:: COMPLFLD semantic presentation begin definition func F_Complex -> strict doubleLoopStr means :Def1: :: COMPLFLD:def 1 ( the carrier of it = COMPLEX & the addF of it = addcomplex & the multF of it = multcomplex & 1. it = 1r & 0. it = 0c ); existence ex b1 being strict doubleLoopStr st ( the carrier of b1 = COMPLEX & the addF of b1 = addcomplex & the multF of b1 = multcomplex & 1. b1 = 1r & 0. b1 = 0c ) proof take doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) ; ::_thesis: ( the carrier of doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = COMPLEX & the addF of doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = addcomplex & the multF of doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = multcomplex & 1. doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = 1r & 0. doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = 0c ) thus ( the carrier of doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = COMPLEX & the addF of doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = addcomplex & the multF of doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = multcomplex & 1. doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = 1r & 0. doubleLoopStr(# COMPLEX,addcomplex,multcomplex,1r,0c #) = 0c ) ; ::_thesis: verum end; uniqueness for b1, b2 being strict doubleLoopStr st the carrier of b1 = COMPLEX & the addF of b1 = addcomplex & the multF of b1 = multcomplex & 1. b1 = 1r & 0. b1 = 0c & the carrier of b2 = COMPLEX & the addF of b2 = addcomplex & the multF of b2 = multcomplex & 1. b2 = 1r & 0. b2 = 0c holds b1 = b2 ; end; :: deftheorem Def1 defines F_Complex COMPLFLD:def_1_:_ for b1 being strict doubleLoopStr holds ( b1 = F_Complex iff ( the carrier of b1 = COMPLEX & the addF of b1 = addcomplex & the multF of b1 = multcomplex & 1. b1 = 1r & 0. b1 = 0c ) ); registration cluster F_Complex -> non empty strict ; coherence not F_Complex is empty by Def1; end; registration cluster -> complex for Element of the carrier of F_Complex; coherence for b1 being Element of F_Complex holds b1 is complex proof let c be Element of F_Complex; ::_thesis: c is complex c in the carrier of F_Complex ; then c in COMPLEX by Def1; hence c is complex ; ::_thesis: verum end; end; registration let a, b be complex number ; let x, y be Element of F_Complex; identifyx + y with a + b when x = a, y = b; compatibility ( x = a & y = b implies x + y = a + b ) proof reconsider a9 = a, b9 = b as Element of COMPLEX by XCMPLX_0:def_2; assume ( x = a & y = b ) ; ::_thesis: x + y = a + b hence x + y = addcomplex . (a9,b9) by Def1 .= a + b by BINOP_2:def_3 ; ::_thesis: verum end; identifyx * y with a * b when x = a, y = b; compatibility ( x = a & y = b implies x * y = a * b ) proof reconsider a9 = a, b9 = b as Element of COMPLEX by XCMPLX_0:def_2; assume ( x = a & y = b ) ; ::_thesis: x * y = a * b hence x * y = multcomplex . (a9,b9) by Def1 .= a * b by BINOP_2:def_5 ; ::_thesis: verum end; end; registration cluster F_Complex -> strict well-unital ; coherence F_Complex is well-unital proof let x be Element of F_Complex; :: according to VECTSP_1:def_6 ::_thesis: ( x * (1. F_Complex) = x & (1. F_Complex) * x = x ) 1. F_Complex = 1r by Def1; hence ( x * (1. F_Complex) = x & (1. F_Complex) * x = x ) ; ::_thesis: verum end; end; Lm1: 1_ F_Complex = 1r by Def1; Lm2: 1. F_Complex = 1r by Def1; registration cluster F_Complex -> non degenerated right_complementable almost_left_invertible strict associative commutative right_unital distributive left_unital Abelian add-associative right_zeroed ; coherence ( F_Complex is add-associative & F_Complex is right_zeroed & F_Complex is right_complementable & F_Complex is Abelian & F_Complex is commutative & F_Complex is associative & F_Complex is left_unital & F_Complex is right_unital & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) proof thus F_Complex is add-associative ::_thesis: ( F_Complex is right_zeroed & F_Complex is right_complementable & F_Complex is Abelian & F_Complex is commutative & F_Complex is associative & F_Complex is left_unital & F_Complex is right_unital & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) proof let x, y, z be Element of F_Complex; :: according to RLVECT_1:def_3 ::_thesis: (x + y) + z = x + (y + z) reconsider x1 = x, y1 = y, z1 = z as Element of COMPLEX by Def1; thus (x + y) + z = addcomplex . [( the addF of F_Complex . [x1,y1]),z1] by Def1 .= addcomplex . ((addcomplex . (x1,y1)),z1) by Def1 .= addcomplex . ((x1 + y1),z1) by BINOP_2:def_3 .= (x1 + y1) + z1 by BINOP_2:def_3 .= x1 + (y1 + z1) .= addcomplex . (x1,(y1 + z1)) by BINOP_2:def_3 .= addcomplex . [x1,(addcomplex . (y1,z1))] by BINOP_2:def_3 .= addcomplex . [x1,( the addF of F_Complex . [y1,z1])] by Def1 .= x + (y + z) by Def1 ; ::_thesis: verum end; thus F_Complex is right_zeroed ::_thesis: ( F_Complex is right_complementable & F_Complex is Abelian & F_Complex is commutative & F_Complex is associative & F_Complex is left_unital & F_Complex is right_unital & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) proof let x be Element of F_Complex; :: according to RLVECT_1:def_4 ::_thesis: x + (0. F_Complex) = x reconsider x1 = x as Element of COMPLEX by Def1; thus x + (0. F_Complex) = the addF of F_Complex . (x1,0c) by Def1 .= addcomplex . (x1,0c) by Def1 .= x1 + 0c by BINOP_2:def_3 .