:: COMPLSP2 semantic presentation begin definition let z be FinSequence of COMPLEX ; funcz *' -> FinSequence of COMPLEX means :Def1: :: COMPLSP2:def 1 ( len it = len z & ( for i being Nat st 1 <= i & i <= len z holds it . i = (z . i) *' ) ); existence ex b1 being FinSequence of COMPLEX st ( len b1 = len z & ( for i being Nat st 1 <= i & i <= len z holds b1 . i = (z . i) *' ) ) proof deffunc H1( Nat) -> Element of COMPLEX = (z . $1) *' ; consider p being FinSequence such that A1: ( len p = len z & ( for k being Nat st k in dom p holds p . k = H1(k) ) ) from FINSEQ_1:sch_2(); rng p c= COMPLEX proof let s2 be set ; :: according to TARSKI:def_3 ::_thesis: ( not s2 in rng p or s2 in COMPLEX ) assume s2 in rng p ; ::_thesis: s2 in COMPLEX then consider s1 being set such that A2: s1 in dom p and A3: s2 = p . s1 by FUNCT_1:def_3; reconsider nx = s1 as Element of NAT by A2; p . nx = (z . nx) *' by A1, A2; hence s2 in COMPLEX by A3; ::_thesis: verum end; then A4: p is FinSequence of COMPLEX by FINSEQ_1:def_4; for i being Nat st 1 <= i & i <= len z holds (z . i) *' = p . i proof let i be Nat; ::_thesis: ( 1 <= i & i <= len z implies (z . i) *' = p . i ) assume ( 1 <= i & i <= len z ) ; ::_thesis: (z . i) *' = p . i then i in dom p by A1, FINSEQ_3:25; hence (z . i) *' = p . i by A1; ::_thesis: verum end; hence ex b1 being FinSequence of COMPLEX st ( len b1 = len z & ( for i being Nat st 1 <= i & i <= len z holds b1 . i = (z . i) *' ) ) by A1, A4; ::_thesis: verum end; uniqueness for b1, b2 being FinSequence of COMPLEX st len b1 = len z & ( for i being Nat st 1 <= i & i <= len z holds b1 . i = (z . i) *' ) & len b2 = len z & ( for i being Nat st 1 <= i & i <= len z holds b2 . i = (z . i) *' ) holds b1 = b2 proof let p1, p2 be FinSequence of COMPLEX ; ::_thesis: ( len p1 = len z & ( for i being Nat st 1 <= i & i <= len z holds p1 . i = (z . i) *' ) & len p2 = len z & ( for i being Nat st 1 <= i & i <= len z holds p2 . i = (z . i) *' ) implies p1 = p2 ) assume that A5: len p1 = len z and A6: for i being Nat st 1 <= i & i <= len z holds (z . i) *' = p1 . i and A7: len p2 = len z and A8: for i being Nat st 1 <= i & i <= len z holds (z . i) *' = p2 . i ; ::_thesis: p1 = p2 for i being Nat st 1 <= i & i <= len p1 holds p1 . i = p2 . i proof let i be Nat; ::_thesis: ( 1 <= i & i <= len p1 implies p1 . i = p2 . i ) assume A9: ( 1 <= i & i <= len p1 ) ; ::_thesis: p1 . i = p2 . i then (z . i) *' = p1 . i by A5, A6; hence p1 . i = p2 . i by A5, A8, A9; ::_thesis: verum end; hence p1 = p2 by A5, A7, FINSEQ_1:14; ::_thesis: verum end; end; :: deftheorem Def1 defines *' COMPLSP2:def_1_:_ for z, b2 being FinSequence of COMPLEX holds ( b2 = z *' iff ( len b2 = len z & ( for i being Nat st 1 <= i & i <= len z holds b2 . i = (z . i) *' ) ) ); Lm1: for x being FinSequence of COMPLEX for c being Element of COMPLEX holds c * x = (multcomplex [;] (c,(id COMPLEX))) * x proof let x be FinSequence of COMPLEX ; ::_thesis: for c being Element of COMPLEX holds c * x = (multcomplex [;] (c,(id COMPLEX))) * x let c be Element of COMPLEX ; ::_thesis: c * x = (multcomplex [;] (c,(id COMPLEX))) * x c multcomplex = multcomplex [;] (c,(id COMPLEX)) by SEQ_4:def_4; hence c * x = (multcomplex [;] (c,(id COMPLEX))) * x by SEQ_4:def_9; ::_thesis: verum end; theorem :: COMPLSP2:1 for i being Element of NAT for x, y being FinSequence of COMPLEX st i in dom (x + y) holds (x + y) . i = (x . i) + (y . i) by VALUED_1:def_1; theorem :: COMPLSP2:2 for i being Element of NAT for x, y being FinSequence of COMPLEX st i in dom (x - y) holds (x - y) . i = (x . i) - (y . i) by VALUED_1:13; definition let i be Element of NAT ; let R1, R2 be Element of i -tuples_on COMPLEX; :: original: - redefine funcR1 - R2 -> Element of i -tuples_on COMPLEX; coherence R1 - R2 is Element of i -tuples_on COMPLEX proof R1 - R2 = diffcomplex .: (R1,R2) by SEQ_4:def_7; hence R1 - R2 is Element of i -tuples_on COMPLEX by FINSEQ_2:120; ::_thesis: verum end; end; definition let i be Element of NAT ; let R1, R2 be Element of i -tuples_on COMPLEX; :: original: + redefine funcR1 + R2 -> Element of i -tuples_on COMPLEX; coherence R1 + R2 is Element of i -tuples_on COMPLEX proof R1 + R2 = addcomplex .: (R1,R2) by SEQ_4:def_6; hence R1 + R2 is Element of i -tuples_on COMPLEX by FINSEQ_2:120; ::_thesis: verum end; end; definition let i be Element of NAT ; let R be Element of i -tuples_on COMPLEX; let r be complex number ; :: original: * redefine funcr * R -> Element of i -tuples_on COMPLEX; coherence r * R is Element of i -tuples_on COMPLEX proof reconsider q = r as Element of COMPLEX by XCMPLX_0:def_2; q * R = (multcomplex [;] (q,(id COMPLEX))) * R by Lm1; hence r * R is Element of i -tuples_on COMPLEX by FINSEQ_2:113; ::_thesis: verum end; end; theorem Th3: :: COMPLSP2:3 for a being complex number for x being FinSequence of COMPLEX holds len (a * x) = len x proof let a be complex number ; ::_thesis: for x being FinSequence of COMPLEX holds len (a * x) = len x let x be FinSequence of COMPLEX ; ::_thesis: len (a * x) = len x set n = len x; reconsider z = x as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; reconsider a9 = a as Element of COMPLEX by XCMPLX_0:def_2; len (a9 * z) = len x by CARD_1:def_7; hence len (a * x) = len x ; ::_thesis: verum end; theorem :: COMPLSP2:4 for x being complex-yielding FinSequence holds dom x = dom (- x) by VALUED_1:8; theorem Th5: :: COMPLSP2:5 for x being complex-valued FinSequence holds len (- x) = len x proof let x be complex-valued FinSequence; ::_thesis: len (- x) = len x dom (- x) = dom x by VALUED_1:8; hence len (- x) = len x by FINSEQ_3:29; ::_thesis: verum end; Lm2: for F being complex-valued FinSequence holds F is FinSequence of COMPLEX proof let F be complex-valued FinSequence; ::_thesis: F is FinSequence of COMPLEX rng F c= COMPLEX by VALUED_0:def_1; hence F is FinSequence of COMPLEX by FINSEQ_1:def_4; ::_thesis: verum end; theorem Th6: :: COMPLSP2:6 for x1, x2 being complex-valued FinSequence st len x1 = len x2 holds len (x1 + x2) = len x1 proof let x1, x2 be complex-valued FinSequence; ::_thesis: ( len x1 = len x2 implies len (x1 + x2) = len x1 ) set n = len x1; A1: x2 is FinSequence of COMPLEX by Lm2; x1 is FinSequence of COMPLEX by Lm2; then reconsider z1 = x1 as Element of (len x1) -tuples_on COMPLEX by FINSEQ_2:92; assume len x1 = len x2 ; ::_thesis: len (x1 + x2) = len x1 then reconsider z2 = x2 as Element of (len x1) -tuples_on COMPLEX by A1, FINSEQ_2:92; dom (z1 + z2) = Seg (len x1) by FINSEQ_2:124; hence len (x1 + x2) = len x1 by FINSEQ_1:def_3; ::_thesis: verum end; theorem Th7: :: COMPLSP2:7 for x1, x2 being complex-valued FinSequence st len x1 = len x2 holds len (x1 - x2) = len x1 proof let x1, x2 be complex-valued FinSequence; ::_thesis: ( len x1 = len x2 implies len (x1 - x2) = len x1 ) set n = len x1; A1: x2 is FinSequence of COMPLEX by Lm2; x1 is FinSequence of COMPLEX by Lm2; then reconsider z1 = x1 as Element of (len x1) -tuples_on COMPLEX by FINSEQ_2:92; assume len x1 = len x2 ; ::_thesis: len (x1 - x2) = len x1 then reconsider z2 = x2 as Element of (len x1) -tuples_on COMPLEX by A1, FINSEQ_2:92; dom (z1 - z2) = Seg (len x1) by FINSEQ_2:124; hence len (x1 - x2) = len x1 by FINSEQ_1:def_3; ::_thesis: verum end; theorem :: COMPLSP2:8 for f being complex-valued FinSequence holds f is Element of COMPLEX (len f) proof let f be complex-valued FinSequence; ::_thesis: f is Element of COMPLEX (len f) f is FinSequence of COMPLEX by Lm2; then f is Element of COMPLEX * by FINSEQ_1:def_11; then f in { s where s is Element of COMPLEX * : len s = len f } ; then f in (len f) -tuples_on COMPLEX by FINSEQ_2:def_4; hence f is Element of COMPLEX (len f) by SEQ_4:def_11; ::_thesis: verum end; theorem :: COMPLSP2:9 for i being Element of NAT for R1, R2 being Element of i -tuples_on COMPLEX holds R1 - R2 = R1 + (- R2) ; theorem :: COMPLSP2:10 for x, y being complex-valued FinSequence st len x = len y holds x - y = x + (- y) ; theorem :: COMPLSP2:11 for i being Element of NAT for R being Element of i -tuples_on COMPLEX holds (- 1) * R = - R ; theorem :: COMPLSP2:12 for x being FinSequence of COMPLEX holds (- 1) * x = - x ; theorem Th13: :: COMPLSP2:13 for i being Element of NAT for x being FinSequence of COMPLEX holds (- x) . i = - (x . i) proof let i be Element of NAT ; ::_thesis: for x being FinSequence of COMPLEX holds (- x) . i = - (x . i) let x be FinSequence of COMPLEX ; ::_thesis: (- x) . i = - (x . i) percases ( not i in dom (- x) or i in dom (- x) ) ; supposeA1: not i in dom (- x) ; ::_thesis: (- x) . i = - (x . i) then A2: not i in dom x by VALUED_1:8; thus (- x) . i = - 0 by A1, FUNCT_1:def_2 .