1, BVFUNC_5:9; ( ((a1 'or' b1) 'or' c1) '&' ((b1 'or' c1) 'imp' ('not' a2)) = (a1 'or' (b1 'or' c1)) '&' ((b1 'or' c1) 'imp' ('not' a2)) & (a1 'or' (b1 'or' c1)) '&' ((b1 'or' c1) 'imp' ('not' a2)) '<' a1 'or' ('not' a2) ) by Th1, BVFUNC_1:8; then A8: (((a1 'or' b1) 'or' c1) '&' ((b1 'or' c1) 'imp' ('not' a2))) 'imp' (a1 'or' ('not' a2)) = I_el Y by BVFUNC_1:16; (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' ((a1 'or' b1) 'or' c1) = I_el Y by BVFUNC_1:16, Lm3; then (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' (((a1 'or' b1) 'or' c1) '&' ((b1 'or' c1) 'imp' ('not' a2))) = I_el Y by A7, BVFUNC_6:18; then (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' (a1 'or' ('not' a2)) = I_el Y by A8, BVFUNC_5:9; then (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' (a2 'imp' a1) = I_el Y by BVFUNC_4:8; hence ((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2)) '<' a2 'imp' a1 by BVFUNC_1:16; ::_thesis: verum end; Lm8: for Y being non empty set for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y proof let Y be non empty set ; ::_thesis: for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y let a1, b1, c1, a2, b2, c2 be Function of Y,BOOLEAN; ::_thesis: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y A1: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ('not' (a2 '&' c2)) = I_el Y by Lm2, BVFUNC_1:16; ( (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (a1 'imp' a2) = I_el Y & (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (b1 'imp' b2) = I_el Y ) by Lm6, BVFUNC_1:16; then A2: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((a1 'imp' a2) '&' (b1 'imp' b2)) = I_el Y by BVFUNC_6:18; (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((a1 'or' b1) 'or' c1) = I_el Y by Lm4, BVFUNC_1:16; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) = I_el Y by A2, BVFUNC_6:18; then A3: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' c2))) = I_el Y by A1, BVFUNC_6:18; (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ('not' (b2 '&' c2)) = I_el Y by Lm1, BVFUNC_1:16; hence (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y by A3, BVFUNC_6:18; ::_thesis: verum end; Lm9: for Y being non empty set for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (b2 '&' a2))) '&' ('not' (b2 '&' c2))) = I_el Y proof let Y be non empty set ; ::_thesis: for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (b2 '&' a2))) '&' ('not' (b2 '&' c2))) = I_el Y let a1, b1, c1, a2, b2, c2 be Function of Y,BOOLEAN; ::_thesis: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (b2 '&' a2))) '&' ('not' (b2 '&' c2))) = I_el Y A1: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ('not' (a2 '&' b2)) = I_el Y by Lm3, BVFUNC_1:16; ( (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (a1 'imp' a2) = I_el Y & (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (c1 'imp' c2) = I_el Y ) by Lm5, Lm6, BVFUNC_1:16; then A2: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((a1 'imp' a2) '&' (c1 'imp' c2)) = I_el Y by BVFUNC_6:18; (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((a1 'or' b1) 'or' c1) = I_el Y by Lm4, BVFUNC_1:16; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) = I_el Y by A2, BVFUNC_6:18; then A3: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) = I_el Y by A1, BVFUNC_6:18; (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ('not' (b2 '&' c2)) = I_el Y by Lm1, BVFUNC_1:16; hence (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (b2 '&' a2))) '&' ('not' (b2 '&' c2))) = I_el Y by A3, BVFUNC_6:18; ::_thesis: verum end; Lm10: for Y being non empty set for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) = I_el Y proof let Y be non empty set ; ::_thesis: for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) = I_el Y let a1, b1, c1, a2, b2, c2 be Function of Y,BOOLEAN; ::_thesis: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) = I_el Y A1: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ('not' (a2 '&' b2)) = I_el Y by Lm3, BVFUNC_1:16; ( (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (b1 'imp' b2) = I_el Y & (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (c1 'imp' c2) = I_el Y ) by Lm5, Lm6, BVFUNC_1:16; then