= x ; ::_thesis: verum end; thus F_Complex is right_complementable ::_thesis: ( F_Complex is Abelian & F_Complex is commutative & F_Complex is associative & F_Complex is left_unital & F_Complex is right_unital & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) proof let x be Element of F_Complex; :: according to ALGSTR_0:def_16 ::_thesis: x is right_complementable reconsider x1 = x as Element of COMPLEX by Def1; reconsider y = - x1 as Element of F_Complex by Def1; take y ; :: according to ALGSTR_0:def_11 ::_thesis: x + y = 0. F_Complex thus x + y = 0. F_Complex by Def1; ::_thesis: verum end; thus F_Complex is Abelian ::_thesis: ( F_Complex is commutative & F_Complex is associative & F_Complex is left_unital & F_Complex is right_unital & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) proof let x, y be Element of F_Complex; :: according to RLVECT_1:def_2 ::_thesis: x + y = y + x thus x + y = y + x ; ::_thesis: verum end; thus F_Complex is commutative ::_thesis: ( F_Complex is associative & F_Complex is left_unital & F_Complex is right_unital & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) proof let x, y be Element of F_Complex; :: according to GROUP_1:def_12 ::_thesis: x * y = y * x thus x * y = y * x ; ::_thesis: verum end; thus F_Complex is associative ::_thesis: ( F_Complex is left_unital & F_Complex is right_unital & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) proof let x, y, z be Element of F_Complex; :: according to GROUP_1:def_3 ::_thesis: (x * y) * z = x * (y * z) reconsider x1 = x, y1 = y, z1 = z as Element of COMPLEX by Def1; thus (x * y) * z = multcomplex . (( the multF of F_Complex . (x1,y1)),z1) by Def1 .= multcomplex . ((multcomplex . (x1,y1)),z1) by Def1 .= multcomplex . ((x1 * y1),z1) by BINOP_2:def_5 .= (x1 * y1) * z1 by BINOP_2:def_5 .= x1 * (y1 * z1) .= multcomplex . (x1,(y1 * z1)) by BINOP_2:def_5 .= multcomplex . (x1,(multcomplex . (y1,z1))) by BINOP_2:def_5 .= multcomplex . (x1,( the multF of F_Complex . (y1,z1))) by Def1 .= x * (y * z) by Def1 ; ::_thesis: verum end; thus F_Complex is left_unital ; ::_thesis: ( F_Complex is right_unital & F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) thus F_Complex is right_unital ; ::_thesis: ( F_Complex is distributive & F_Complex is almost_left_invertible & not F_Complex is degenerated ) thus F_Complex is distributive ::_thesis: ( F_Complex is almost_left_invertible & not F_Complex is degenerated ) proof let x, y, z be Element of F_Complex; :: according to VECTSP_1:def_7 ::_thesis: ( x * (y + z) = (x * y) + (x * z) & (y + z) * x = (y * x) + (z * x) ) reconsider x1 = x, y1 = y, z1 = z as Element of COMPLEX by Def1; thus x * (y + z) = multcomplex . (x1,( the addF of F_Complex . (y1,z1))) by Def1 .= multcomplex . (x1,(addcomplex . (y1,z1))) by Def1 .= multcomplex . (x1,(y1 + z1)) by BINOP_2:def_3 .= x1 * (y1 + z1) by BINOP_2:def_5 .= (x1 * y1) + (x1 * z1) .= addcomplex . ((x1 * y1),(x1 * z1)) by BINOP_2:def_3 .= addcomplex . ((multcomplex . (x1,y1)),(x1 * z1)) by BINOP_2:def_5 .= addcomplex . ((multcomplex . (x1,y1)),(multcomplex . (x1,z1))) by BINOP_2:def_5 .= the addF of F_Complex . ((multcomplex . (x1,y1)),(multcomplex . (x1,z1))) by Def1 .= the addF of F_Complex . (( the multF of F_Complex . (x1,y1)),(multcomplex . (x1,z1))) by Def1 .= (x * y) + (x * z) by Def1 ; ::_thesis: (y + z) * x = (y * x) + (z * x) thus (y + z) * x = multcomplex . (( the addF of F_Complex . (y1,z1)),x1) by Def1 .= multcomplex . ((addcomplex . (y1,z1)),x1) by Def1 .= multcomplex . ((y1 + z1),x1) by BINOP_2:def_3 .= (y1 + z1) * x1 by BINOP_2:def_5 .= (y1 * x1) + (z1 * x1) .= addcomplex . ((y1 * x1),(z1 * x1)) by BINOP_2:def_3 .= addcomplex . ((multcomplex . (y1,x1)),(z1 * x1)) by BINOP_2:def_5 .= addcomplex . ((multcomplex . (y1,x1)),(multcomplex . (z1,x1))) by BINOP_2:def_5 .= the addF of F_Complex . ((multcomplex . (y1,x1)),(multcomplex . (z1,x1))) by Def1 .= the addF of F_Complex . (( the multF of F_Complex . (y1,x1)),(multcomplex . (z1,x1))) by Def1 .= (y * x) + (z * x) by Def1 ; ::_thesis: verum end; thus F_Complex is almost_left_invertible ::_thesis: not F_Complex is degenerated proof let x be Element of F_Complex; :: according to ALGSTR_0:def_39 ::_thesis: ( x = 0. F_Complex or x is left_invertible ) reconsider x1 = x as Element of COMPLEX by Def1; assume A1: x <> 0. F_Complex ; ::_thesis: x is left_invertible reconsider y = x1 " as Element of F_Complex by Def1; take y ; :: according to ALGSTR_0:def_27 ::_thesis: y * x = 1. F_Complex x1 <> 0c by A1, Def1; hence y * x = 1. F_Complex by Lm2, XCMPLX_0:def_7; ::_thesis: verum end; 0. F_Complex <> 1. F_Complex by Def1, Lm1; hence not F_Complex is degenerated by STRUCT_0:def_8; ::_thesis: verum end; end; theorem :: COMPLFLD:1 for x1, y1 being Element of F_Complex for x2, y2 being complex number st x1 = x2 & y1 = y2 holds x1 + y1 = x2 + y2 ; theorem Th2: :: COMPLFLD:2 for x1 being Element of F_Complex for x2 being complex number st x1 = x2 holds - x1 = - x2 proof let x1 be Element of F_Complex; ::_thesis: for x2 being complex number st x1 = x2 holds - x1 = - x2 let x2 be complex number ; ::_thesis: ( x1 = x2 implies - x1 = - x2 ) assume A1: x1 = x2 ; ::_thesis: - x1 = - x2 reconsider x2 = x2 as Element of COMPLEX by XCMPLX_0:def_2; reconsider x9 = - x2 as Element of F_Complex by Def1; x1 + x9 = 0. F_Complex by A1, Def1; hence - x1 = - x2 by RLVECT_1:def_10; ::_thesis: verum end; theorem Th3: :: COMPLFLD:3 for x1, y1 being Element of F_Complex for x2, y2 being complex number st x1 = x2 & y1 = y2 holds x1 - y1 = x2 - y2 proof let x1, y1 be Element of F_Complex; ::_thesis: for x2, y2 being complex number st x1 = x2 & y1 = y2 holds x1 - y1 = x2 - y2 let x2, y2 be complex number ; ::_thesis: ( x1 = x2 & y1 = y2 implies x1 - y1 = x2 - y2 ) assume that A1: x1 = x2 and A2: y1 = y2 ; ::_thesis: x1 - y1 = x2 - y2 - y1 = - y2 by A2, Th2; hence x1 - y1 = x2 - y2 by A1; ::_thesis: verum end; theorem :: COMPLFLD:4 for x1, y1 being Element of F_Complex for x2, y2 being complex number st x1 = x2 & y1 = y2 holds x1 * y1 = x2 * y2 ; theorem Th5: :: COMPLFLD:5 for x1 being Element of F_Complex for x2 being complex number st x1 = x2 & x1 <> 0. F_Complex holds x1 " = x2 " proof let x1 be Element of F_Complex; ::_thesis: for x2 being complex number st x1 = x2 & x1 <> 0. F_Complex holds x1 " = x2 " let x2 be complex number ; ::_thesis: ( x1 = x2 & x1 <> 0. F_Complex implies x1 " = x2 " ) reconsider x4 = x2 as Element of COMPLEX by XCMPLX_0:def_2; reconsider x9 = x4 " as Element of F_Complex by Def1; assume that A1: x1 = x2 and A2: x1 <> 0. F_Complex ; ::_thesis: x1 " = x2 " 0c = 0. F_Complex by Def1; then x1 * x9 = 1. F_Complex by A1, A2, Lm2, XCMPLX_0:def_7; hence x1 " = x2 " by A2, VECTSP_1:def_10; ::_thesis: verum end; theorem Th6: :: COMPLFLD:6 for x1, y1 being Element of F_Complex for x2, y2 being complex number st x1 = x2 & y1 = y2 & y1 <> 0. F_Complex holds x1 / y1 = x2 / y2 proof let x1, y1 be Element of F_Complex; ::_thesis: for x2, y2 being complex