= - (x . i) by A2, FUNCT_1:def_2 ; ::_thesis: verum end; supposeA3: i in dom (- x) ; ::_thesis: (- x) . i = - (x . i) set r = x . i; - x = compcomplex * x by SEQ_4:def_8; then (- x) . i = compcomplex . (x . i) by A3, FUNCT_1:12; hence (- x) . i = - (x . i) by BINOP_2:def_1; ::_thesis: verum end; end; end; definition let i be Element of NAT ; let R be Element of i -tuples_on COMPLEX; :: original: - redefine func - R -> Element of i -tuples_on COMPLEX; coherence - R is Element of i -tuples_on COMPLEX proof - R = compcomplex * R by SEQ_4:def_8; hence - R is Element of i -tuples_on COMPLEX by FINSEQ_2:113; ::_thesis: verum end; end; theorem :: COMPLSP2:14 for i, j being Element of NAT for c being Element of COMPLEX for R being Element of i -tuples_on COMPLEX st c = R . j holds (- R) . j = - c by Th13; theorem Th15: :: COMPLSP2:15 for x being FinSequence of COMPLEX for a being complex number holds dom (a * x) = dom x proof let x be FinSequence of COMPLEX ; ::_thesis: for a being complex number holds dom (a * x) = dom x let a be complex number ; ::_thesis: dom (a * x) = dom x dom (a multcomplex) = COMPLEX by FUNCT_2:def_1; then rng x c= dom (a multcomplex) by FINSEQ_1:def_4; hence dom x = dom ((a multcomplex) * x) by RELAT_1:27 .= dom (a * x) by SEQ_4:def_9 ; ::_thesis: verum end; theorem Th16: :: COMPLSP2:16 for x being FinSequence of COMPLEX for i being Nat for a being complex number holds (a * x) . i = a * (x . i) proof let x be FinSequence of COMPLEX ; ::_thesis: for i being Nat for a being complex number holds (a * x) . i = a * (x . i) let i be Nat; ::_thesis: for a being complex number holds (a * x) . i = a * (x . i) let a be complex number ; ::_thesis: (a * x) . i = a * (x . i) reconsider aa = a as Element of COMPLEX by XCMPLX_0:def_2; percases ( not i in dom (a * x) or i in dom (a * x) ) ; supposeA1: not i in dom (a * x) ; ::_thesis: (a * x) . i = a * (x . i) then A2: not i in dom x by Th15; thus (a * x) . i = a * 0 by A1, FUNCT_1:def_2 .= a * (x . i) by A2, FUNCT_1:def_2 ; ::_thesis: verum end; supposeA3: i in dom (a * x) ; ::_thesis: (a * x) . i = a * (x . i) set a9 = x . i; A4: a * x = (multcomplex [;] (aa,(id COMPLEX))) * x by Lm1; then A5: x . i in dom (multcomplex [;] (aa,(id COMPLEX))) by A3, FUNCT_1:11; thus (a * x) . i = (multcomplex [;] (aa,(id COMPLEX))) . (x . i) by A3, A4, FUNCT_1:12 .= multcomplex . (a,((id COMPLEX) . (x . i))) by A5, FUNCOP_1:32 .= multcomplex . (aa,(x . i)) by FUNCT_1:18 .= a * (x . i) by BINOP_2:def_5 ; ::_thesis: verum end; end; end; theorem Th17: :: COMPLSP2:17 for x being FinSequence of COMPLEX for a being complex number holds (a * x) *' = (a *') * (x *') proof let x be FinSequence of COMPLEX ; ::_thesis: for a being complex number holds (a * x) *' = (a *') * (x *') let a be complex number ; ::_thesis: (a * x) *' = (a *') * (x *') reconsider aa = a as Element of COMPLEX by XCMPLX_0:def_2; len ((a *') * (x *')) = len (x *') by Th3; then A1: len ((a *') * (x *')) = len x by Def1; A2: len (a * x) = len x by Th3; A3: now__::_thesis:_for_i_being_Nat_st_1_<=_i_&_i_<=_len_((a_*_x)_*')_holds_ ((a_*_x)_*')_._i_=_((a_*')_*_(x_*'))_._i let i be Nat; ::_thesis: ( 1 <= i & i <= len ((a * x) *') implies ((a * x) *') . i = ((a *') * (x *')) . i ) assume that A4: 1 <= i and A5: i <= len ((a * x) *') ; ::_thesis: ((a * x) *') . i = ((a *') * (x *')) . i A6: i <= len (a * x) by A5, Def1; hence ((a * x) *') . i = ((a * x) . i) *' by A4, Def1 .= (aa * (x . i)) *' by Th16 .= (aa *') * ((x . i) *') by COMPLEX1:35 .= (a *') * ((x *') . i) by A2, A4, A6, Def1 .= ((a *') * (x *')) . i by Th16 ; ::_thesis: verum end; len ((a * x) *') = len (a * x) by Def1; hence (a * x) *' = (a *') * (x *') by A1, A3, Th3, FINSEQ_1:14; ::_thesis: verum end; theorem Th18: :: COMPLSP2:18 for i, j being Element of NAT for R1, R2 being Element of i -tuples_on COMPLEX holds (R1 + R2) . j = (R1 . j) + (R2 . j) proof let i, j be Element of NAT ; ::_thesis: for R1, R2 being Element of i -tuples_on COMPLEX holds (R1 + R2) . j = (R1 . j) + (R2 . j) let R1, R2 be Element of i -tuples_on COMPLEX; ::_thesis: (R1 + R2) . j = (R1 . j) + (R2 . j) percases ( not j in Seg i or j in Seg i ) ; supposeA1: not j in Seg i ; ::_thesis: (R1 + R2) . j = (R1 . j) + (R2 . j) then A2: not j in dom R2 by FINSEQ_2:124; A3: not j in dom R1 by A1, FINSEQ_2:124; not j in dom (R1 + R2) by A1, FINSEQ_2:124; hence (R1 + R2) . j = 0 + 0 by FUNCT_1:def_2 .= (R1 . j) + 0 by A3, FUNCT_1:def_2 .= (R1 . j) + (R2 . j) by A2, FUNCT_1:def_2 ; ::_thesis: verum end; suppose j in Seg i ; ::_thesis: (R1 + R2) . j = (R1 . j) + (R2 . j) then j in dom (R1 + R2) by FINSEQ_2:124; hence (R1 + R2) . j = (R1 . j) + (R2 . j) by VALUED_1:def_1; ::_thesis: verum end; end; end; theorem Th19: :: COMPLSP2:19 for x1, x2 being FinSequence of COMPLEX st len x1 = len x2 holds (x1 + x2) *' = (x1 *') + (x2 *') proof let x1, x2 be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 implies (x1 + x2) *' = (x1 *') + (x2 *') ) reconsider x9 = x1 as Element of (len x1) -tuples_on COMPLEX by FINSEQ_2:92; reconsider y9 = x2 as Element of (len x2) -tuples_on COMPLEX by FINSEQ_2:92; reconsider x3 = x1 *' as Element of (len (x1 *')) -tuples_on COMPLEX by FINSEQ_2:92; reconsider x4 = x2 *' as Element of (len (x2 *')) -tuples_on COMPLEX by FINSEQ_2:92; assume A1: len x1 = len x2 ; ::_thesis: (x1 + x2) *' = (x1 *') + (x2 *') then A2: len (x1 + x2) = len x1 by Th6; A3: ( len x1 = len (x1 *') & len x2 = len (x2 *') ) by Def1; A4: now__::_thesis:_for_i_being_Nat_st_1_<=_i_&_i_<=_len_((x1_+_x2)_*')_holds_ ((x1_+_x2)_*')_._i_=_(x3_+_x4)_._i let i be Nat; ::_thesis: ( 1 <= i & i <= len ((x1 + x2) *') implies ((x1 + x2) *') . i = (x3 + x4) . i ) A5: i in NAT by ORDINAL1:def_12; assume that A6: 1 <= i and A7: i <= len ((x1 + x2) *') ; ::_thesis: ((x1 + x2) *') . i = (x3 + x4) . i A8: i <= len (x1 + x2) by A7, Def1; hence ((x1 + x2) *') . i = ((x1 + x2) . i) *' by A6, Def1 .= ((x9 . i) + (y9 . i)) *' by A1, A5, Th18 .= ((x1 . i) *') + ((x2 . i) *') by COMPLEX1:32 .= ((x1 *') . i) + ((x2 . i) *') by A2, A6, A8, Def1 .= ((x1 *') . i) + ((x2 *') . i) by A1, A2, A6, A8, Def1 .= (x3 + x4) . i by A1, A3, A5, Th18 ; ::_thesis: verum end; len ((x1 *') + (x2 *')) = len x1 by A1, A3, Th6; then len ((x1 + x2) *') = len ((x1 *') + (x2 *')) by A2, Def1; hence (x1 + x2) *' = (x1 *') + (x2 *') by A4, FINSEQ_1:14; ::_thesis: verum end; theorem Th20: :: COMPLSP2:20 for i, j being Element of NAT for R1, R2 being Element of i -tuples_on COMPLEX holds (R1 - R2) . j = (R1 . j) - (R2 . j) proof let i, j be Element of NAT ; ::_thesis: for R1, R2 being Element of i -tuples_on COMPLEX holds (R1 - R2) . j = (R1 . j) - (R2 . j) let R1, R2 be Element of i -tuples_on COMPLEX; ::_thesis: (R1 - R2) . j = (R1 . j) - (R2 . j) percases ( not j in Seg i or j in Seg i ) ; supposeA1: not j in Seg i ; ::_thesis: (R1 - R2) . j = (R1 . j) - (R2 . j) then A2: not j in dom R2 by FINSEQ_2:124; A3: not j in dom R1 by A1, FINSEQ_2:124; not j in dom (R1 - R2) by A1, FINSEQ_2:124; hence (R1 - R2) . j = 0 - 0 by FUNCT_1:def_2 .= (R1 . j) - 0 by A3, FUNCT_1:def_2 .= (R1 . j) - (R2 . j) by A2, FUNCT_1:def_2 ; ::_thesis: verum end; suppose j in Seg i ; ::_thesis: (R1 - R2) . j = (R1 . j) - (R2 . j) then j in dom (R1 - R2) by FINSEQ_2:124; hence (R1 - R2) . j = (R1 . j) - (R2 . j) by VALUED_1:13; ::_thesis: verum end; end; end; theorem Th21: :: COMPLSP2:21 for x1, x2 being FinSequence of COMPLEX st len x1 = len x2 holds (x1 - x2) *' = (x1 *') - (x2 *') proof let x1, x2 be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 implies (x1 - x2) *' = (x1 *') - (x2 *') ) reconsider x9 = x1 as Element of (len x1) -tuples_on COMPLEX by FINSEQ_2:92; reconsider y9 = x2 as Element of (len x2) -tuples_on COMPLEX by FINSEQ_2:92; reconsider x3 = x1 *' as Element of (len (x1 *')) -tuples_on COMPLEX by FINSEQ_2:92; reconsider x4 = x2 *' as Element of (len (x2 *')) -tuples_on COMPLEX by FINSEQ_2:92; assume A1: len x1 = len x2 ; ::_thesis: (x1 - x2) *' = (x1 *') - (x2 *') then A2: len (x1 - x2) = len x1 by Th7; A3: ( len x1 = len (x1 *') & len x2 = len (x2 *') ) by Def1; A4: now__::_thesis:_for_i_being_Nat_st_1_<=_i_&_i_<=_len_((x1_-_x2)_*')_holds_ ((x1_-_x2)_*')_._i_=_(x3_-_x4)_._i let i be Nat; ::_thesis: ( 1 <= i & i <= len ((x1 - x2) *') implies ((x1 - x2) *') . i = (x3 - x4) . i ) A5: i in NAT by ORDINAL1:def_12; assume that A6: 1 <= i and A7: i <= len ((x1 - x2) *') ; ::_thesis: ((x1 - x2) *') . i = (x3 - x4) . i A8: i <= len (x1 - x2) by A7, Def1; hence ((x1 - x2) *') . i = ((x1 - x2) . i) *' by A6, Def1 .