A2: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((b1 'imp' b2) '&' (c1 'imp' c2)) = I_el Y by BVFUNC_6:18; (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((a1 'or' b1) 'or' c1) = I_el Y by Lm4, BVFUNC_1:16; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) = I_el Y by A2, BVFUNC_6:18; then A3: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) = I_el Y by A1, BVFUNC_6:18; (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ('not' (a2 '&' c2)) = I_el Y by Lm2, BVFUNC_1:16; hence (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) = I_el Y by A3, BVFUNC_6:18; ::_thesis: verum end; theorem :: BVFUNC_9:25 for Y being non empty set for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds ((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) '<' ((a2 'imp' a1) '&' (b2 'imp' b1)) '&' (c2 'imp' c1) proof let Y be non empty set ; ::_thesis: for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds ((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) '<' ((a2 'imp' a1) '&' (b2 'imp' b1)) '&' (c2 'imp' c1) let a1, b1, c1, a2, b2, c2 be Function of Y,BOOLEAN; ::_thesis: ((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) '<' ((a2 'imp' a1) '&' (b2 'imp' b1)) '&' (c2 'imp' c1) A1: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) = I_el Y by Lm10; ( (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y & (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (b2 '&' a2))) '&' ('not' (b2 '&' c2))) = I_el Y ) by Lm8, Lm9; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) '&' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (b2 '&' a2))) '&' ('not' (b2 '&' c2)))) = I_el Y by BVFUNC_6:18; then A2: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) '&' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (b2 '&' c2)))) '&' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2)))) = I_el Y by A1, BVFUNC_6:18; A3: (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (b2 '&' c2))) 'imp' (b2 'imp' b1) = I_el Y by BVFUNC_1:16, Th24; (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) '&' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (b2 '&' c2)))) '&' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2)))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (b2 '&' c2))) = I_el Y by BVFUNC_1:16, Lm2; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (b2 '&' c2))) = I_el Y by A2, BVFUNC_5:9; then A4: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (b2 'imp' b1) = I_el Y by A3, BVFUNC_5:9; (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) 'imp' (a2 'imp' a1) = I_el Y by BVFUNC_1:16, Th24; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (a2 'imp' a1) = I_el Y by A1, BVFUNC_5:9; then A5: (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' ((a2 'imp' a1) '&' (b2 'imp' b1)) = I_el Y by A4, BVFUNC_6:18; ((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' c1) 'or' b1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2)) '<' c2 'imp' c1 by Th24; then ((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2)) '<' c2 'imp' c1 by BVFUNC_1:8; then A6: (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) 'imp' (c2 'imp' c1) = I_el Y by BVFUNC_1:16; (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) '&' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (b2 '&' c2)))) '&' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2)))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y by BVFUNC_1:16, Lm2; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y by A2, BVFUNC_5:9; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (c2 'imp' c1) = I_el Y by A6, BVFUNC_5:9; then (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((a2 'imp' a1) '&' (b2 'imp' b1)) '&' (c2 'imp' c1)) = I_el Y by A5, BVFUNC_6:18; hence ((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) '<' ((a2 'imp' a1) '&' (b2 'imp' b1)) '&' (c2 'imp' c1) by BVFUNC_1:16; ::_thesis: verum end; theorem Th26: :: BVFUNC_9:26 for Y being non empty set for a1, b1, a2, b2 being Function of Y,BOOLEAN holds (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) 'imp' ('not' (a1 '&' b1)) = I_el Y proof let Y be non empty set ; ::_thesis: for a1, b1, a2, b2 being Function of Y,BOOLEAN holds (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) 