number st x1 = x2 & y1 = y2 & y1 <> 0. F_Complex holds x1 / y1 = x2 / y2 let x2, y2 be complex number ; ::_thesis: ( x1 = x2 & y1 = y2 & y1 <> 0. F_Complex implies x1 / y1 = x2 / y2 ) assume that A1: x1 = x2 and A2: y1 = y2 ; ::_thesis: ( not y1 <> 0. F_Complex or x1 / y1 = x2 / y2 ) assume y1 <> 0. F_Complex ; ::_thesis: x1 / y1 = x2 / y2 then y1 " = y2 " by A2, Th5; hence x1 / y1 = x2 / y2 by A1, XCMPLX_0:def_9; ::_thesis: verum end; theorem Th7: :: COMPLFLD:7 0. F_Complex = 0c by Def1; theorem :: COMPLFLD:8 1_ F_Complex = 1r by Def1; theorem :: COMPLFLD:9 (1_ F_Complex) + (1_ F_Complex) <> 0. F_Complex by Def1, Lm1; definition let z be Element of F_Complex; :: original: *' redefine funcz *' -> Element of F_Complex; coherence z *' is Element of F_Complex proof z *' in COMPLEX ; hence z *' is Element of F_Complex by Def1; ::_thesis: verum end; end; theorem :: COMPLFLD:10 for z being Element of F_Complex holds - z = (- (1_ F_Complex)) * z proof let z be Element of F_Complex; ::_thesis: - z = (- (1_ F_Complex)) * z reconsider z9 = z as Element of COMPLEX by Def1; A1: - 1r = - (1_ F_Complex) by Lm1, Th2; thus - z = - z9 by Th2 .= (- (1_ F_Complex)) * z by A1 ; ::_thesis: verum end; theorem :: COMPLFLD:11 for z1, z2 being Element of F_Complex holds z1 - (- z2) = z1 + z2 proof let z1, z2 be Element of F_Complex; ::_thesis: z1 - (- z2) = z1 + z2 reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; - z2 = - z29 by Th2; hence z1 - (- z2) = z19 - (- z29) by Th3 .= z1 + z2 ; ::_thesis: verum end; theorem :: COMPLFLD:12 for z1, z being Element of F_Complex holds z1 = (z1 + z) - z proof let z1, z be Element of F_Complex; ::_thesis: z1 = (z1 + z) - z reconsider z19 = z1, z9 = z as Element of COMPLEX by Def1; thus (z1 + z) - z = (z19 + z9) - z9 by Th3 .= z1 ; ::_thesis: verum end; theorem :: COMPLFLD:13 for z1, z being Element of F_Complex holds z1 = (z1 - z) + z proof let z1, z be Element of F_Complex; ::_thesis: z1 = (z1 - z) + z reconsider z19 = z1, z9 = z as Element of COMPLEX by Def1; z1 - z = z19 - z9 by Th3; hence z1 = (z1 - z) + z ; ::_thesis: verum end; theorem :: COMPLFLD:14 for z1, z2 being Element of F_Complex st z1 <> 0. F_Complex & z2 <> 0. F_Complex & z1 " = z2 " holds z1 = z2 proof let z1, z2 be Element of F_Complex; ::_thesis: ( z1 <> 0. F_Complex & z2 <> 0. F_Complex & z1 " = z2 " implies z1 = z2 ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z1 <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or not z1 " = z2 " or z1 = z2 ) assume A2: z2 <> 0. F_Complex ; ::_thesis: ( not z1 " = z2 " or z1 = z2 ) assume z1 " = z2 " ; ::_thesis: z1 = z2 then z19 " = z2 " by A1, Th5 .= z29 " by A2, Th5 ; hence z1 = z2 by XCMPLX_1:201; ::_thesis: verum end; theorem :: COMPLFLD:15 for z2, z1 being Element of F_Complex st z2 <> 0. F_Complex & ( z1 * z2 = 1. F_Complex or z2 * z1 = 1. F_Complex ) holds z1 = z2 " proof let z2, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & ( z1 * z2 = 1. F_Complex or z2 * z1 = 1. F_Complex ) implies z1 = z2 " ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( ( not z1 * z2 = 1. F_Complex & not z2 * z1 = 1. F_Complex ) or z1 = z2 " ) assume A2: ( z1 * z2 = 1. F_Complex or z2 * z1 = 1. F_Complex ) ; ::_thesis: z1 = z2 " percases ( z1 * z2 = 1. F_Complex or z2 * z1 = 1. F_Complex ) by A2; supposeA3: z1 * z2 = 1. F_Complex ; ::_thesis: z1 = z2 " A4: z2 " = z29 " by A1, Th5; z19 * z29 = 1r by A3, Def1; hence z1 = z2 " by A1, A4, Th7, XCMPLX_0:def_7; ::_thesis: verum end; supposeA5: z2 * z1 = 1. F_Complex ; ::_thesis: z1 = z2 " A6: z2 " = z29 " by A1, Th5; z29 * z19 = 1r by A5, Def1; hence z1 = z2 " by A1, A6, Th7, XCMPLX_0:def_7; ::_thesis: verum end; end; end; theorem :: COMPLFLD:16 for z2, z1, z3 being Element of F_Complex st z2 <> 0. F_Complex & ( z1 * z2 = z3 or z2 * z1 = z3 ) holds ( z1 = z3 * (z2 ") & z1 = (z2 ") * z3 ) proof let z2, z1, z3 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & ( z1 * z2 = z3 or z2 * z1 = z3 ) implies ( z1 = z3 * (z2 ") & z1 = (z2 ") * z3 ) ) reconsider z29 = z2 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( ( not z1 * z2 = z3 & not z2 * z1 = z3 ) or ( z1 = z3 * (z2 ") & z1 = (z2 ") * z3 ) ) then A2: z2 " = z29 " by Th5; assume A3: ( z1 * z2 = z3 or z2 * z1 = z3 ) ; ::_thesis: ( z1 = z3 * (z2 ") & z1 = (z2 ") * z3 ) percases ( z1 * z2 = z3 or z2 * z1 = z3 ) by A3; suppose z1 * z2 = z3 ; ::_thesis: ( z1 = z3 * (z2 ") & z1 = (z2 ") * z3 ) hence ( z1 = z3 * (z2 ") & z1 = (z2 ") * z3 ) by A1, A2, Th7, XCMPLX_1:203; ::_thesis: verum end; suppose z2 * z1 = z3 ; ::_thesis: ( z1 = z3 * (z2 ") & z1 = (z2 ") * z3 ) hence ( z1 = z3 * (z2 ") & z1 = (z2 ") * z3 ) by A1, A2, Th7, XCMPLX_1:203; ::_thesis: verum end; end; end; theorem :: COMPLFLD:17 (1. F_Complex) " = 1. F_Complex proof 1. F_Complex = 1r " by Def1; hence (1. F_Complex) " = 1. F_Complex by Th5; ::_thesis: verum end; theorem :: COMPLFLD:18 for z1, z2 being Element of F_Complex st z1 <> 0. F_Complex & z2 <> 0. F_Complex holds (z1 * z2) " = (z1 ") * (z2 ") proof let z1, z2 be Element of F_Complex; ::_thesis: ( z1 <> 0. F_Complex & z2 <> 0. F_Complex implies (z1 * z2) " = (z1 ") * (z2 ") ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z1 <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or (z1 * z2) " = (z1 ") * (z2 ") ) then A2: z1 " = z19 " by Th5; assume A3: z2 <> 0. F_Complex ; ::_thesis: (z1 * z2) " = (z1 ") * (z2 ") then A4: z2 " = z29 " by Th5; z1 * z2 <> 0. F_Complex by A1, A3, VECTSP_1:12; hence (z1 * z2) " = (z19 * z29) " by Th5 .= (z1 ") * (z2 ") by A2, A4, XCMPLX_1:204 ; ::_thesis: verum end; theorem :: COMPLFLD:19 for z being Element of F_Complex st z <> 0. F_Complex holds (- z) " = - (z ") proof let z be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex implies (- z) " = - (z ") ) reconsider z1 = z as Element of COMPLEX by Def1; A1: - z = - z1 by Th2; assume A2: z <> 0. F_Complex ; ::_thesis: (- z) " = - (z ") then A3: z1 " = z " by Th5; - z <> 0. F_Complex by A2, VECTSP_1:28; hence (- z) " = (- z1) " by A1, Th5 .= - (z1 ") by XCMPLX_1:222 .