= ((x9 . i) - (y9 . i)) *' by A1, A5, Th20 .= ((x1 . i) *') - ((x2 . i) *') by COMPLEX1:34 .= ((x1 *') . i) - ((x2 . i) *') by A2, A6, A8, Def1 .= ((x1 *') . i) - ((x2 *') . i) by A1, A2, A6, A8, Def1 .= (x3 - x4) . i by A1, A3, A5, Th20 ; ::_thesis: verum end; len ((x1 *') - (x2 *')) = len x1 by A1, A3, Th7; then len ((x1 - x2) *') = len ((x1 *') - (x2 *')) by A2, Def1; hence (x1 - x2) *' = (x1 *') - (x2 *') by A4, FINSEQ_1:14; ::_thesis: verum end; theorem :: COMPLSP2:22 for z being FinSequence of COMPLEX holds (z *') *' = z proof let z be FinSequence of COMPLEX ; ::_thesis: (z *') *' = z A1: len (z *') = len z by Def1; A2: now__::_thesis:_for_i_being_Nat_st_1_<=_i_&_i_<=_len_((z_*')_*')_holds_ ((z_*')_*')_._i_=_z_._i let i be Nat; ::_thesis: ( 1 <= i & i <= len ((z *') *') implies ((z *') *') . i = z . i ) assume that A3: 1 <= i and A4: i <= len ((z *') *') ; ::_thesis: ((z *') *') . i = z . i A5: i <= len (z *') by A4, Def1; then (z *') . i = (z . i) *' by A1, A3, Def1; hence ((z *') *') . i = ((z . i) *') *' by A3, A5, Def1 .= z . i ; ::_thesis: verum end; len ((z *') *') = len (z *') by Def1; hence (z *') *' = z by A1, A2, FINSEQ_1:14; ::_thesis: verum end; theorem :: COMPLSP2:23 for z being FinSequence of COMPLEX holds (- z) *' = - (z *') proof let z be FinSequence of COMPLEX ; ::_thesis: (- z) *' = - (z *') (- z) *' = ((- 1r) *') * (z *') by Th17, COMPLEX1:def_4 .= - (z *') by COMPLEX1:30, COMPLEX1:33, COMPLEX1:def_4 ; hence (- z) *' = - (z *') ; ::_thesis: verum end; theorem Th24: :: COMPLSP2:24 for z being complex number holds z + (z *') = 2 * (Re z) proof let z be complex number ; ::_thesis: z + (z *') = 2 * (Re z) z is Element of COMPLEX by XCMPLX_0:def_2; then z + (z *') = ((Re z) + (Re (z *'))) + (((Im z) + (Im (z *'))) * ) by COMPLEX1:def_5 .= ((Re z) + (Re (z *'))) + (((Im z) + (- (Im z))) * ) by COMPLEX1:27 .= (Re z) + (Re z) by COMPLEX1:27 .= 2 * (Re z) ; hence z + (z *') = 2 * (Re z) ; ::_thesis: verum end; theorem Th25: :: COMPLSP2:25 for i being Element of NAT for x, y being complex-valued FinSequence st len x = len y holds (x - y) . i = (x . i) - (y . i) proof let i be Element of NAT ; ::_thesis: for x, y being complex-valued FinSequence st len x = len y holds (x - y) . i = (x . i) - (y . i) let x, y be complex-valued FinSequence; ::_thesis: ( len x = len y implies (x - y) . i = (x . i) - (y . i) ) A1: ( x is FinSequence of COMPLEX & y is FinSequence of COMPLEX ) by Lm2; then reconsider x2 = x as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; reconsider y2 = y as Element of (len y) -tuples_on COMPLEX by A1, FINSEQ_2:92; reconsider y29 = x2 - y2 as Element of (len (x2 - y2)) -tuples_on COMPLEX by FINSEQ_2:92; assume A2: len x = len y ; ::_thesis: (x - y) . i = (x . i) - (y . i) then A3: len (x - y) = len x by Th7; percases ( not i in Seg (len x) or i in Seg (len x) ) ; supposeA4: not i in Seg (len x) ; ::_thesis: (x - y) . i = (x . i) - (y . i) then A5: not i in dom x2 by FINSEQ_2:124; A6: not i in dom y2 by A2, A4, FINSEQ_2:124; not i in dom y29 by A3, A4, FINSEQ_2:124; then (x2 - y2) . i = 0 - 0 by FUNCT_1:def_2 .= (x2 . i) - 0 by A5, FUNCT_1:def_2 .= (x2 . i) - (y2 . i) by A6, FUNCT_1:def_2 ; hence (x - y) . i = (x . i) - (y . i) ; ::_thesis: verum end; suppose i in Seg (len x) ; ::_thesis: (x - y) . i = (x . i) - (y . i) then i in dom y29 by A3, FINSEQ_2:124; hence (x - y) . i = (x . i) - (y . i) by VALUED_1:13; ::_thesis: verum end; end; end; theorem Th26: :: COMPLSP2:26 for i being Element of NAT for x, y being complex-valued FinSequence st len x = len y holds (x + y) . i = (x . i) + (y . i) proof let i be Element of NAT ; ::_thesis: for x, y being complex-valued FinSequence st len x = len y holds (x + y) . i = (x . i) + (y . i) let x, y be complex-valued FinSequence; ::_thesis: ( len x = len y implies (x + y) . i = (x . i) + (y . i) ) A1: ( x is FinSequence of COMPLEX & y is FinSequence of COMPLEX ) by Lm2; then reconsider x2 = x as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; reconsider y2 = y as Element of (len y) -tuples_on COMPLEX by A1, FINSEQ_2:92; reconsider y29 = x2 + y2 as Element of (len (x2 + y2)) -tuples_on COMPLEX by FINSEQ_2:92; assume A2: len x = len y ; ::_thesis: (x + y) . i = (x . i) + (y . i) then A3: len (x + y) = len x by Th6; percases ( not i in Seg (len x) or i in Seg (len x) ) ; supposeA4: not i in Seg (len x) ; ::_thesis: (x + y) . i = (x . i) + (y . i) then A5: not i in dom x2 by FINSEQ_2:124; A6: not i in dom y2 by A2, A4, FINSEQ_2:124; not i in dom y29 by A3, A4, FINSEQ_2:124; then (x2 + y2) . i = 0 + 0 by FUNCT_1:def_2 .= (x2 . i) + 0 by A5, FUNCT_1:def_2 .= (x2 . i) + (y2 . i) by A6, FUNCT_1:def_2 ; hence (x + y) . i = (x . i) + (y . i) ; ::_thesis: verum end; suppose i in Seg (len x) ; ::_thesis: (x + y) . i = (x . i) + (y . i) then i in dom y29 by A3, FINSEQ_2:124; hence (x + y) . i = (x . i) + (y . i) by VALUED_1:def_1; ::_thesis: verum end; end; end; definition let z be FinSequence of COMPLEX ; func Re z -> FinSequence of REAL equals :: COMPLSP2:def 2 (1 / 2) * (z + (z *')); coherence (1 / 2) * (z + (z *')) is FinSequence of REAL proof A1: len z = len (z *') by Def1; A2: len ((1 / 2) * (z + (z *'))) = len (z + (z *')) by Th3 .= len z by A1, Th6 ; rng ((1 / 2) * (z + (z *'))) c= REAL proof let w be set ; :: according to TARSKI:def_3 ::_thesis: ( not w in rng ((1 / 2) * (z + (z *'))) or w in REAL ) assume w in rng ((1 / 2) * (z + (z *'))) ; ::_thesis: w in REAL then consider x being set such that A3: x in dom ((1 / 2) * (z + (z *'))) and A4: w = ((1 / 2) * (z + (z *'))) . x by FUNCT_1:def_3; reconsider i = x as Element of NAT by A3; x in Seg (len ((1 / 2) * (z + (z *')))) by A3, FINSEQ_1:def_3; then A5: ( 1 <= i & i <= len z ) by A2, FINSEQ_1:1; ((1 / 2) * (z + (z *'))) . i = (1 / 2) * ((z + (z *')) . i) by Th16 .= (1 / 2) * ((z . i) + ((z *') . i)) by A1, Th26 .= (1 / 2) * ((z . i) + ((z . i) *')) by A5, Def1 .= (1 / 2) * (2 * (Re (z . i))) by Th24 ; hence w in REAL by A4; ::_thesis: verum end; hence (1 / 2) * (z + (z *')) is FinSequence of REAL by FINSEQ_1:def_4; ::_thesis: verum end; end; :: deftheorem defines Re COMPLSP2:def_2_:_ for z being FinSequence of COMPLEX holds Re z = (1 / 2) * (z + (z *')); theorem Th27: :: COMPLSP2:27 for z being complex number holds z - (z *') = (2 * (Im z)) * proof let z be complex number ; ::_thesis: z - (z *') = (2 * (Im z)) * z is Element of COMPLEX by XCMPLX_0:def_2; then z - (z *') = ((Re z) - (Re (z *'))) + (((Im z) - (Im (z *'))) * ) by COMPLEX1:def_8 .= ((Re z) - (Re (z *'))) + (((Im z) - (- (Im z))) * ) by COMPLEX1:27 .= ((Re z) - (Re z)) + (((Im z) - (- (Im z))) * ) by COMPLEX1:27 .= (2 * (Im z)) * ; hence z - (z *') = (2 * (Im z)) * ; ::_thesis: verum end; definition let z be FinSequence of COMPLEX ; func Im z -> FinSequence of REAL equals :: COMPLSP2:def 3 (- ((1 / 2) * )) * (z - (z *')); coherence (- ((1 / 2) * )) * (z - (z *')) is FinSequence of REAL proof A1: len z = len (z *') by Def1; A2: len ((- ((1 / 2) * )) * (z - (z *'))) = len (z - (z *')) by Th3 .= len z by A1, Th7 ; rng ((- ((1 / 2) * )) * (z - (z *'))) c= REAL proof let w be set ; :: according to TARSKI:def_3 ::_thesis: ( not w in rng ((- ((1 / 2) * )) * (z - (z *'))) or w in REAL ) assume w in rng ((- ((1 / 2) * )) * (z - (z *'))) ; ::_thesis: w in REAL then consider x being set such that A3: x in dom ((- ((1 / 2) * )) * (z - (z *'))) and A4: w = ((- ((1 / 2) * )) * (z - (z *'))) . x by FUNCT_1:def_3; reconsider i = x as Element of NAT by A3; x in Seg (len ((- ((1 / 2) * )) * (z - (z *')))) by A3, FINSEQ_1:def_3; then A5: ( 1 <= i & i <= len z ) by A2, FINSEQ_1:1; ((- ((1 / 2) * )) * (z - (z *'))) . i = (- ((1 / 2) * )) * ((z - (z *')) . i) by Th16 .