'imp' ('not' (a1 '&' b1)) = I_el Y let a1, b1, a2, b2 be Function of Y,BOOLEAN; ::_thesis: (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) 'imp' ('not' (a1 '&' b1)) = I_el Y for z being Element of Y st (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) . z = TRUE holds ('not' (a1 '&' b1)) . z = TRUE proof let z be Element of Y; ::_thesis: ( (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) . z = TRUE implies ('not' (a1 '&' b1)) . z = TRUE ) A1: (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) . z = (((a1 'imp' a2) '&' (b1 'imp' b2)) . z) '&' (('not' (a2 '&' b2)) . z) by MARGREL1:def_20 .= (((a1 'imp' a2) . z) '&' ((b1 'imp' b2) . z)) '&' (('not' (a2 '&' b2)) . z) by MARGREL1:def_20 .= (((('not' a1) 'or' a2) . z) '&' ((b1 'imp' b2) . z)) '&' (('not' (a2 '&' b2)) . z) by BVFUNC_4:8 .= (((('not' a1) 'or' a2) . z) '&' ((('not' b1) 'or' b2) . z)) '&' (('not' (a2 '&' b2)) . z) by BVFUNC_4:8 .= (((('not' a1) . z) 'or' (a2 . z)) '&' ((('not' b1) 'or' b2) . z)) '&' (('not' (a2 '&' b2)) . z) by BVFUNC_1:def_4 .= (((('not' a1) . z) 'or' (a2 . z)) '&' ((('not' b1) . z) 'or' (b2 . z))) '&' (('not' (a2 '&' b2)) . z) by BVFUNC_1:def_4 .= (((('not' a1) . z) 'or' (a2 . z)) '&' ((('not' b1) . z) 'or' (b2 . z))) '&' ((('not' a2) 'or' ('not' b2)) . z) by BVFUNC_1:14 .= (((('not' a1) . z) 'or' (a2 . z)) '&' ((('not' b1) . z) 'or' (b2 . z))) '&' ((('not' a2) . z) 'or' (('not' b2) . z)) by BVFUNC_1:def_4 ; assume A2: (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) . z = TRUE ; ::_thesis: ('not' (a1 '&' b1)) . z = TRUE now__::_thesis:_not_('not'_(a1_'&'_b1))_._z_<>_TRUE A3: ( ('not' b1) . z = TRUE or ('not' b1) . z = FALSE ) by XBOOLEAN:def_3; A4: ( ('not' a1) . z = TRUE or ('not' a1) . z = FALSE ) by XBOOLEAN:def_3; A5: ('not' (a1 '&' b1)) . z = (('not' a1) 'or' ('not' b1)) . z by BVFUNC_1:14 .= (('not' a1) . z) 'or' (('not' b1) . z) by BVFUNC_1:def_4 ; assume ('not' (a1 '&' b1)) . z <> TRUE ; ::_thesis: contradiction then (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) . z = (((b2 . z) '&' (a2 . z)) '&' (('not' a2) . z)) 'or' (((a2 . z) '&' (b2 . z)) '&' (('not' b2) . z)) by A1, A5, A4, A3, XBOOLEAN:8 .= ((b2 . z) '&' ((a2 . z) '&' (('not' a2) . z))) 'or' ((a2 . z) '&' ((b2 . z) '&' (('not' b2) . z))) .= ((b2 . z) '&' ((a2 . z) '&' ('not' (a2 . z)))) 'or' ((a2 . z) '&' ((b2 . z) '&' (('not' b2) . z))) by MARGREL1:def_19 .= ((b2 . z) '&' ((a2 . z) '&' ('not' (a2 . z)))) 'or' ((a2 . z) '&' ((b2 . z) '&' ('not' (b2 . z)))) by MARGREL1:def_19 .= ((b2 . z) '&' FALSE) 'or' ((a2 . z) '&' ((b2 . z) '&' ('not' (b2 . z)))) by XBOOLEAN:138 .= FALSE 'or' (FALSE '&' (a2 . z)) by XBOOLEAN:138 .= FALSE ; hence contradiction by A2; ::_thesis: verum end; hence ('not' (a1 '&' b1)) . z = TRUE ; ::_thesis: verum end; hence (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) 'imp' ('not' (a1 '&' b1)) = I_el Y by BVFUNC_1:16, BVFUNC_1:def_12; ::_thesis: verum end; theorem :: BVFUNC_9:27 for Y being non empty set for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) '<' (('not' (a1 '&' b1)) '&' ('not' (a1 '&' c1))) '&' ('not' (b1 '&' c1)) proof let Y be non empty set ; ::_thesis: for a1, b1, c1, a2, b2, c2 being Function of Y,BOOLEAN holds (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) '<' (('not' (a1 '&' b1)) '&' ('not' (a1 '&' c1))) '&' ('not' (b1 '&' c1)) let a1, b1, c1, a2, b2, c2 be Function of Y,BOOLEAN; ::_thesis: (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) '<' (('not' (a1 '&' b1)) '&' ('not' (a1 '&' c1))) '&' ('not' (b1 '&' c1)) A1: (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' ((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) = I_el Y by BVFUNC_6:38; A2: (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2))) 'imp' ('not' (a1 '&' c1)) = I_el Y by Th26; ((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) 'imp' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2))) = I_el Y by BVFUNC_6:38; then (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2))) = I_el Y by A1, BVFUNC_5:9; then A3: (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' ('not' (a1 '&' c1)) = I_el Y by A2, BVFUNC_5:9; A4: (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) 