= - (z ") by A3, Th2 ; ::_thesis: verum end; theorem :: COMPLFLD:20 for z1, z2 being Element of F_Complex st z1 <> 0. F_Complex & z2 <> 0. F_Complex holds (z1 ") + (z2 ") = (z1 + z2) * ((z1 * z2) ") proof let z1, z2 be Element of F_Complex; ::_thesis: ( z1 <> 0. F_Complex & z2 <> 0. F_Complex implies (z1 ") + (z2 ") = (z1 + z2) * ((z1 * z2) ") ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z1 <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or (z1 ") + (z2 ") = (z1 + z2) * ((z1 * z2) ") ) then A2: z1 " = z19 " by Th5; assume A3: z2 <> 0. F_Complex ; ::_thesis: (z1 ") + (z2 ") = (z1 + z2) * ((z1 * z2) ") then z1 * z2 <> 0. F_Complex by A1, VECTSP_1:12; then A4: (z1 * z2) " = (z19 * z29) " by Th5; z2 " = z29 " by A3, Th5; hence (z1 ") + (z2 ") = (z1 + z2) * ((z1 * z2) ") by A1, A2, A3, A4, Th7, XCMPLX_1:211; ::_thesis: verum end; theorem :: COMPLFLD:21 for z1, z2 being Element of F_Complex st z1 <> 0. F_Complex & z2 <> 0. F_Complex holds (z1 ") - (z2 ") = (z2 - z1) * ((z1 * z2) ") proof let z1, z2 be Element of F_Complex; ::_thesis: ( z1 <> 0. F_Complex & z2 <> 0. F_Complex implies (z1 ") - (z2 ") = (z2 - z1) * ((z1 * z2) ") ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; A1: z2 - z1 = z29 - z19 by Th3; assume A2: z1 <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or (z1 ") - (z2 ") = (z2 - z1) * ((z1 * z2) ") ) then A3: z1 " = z19 " by Th5; assume A4: z2 <> 0. F_Complex ; ::_thesis: (z1 ") - (z2 ") = (z2 - z1) * ((z1 * z2) ") then z1 * z2 <> 0. F_Complex by A2, VECTSP_1:12; then A5: (z1 * z2) " = (z19 * z29) " by Th5; z2 " = z29 " by A4, Th5; hence (z1 ") - (z2 ") = (z19 ") - (z29 ") by A3, Th3 .= (z2 - z1) * ((z1 * z2) ") by A2, A4, A1, A5, Th7, XCMPLX_1:212 ; ::_thesis: verum end; theorem :: COMPLFLD:22 for z being Element of F_Complex st z <> 0. F_Complex holds z " = (1. F_Complex) / z proof let z be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex implies z " = (1. F_Complex) / z ) reconsider z1 = z as Element of COMPLEX by Def1; A1: 1. F_Complex = 1r by Def1; assume A2: z <> 0. F_Complex ; ::_thesis: z " = (1. F_Complex) / z hence z " = z1 " by Th5 .= 1r / z1 by XCMPLX_1:215 .= (1. F_Complex) / z by A2, A1, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:23 for z being Element of F_Complex holds z / (1. F_Complex) = z proof let z be Element of F_Complex; ::_thesis: z / (1. F_Complex) = z reconsider z1 = z as Element of COMPLEX by Def1; 1. F_Complex = 1r by Def1; hence z / (1. F_Complex) = z1 / 1r by Th6 .= z ; ::_thesis: verum end; theorem :: COMPLFLD:24 for z being Element of F_Complex st z <> 0. F_Complex holds z / z = 1. F_Complex proof let z be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex implies z / z = 1. F_Complex ) reconsider z1 = z as Element of COMPLEX by Def1; assume A1: z <> 0. F_Complex ; ::_thesis: z / z = 1. F_Complex hence z / z = z1 / z1 by Th6 .= 1r by A1, Th7, XCMPLX_1:60 .= 1. F_Complex by Def1 ; ::_thesis: verum end; theorem :: COMPLFLD:25 for z being Element of F_Complex st z <> 0. F_Complex holds (0. F_Complex) / z = 0. F_Complex by Th7; theorem Th26: :: COMPLFLD:26 for z2, z1 being Element of F_Complex st z2 <> 0. F_Complex & z1 / z2 = 0. F_Complex holds z1 = 0. F_Complex proof let z2, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & z1 / z2 = 0. F_Complex implies z1 = 0. F_Complex ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( not z1 / z2 = 0. F_Complex or z1 = 0. F_Complex ) assume z1 / z2 = 0. F_Complex ; ::_thesis: z1 = 0. F_Complex then z19 / z29 = 0. F_Complex by A1, Th6; hence z1 = 0. F_Complex by A1, Th7; ::_thesis: verum end; theorem :: COMPLFLD:27 for z2, z4, z1, z3 being Element of F_Complex st z2 <> 0. F_Complex & z4 <> 0. F_Complex holds (z1 / z2) * (z3 / z4) = (z1 * z3) / (z2 * z4) proof let z2, z4, z1, z3 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & z4 <> 0. F_Complex implies (z1 / z2) * (z3 / z4) = (z1 * z3) / (z2 * z4) ) reconsider z19 = z1, z29 = z2, z39 = z3, z49 = z4 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( not z4 <> 0. F_Complex or (z1 / z2) * (z3 / z4) = (z1 * z3) / (z2 * z4) ) assume A2: z4 <> 0. F_Complex ; ::_thesis: (z1 / z2) * (z3 / z4) = (z1 * z3) / (z2 * z4) then A3: z2 * z4 <> 0. F_Complex by A1, VECTSP_1:12; A4: z39 / z49 = z3 / z4 by A2, Th6; z19 / z29 = z1 / z2 by A1, Th6; hence (z1 / z2) * (z3 / z4) = (z19 * z39) / (z29 * z49) by A4, XCMPLX_1:76 .= (z1 * z3) / (z2 * z4) by A3, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:28 for z2, z, z1 being Element of F_Complex st z2 <> 0. F_Complex holds z * (z1 / z2) = (z * z1) / z2 ; theorem :: COMPLFLD:29 for z2, z1 being Element of F_Complex st z2 <> 0. F_Complex & z1 / z2 = 1. F_Complex holds z1 = z2 proof let z2, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & z1 / z2 = 1. F_Complex implies z1 = z2 ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( not z1 / z2 = 1. F_Complex or z1 = z2 ) assume z1 / z2 = 1. F_Complex ; ::_thesis: z1 = z2 then z19 / z29 = 1. F_Complex by A1, Th6; then z19 / z29 = 1 by Def1; hence z1 = z2 by XCMPLX_1:58; ::_thesis: verum end; theorem :: COMPLFLD:30 for z, z1 being Element of F_Complex st z <> 0. F_Complex holds z1 = (z1 * z) / z proof let z, z1 be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex implies z1 = (z1 * z) / z ) reconsider z19 = z1, z9 = z as Element of COMPLEX by Def1; assume A1: z <> 0. F_Complex ; ::_thesis: z1 = (z1 * z) / z hence z1 = (z19 * z9) / z9 by Th7, XCMPLX_1:89 .= (z1 * z) / z by A1, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:31 for z1, z2 being Element of F_Complex st z1 <> 0. F_Complex & z2 <> 0. F_Complex holds (z1 / z2) " = z2 / z1 proof let z1, z2 be Element of F_Complex; ::_thesis: ( z1 <> 0. F_Complex & z2 <> 0. F_Complex implies (z1 / z2) " = z2 / z1 ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z1 <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or (z1 / z2) " = z2 / z1 ) assume A2: z2 <> 0. F_Complex ; ::_thesis: (z1 / z2) " = z2 / z1 then A3: z19 / z29 = z1 / z2 by Th6; z1 / z2 <> 0. F_Complex by A1, A2, Th26; hence (z1 / z2) " = (z19 / z29) " by A3, Th5 .= z29 / z19 by XCMPLX_1:213 .