= (- ((1 / 2) * )) * ((z . i) - ((z *') . i)) by A1, Th25 .= (- ((1 / 2) * )) * ((z . i) - ((z . i) *')) by A5, Def1 .= (- ((1 / 2) * )) * ((2 * (Im (z . i))) * ) by Th27 ; hence w in REAL by A4; ::_thesis: verum end; hence (- ((1 / 2) * )) * (z - (z *')) is FinSequence of REAL by FINSEQ_1:def_4; ::_thesis: verum end; end; :: deftheorem defines Im COMPLSP2:def_3_:_ for z being FinSequence of COMPLEX holds Im z = (- ((1 / 2) * )) * (z - (z *')); definition let x, y be FinSequence of COMPLEX ; func|(x,y)| -> Element of COMPLEX equals :: COMPLSP2:def 4 ((|((Re x),(Re y))| - ( * |((Re x),(Im y))|)) + ( * |((Im x),(Re y))|)) + |((Im x),(Im y))|; coherence ((|((Re x),(Re y))| - ( * |((Re x),(Im y))|)) + ( * |((Im x),(Re y))|)) + |((Im x),(Im y))| is Element of COMPLEX ; end; :: deftheorem defines |( COMPLSP2:def_4_:_ for x, y being FinSequence of COMPLEX holds |(x,y)| = ((|((Re x),(Re y))| - ( * |((Re x),(Im y))|)) + ( * |((Im x),(Re y))|)) + |((Im x),(Im y))|; theorem Th28: :: COMPLSP2:28 for x, y, z being complex-valued FinSequence st len x = len y & len y = len z holds x + (y + z) = (x + y) + z proof let x, y, z be complex-valued FinSequence; ::_thesis: ( len x = len y & len y = len z implies x + (y + z) = (x + y) + z ) reconsider x1 = x, y1 = y, z1 = z as FinSequence of COMPLEX by Lm2; assume A1: ( len x = len y & len y = len z ) ; ::_thesis: x + (y + z) = (x + y) + z reconsider z9 = z1 as Element of (len z) -tuples_on COMPLEX by FINSEQ_2:92; reconsider y9 = y1 as Element of (len y) -tuples_on COMPLEX by FINSEQ_2:92; reconsider x9 = x1 as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; x + (y + z) = addcomplex .: (x1,(y1 + z1)) by SEQ_4:def_6 .= addcomplex .: (x1,(addcomplex .: (y1,z1))) by SEQ_4:def_6 .= addcomplex .: ((addcomplex .: (x9,y9)),z9) by A1, FINSEQOP:28 .= addcomplex .: ((x1 + y1),z1) by SEQ_4:def_6 .= (x + y) + z by SEQ_4:def_6 ; hence x + (y + z) = (x + y) + z ; ::_thesis: verum end; theorem :: COMPLSP2:29 for x, y being complex-valued FinSequence st len x = len y holds x + y = y + x ; theorem Th30: :: COMPLSP2:30 for c being complex number for x, y being FinSequence of COMPLEX st len x = len y holds c * (x + y) = (c * x) + (c * y) proof let c be complex number ; ::_thesis: for x, y being FinSequence of COMPLEX st len x = len y holds c * (x + y) = (c * x) + (c * y) let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies c * (x + y) = (c * x) + (c * y) ) assume A1: len x = len y ; ::_thesis: c * (x + y) = (c * x) + (c * y) set cM = c multcomplex ; reconsider y9 = y as Element of (len y) -tuples_on COMPLEX by FINSEQ_2:92; reconsider x9 = x as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; A2: c is Element of COMPLEX by XCMPLX_0:def_2; c * (x + y) = (c multcomplex) * (x + y) by SEQ_4:def_9 .= (c multcomplex) * (addcomplex .: (x,y)) by SEQ_4:def_6 .= addcomplex .: (((c multcomplex) * x9),((c multcomplex) * y9)) by A1, A2, FINSEQOP:51, SEQ_4:56 .= ((c multcomplex) * x) + ((c multcomplex) * y) by SEQ_4:def_6 .= (c * x) + ((c multcomplex) * y) by SEQ_4:def_9 .= (c * x) + (c * y) by SEQ_4:def_9 ; hence c * (x + y) = (c * x) + (c * y) ; ::_thesis: verum end; theorem :: COMPLSP2:31 for x, y being complex-valued FinSequence st len x = len y holds x - y = x + (- y) ; theorem Th32: :: COMPLSP2:32 for x, y being complex-valued FinSequence st len x = len y & x + y = 0c (len x) holds ( x = - y & y = - x ) proof let x, y be complex-valued FinSequence; ::_thesis: ( len x = len y & x + y = 0c (len x) implies ( x = - y & y = - x ) ) assume that A1: len x = len y and A2: x + y = 0c (len x) ; ::_thesis: ( x = - y & y = - x ) reconsider x1 = x, y1 = y as FinSequence of COMPLEX by Lm2; reconsider x9 = x1 as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; reconsider y9 = y1 as Element of (len y) -tuples_on COMPLEX by FINSEQ_2:92; A3: ( x + y = addcomplex .: (x1,y1) & - y = compcomplex * y1 ) by SEQ_4:def_6, SEQ_4:def_8; x + y = (len x) |-> 0c by A2, SEQ_4:def_12; then x9 = - y9 by A1, A3, BINOP_2:1, FINSEQOP:74, SEQ_4:51, SEQ_4:52; hence ( x = - y & y = - x ) ; ::_thesis: verum end; theorem Th33: :: COMPLSP2:33 for x being complex-valued FinSequence holds x + (0c (len x)) = x proof let x be complex-valued FinSequence; ::_thesis: x + (0c (len x)) = x A1: x is FinSequence of COMPLEX by Lm2; then reconsider x9 = x as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; x + (0c (len x)) = x + ((len x) |-> 0c) by SEQ_4:def_12 .= addcomplex .: (x,((len x) |-> 0c)) by A1, SEQ_4:def_6 .= x9 by BINOP_2:1, FINSEQOP:56 ; hence x + (0c (len x)) = x ; ::_thesis: verum end; theorem Th34: :: COMPLSP2:34 for x being complex-valued FinSequence holds x + (- x) = 0c (len x) proof let x be complex-valued FinSequence; ::_thesis: x + (- x) = 0c (len x) A1: ( x is FinSequence of COMPLEX & - x is FinSequence of COMPLEX ) by Lm2; then reconsider x9 = x as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; x + (- x) = addcomplex .: (x,(- x)) by A1, SEQ_4:def_6 .= addcomplex .: (x,(compcomplex * x)) by A1, SEQ_4:def_8 .= (len x9) |-> 0c by BINOP_2:1, FINSEQOP:73, SEQ_4:51, SEQ_4:52 .= 0c (len x9) by SEQ_4:def_12 ; hence x + (- x) = 0c (len x) ; ::_thesis: verum end; theorem Th35: :: COMPLSP2:35 for x, y being complex-valued FinSequence st len x = len y holds - (x + y) = (- x) + (- y) proof let x, y be complex-valued FinSequence; ::_thesis: ( len x = len y implies - (x + y) = (- x) + (- y) ) assume A1: len x = len y ; ::_thesis: - (x + y) = (- x) + (- y) A2: len (- y) = len y by Th5; then A3: len ((- x) + (- y)) = len (- x) by A1, Th5, Th6; A4: len (- x) = len x by Th5; A5: len (x + y) = len x by A1, Th6; then (x + y) + ((- x) + (- y)) = ((y + x) + (- x)) + (- y) by A1, A2, A4, Th28 .= (y + (x + (- x))) + (- y) by A1, A4, Th28 .= (y + (0c (len x))) + (- y) by Th34 .= y + (- y) by A1, Th33 .= 0c (len y) by Th34 ; hence - (x + y) = (- x) + (- y) by A1, A4, A5, A3, Th32; ::_thesis: verum end; theorem Th36: :: COMPLSP2:36 for x, y, z being complex-valued FinSequence st len x = len y & len y = len z holds (x - y) - z = x - (y + z) proof let x, y, z be complex-valued FinSequence; ::_thesis: ( len x = len y & len y = len z implies (x - y) - z = x - (y + z) ) assume that A1: len x = len y and A2: len y = len z ; ::_thesis: (x - y) - z = x - (y + z) ( len (- y) = len y & len (- z) = len z ) by Th5; then (x - y) - z = x + ((- y) + (- z)) by A1, A2, Th28 .= x - (y + z) by A2, Th35 ; hence (x - y) - z = x - (y + z) ; ::_thesis: verum end; theorem Th37: :: COMPLSP2:37 for x, y, z being complex-valued FinSequence st len x = len y & len y = len z holds x + (y - z) = (x + y) - z proof let x, y, z be complex-valued FinSequence; ::_thesis: ( len x = len y & len y = len z implies x + (y - z) = (x + y) - z ) assume A1: ( len x = len y & len y = len z ) ; ::_thesis: x + (y - z) = (x + y) - z len (- z) = len z by Th5; hence x + (y - z) = (x + y) - z by A1, Th28; ::_thesis: verum end; theorem :: COMPLSP2:38 canceled; theorem Th39: :: COMPLSP2:39 for x, y being complex-valued FinSequence st len x = len y holds - (x - y) = (- x) + y proof let x, y be complex-valued FinSequence; ::_thesis: ( len x = len y implies - (x - y) = (- x) + y ) assume A1: len x = len y ; ::_thesis: - (x - y) = (- x) + y len (- y) = len y by Th5; then - (x - y) = (- x) + (- (- y)) by A1, Th35 .= (- x) + y ; hence - (x - y) = (- x) + y ; ::_thesis: verum end; theorem Th40: :: COMPLSP2:40 for x, y, z being complex-valued FinSequence st len x = len y & len y = len z holds x - (y - z) = (x - y) + z proof let x, y, z be complex-valued FinSequence; ::_thesis: ( len x = len y & len y = len z implies x - (y - z) = (x - y) + z ) assume that A1: len x = len y and A2: len y = len z ; ::_thesis: x - (y - z) = (x - y) + z A3: len (- y) = len y by Th5; x - (y - z) = x + ((- y) + z) by A2, Th39 .= (x - y) + z by A1, A2, A3, Th28 ; hence x - (y - z) = (x - y) + z ; ::_thesis: verum end; theorem Th41: :: COMPLSP2:41 for x being FinSequence of COMPLEX for c being complex number holds c * (0c (len x)) = 0c (len x) proof let x be FinSequence of COMPLEX ; ::_thesis: for c being complex number holds c * (0c (len x)) = 0c (len x) let c be complex number ; ::_thesis: c * (0c (len x)) = 0c (len x) reconsider cc = c as Element of COMPLEX by XCMPLX_0:def_2; A1: rng (0c (len x)) c= COMPLEX by FINSEQ_1:def_4; c * (0c (len x)) = (multcomplex [;] (cc,(id COMPLEX))) * (0c (len x)) by Lm1 .