'imp' ('not' (a1 '&' b1)) = I_el Y by Th26; ( (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2))) = I_el Y & (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2))) 'imp' ('not' (b1 '&' c1)) = I_el Y ) by Th26, BVFUNC_6:38; then A5: (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' ('not' (b1 '&' c1)) = I_el Y by BVFUNC_5:9; ((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) 'imp' (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) = I_el Y by BVFUNC_6:38; then (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' (((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) = I_el Y by A1, BVFUNC_5:9; then (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' ('not' (a1 '&' b1)) = I_el Y by A4, BVFUNC_5:9; then (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' (('not' (a1 '&' b1)) '&' ('not' (a1 '&' c1))) = I_el Y by A3, BVFUNC_6:18; then A6: (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) 'imp' ((('not' (a1 '&' b1)) '&' ('not' (a1 '&' c1))) '&' ('not' (b1 '&' c1))) = I_el Y by A5, BVFUNC_6:18; (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) = ((((((a1 'imp' a2) '&' (a1 'imp' a2)) '&' ((b1 'imp' b2) '&' (b1 'imp' b2))) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) .= (((((((a1 'imp' a2) '&' (a1 'imp' a2)) '&' (b1 'imp' b2)) '&' (b1 'imp' b2)) '&' ((c1 'imp' c2) '&' (c1 'imp' c2))) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (a1 'imp' a2)) '&' (b1 'imp' b2)) '&' ((c1 'imp' c2) '&' (c1 'imp' c2))) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= ((((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (a1 'imp' a2)) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (a1 'imp' a2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2))) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2))) '&' (a1 'imp' a2)) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= ((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2))) '&' ((a1 'imp' a2) '&' (c1 'imp' c2))) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= ((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2))) '&' ((a1 'imp' a2) '&' (c1 'imp' c2))) '&' ('not' (a2 '&' c2))) '&' ('not' (a2 '&' b2))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' ('not' (a2 '&' b2))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((b1 'imp' b2) '&' (c1 'imp' c2))) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' ((b1 'imp' b2) '&' (c1 'imp' c2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' ('not' (b2 '&' c2)) by BVFUNC_1:4 .= (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' ((b1 'imp' b2) '&' (c1 'imp' c2))) '&' ('not' (b2 '&' c2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2))) by BVFUNC_1:4 .= ((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2)))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2))) by BVFUNC_1:4 .= ((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ('not' (a2 '&' b2))) '&' (((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' c2)))) '&' (((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ('not' (b2 '&' c2))) by BVFUNC_1:4 ; hence (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2)) '<' (('not' (a1 '&' b1)) '&' ('not' (a1 '&' c1))) '&' ('not' (b1 '&' c1)) by A6, BVFUNC_1:16; ::_thesis: verum end; theorem :: BVFUNC_9:28 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a '&' b '<' a by Lm1; theorem :: BVFUNC_9:29 for Y being non empty set for a, b, c being Function of Y,BOOLEAN holds ( (a '&' b) '&' c '<' a & (a '&' b) '&' c '<' b ) by Lm2; theorem :: BVFUNC_9:30 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN holds ( ((a '&' b) '&' c) '&' d '<' a & ((a '&' b) '&' c) '&' d '<' b ) by Lm3; theorem :: BVFUNC_9:31 for Y being non empty set for a, b, c, d, e being Function of Y,BOOLEAN holds ( (((a '&' b) '&' c) '&' d) '&' e '<' a & (((a '&' b) '&' c) '&' d) '&' e '<' b ) by Lm4; theorem :: BVFUNC_9:32 for Y being non empty set for a, b, c, d, e, f being Function of Y,BOOLEAN holds ( ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' a & ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' b ) by Lm5; theorem :: BVFUNC_9:33 for Y being non empty set for a, b, c, d, e, f, g being Function of Y,BOOLEAN holds ( (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' a & (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' b ) by Lm6; theorem Th34: :: BVFUNC_9:34 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN st a '<' b & c '<' d holds a '&' c '<' b '&' d proof let Y be non empty set ; ::_thesis: for a, b, c, d being Function of Y,BOOLEAN st a '<' b & c '<' d holds a '&' c '<' b '&' d let a, b, c, d be Function of Y,BOOLEAN; ::_thesis: ( a '<' b & c '<' d implies a '&' c '<' b '&' d ) assume ( a '<' b & c '<' d ) ; ::_thesis: a '&' c '<' b '&' d then ( a 'imp' b = I_el Y & c 'imp' d = I_el Y ) by BVFUNC_1:16; then (a '&' c) 'imp' (b '&' d) = I_el Y by BVFUNC_6:21; hence a '&' c '<' b '&' d by BVFUNC_1:16; ::_thesis: verum end; theorem :: BVFUNC_9:35 for Y being non empty set for a, b, c being Function of Y,BOOLEAN st a '&' b '<' c holds a '&' ('not' c) '<' 'not' b proof let Y be non empty set ; ::_thesis: for a, b, c being Function of Y,BOOLEAN st a '&' b '<' c holds a '&' ('not' c) '<' 'not' b let a, b, c be Function of Y,BOOLEAN; ::_thesis: ( a '&' b '<' c implies a '&' ('not' c) '<' 'not' b ) assume a '&' b '<' c ; ::_thesis: a '&' ('not' c) '<' 'not' b then I_el Y = (a '&' b) 'imp' c by BVFUNC_1:16 .= ('not' (a '&' b)) 'or' c by BVFUNC_4:8 .= (('not' a) 'or' ('not' b)) 'or' c by BVFUNC_1:14 .= (('not' a) 'or' ('not' ('not' c))) 'or' ('not' b) by BVFUNC_1:8 .= ('not' (a '&' ('not' c))) 'or' ('not' b) by BVFUNC_1:14 .= (a '&' ('not' c)) 'imp' ('not' b) by BVFUNC_4:8 ; hence a '&' ('not' c) '<' 'not' b by BVFUNC_1:16; ::_thesis: verum end; theorem :: BVFUNC_9:36 for Y being non empty set for a, c, b being Function of Y,BOOLEAN holds ((a 'imp' c) '&' (b 'imp' c)) '&' (a 'or' b) '<' c proof let Y be non empty set ; ::_thesis: for a, c, b being Function of Y,BOOLEAN holds ((a 'imp' c) '&' (b 'imp' c)) '&' (a 'or' b) '<' c let a, c, b be Function of Y,BOOLEAN; ::_thesis: ((a 'imp' c) '&' (b 'imp' c)) '&' (a 'or' b) '<' c set K1 = (a 'imp' c) '&' (b 'imp' c); (a 'imp' c) '&' (b 'imp' c) '<' (a 'or' b) 'imp' c by Th21; then A1: ((a 'imp' c) '&' (b 'imp' c)) '&' (a 'or' b) '<' ((a 'or' b) 'imp' c) '&' (a 'or' b) by Th34; ((a 'or' b) 'imp' c) '&' (a 'or' b) '<' c by Th2; hence ((a 'imp' c) '&' (b 'imp' c)) '&' (a 'or' b) '<' c by A1, BVFUNC_1:15; ::_thesis: verum end; theorem :: BVFUNC_9:37 for Y being non empty set for a, c, b being Function of Y,BOOLEAN holds ((a 'imp' c) 'or' (b 'imp' c)) '&' (a '&' b) '<' c proof let Y be non empty set ; ::_thesis: for a, c, b being Function of Y,BOOLEAN holds ((a 'imp' c) 'or' (b 'imp' c)) '&' (a '&' b) '<' c let a, c, b be Function of Y,BOOLEAN; ::_thesis: ((a 'imp' c) 'or' (b 'imp' c)) '&' (a '&' b) '<' c (a 'imp' c) 'or' (b 'imp' c) = (a '&' b) 'imp' c by BVFUNC_7:6; hence ((a 'imp' c) 'or' (b 'imp' c)) '&' (a '&' b) '<' c by Th2; ::_thesis: verum end; theorem :: BVFUNC_9:38 for Y being non empty set for a, b, c, d being Function of Y,BOOLEAN st a '<' b & c '<' d holds a 'or' c '<' b 'or' d proof let Y be non empty set ; ::_thesis: for a, b, c, d being Function of Y,BOOLEAN st a '<' b & c '<' d holds a 'or' c '<' b 'or' d let a, b, c, d be Function of Y,BOOLEAN; ::_thesis: ( a '<' b & c '<' d implies a 'or' c '<' b 'or' d ) assume ( a '<' b & c '<' d ) ; ::_thesis: a 'or' c '<' b 'or' d then ( a 'imp' b = I_el Y & c 'imp' d = I_el Y ) by BVFUNC_1:16; then (a 'or' c) 'imp' (b 'or' d) = I_el Y by BVFUNC_6:22; hence a 'or' c '<' b 'or' d by BVFUNC_1:16; ::_thesis: verum end; theorem Th39: :: BVFUNC_9:39 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a '<' a 'or' b proof let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN holds a '<' a 'or' b let a, b be Function of Y,BOOLEAN; ::_thesis: a '<' a 'or' b a 'imp' (a 'or' b) = I_el Y by BVFUNC_6:26; hence a '<' a 'or' b by BVFUNC_1:16; ::_thesis: verum end; theorem :: BVFUNC_9:40 for Y being non empty set for a, b being Function of Y,BOOLEAN holds a '&' b '<' a 'or' b proof let Y be non empty set ; ::_thesis: for a, b being Function of Y,BOOLEAN holds a '&' b '<' a 'or' b let a, b be Function of Y,BOOLEAN; ::_thesis: a '&' b '<' a 'or' b ( a '&' b '<' a & a '<' a 'or' b ) by Lm1, Th39; hence a '&' b '<' a 'or' b by BVFUNC_1:15; ::_thesis: verum end;