= z2 / z1 by A1, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:32 for z1, z2 being Element of F_Complex st z1 <> 0. F_Complex & z2 <> 0. F_Complex holds (z1 ") / (z2 ") = z2 / z1 proof let z1, z2 be Element of F_Complex; ::_thesis: ( z1 <> 0. F_Complex & z2 <> 0. F_Complex implies (z1 ") / (z2 ") = z2 / z1 ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z1 <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or (z1 ") / (z2 ") = z2 / z1 ) assume z2 <> 0. F_Complex ; ::_thesis: (z1 ") / (z2 ") = z2 / z1 then A2: ( z2 " = z29 " & z2 " <> 0. F_Complex ) by Th5, VECTSP_1:25; z1 " = z19 " by A1, Th5; hence (z1 ") / (z2 ") = (z19 ") / (z29 ") by A2, Th6 .= z29 / z19 by XCMPLX_1:214 .= z2 / z1 by A1, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:33 for z2, z1 being Element of F_Complex st z2 <> 0. F_Complex holds z1 / (z2 ") = z1 * z2 proof let z2, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex implies z1 / (z2 ") = z1 * z2 ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume z2 <> 0. F_Complex ; ::_thesis: z1 / (z2 ") = z1 * z2 then ( z2 " <> 0. F_Complex & z2 " = z29 " ) by Th5, VECTSP_1:25; hence z1 / (z2 ") = z19 / (z29 ") by Th6 .= z1 * z2 by XCMPLX_1:219 ; ::_thesis: verum end; theorem :: COMPLFLD:34 for z1, z2 being Element of F_Complex st z1 <> 0. F_Complex & z2 <> 0. F_Complex holds (z1 ") / z2 = (z1 * z2) " proof let z1, z2 be Element of F_Complex; ::_thesis: ( z1 <> 0. F_Complex & z2 <> 0. F_Complex implies (z1 ") / z2 = (z1 * z2) " ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z1 <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or (z1 ") / z2 = (z1 * z2) " ) assume A2: z2 <> 0. F_Complex ; ::_thesis: (z1 ") / z2 = (z1 * z2) " then A3: z1 * z2 <> 0. F_Complex by A1, VECTSP_1:12; z1 " = z19 " by A1, Th5; hence (z1 ") / z2 = (z19 ") / z29 by A2, Th6 .= (z19 * z29) " by XCMPLX_1:221 .= (z1 * z2) " by A3, Th5 ; ::_thesis: verum end; theorem :: COMPLFLD:35 for z1, z2, z being Element of F_Complex st z1 <> 0. F_Complex & z2 <> 0. F_Complex holds (z1 ") * (z / z2) = z / (z1 * z2) proof let z1, z2, z be Element of F_Complex; ::_thesis: ( z1 <> 0. F_Complex & z2 <> 0. F_Complex implies (z1 ") * (z / z2) = z / (z1 * z2) ) reconsider z19 = z1, z29 = z2, z9 = z as Element of COMPLEX by Def1; assume A1: z1 <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or (z1 ") * (z / z2) = z / (z1 * z2) ) assume A2: z2 <> 0. F_Complex ; ::_thesis: (z1 ") * (z / z2) = z / (z1 * z2) then A3: z1 * z2 <> 0. F_Complex by A1, VECTSP_1:12; A4: z9 / z29 = z / z2 by A2, Th6; z1 " = z19 " by A1, Th5; hence (z1 ") * (z / z2) = z9 / (z19 * z29) by A4, XCMPLX_1:220 .= z / (z1 * z2) by A3, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:36 for z, z2, z1 being Element of F_Complex st z <> 0. F_Complex & z2 <> 0. F_Complex holds ( z1 / z2 = (z1 * z) / (z2 * z) & z1 / z2 = (z * z1) / (z * z2) ) proof let z, z2, z1 be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex & z2 <> 0. F_Complex implies ( z1 / z2 = (z1 * z) / (z2 * z) & z1 / z2 = (z * z1) / (z * z2) ) ) reconsider z19 = z1, z29 = z2, z9 = z as Element of COMPLEX by Def1; assume A1: z <> 0. F_Complex ; ::_thesis: ( not z2 <> 0. F_Complex or ( z1 / z2 = (z1 * z) / (z2 * z) & z1 / z2 = (z * z1) / (z * z2) ) ) assume A2: z2 <> 0. F_Complex ; ::_thesis: ( z1 / z2 = (z1 * z) / (z2 * z) & z1 / z2 = (z * z1) / (z * z2) ) then A3: z2 * z <> 0. F_Complex by A1, VECTSP_1:12; thus z1 / z2 = z19 / z29 by A2, Th6 .= (z19 * z9) / (z29 * z9) by A1, Th7, XCMPLX_1:91 .= (z1 * z) / (z2 * z) by A3, Th6 ; ::_thesis: z1 / z2 = (z * z1) / (z * z2) hence z1 / z2 = (z * z1) / (z * z2) ; ::_thesis: verum end; theorem :: COMPLFLD:37 for z2, z3, z1 being Element of F_Complex st z2 <> 0. F_Complex & z3 <> 0. F_Complex holds z1 / (z2 * z3) = (z1 / z2) / z3 proof let z2, z3, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & z3 <> 0. F_Complex implies z1 / (z2 * z3) = (z1 / z2) / z3 ) reconsider z19 = z1, z29 = z2, z39 = z3 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( not z3 <> 0. F_Complex or z1 / (z2 * z3) = (z1 / z2) / z3 ) then A2: z1 / z2 = z19 / z29 by Th6; assume A3: z3 <> 0. F_Complex ; ::_thesis: z1 / (z2 * z3) = (z1 / z2) / z3 then z2 * z3 <> 0. F_Complex by A1, VECTSP_1:12; hence z1 / (z2 * z3) = z19 / (z29 * z39) by Th6 .= (z19 / z29) / z39 by XCMPLX_1:78 .= (z1 / z2) / z3 by A3, A2, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:38 for z2, z3, z1 being Element of F_Complex st z2 <> 0. F_Complex & z3 <> 0. F_Complex holds (z1 * z3) / z2 = z1 / (z2 / z3) proof let z2, z3, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & z3 <> 0. F_Complex implies (z1 * z3) / z2 = z1 / (z2 / z3) ) reconsider z19 = z1, z29 = z2, z39 = z3 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( not z3 <> 0. F_Complex or (z1 * z3) / z2 = z1 / (z2 / z3) ) assume A2: z3 <> 0. F_Complex ; ::_thesis: (z1 * z3) / z2 = z1 / (z2 / z3) then A3: z2 / z3 <> 0. F_Complex by A1, Th26; A4: z2 / z3 = z29 / z39 by A2, Th6; thus (z1 * z3) / z2 = (z19 * z39) / z29 by A1, Th6 .= z19 / (z29 / z39) by XCMPLX_1:77 .= z1 / (z2 / z3) by A4, A3, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:39 for z2, z3, z4, z1 being Element of F_Complex st z2 <> 0. F_Complex & z3 <> 0. F_Complex & z4 <> 0. F_Complex holds (z1 / z2) / (z3 / z4) = (z1 * z4) / (z2 * z3) proof let z2, z3, z4, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & z3 <> 0. F_Complex & z4 <> 0. F_Complex implies (z1 / z2) / (z3 / z4) = (z1 * z4) / (z2 * z3) ) reconsider z19 = z1, z29 = z2, z39 = z3, z49 = z4 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( not z3 <> 0. F_Complex or not z4 <> 0. F_Complex or (z1 / z2) / (z3 / z4) = (z1 * z4) / (z2 * z3) ) then A2: z1 / z2 = z19 / z29 by Th6; assume A3: z3 <> 0. F_Complex ; ::_thesis: ( not z4 <> 0. F_Complex or (z1 / z2) / (z3 / z4) = (z1 * z4) / (z2 * z3) ) then A4: z2 * z3 <> 0. F_Complex by A1, VECTSP_1:12; assume A5: z4 <> 0. F_Complex ; ::_thesis: (z1 / z2) / (z3 / z4) = (z1 * z4) / (z2 * z3) then A6: z3 / z4 = z39 / z49 by Th6; z3 / z4 <> 0. F_Complex by A3, A5, Th26; hence (z1 / z2) / (z3 / z4) = (z19 / z29) / (z39 / z49) by A2, A6, Th6 .= (z19 * z49) / (z29 * z39) by XCMPLX_1:84 .