= multcomplex [;] (cc,((id COMPLEX) * (0c (len x)))) by FUNCOP_1:34 .= multcomplex [;] (cc,(0c (len x))) by A1, RELAT_1:53 .= multcomplex [;] (cc,((len x) |-> 0c)) by SEQ_4:def_12 .= (len x) |-> (multcomplex . (cc,0c)) by FINSEQOP:18 .= (len x) |-> (cc * 0c) by BINOP_2:def_5 .= 0c (len x) by SEQ_4:def_12 ; hence c * (0c (len x)) = 0c (len x) ; ::_thesis: verum end; theorem Th42: :: COMPLSP2:42 for x being FinSequence of COMPLEX for c being complex number holds - (c * x) = c * (- x) proof let x be FinSequence of COMPLEX ; ::_thesis: for c being complex number holds - (c * x) = c * (- x) let c be complex number ; ::_thesis: - (c * x) = c * (- x) A1: ( len (c * (- x)) = len (- x) & len (c * x) = len x ) by Th3; A2: len x = len (- x) by Th5; then (c * (- x)) + (c * x) = c * (x + (- x)) by Th30 .= c * (0c (len x)) by Th34 .= 0c (len x) by Th41 ; hence - (c * x) = c * (- x) by A2, A1, Th32; ::_thesis: verum end; theorem Th43: :: COMPLSP2:43 for c being complex number for x, y being FinSequence of COMPLEX st len x = len y holds c * (x - y) = (c * x) - (c * y) proof let c be complex number ; ::_thesis: for x, y being FinSequence of COMPLEX st len x = len y holds c * (x - y) = (c * x) - (c * y) let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies c * (x - y) = (c * x) - (c * y) ) assume A1: len x = len y ; ::_thesis: c * (x - y) = (c * x) - (c * y) reconsider cc = c as Element of COMPLEX by XCMPLX_0:def_2; reconsider y9 = y as Element of (len y) -tuples_on COMPLEX by FINSEQ_2:92; reconsider x9 = x as Element of (len x) -tuples_on COMPLEX by FINSEQ_2:92; set cM = cc multcomplex ; c * (x - y) = (cc multcomplex) * (x + (- y)) by SEQ_4:def_9 .= (cc multcomplex) * (addcomplex .: (x,(- y))) by SEQ_4:def_6 .= addcomplex .: (((cc multcomplex) * x9),((cc multcomplex) * (- y9))) by A1, FINSEQOP:51, SEQ_4:56 .= ((cc multcomplex) * x) + ((cc multcomplex) * (- y)) by SEQ_4:def_6 .= (c * x) + ((cc multcomplex) * (- y)) by SEQ_4:def_9 .= (c * x) + (c * (- y)) by SEQ_4:def_9 .= (c * x) - (c * y) by Th42 ; hence c * (x - y) = (c * x) - (c * y) ; ::_thesis: verum end; theorem :: COMPLSP2:44 for x1, y1 being Element of COMPLEX for x2, y2 being Real st x1 = x2 & y1 = y2 holds addcomplex . (x1,y1) = addreal . (x2,y2) proof let x1, y1 be Element of COMPLEX ; ::_thesis: for x2, y2 being Real st x1 = x2 & y1 = y2 holds addcomplex . (x1,y1) = addreal . (x2,y2) let x2, y2 be Real; ::_thesis: ( x1 = x2 & y1 = y2 implies addcomplex . (x1,y1) = addreal . (x2,y2) ) A1: addcomplex . (x1,y1) = x1 + y1 by BINOP_2:def_3; assume ( x1 = x2 & y1 = y2 ) ; ::_thesis: addcomplex . (x1,y1) = addreal . (x2,y2) hence addcomplex . (x1,y1) = addreal . (x2,y2) by A1, BINOP_2:def_9; ::_thesis: verum end; theorem Th45: :: COMPLSP2:45 for C being Function of [:COMPLEX,COMPLEX:],COMPLEX for G being Function of [:REAL,REAL:],REAL for x1, y1 being FinSequence of COMPLEX for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 & ( for i being Element of NAT st i in dom x1 holds C . ((x1 . i),(y1 . i)) = G . ((x2 . i),(y2 . i)) ) holds C .: (x1,y1) = G .: (x2,y2) proof let C be Function of [:COMPLEX,COMPLEX:],COMPLEX; ::_thesis: for G being Function of [:REAL,REAL:],REAL for x1, y1 being FinSequence of COMPLEX for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 & ( for i being Element of NAT st i in dom x1 holds C . ((x1 . i),(y1 . i)) = G . ((x2 . i),(y2 . i)) ) holds C .: (x1,y1) = G .: (x2,y2) let G be Function of [:REAL,REAL:],REAL; ::_thesis: for x1, y1 being FinSequence of COMPLEX for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 & ( for i being Element of NAT st i in dom x1 holds C . ((x1 . i),(y1 . i)) = G . ((x2 . i),(y2 . i)) ) holds C .: (x1,y1) = G .: (x2,y2) let x1, y1 be FinSequence of COMPLEX ; ::_thesis: for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 & ( for i being Element of NAT st i in dom x1 holds C . ((x1 . i),(y1 . i)) = G . ((x2 . i),(y2 . i)) ) holds C .: (x1,y1) = G .: (x2,y2) let x2, y2 be FinSequence of REAL ; ::_thesis: ( x1 = x2 & y1 = y2 & len x1 = len y2 & ( for i being Element of NAT st i in dom x1 holds C . ((x1 . i),(y1 . i)) = G . ((x2 . i),(y2 . i)) ) implies C .: (x1,y1) = G .: (x2,y2) ) assume that A1: x1 = x2 and A2: y1 = y2 and A3: len x1 = len y2 and A4: for i being Element of NAT st i in dom x1 holds C . ((x1 . i),(y1 . i)) = G . ((x2 . i),(y2 . i)) ; ::_thesis: C .: (x1,y1) = G .: (x2,y2) A5: len (G .: (x2,y2)) = len x1 by A1, A3, FINSEQ_2:72; A6: now__::_thesis:_for_i_being_Nat_st_1_<=_i_&_i_<=_len_(C_.:_(x1,y1))_holds_ (C_.:_(x1,y1))_._i_=_(G_.:_(x2,y2))_._i let i be Nat; ::_thesis: ( 1 <= i & i <= len (C .: (x1,y1)) implies (C .: (x1,y1)) . i = (G .: (x2,y2)) . i ) assume that A7: 1 <= i and A8: i <= len (C .: (x1,y1)) ; ::_thesis: (C .: (x1,y1)) . i = (G .: (x2,y2)) . i A9: i <= len x1 by A2, A3, A8, FINSEQ_2:72; then A10: i in dom x1 by A7, FINSEQ_3:25; A11: i in dom (G .: (x2,y2)) by A5, A7, A9, FINSEQ_3:25; i in dom (C .: (x1,y1)) by A7, A8, FINSEQ_3:25; hence (C .: (x1,y1)) . i = C . ((x1 . i),(y1 . i)) by FUNCOP_1:22 .= G . ((x2 . i),(y2 . i)) by A4, A10 .= (G .: (x2,y2)) . i by A11, FUNCOP_1:22 ; ::_thesis: verum end; len (C .: (x1,y1)) = len x1 by A2, A3, FINSEQ_2:72; hence C .: (x1,y1) = G .: (x2,y2) by A5, A6, FINSEQ_1:14; ::_thesis: verum end; theorem :: COMPLSP2:46 for x1, y1 being FinSequence of COMPLEX for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 holds addcomplex .: (x1,y1) = addreal .: (x2,y2) proof let x1, y1 be FinSequence of COMPLEX ; ::_thesis: for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 holds addcomplex .: (x1,y1) = addreal .: (x2,y2) let x2, y2 be FinSequence of REAL ; ::_thesis: ( x1 = x2 & y1 = y2 & len x1 = len y2 implies addcomplex .: (x1,y1) = addreal .: (x2,y2) ) assume that A1: ( x1 = x2 & y1 = y2 ) and A2: len x1 = len y2 ; ::_thesis: addcomplex .: (x1,y1) = addreal .: (x2,y2) for i being Element of NAT st i in dom x1 holds addcomplex . ((x1 . i),(y1 . i)) = addreal . ((x2 . i),(y2 . i)) proof let i be Element of NAT ; ::_thesis: ( i in dom x1 implies addcomplex . ((x1 . i),(y1 . i)) = addreal . ((x2 . i),(y2 . i)) ) (x1 . i) + (y1 . i) = addcomplex . ((x1 . i),(y1 . i)) by BINOP_2:def_3; hence ( i in dom x1 implies addcomplex . ((x1 . i),(y1 . i)) = addreal . ((x2 . i),(y2 . i)) ) by A1, BINOP_2:def_9; ::_thesis: verum end; hence addcomplex .: (x1,y1) = addreal .: (x2,y2) by A1, A2, Th45; ::_thesis: verum end; theorem :: COMPLSP2:47 for x1, y1 being FinSequence of COMPLEX for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 holds x1 + y1 = x2 + y2 ; theorem Th48: :: COMPLSP2:48 for x being FinSequence of COMPLEX holds ( len (Re x) = len x & len (Im x) = len x ) proof let x be FinSequence of COMPLEX ; ::_thesis: ( len (Re x) = len x & len (Im x) = len x ) A1: len x = len (x *') by Def1; A2: len (Im x) = len (x - (x *')) by Th3 .= len x by A1, Th7 ; len (Re x) = len (x + (x *')) by Th3 .= len x by A1, Th6 ; hence ( len (Re x) = len x & len (Im x) = len x ) by A2; ::_thesis: verum end; theorem Th49: :: COMPLSP2:49 for x, y being FinSequence of COMPLEX st len x = len y holds ( Re (x + y) = (Re x) + (Re y) & Im (x + y) = (Im x) + (Im y) ) proof let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies ( Re (x + y) = (Re x) + (Re y) & Im (x + y) = (Im x) + (Im y) ) ) A1: len (- (x *')) = len (x *') by Th5; assume A2: len x = len y ; ::_thesis: ( Re (x + y) = (Re x) + (Re y) & Im (x + y) = (Im x) + (Im y) ) then A3: len (x + y) = len x by Th6; A4: len y = len (y *') by Def1; then A5: len (y + (y *')) = len y by Th6; A6: len x = len (x *') by Def1; then A7: len (x + (x *')) = len x by Th6; A8: len (x - (x *')) = len x by A6, Th7; A9: len (y - (y *')) = len y by A4, Th7; thus Re (x + y) = (1 / 2) * ((x + y) + ((x *') + (y *'))) by A2, Th19 .= (1 / 2) * (((x + y) + (x *')) + (y *')) by A2, A4, A6, A3, Th28 .= (1 / 2) * (((x + (x *')) + y) + (y *')) by A2, A6, Th28 .= (1 / 2) * ((x + (x *')) + (y + (y *'))) by A2, A4, A7, Th28 .= (Re x) + (Re y) by A2, A7, A5, Th30 ; ::_thesis: Im (x + y) = (Im x) + (Im y) thus Im (x + y) = (- ((1 / 2) * )) * ((x + y) - ((x *') + (y *'))) by A2, Th19 .