= (z1 * z4) / (z2 * z3) by A4, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:40 for z2, z4, z1, z3 being Element of F_Complex st z2 <> 0. F_Complex & z4 <> 0. F_Complex holds (z1 / z2) + (z3 / z4) = ((z1 * z4) + (z3 * z2)) / (z2 * z4) proof let z2, z4, z1, z3 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & z4 <> 0. F_Complex implies (z1 / z2) + (z3 / z4) = ((z1 * z4) + (z3 * z2)) / (z2 * z4) ) reconsider z19 = z1, z29 = z2, z39 = z3, z49 = z4 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( not z4 <> 0. F_Complex or (z1 / z2) + (z3 / z4) = ((z1 * z4) + (z3 * z2)) / (z2 * z4) ) then A2: z1 / z2 = z19 / z29 by Th6; assume A3: z4 <> 0. F_Complex ; ::_thesis: (z1 / z2) + (z3 / z4) = ((z1 * z4) + (z3 * z2)) / (z2 * z4) then A4: z2 * z4 <> 0. F_Complex by A1, VECTSP_1:12; z3 / z4 = z39 / z49 by A3, Th6; hence (z1 / z2) + (z3 / z4) = ((z19 * z49) + (z39 * z29)) / (z29 * z49) by A1, A3, A2, Th7, XCMPLX_1:116 .= ((z1 * z4) + (z3 * z2)) / (z2 * z4) by A4, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:41 for z, z1, z2 being Element of F_Complex st z <> 0. F_Complex holds (z1 / z) + (z2 / z) = (z1 + z2) / z ; theorem :: COMPLFLD:42 for z2, z1 being Element of F_Complex st z2 <> 0. F_Complex holds ( - (z1 / z2) = (- z1) / z2 & - (z1 / z2) = z1 / (- z2) ) proof let z2, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex implies ( - (z1 / z2) = (- z1) / z2 & - (z1 / z2) = z1 / (- z2) ) ) assume A1: z2 <> 0. F_Complex ; ::_thesis: ( - (z1 / z2) = (- z1) / z2 & - (z1 / z2) = z1 / (- z2) ) then A2: - z2 <> 0. F_Complex by VECTSP_1:28; reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; A3: - z1 = - z19 by Th2; z1 / z2 = z19 / z29 by A1, Th6; hence - (z1 / z2) = - (z19 / z29) by Th2 .= (- z19) / z29 by XCMPLX_1:187 .= (- z1) / z2 by A3, A1, Th6 ; ::_thesis: - (z1 / z2) = z1 / (- z2) A4: - z2 = - z29 by Th2; z1 / z2 = z19 / z29 by A1, Th6; hence - (z1 / z2) = - (z19 / z29) by Th2 .= z19 / (- z29) by XCMPLX_1:188 .= z1 / (- z2) by A4, A2, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:43 for z2, z1 being Element of F_Complex st z2 <> 0. F_Complex holds z1 / z2 = (- z1) / (- z2) proof let z2, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex implies z1 / z2 = (- z1) / (- z2) ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: z1 / z2 = (- z1) / (- z2) then A2: - z2 <> 0. F_Complex by VECTSP_1:28; A3: ( - z19 = - z1 & - z29 = - z2 ) by Th2; thus z1 / z2 = z19 / z29 by A1, Th6 .= (- z19) / (- z29) by XCMPLX_1:191 .= (- z1) / (- z2) by A2, A3, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:44 for z2, z4, z1, z3 being Element of F_Complex st z2 <> 0. F_Complex & z4 <> 0. F_Complex holds (z1 / z2) - (z3 / z4) = ((z1 * z4) - (z3 * z2)) / (z2 * z4) proof let z2, z4, z1, z3 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & z4 <> 0. F_Complex implies (z1 / z2) - (z3 / z4) = ((z1 * z4) - (z3 * z2)) / (z2 * z4) ) reconsider z19 = z1, z29 = z2, z39 = z3, z49 = z4 as Element of COMPLEX by Def1; A1: (z1 * z4) - (z3 * z2) = (z19 * z49) - (z39 * z29) by Th3; assume A2: z2 <> 0. F_Complex ; ::_thesis: ( not z4 <> 0. F_Complex or (z1 / z2) - (z3 / z4) = ((z1 * z4) - (z3 * z2)) / (z2 * z4) ) then A3: z19 / z29 = z1 / z2 by Th6; assume A4: z4 <> 0. F_Complex ; ::_thesis: (z1 / z2) - (z3 / z4) = ((z1 * z4) - (z3 * z2)) / (z2 * z4) then A5: z2 * z4 <> 0. F_Complex by A2, VECTSP_1:12; z39 / z49 = z3 / z4 by A4, Th6; hence (z1 / z2) - (z3 / z4) = (z19 / z29) - (z39 / z49) by A3, Th3 .= ((z19 * z49) - (z39 * z29)) / (z29 * z49) by A2, A4, Th7, XCMPLX_1:130 .= ((z1 * z4) - (z3 * z2)) / (z2 * z4) by A5, A1, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:45 for z, z1, z2 being Element of F_Complex st z <> 0. F_Complex holds (z1 / z) - (z2 / z) = (z1 - z2) / z proof let z, z1, z2 be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex implies (z1 / z) - (z2 / z) = (z1 - z2) / z ) reconsider z9 = z, z19 = z1, z29 = z2 as Element of COMPLEX by Def1; A1: z19 - z29 = z1 - z2 by Th3; assume A2: z <> 0. F_Complex ; ::_thesis: (z1 / z) - (z2 / z) = (z1 - z2) / z then ( z19 / z9 = z1 / z & z29 / z9 = z2 / z ) by Th6; hence (z1 / z) - (z2 / z) = (z19 / z9) - (z29 / z9) by Th3 .= (z19 - z29) / z9 by XCMPLX_1:120 .= (z1 - z2) / z by A2, A1, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:46 for z2, z1, z3 being Element of F_Complex st z2 <> 0. F_Complex & ( z1 * z2 = z3 or z2 * z1 = z3 ) holds z1 = z3 / z2 proof let z2, z1, z3 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex & ( z1 * z2 = z3 or z2 * z1 = z3 ) implies z1 = z3 / z2 ) reconsider z39 = z3, z29 = z2 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: ( ( not z1 * z2 = z3 & not z2 * z1 = z3 ) or z1 = z3 / z2 ) assume A2: ( z1 * z2 = z3 or z2 * z1 = z3 ) ; ::_thesis: z1 = z3 / z2 percases ( z1 * z2 = z3 or z2 * z1 = z3 ) by A2; suppose z1 * z2 = z3 ; ::_thesis: z1 = z3 / z2 hence z1 = z39 / z29 by A1, Th7, XCMPLX_1:89 .= z3 / z2 by A1, Th6 ; ::_thesis: verum end; suppose z2 * z1 = z3 ; ::_thesis: z1 = z3 / z2 hence z1 = z39 / z29 by A1, Th7, XCMPLX_1:89 .= z3 / z2 by A1, Th6 ; ::_thesis: verum end; end; end; theorem :: COMPLFLD:47 (0. F_Complex) *' = 0. F_Complex proof 0. F_Complex = 0c by Def1; hence (0. F_Complex) *' = 0. F_Complex by COMPLEX1:28; ::_thesis: verum end; theorem Th48: :: COMPLFLD:48 for z being Element of F_Complex st z *' = 0. F_Complex holds z = 0. F_Complex proof let z be Element of F_Complex; ::_thesis: ( z *' = 0. F_Complex implies z = 0. F_Complex ) assume z *' = 0. F_Complex ; ::_thesis: z = 0. F_Complex then z *' = 0c by Def1; then z = 0c by COMPLEX1:29; hence z = 0. F_Complex by Def1; ::_thesis: verum end; theorem :: COMPLFLD:49 (1. F_Complex) *' = 1. F_Complex proof 1. F_Complex = 1r by Def1; hence (1. F_Complex) *' = 1. F_Complex by COMPLEX1:30; ::_thesis: verum end; theorem :: COMPLFLD:50 for z being Element of F_Complex holds (z *') *' = z ; theorem :: COMPLFLD:51 for z1, z2 being Element of F_Complex holds (z1 + z2) *' = (z1 *') + (z2 *') by COMPLEX1:32; theorem :: COMPLFLD:52 for z being Element of F_Complex holds (- z) *' = - (z *') proof let z be Element of F_Complex; ::_thesis: (- z) *' = - (z *') reconsider z9 = z as Element of COMPLEX by Def1; - z = - z9 by Th2; hence (- z) *' = - (z9 *') by COMPLEX1:33 .