= (- ((1 / 2) * )) * (((x + y) - (x *')) - (y *')) by A2, A4, A6, A3, Th36 .= (- ((1 / 2) * )) * (((x + (- (x *'))) + y) - (y *')) by A2, A6, A1, Th28 .= (- ((1 / 2) * )) * ((x - (x *')) + (y - (y *'))) by A2, A4, A8, Th37 .= (Im x) + (Im y) by A2, A8, A9, Th30 ; ::_thesis: verum end; theorem :: COMPLSP2:50 for x1, y1 being FinSequence of COMPLEX for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 holds diffcomplex .: (x1,y1) = diffreal .: (x2,y2) proof let x1, y1 be FinSequence of COMPLEX ; ::_thesis: for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 holds diffcomplex .: (x1,y1) = diffreal .: (x2,y2) let x2, y2 be FinSequence of REAL ; ::_thesis: ( x1 = x2 & y1 = y2 & len x1 = len y2 implies diffcomplex .: (x1,y1) = diffreal .: (x2,y2) ) assume that A1: ( x1 = x2 & y1 = y2 ) and A2: len x1 = len y2 ; ::_thesis: diffcomplex .: (x1,y1) = diffreal .: (x2,y2) for i being Element of NAT st i in dom x1 holds diffcomplex . ((x1 . i),(y1 . i)) = diffreal . ((x2 . i),(y2 . i)) proof let i be Element of NAT ; ::_thesis: ( i in dom x1 implies diffcomplex . ((x1 . i),(y1 . i)) = diffreal . ((x2 . i),(y2 . i)) ) (x1 . i) - (y1 . i) = diffcomplex . ((x1 . i),(y1 . i)) by BINOP_2:def_4; hence ( i in dom x1 implies diffcomplex . ((x1 . i),(y1 . i)) = diffreal . ((x2 . i),(y2 . i)) ) by A1, BINOP_2:def_10; ::_thesis: verum end; hence diffcomplex .: (x1,y1) = diffreal .: (x2,y2) by A1, A2, Th45; ::_thesis: verum end; theorem :: COMPLSP2:51 for x1, y1 being FinSequence of COMPLEX for x2, y2 being FinSequence of REAL st x1 = x2 & y1 = y2 & len x1 = len y2 holds x1 - y1 = x2 - y2 ; theorem Th52: :: COMPLSP2:52 for x, y being FinSequence of COMPLEX st len x = len y holds ( Re (x - y) = (Re x) - (Re y) & Im (x - y) = (Im x) - (Im y) ) proof let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies ( Re (x - y) = (Re x) - (Re y) & Im (x - y) = (Im x) - (Im y) ) ) assume A1: len x = len y ; ::_thesis: ( Re (x - y) = (Re x) - (Re y) & Im (x - y) = (Im x) - (Im y) ) then A2: len (x - y) = len x by Th7; A3: len x = len (x *') by Def1; then A4: len (x + (x *')) = len x by Th6; A5: len y = len (y *') by Def1; then A6: len (y + (y *')) = len y by Th6; thus Re (x - y) = (1 / 2) * ((x - y) + ((x *') - (y *'))) by A1, Th21 .= (1 / 2) * (((x *') + (x - y)) - (y *')) by A1, A5, A3, A2, Th37 .= (1 / 2) * ((x *') + ((x - y) - (y *'))) by A1, A5, A3, A2, Th37 .= (1 / 2) * ((x *') + (x - (y + (y *')))) by A1, A5, Th36 .= (1 / 2) * ((x + (x *')) - (y + (y *'))) by A1, A3, A6, Th37 .= (Re x) - (Re y) by A1, A4, A6, Th43 ; ::_thesis: Im (x - y) = (Im x) - (Im y) A7: len (x - (x *')) = len x by A3, Th7; A8: len (y - (y *')) = len y by A5, Th7; thus Im (x - y) = (- ((1 / 2) * )) * ((x - y) - ((x *') - (y *'))) by A1, Th21 .= (- ((1 / 2) * )) * (((x - y) - (x *')) + (y *')) by A1, A5, A3, A2, Th40 .= (- ((1 / 2) * )) * ((x - ((x *') + y)) + (y *')) by A1, A3, Th36 .= (- ((1 / 2) * )) * (((x - (x *')) - y) + (y *')) by A1, A3, Th36 .= (- ((1 / 2) * )) * ((x - (x *')) - (y - (y *'))) by A1, A5, A7, Th40 .= (Im x) - (Im y) by A1, A7, A8, Th43 ; ::_thesis: verum end; theorem Th53: :: COMPLSP2:53 for z being FinSequence of COMPLEX for a, b being complex number holds a * (b * z) = (a * b) * z proof let z be FinSequence of COMPLEX ; ::_thesis: for a, b being complex number holds a * (b * z) = (a * b) * z let a, b be complex number ; ::_thesis: a * (b * z) = (a * b) * z reconsider aa = a, bb = b as Element of COMPLEX by XCMPLX_0:def_2; thus (a * b) * z = (multcomplex [;] ((aa * bb),(id COMPLEX))) * z by Lm1 .= (multcomplex [;] ((multcomplex . (aa,bb)),(id COMPLEX))) * z by BINOP_2:def_5 .= (multcomplex [;] (aa,(multcomplex [;] (bb,(id COMPLEX))))) * z by FUNCOP_1:62 .= ((multcomplex [;] (aa,(id COMPLEX))) * (multcomplex [;] (bb,(id COMPLEX)))) * z by FUNCOP_1:55 .= (multcomplex [;] (aa,(id COMPLEX))) * ((multcomplex [;] (bb,(id COMPLEX))) * z) by RELAT_1:36 .= (multcomplex [;] (aa,(id COMPLEX))) * (b * z) by Lm1 .= a * (b * z) by Lm1 ; ::_thesis: verum end; Lm3: for x being FinSequence of COMPLEX holds - (0c (len x)) = 0c (len x) proof let x be FinSequence of COMPLEX ; ::_thesis: - (0c (len x)) = 0c (len x) - (0c (len x)) = - ((len x) |-> 0c) by SEQ_4:def_12 .= compcomplex * ((len x) |-> 0c) by SEQ_4:def_8 .= (len x) |-> (compcomplex . 0c) by FINSEQOP:16 .= (len x) |-> (- 0c) by BINOP_2:def_1 .= 0c (len x) by SEQ_4:def_12 ; hence - (0c (len x)) = 0c (len x) ; ::_thesis: verum end; theorem Th54: :: COMPLSP2:54 for x being FinSequence of COMPLEX for c being complex number holds (- c) * x = - (c * x) proof let x be FinSequence of COMPLEX ; ::_thesis: for c being complex number holds (- c) * x = - (c * x) let c be complex number ; ::_thesis: (- c) * x = - (c * x) A1: len ((- c) * x) = len x by Th3; A2: len (c * x) = len x by Th3; ((- c) * x) + (c * x) = (((- 1) * c) * x) + (c * x) .= (- (c * x)) + (c * x) by Th53 .= - ((c * x) - (c * x)) by A2, Th39 .= - (0c (len x)) by A2, Th34 .= 0c (len x) by Lm3 ; hence (- c) * x = - (c * x) by A1, A2, Th32; ::_thesis: verum end; theorem Th55: :: COMPLSP2:55 for h being Function of COMPLEX,COMPLEX for g being Function of REAL,REAL for y1 being FinSequence of COMPLEX for y2 being FinSequence of REAL st len y1 = len y2 & ( for i being Element of NAT st i in dom y1 holds h . (y1 . i) = g . (y2 . i) ) holds h * y1 = g * y2 proof let h be Function of COMPLEX,COMPLEX; ::_thesis: for g being Function of REAL,REAL for y1 being FinSequence of COMPLEX for y2 being FinSequence of REAL st len y1 = len y2 & ( for i being Element of NAT st i in dom y1 holds h . (y1 . i) = g . (y2 . i) ) holds h * y1 = g * y2 let g be Function of REAL,REAL; ::_thesis: for y1 being FinSequence of COMPLEX for y2 being FinSequence of REAL st len y1 = len y2 & ( for i being Element of NAT st i in dom y1 holds h . (y1 . i) = g . (y2 . i) ) holds h * y1 = g * y2 let y1 be FinSequence of COMPLEX ; ::_thesis: for y2 being FinSequence of REAL st len y1 = len y2 & ( for i being Element of NAT st i in dom y1 holds h . (y1 . i) = g . (y2 . i) ) holds h * y1 = g * y2 let y2 be FinSequence of REAL ; ::_thesis: ( len y1 = len y2 & ( for i being Element of NAT st i in dom y1 holds h . (y1 . i) = g . (y2 . i) ) implies h * y1 = g * y2 ) assume that A1: len y1 = len y2 and A2: for i being Element of NAT st i in dom y1 holds h . (y1 . i) = g . (y2 . i) ; ::_thesis: h * y1 = g * y2 A3: len (g * y2) = len y1 by A1, FINSEQ_2:33; A4: now__::_thesis:_for_i_being_Nat_st_1_<=_i_&_i_<=_len_(h_*_y1)_holds_ (h_*_y1)_._i_=_(g_*_y2)_._i let i be Nat; ::_thesis: ( 1 <= i & i <= len (h * y1) implies (h * y1) . i = (g * y2) . i ) assume that A5: 1 <= i and A6: i <= len (h * y1) ; ::_thesis: (h * y1) . i = (g * y2) . i A7: i <= len y1 by A6, FINSEQ_2:33; then A8: i in dom y1 by A5, FINSEQ_3:25; A9: i in dom (g * y2) by A3, A5, A7, FINSEQ_3:25; i in dom (h * y1) by A5, A6, FINSEQ_3:25; hence (h * y1) . i = h . (y1 . i) by FUNCT_1:12 .= g . (y2 . i) by A2, A8 .= (g * y2) . i by A9, FUNCT_1:12 ; ::_thesis: verum end; len (h * y1) = len y1 by FINSEQ_2:33; hence h * y1 = g * y2 by A3, A4, FINSEQ_1:14; ::_thesis: verum end; theorem :: COMPLSP2:56 for y1 being FinSequence of COMPLEX for y2 being FinSequence of REAL st y1 = y2 & len y1 = len y2 holds compcomplex * y1 = compreal * y2 proof let y1 be FinSequence of COMPLEX ; ::_thesis: for y2 being FinSequence of REAL st y1 = y2 & len y1 = len y2 holds compcomplex * y1 = compreal * y2 let y2 be FinSequence of REAL ; ::_thesis: ( y1 = y2 & len y1 = len y2 implies compcomplex * y1 = compreal * y2 ) assume that A1: y1 = y2 and A2: len y1 = len y2 ; ::_thesis: compcomplex * y1 = compreal * y2 for i being Element of NAT st i in dom y1 holds compcomplex . (y1 . i) = compreal . (y2 . i) proof let i be Element of NAT ; ::_thesis: ( i in dom y1 implies compcomplex . (y1 . i) = compreal . (y2 . i) ) assume i in dom y1 ; ::_thesis: compcomplex . (y1 . i) = compreal . (y2 . i) - (y1 . i) = compcomplex . (y1 . i) by BINOP_2:def_1; hence compcomplex . (y1 . i) = compreal . (y2 . i) by A1, BINOP_2:def_7; ::_thesis: verum end; hence compcomplex * y1 = compreal * y2 by A2, Th55; ::_thesis: verum end; theorem :: COMPLSP2:57 for y1 being FinSequence of COMPLEX for y2 being FinSequence of REAL st y1 = y2 & len y1 = len y2 holds - y1 = - y2 ; theorem Th58: :: COMPLSP2:58 for x being FinSequence of COMPLEX holds ( Re ( * x) = - (Im x) & Im ( * x) = Re x ) proof let x be FinSequence of COMPLEX ; ::_thesis: ( Re ( * x) = - (Im x) & Im ( * x) = Re x ) A1: len (x *') = len x by Def1; A2: Im ( * x) = ((- (1 / 2)) * ) * (( * x) - ((- ) * (x *'))) by Th17, COMPLEX1:31 .