= - (z *') by Th2 ; ::_thesis: verum end; theorem :: COMPLFLD:53 for z1, z2 being Element of F_Complex holds (z1 - z2) *' = (z1 *') - (z2 *') proof let z1, z2 be Element of F_Complex; ::_thesis: (z1 - z2) *' = (z1 *') - (z2 *') reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; z19 - z29 = z1 - z2 by Th3; hence (z1 - z2) *' = (z19 *') - (z29 *') by COMPLEX1:34 .= (z1 *') - (z2 *') by Th3 ; ::_thesis: verum end; theorem :: COMPLFLD:54 for z1, z2 being Element of F_Complex holds (z1 * z2) *' = (z1 *') * (z2 *') by COMPLEX1:35; theorem :: COMPLFLD:55 for z being Element of F_Complex st z <> 0. F_Complex holds (z ") *' = (z *') " proof let z be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex implies (z ") *' = (z *') " ) reconsider z1 = z as Element of COMPLEX by Def1; assume A1: z <> 0. F_Complex ; ::_thesis: (z ") *' = (z *') " then A2: z *' <> 0. F_Complex by Th48; z " = z1 " by A1, Th5; hence (z ") *' = (z1 *') " by COMPLEX1:36 .= (z *') " by A2, Th5 ; ::_thesis: verum end; theorem :: COMPLFLD:56 for z2, z1 being Element of F_Complex st z2 <> 0. F_Complex holds (z1 / z2) *' = (z1 *') / (z2 *') proof let z2, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex implies (z1 / z2) *' = (z1 *') / (z2 *') ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume A1: z2 <> 0. F_Complex ; ::_thesis: (z1 / z2) *' = (z1 *') / (z2 *') then A2: z2 *' <> 0. F_Complex by Th48; z19 / z29 = z1 / z2 by A1, Th6; hence (z1 / z2) *' = (z19 *') / (z29 *') by COMPLEX1:37 .= (z1 *') / (z2 *') by A2, Th6 ; ::_thesis: verum end; theorem :: COMPLFLD:57 |.(0. F_Complex).| = 0 by Def1, COMPLEX1:44; theorem :: COMPLFLD:58 for z being Element of F_Complex st |.z.| = 0 holds z = 0. F_Complex by Th7; theorem :: COMPLFLD:59 for z being Element of F_Complex holds ( z <> 0. F_Complex iff 0 < |.z.| ) by Th7, COMPLEX1:47; theorem :: COMPLFLD:60 |.(1. F_Complex).| = 1 by Def1, COMPLEX1:48; theorem :: COMPLFLD:61 for z being Element of F_Complex holds |.(- z).| = |.z.| proof let z be Element of F_Complex; ::_thesis: |.(- z).| = |.z.| reconsider z1 = z as Element of COMPLEX by Def1; - z1 = - z by Th2; hence |.(- z).| = |.z.| by COMPLEX1:52; ::_thesis: verum end; theorem :: COMPLFLD:62 for z1, z2 being Element of F_Complex holds |.(z1 + z2).| <= |.z1.| + |.z2.| by COMPLEX1:56; theorem :: COMPLFLD:63 for z1, z2 being Element of F_Complex holds |.(z1 - z2).| <= |.z1.| + |.z2.| proof let z1, z2 be Element of F_Complex; ::_thesis: |.(z1 - z2).| <= |.z1.| + |.z2.| reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; z19 - z29 = z1 - z2 by Th3; hence |.(z1 - z2).| <= |.z1.| + |.z2.| by COMPLEX1:57; ::_thesis: verum end; theorem :: COMPLFLD:64 for z1, z2 being Element of F_Complex holds |.z1.| - |.z2.| <= |.(z1 + z2).| by COMPLEX1:58; theorem :: COMPLFLD:65 for z1, z2 being Element of F_Complex holds |.z1.| - |.z2.| <= |.(z1 - z2).| proof let z1, z2 be Element of F_Complex; ::_thesis: |.z1.| - |.z2.| <= |.(z1 - z2).| reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; z19 - z29 = z1 - z2 by Th3; hence |.z1.| - |.z2.| <= |.(z1 - z2).| by COMPLEX1:59; ::_thesis: verum end; theorem :: COMPLFLD:66 for z1, z2 being Element of F_Complex holds |.(z1 - z2).| = |.(z2 - z1).| proof let z1, z2 be Element of F_Complex; ::_thesis: |.(z1 - z2).| = |.(z2 - z1).| reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; ( z29 - z19 = z2 - z1 & z19 - z29 = z1 - z2 ) by Th3; hence |.(z1 - z2).| = |.(z2 - z1).| by COMPLEX1:60; ::_thesis: verum end; theorem :: COMPLFLD:67 for z1, z2 being Element of F_Complex holds ( |.(z1 - z2).| = 0 iff z1 = z2 ) proof let z1, z2 be Element of F_Complex; ::_thesis: ( |.(z1 - z2).| = 0 iff z1 = z2 ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; thus ( |.(z1 - z2).| = 0 implies z1 = z2 ) ::_thesis: ( z1 = z2 implies |.(z1 - z2).| = 0 ) proof assume A1: |.(z1 - z2).| = 0 ; ::_thesis: z1 = z2 z1 - z2 = z19 - z29 by Th3; hence z1 = z2 by A1, COMPLEX1:61; ::_thesis: verum end; assume A2: z1 = z2 ; ::_thesis: |.(z1 - z2).| = 0 z19 - z29 = z1 - z2 by Th3; hence |.(z1 - z2).| = 0 by A2; ::_thesis: verum end; theorem :: COMPLFLD:68 for z1, z2 being Element of F_Complex holds ( z1 <> z2 iff 0 < |.(z1 - z2).| ) proof let z1, z2 be Element of F_Complex; ::_thesis: ( z1 <> z2 iff 0 < |.(z1 - z2).| ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; thus ( z1 <> z2 implies 0 < |.(z1 - z2).| ) ::_thesis: ( 0 < |.(z1 - z2).| implies z1 <> z2 ) proof assume A1: z1 <> z2 ; ::_thesis: 0 < |.(z1 - z2).| z1 - z2 = z19 - z29 by Th3; hence 0 < |.(z1 - z2).| by A1, COMPLEX1:62; ::_thesis: verum end; assume A2: 0 < |.(z1 - z2).| ; ::_thesis: z1 <> z2 z1 - z2 = z19 - z29 by Th3; hence z1 <> z2 by A2; ::_thesis: verum end; theorem :: COMPLFLD:69 for z1, z2, z being Element of F_Complex holds |.(z1 - z2).| <= |.(z1 - z).| + |.(z - z2).| proof let z1, z2, z be Element of F_Complex; ::_thesis: |.(z1 - z2).| <= |.(z1 - z).| + |.(z - z2).| reconsider z9 = z, z19 = z1, z29 = z2 as Element of COMPLEX by Def1; A1: z9 - z29 = z - z2 by Th3; ( |.(z19 - z29).| = |.(z1 - z2).| & |.(z19 - z9).| = |.(z1 - z).| ) by Th3; hence |.(z1 - z2).| <= |.(z1 - z).| + |.(z - z2).| by A1, COMPLEX1:63; ::_thesis: verum end; theorem :: COMPLFLD:70 for z1, z2 being Element of F_Complex holds abs (|.z1.| - |.z2.|) <= |.(z1 - z2).| proof let z1, z2 be Element of F_Complex; ::_thesis: abs (|.z1.| - |.z2.|) <= |.(z1 - z2).| reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; z19 - z29 = z1 - z2 by Th3; hence abs (|.z1.| - |.z2.|) <= |.(z1 - z2).| by COMPLEX1:64; ::_thesis: verum end; theorem :: COMPLFLD:71 for z1, z2 being Element of F_Complex holds |.(z1 * z2).| = |.z1.| * |.z2.| by COMPLEX1:65; theorem :: COMPLFLD:72 for z being Element of F_Complex st z <> 0. F_Complex holds |.(z ").| = |.z.| " proof let z be Element of F_Complex; ::_thesis: ( z <> 0. F_Complex implies |.(z ").| = |.z.| " ) reconsider z1 = z as Element of COMPLEX by Def1; assume z <> 0. F_Complex ; ::_thesis: |.(z ").| = |.z.| " then z " = z1 " by Th5; hence |.(z ").| = |.z.| " by COMPLEX1:66; ::_thesis: verum end; theorem :: COMPLFLD:73 for z2, z1 being Element of F_Complex st z2 <> 0. F_Complex holds |.z1.| / |.z2.| = |.(z1 / z2).| proof let z2, z1 be Element of F_Complex; ::_thesis: ( z2 <> 0. F_Complex implies |.z1.