= ((- (1 / 2)) * ) * (( * x) + (- (- ( * (x *'))))) by Th54 .= ((- (1 / 2)) * ) * ( * (x + (x *'))) by A1, Th30 .= (((- (1 / 2)) * ) * ) * (x + (x *')) by Th53 .= Re x ; Re ( * x) = (1 / 2) * (( * x) + ((- ) * (x *'))) by Th17, COMPLEX1:31 .= (1 / 2) * (( * x) - ( * (x *'))) by Th54 .= (1 / 2) * ( * (x - (x *'))) by A1, Th43 .= ((1 / 2) * ) * (x - (x *')) by Th53 .= ((- 1) * ((- (1 / 2)) * )) * (x - (x *')) .= - (Im x) by Th53 ; hence ( Re ( * x) = - (Im x) & Im ( * x) = Re x ) by A2; ::_thesis: verum end; theorem Th59: :: COMPLSP2:59 for x, y being FinSequence of COMPLEX st len x = len y holds |(( * x),y)| = * |(x,y)| proof let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies |(( * x),y)| = * |(x,y)| ) assume A1: len x = len y ; ::_thesis: |(( * x),y)| = * |(x,y)| A2: len (Im y) = len y by Th48; A3: len (Re y) = len y by Th48; A4: len (Im x) = len x by Th48; |(( * x),y)| = ((|((- (Im x)),(Re y))| - ( * |((Re ( * x)),(Im y))|)) + ( * |((Im ( * x)),(Re y))|)) + |((Im ( * x)),(Im y))| by Th58 .= ((|((- (Im x)),(Re y))| - ( * |((- (Im x)),(Im y))|)) + ( * |((Im ( * x)),(Re y))|)) + |((Im ( * x)),(Im y))| by Th58 .= ((|((- (Im x)),(Re y))| - ( * |((- (Im x)),(Im y))|)) + ( * |((Re x),(Re y))|)) + |((Im ( * x)),(Im y))| by Th58 .= ((|((- (Im x)),(Re y))| - ( * |((- (Im x)),(Im y))|)) + ( * |((Re x),(Re y))|)) + |((Re x),(Im y))| by Th58 .= (((- |((Im x),(Re y))|) - ( * |((- (Im x)),(Im y))|)) + ( * |((Re x),(Re y))|)) + |((Re x),(Im y))| by A1, A3, A4, RVSUM_1:122 .= (((- |((Im x),(Re y))|) - ( * (- |((Im x),(Im y))|))) + ( * |((Re x),(Re y))|)) + |((Re x),(Im y))| by A1, A4, A2, RVSUM_1:122 .= * |(x,y)| ; hence |(( * x),y)| = * |(x,y)| ; ::_thesis: verum end; theorem Th60: :: COMPLSP2:60 for x, y being FinSequence of COMPLEX st len x = len y holds |(x,( * y))| = - ( * |(x,y)|) proof let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies |(x,( * y))| = - ( * |(x,y)|) ) assume A1: len x = len y ; ::_thesis: |(x,( * y))| = - ( * |(x,y)|) A2: len (Im x) = len x by Th48; A3: len (Re x) = len x by Th48; A4: len (Im y) = len y by Th48; |(x,( * y))| = ((|((Re x),(- (Im y)))| - ( * |((Re x),(Im ( * y)))|)) + ( * |((Im x),(Re ( * y)))|)) + |((Im x),(Im ( * y)))| by Th58 .= ((|((Re x),(- (Im y)))| - ( * |((Re x),(Re y))|)) + ( * |((Im x),(Re ( * y)))|)) + |((Im x),(Im ( * y)))| by Th58 .= ((|((Re x),(- (Im y)))| - ( * |((Re x),(Re y))|)) + ( * |((Im x),(- (Im y)))|)) + |((Im x),(Im ( * y)))| by Th58 .= ((|((Re x),(- (Im y)))| - ( * |((Re x),(Re y))|)) + ( * |((Im x),(- (Im y)))|)) + |((Im x),(Re y))| by Th58 .= (((- |((Re x),(Im y))|) - ( * |((Re x),(Re y))|)) + ( * |((Im x),(- (Im y)))|)) + |((Im x),(Re y))| by A1, A3, A4, RVSUM_1:122 .= (((- |((Re x),(Im y))|) - ( * |((Re x),(Re y))|)) + ( * (- |((Im x),(Im y))|))) + |((Im x),(Re y))| by A1, A2, A4, RVSUM_1:122 .= - ( * |(x,y)|) ; hence |(x,( * y))| = - ( * |(x,y)|) ; ::_thesis: verum end; theorem :: COMPLSP2:61 for a1 being Element of COMPLEX for y1 being FinSequence of COMPLEX for a2 being Element of REAL for y2 being FinSequence of REAL st a1 = a2 & y1 = y2 & len y1 = len y2 holds (a1 multcomplex) * y1 = (a2 multreal) * y2 proof let a1 be Element of COMPLEX ; ::_thesis: for y1 being FinSequence of COMPLEX for a2 being Element of REAL for y2 being FinSequence of REAL st a1 = a2 & y1 = y2 & len y1 = len y2 holds (a1 multcomplex) * y1 = (a2 multreal) * y2 let y1 be FinSequence of COMPLEX ; ::_thesis: for a2 being Element of REAL for y2 being FinSequence of REAL st a1 = a2 & y1 = y2 & len y1 = len y2 holds (a1 multcomplex) * y1 = (a2 multreal) * y2 let a2 be Element of REAL ; ::_thesis: for y2 being FinSequence of REAL st a1 = a2 & y1 = y2 & len y1 = len y2 holds (a1 multcomplex) * y1 = (a2 multreal) * y2 let y2 be FinSequence of REAL ; ::_thesis: ( a1 = a2 & y1 = y2 & len y1 = len y2 implies (a1 multcomplex) * y1 = (a2 multreal) * y2 ) assume that A1: ( a1 = a2 & y1 = y2 ) and A2: len y1 = len y2 ; ::_thesis: (a1 multcomplex) * y1 = (a2 multreal) * y2 for i being Element of NAT st i in dom y1 holds (a1 multcomplex) . (y1 . i) = (a2 multreal) . (y2 . i) proof let i be Element of NAT ; ::_thesis: ( i in dom y1 implies (a1 multcomplex) . (y1 . i) = (a2 multreal) . (y2 . i) ) assume i in dom y1 ; ::_thesis: (a1 multcomplex) . (y1 . i) = (a2 multreal) . (y2 . i) A3: (a2 * y2) . i = a2 * (y2 . i) by RVSUM_1:44 .= multreal . (a2,(y2 . i)) by BINOP_2:def_11 .= multreal . (a2,((id REAL) . (y2 . i))) by FUNCT_1:18 .= (multreal [;] (a2,(id REAL))) . (y2 . i) by FUNCOP_1:53 .= (a2 multreal) . (y2 . i) by RVSUM_1:def_3 ; (a1 * y1) . i = a1 * (y1 . i) by Th16 .= multcomplex . (a1,(y1 . i)) by BINOP_2:def_5 .= multcomplex . (a1,((id COMPLEX) . (y1 . i))) by FUNCT_1:18 .= (multcomplex [;] (a1,(id COMPLEX))) . (y1 . i) by FUNCOP_1:53 .= (a1 multcomplex) . (y1 . i) by SEQ_4:def_4 ; hence (a1 multcomplex) . (y1 . i) = (a2 multreal) . (y2 . i) by A1, A3; ::_thesis: verum end; hence (a1 multcomplex) * y1 = (a2 multreal) * y2 by A2, Th55; ::_thesis: verum end; theorem :: COMPLSP2:62 for a1 being complex number for y1 being FinSequence of COMPLEX for a2 being Element of REAL for y2 being FinSequence of REAL st a1 = a2 & y1 = y2 & len y1 = len y2 holds a1 * y1 = a2 * y2 ; theorem Th63: :: COMPLSP2:63 for z being FinSequence of COMPLEX for a, b being complex number holds (a + b) * z = (a * z) + (b * z) proof let z be FinSequence of COMPLEX ; ::_thesis: for a, b being complex number holds (a + b) * z = (a * z) + (b * z) let a, b be complex number ; ::_thesis: (a + b) * z = (a * z) + (b * z) reconsider aa = a, bb = b as Element of COMPLEX by XCMPLX_0:def_2; set c1M = multcomplex [;] (aa,(id COMPLEX)); set c2M = multcomplex [;] (bb,(id COMPLEX)); thus (a + b) * z = (multcomplex [;] ((aa + bb),(id COMPLEX))) * z by Lm1 .= (multcomplex [;] ((addcomplex . (aa,bb)),(id COMPLEX))) * z by BINOP_2:def_3 .= (addcomplex .: ((multcomplex [;] (aa,(id COMPLEX))),(multcomplex [;] (bb,(id COMPLEX))))) * z by FINSEQOP:35, SEQ_4:54 .= addcomplex .: (((multcomplex [;] (aa,(id COMPLEX))) * z),((multcomplex [;] (bb,(id COMPLEX))) * z)) by FUNCOP_1:25 .= ((multcomplex [;] (aa,(id COMPLEX))) * z) + ((multcomplex [;] (bb,(id COMPLEX))) * z) by SEQ_4:def_6 .= (a * z) + ((multcomplex [;] (bb,(id COMPLEX))) * z) by Lm1 .= (a * z) + (b * z) by Lm1 ; ::_thesis: verum end; theorem Th64: :: COMPLSP2:64 for z being FinSequence of COMPLEX for a, b being complex number holds (a - b) * z = (a * z) - (b * z) proof let z be FinSequence of COMPLEX ; ::_thesis: for a, b being complex number holds (a - b) * z = (a * z) - (b * z) let a, b be complex number ; ::_thesis: (a - b) * z = (a * z) - (b * z) reconsider aa = a, bb = b as Element of COMPLEX by XCMPLX_0:def_2; (a - b) * z = (a + (- b)) * z .= (aa * z) + ((- bb) * z) by Th63 .= (a * z) - (b * z) by Th54 ; hence (a - b) * z = (a * z) - (b * z) ; ::_thesis: verum end; theorem Th65: :: COMPLSP2:65 for a being Element of COMPLEX for x being FinSequence of COMPLEX holds ( Re (a * x) = ((Re a) * (Re x)) - ((Im a) * (Im x)) & Im (a * x) = ((Im a) * (Re x)) + ((Re a) * (Im x)) ) proof let a be Element of COMPLEX ; ::_thesis: for x being FinSequence of COMPLEX holds ( Re (a * x) = ((Re a) * (Re x)) - ((Im a) * (Im x)) & Im (a * x) = ((Im a) * (Re x)) + ((Re a) * (Im x)) ) let x be FinSequence of COMPLEX ; ::_thesis: ( Re (a * x) = ((Re a) * (Re x)) - ((Im a) * (Im x)) & Im (a * x) = ((Im a) * (Re x)) + ((Re a) * (Im x)) ) reconsider z5 = Re a, z6 = Im a as Element of COMPLEX by XCMPLX_0:def_2; A1: len (x *') = len x by Def1; len (((1 / 2) * z5) * x) = len x by Th3; then A2: len (((((1 / 2) * ) * z6) * x) + (((1 / 2) * z5) * x)) = len ((((1 / 2) * ) * z6) * x) by Th3, Th6; A3: len (((1 / 2) * z5) * x) = len x by Th3; A4: ( len (z5 * x) = len x & len (( * z6) * x) = len x ) by Th3; A5: (Re a) * (Re x) = (z5 * (1 / 2)) * (x + (x *')) by Th53 .