| / |.z2.| = |.(z1 / z2).| ) reconsider z19 = z1, z29 = z2 as Element of COMPLEX by Def1; assume z2 <> 0. F_Complex ; ::_thesis: |.z1.| / |.z2.| = |.(z1 / z2).| then z19 / z29 = z1 / z2 by Th6; hence |.z1.| / |.z2.| = |.(z1 / z2).| by COMPLEX1:67; ::_thesis: verum end; begin scheme :: COMPLFLD:sch 1 Regrwithout0{ P1[ Nat] } : P1[1] provided A1: ex k being non empty Element of NAT st P1[k] and A2: for k being non empty Element of NAT st k <> 1 & P1[k] holds ex n being non empty Element of NAT st ( n < k & P1[n] ) proof consider t being non empty Element of NAT such that A3: P1[t] by A1; defpred S1[ Nat] means P1[$1 + 1]; A4: now__::_thesis:_for_k_being_Nat_st_k_<>_0_&_S1[k]_holds_ ex_l_being_Nat_st_ (_l_<_k_&_S1[l]_) let k be Nat; ::_thesis: ( k <> 0 & S1[k] implies ex l being Nat st ( l < k & S1[l] ) ) assume that A5: k <> 0 and A6: S1[k] ; ::_thesis: ex l being Nat st ( l < k & S1[l] ) reconsider k1 = k + 1 as non empty Element of NAT ; k > 0 by A5, NAT_1:3; then k + 1 > 0 + 1 by XREAL_1:6; then consider n being non empty Element of NAT such that A7: n < k1 and A8: P1[n] by A2, A6; consider l being Nat such that A9: n = l + 1 by NAT_1:6; take l = l; ::_thesis: ( l < k & S1[l] ) thus l < k by A7, A9, XREAL_1:6; ::_thesis: S1[l] thus S1[l] by A8, A9; ::_thesis: verum end; ex s being Nat st t = s + 1 by NAT_1:6; then A10: ex k being Nat st S1[k] by A3; S1[ 0 ] from NAT_1:sch_7(A10, A4); hence P1[1] ; ::_thesis: verum end; theorem Th74: :: COMPLFLD:74 for e being Element of F_Complex for n being non empty Nat holds (power F_Complex) . (e,n) = e |^ n proof let e be Element of F_Complex; ::_thesis: for n being non empty Nat holds (power F_Complex) . (e,n) = e |^ n defpred S1[ Nat] means (power F_Complex) . (e,$1) = e |^ $1; A1: now__::_thesis:_for_n_being_non_empty_Nat_st_S1[n]_holds_ S1[n_+_1] let n be non empty Nat; ::_thesis: ( S1[n] implies S1[n + 1] ) reconsider n9 = n as Element of NAT by ORDINAL1:def_12; reconsider p = (power F_Complex) . (e,n9) as Element of F_Complex ; assume A2: S1[n] ; ::_thesis: S1[n + 1] (power F_Complex) . (e,(n + 1)) = p * e by GROUP_1:def_7 .= e |^ (n + 1) by A2, NEWTON:6 ; hence S1[n + 1] ; ::_thesis: verum end; (power F_Complex) . (e,1) = e by GROUP_1:50; then A3: S1[1] by NEWTON:5; thus for n being non empty Nat holds S1[n] from NAT_1:sch_10(A3, A1); ::_thesis: verum end; definition let x be Element of F_Complex; let n be non empty Element of NAT ; :: original: CRoot redefine mode CRoot of n,x -> Element of F_Complex means :Def2: :: COMPLFLD:def 2 (power F_Complex) . (it,n) = x; coherence for b1 being CRoot of n,x holds b1 is Element of F_Complex proof let e be CRoot of n,x; ::_thesis: e is Element of F_Complex e is Element of COMPLEX by XCMPLX_0:def_2; hence e is Element of F_Complex by Def1; ::_thesis: verum end; compatibility for b1 being Element of F_Complex holds ( b1 is CRoot of n,x iff (power F_Complex) . (b1,n) = x ) proof let e be Element of F_Complex; ::_thesis: ( e is CRoot of n,x iff (power F_Complex) . (e,n) = x ) thus ( e is CRoot of n,x implies (power F_Complex) . (e,n) = x ) ::_thesis: ( (power F_Complex) . (e,n) = x implies e is CRoot of n,x ) proof assume e is CRoot of n,x ; ::_thesis: (power F_Complex) . (e,n) = x then e |^ n = x by COMPTRIG:def_2; hence (power F_Complex) . (e,n) = x by Th74; ::_thesis: verum end; assume (power F_Complex) . (e,n) = x ; ::_thesis: e is CRoot of n,x hence e |^ n = x by Th74; :: according to COMPTRIG:def_2 ::_thesis: verum end; end; :: deftheorem Def2 defines CRoot COMPLFLD:def_2_:_ for x being Element of F_Complex for n being non empty Element of NAT for b3 being Element of F_Complex holds ( b3 is CRoot of n,x iff (power F_Complex) . (b3,n) = x ); theorem :: COMPLFLD:75 for x being Element of F_Complex for v being CRoot of 1,x holds v = x proof let x be Element of F_Complex; ::_thesis: for v being CRoot of 1,x holds v = x let v be CRoot of 1,x; ::_thesis: v = x (power F_Complex) . (v,1) = x by Def2; hence v = x by GROUP_1:50; ::_thesis: verum end; theorem :: COMPLFLD:76 for n being non empty Element of NAT for v being CRoot of n, 0. F_Complex holds v = 0. F_Complex proof let n be non empty Element of NAT ; ::_thesis: for v being CRoot of n, 0. F_Complex holds v = 0. F_Complex let v be CRoot of n, 0. F_Complex; ::_thesis: v = 0. F_Complex defpred S1[ Element of NAT ] means (power F_Complex) . (v,$1) = 0. F_Complex; A1: now__::_thesis:_for_k_being_non_empty_Element_of_NAT_st_k_<>_1_&_S1[k]_holds_ ex_t_being_non_empty_Element_of_NAT_st_ (_t_<_k_&_S1[t]_) let k be non empty Element of NAT ; ::_thesis: ( k <> 1 & S1[k] implies ex t being non empty Element of NAT st ( t < k & S1[t] ) ) assume that A2: k <> 1 and A3: S1[k] ; ::_thesis: ex t being non empty Element of NAT st ( t < k & S1[t] ) consider t being Nat such that A4: k = t + 1 by NAT_1:6; reconsider t = t as Element of NAT by ORDINAL1:def_12; reconsider t = t as non empty Element of NAT by A2, A4; take t = t; ::_thesis: ( t < k & S1[t] ) thus t < k by A4, NAT_1:13; ::_thesis: S1[t] (power F_Complex) . (v,k) = ((power F_Complex) . (v,t)) * v by A4, GROUP_1:def_7; then ( (power F_Complex) . (v,t) = 0. F_Complex or v = 0. F_Complex ) by A3, VECTSP_1:12; hence S1[t] by NAT_1:3, VECTSP_1:36; ::_thesis: verum end; A5: ex n being non empty Element of NAT st S1[n] proof take n ; ::_thesis: S1[n] thus S1[n] by Def2; ::_thesis: verum end; S1[1] from COMPLFLD:sch_1(A5, A1); hence v = 0. F_Complex by GROUP_1:50; ::_thesis: verum end; theorem :: COMPLFLD:77 for n being non empty Element of NAT for x being Element of F_Complex for v being CRoot of n,x st v = 0. F_Complex holds x = 0. F_Complex proof let n be non empty Element of NAT ; ::_thesis: for x being Element of F_Complex for v being CRoot of n,x st v = 0. F_Complex holds x = 0. F_Complex let x be Element of F_Complex; ::_thesis: for v being CRoot of n,x st v = 0. F_Complex holds x = 0. F_Complex let v be CRoot of n,x; ::_thesis: ( v = 0. F_Complex implies x = 0. F_Complex ) assume v = 0. F_Complex ; ::_thesis: x = 0. F_Complex then (power F_Complex) . ((0. F_Complex),n) = x by Def2; hence x = 0. F_Complex by NAT_1:3, VECTSP_1:36; ::_thesis: verum end;