= (((z5 * 1) / 2) * x) + (((z5 * 1) / 2) * (x *')) by A1, Th30 ; A6: ( len (Re x) = len x & len ((Re a) * (Re x)) = len (Re x) ) by Th48, RVSUM_1:117; A7: ( len ((z5 - (z6 * )) * (x *')) = len (x *') & len ((z5 + ( * z6)) * x) = len x ) by Th3; A8: len (((- ((1 / 2) * )) * z6) * (x *')) = len (x *') by Th3; A9: (Im a) * (Im x) = (z6 * (- ((1 / 2) * ))) * (x - (x *')) by Th53 .= (((- ((1 / 2) * )) * z6) * x) - (((- ((1 / 2) * )) * z6) * (x *')) by A1, Th43 ; A10: len (((- ((1 / 2) * )) * z6) * x) = len x by Th3; A11: ( len (z5 * (x *')) = len (x *') & len ((z6 * ) * (x *')) = len (x *') ) by Th3; A12: ( len (((1 / 2) * z5) * (x *')) = len (x *') & len ((((1 / 2) * ) * z6) * x) = len x ) by Th3; A13: Re (a * x) = (1 / 2) * (((a *') * (x *')) + (a * x)) by Th17 .= (1 / 2) * (((a *') * (x *')) + ((z5 + ( * z6)) * x)) by COMPLEX1:13 .= (1 / 2) * (((z5 - (z6 * )) * (x *')) + ((z5 + ( * z6)) * x)) by COMPLEX1:def_11 .= ((1 / 2) * ((z5 - (z6 * )) * (x *'))) + ((1 / 2) * ((z5 + ( * z6)) * x)) by A1, A7, Th30 .= ((1 / 2) * ((z5 - (z6 * )) * (x *'))) + ((1 / 2) * ((z5 * x) + (( * z6) * x))) by Th63 .= ((1 / 2) * ((z5 * (x *')) - ((z6 * ) * (x *')))) + ((1 / 2) * ((z5 * x) + (( * z6) * x))) by Th64 .= ((1 / 2) * ((z5 * (x *')) - ((z6 * ) * (x *')))) + (((1 / 2) * (z5 * x)) + ((1 / 2) * (( * z6) * x))) by A4, Th30 .= (((1 / 2) * (z5 * (x *'))) - ((1 / 2) * ((z6 * ) * (x *')))) + (((1 / 2) * (z5 * x)) + ((1 / 2) * (( * z6) * x))) by A11, Th43 .= (((1 / 2) * (z5 * (x *'))) - ((1 / 2) * (( * z6) * (x *')))) + (((1 / 2) * (z5 * x)) + (((1 / 2) * ( * z6)) * x)) by Th53 .= (((1 / 2) * (z5 * (x *'))) + (- ((((1 / 2) * ) * z6) * (x *')))) + (((1 / 2) * (z5 * x)) + ((((1 / 2) * ) * z6) * x)) by Th53 .= (((1 / 2) * (z5 * (x *'))) + ((- (((1 / 2) * ) * z6)) * (x *'))) + (((1 / 2) * (z5 * x)) + ((((1 / 2) * ) * z6) * x)) by Th54 .= ((((1 / 2) * z5) * (x *')) + (((- ((1 / 2) * )) * z6) * (x *'))) + (((1 / 2) * (z5 * x)) + ((((1 / 2) * ) * z6) * x)) by Th53 .= ((((1 / 2) * z5) * x) + ((((1 / 2) * ) * z6) * x)) + ((((1 / 2) * z5) * (x *')) + (((- ((1 / 2) * )) * z6) * (x *'))) by Th53 .= ((((((1 / 2) * ) * z6) * x) + (((1 / 2) * z5) * x)) + (((1 / 2) * z5) * (x *'))) + (((- ((1 / 2) * )) * z6) * (x *')) by A1, A8, A12, A2, Th28 .= (((((1 / 2) * z5) * x) + (((1 / 2) * z5) * (x *'))) + ((- ((- ((1 / 2) * )) * z6)) * x)) + (((- ((1 / 2) * )) * z6) * (x *')) by A1, A3, A12, Th28 .= (((((1 / 2) * z5) * x) + (((1 / 2) * z5) * (x *'))) - (((- ((1 / 2) * )) * z6) * x)) + (((- ((1 / 2) * )) * z6) * (x *')) by Th54 .= ((Re a) * (Re x)) - ((Im a) * (Im x)) by A1, A5, A9, A6, A10, A8, Th40 ; A14: len ((((1 / 2) * ) * z5) * (x *')) = len (x *') by Th3; A15: (Im a) * (Re x) = (z6 * (1 / 2)) * (x + (x *')) by Th53 .= (((1 / 2) * z6) * x) + (((1 / 2) * z6) * (x *')) by A1, Th30 ; A16: ( len (( * z6) * (x *')) = len (x *') & len ((- z5) * (x *')) = len (x *') ) by Th3; A17: len ((1 / 2) * (z6 * x)) = len (z6 * x) by Th3; A18: ( len (z6 * (x *')) = len (x *') & len ((1 / 2) * (z6 * (x *'))) = len (z6 * (x *')) ) by Th3; then A19: len (((1 / 2) * (z6 * x)) + ((1 / 2) * (z6 * (x *')))) = len ((1 / 2) * (z6 * x)) by A1, A17, Th3, Th6; A20: len (((- ((1 / 2) * )) * z5) * x) = len x by Th3; then A21: len (((1 / 2) * (z6 * x)) + (((- ((1 / 2) * )) * z5) * x)) = len ((1 / 2) * (z6 * x)) by A17, Th3, Th6; A22: (Re a) * (Im x) = (z5 * (- ((1 / 2) * ))) * (x - (x *')) by Th53 .= (((- ((1 / 2) * )) * z5) * x) - (((- ((1 / 2) * )) * z5) * (x *')) by A1, Th43 ; A23: len (z6 * x) = len x by Th3; ( len ((a * x) *') = len (a * x) & len (- ((a * x) *')) = len ((a * x) *') ) by Def1, Th5; then Im (a * x) = ((- ((1 / 2) * )) * (- ((a * x) *'))) + ((- ((1 / 2) * )) * (a * x)) by Th30 .= ((- ((1 / 2) * )) * (- ((a *') * (x *')))) + ((- ((1 / 2) * )) * (a * x)) by Th17 .= ((- ((1 / 2) * )) * (- ((a *') * (x *')))) + ((- ((1 / 2) * )) * ((z5 + ( * z6)) * x)) by COMPLEX1:13 .= ((- ((1 / 2) * )) * (- ((z5 - (z6 * )) * (x *')))) + ((- ((1 / 2) * )) * ((z5 + ( * z6)) * x)) by COMPLEX1:def_11 .= ((- ((1 / 2) * )) * ((- (z5 - (z6 * ))) * (x *'))) + ((- ((1 / 2) * )) * ((z5 + ( * z6)) * x)) by Th54 .= ((- ((1 / 2) * )) * (((- z5) + (z6 * )) * (x *'))) + ((- ((1 / 2) * )) * ((z5 + ( * z6)) * x)) .= ((- ((1 / 2) * )) * (((- z5) * (x *')) + (( * z6) * (x *')))) + ((- ((1 / 2) * )) * ((z5 + ( * z6)) * x)) by Th63 .= ((- ((1 / 2) * )) * (((- z5) * (x *')) + (( * z6) * (x *')))) + ((- ((1 / 2) * )) * ((z5 * x) + (( * z6) * x))) by Th63 .= ((- ((1 / 2) * )) * (((- z5) * (x *')) + (( * z6) * (x *')))) + (((- ((1 / 2) * )) * (z5 * x)) + ((- ((1 / 2) * )) * (( * z6) * x))) by A4, Th30 .= (((- ((1 / 2) * )) * ((- z5) * (x *'))) + ((- ((1 / 2) * )) * (( * z6) * (x *')))) + (((- ((1 / 2) * )) * (z5 * x)) + ((- ((1 / 2) * )) * (( * z6) * x))) by A16, Th30 .= ((((- ((1 / 2) * )) * (- z5)) * (x *')) + ((- ((1 / 2) * )) * (( * z6) * (x *')))) + (((- ((1 / 2) * )) * (z5 * x)) + ((- ((1 / 2) * )) * (( * z6) * x))) by Th53 .= ((((- ((1 / 2) * )) * (- z5)) * (x *')) + ((- ((1 / 2) * )) * ( * (z6 * (x *'))))) + (((- ((1 / 2) * )) * (z5 * x)) + ((- ((1 / 2) * )) * (( * z6) * x))) by Th53 .= ((((- ((1 / 2) * )) * (- z5)) * (x *')) + (((- ((1 / 2) * )) * ) * (z6 * (x *')))) + (((- ((1 / 2) * )) * (z5 * x)) + ((- ((1 / 2) * )) * (( * z6) * x))) by Th53 .= ((((- ((1 / 2) * )) * (- z5)) * (x *')) + (((- ((1 / 2) * )) * ) * (z6 * (x *')))) + ((((- ((1 / 2) * )) * z5) * x) + ((- ((1 / 2) * )) * (( * z6) * x))) by Th53 .= ((((- ((1 / 2) * )) * (- z5)) * (x *')) + (((- ((1 / 2) * )) * ) * (z6 * (x *')))) + ((((- ((1 / 2) * )) * z5) * x) + ((- ((1 / 2) * )) * ( * (z6 * x)))) by Th53 .= (((1 / 2) * (z6 * x)) + (((- ((1 / 2) * )) * z5) * x)) + (((1 / 2) * (z6 * (x *'))) + ((((1 / 2) * ) * z5) * (x *'))) by Th53 .= ((((1 / 2) * (z6 * x)) + (((- ((1 / 2) * )) * z5) * x)) + ((1 / 2) * (z6 * (x *')))) + ((((1 / 2) * ) * z5) * (x *')) by A1, A23, A17, A18, A14, A21, Th28 .= ((((1 / 2) * (z6 * x)) + ((1 / 2) * (z6 * (x *')))) + (((- ((1 / 2) * )) * z5) * x)) + ((((1 / 2) * ) * z5) * (x *')) by A1, A23, A17, A20, A18, Th28 .= (((1 / 2) * (z6 * x)) + ((1 / 2) * (z6 * (x *')))) + ((((- ((1 / 2) * )) * z5) * x) + ((((1 / 2) * ) * z5) * (x *'))) by A1, A23, A17, A20, A14, A19, Th28 .= ((((1 / 2) * z6) * x) + ((1 / 2) * (z6 * (x *')))) + ((((- ((1 / 2) * )) * z5) * x) + ((((1 / 2) * ) * z5) * (x *'))) by Th53 .= ((((1 / 2) * z6) * x) + (((1 / 2) * z6) * (x *'))) + ((((- ((1 / 2) * )) * z5) * x) + ((- ((- ((1 / 2) * )) * z5)) * (x *'))) by Th53 .= ((Im a) * (Re x)) + ((Re a) * (Im x)) by A15, A22, Th54 ; hence ( Re (a * x) = ((Re a) * (Re x)) - ((Im a) * (Im x)) & Im (a * x) = ((Im a) * (Re x)) + ((Re a) * (Im x)) ) by A13; ::_thesis: verum end; begin theorem Th66: :: COMPLSP2:66 for x1, x2, y being FinSequence of COMPLEX st len x1 = len x2 & len x2 = len y holds |((x1 + x2),y)| = |(x1,y)| + |(x2,y)| proof let x1, x2, y be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 & len x2 = len y implies |((x1 + x2),y)| = |(x1,y)| + |(x2,y)| ) assume that A1: len x1 = len x2 and A2: len x2 = len y ; ::_thesis: |((x1 + x2),y)| = |(x1,y)| + |(x2,y)| A3: ( len (Re x1) = len x1 & len (Re x2) = len x2 ) by Th48; A4: len (Im y) = len y by Th48; A5: ( len (Im x1) = len x1 & len (Im x2) = len x2 ) by Th48; A6: len (Re y) = len y by Th48; |((x1 + x2),y)| = ((|(((Re x1) + (Re x2)),(Re y))| - ( * |((Re (x1 + x2)),(Im y))|)) + ( * |((Im (x1 + x2)),(Re y))|)) + |((Im (x1 + x2)),(Im y))| by A1, Th49 .= ((|(((Re x1) + (Re x2)),(Re y))| - ( * |(((Re x1) + (Re x2)),(Im y))|)) + ( * |((Im (x1 + x2)),(Re y))|)) + |((Im (x1 + x2)),(Im y))| by A1, Th49 .= ((|(((Re x1) + (Re x2)),(Re y))| - ( * |(((Re x1) + (Re x2)),(Im y))|)) + ( * |(((Im x1) + (Im x2)),(Re y))|)) + |((Im (x1 + x2)),(Im y))| by A1, Th49 .= ((|(((Re x1) + (Re x2)),(Re y))| - ( * |(((Re x1) + (Re x2)),(Im y))|)) + ( * |(((Im x1) + (Im x2)),(Re y))|)) + |(((Im x1) + (Im x2)),(Im y))| by A1, Th49 .= (((|((Re x1),(Re y))| + |((Re x2),(Re y))|) - ( * |(((Re x1) + (Re x2)),(Im y))|)) + ( * |(((Im x1) + (Im x2)),(Re y))|)) + |(((Im x1) + (Im x2)),(Im y))| by A1, A2, A3, A6, RVSUM_1:120 .= (((|((Re x1),(Re y))| + |((Re x2),(Re y))|) - ( * (|((Re x1),(Im y))| + |((Re x2),(Im y))|))) + ( * |(((Im x1) + (Im x2)),(Re y))|)) + |(((Im x1) + (Im x2)),(Im y))| by A1, A2, A3, A4, RVSUM_1:120 .= (((|((Re x1),(Re y))| + |((Re x2),(Re y))|) - ( * (|((Re x1),(Im y))| + |((Re x2),(Im y))|))) + ( * (|((Im x1),(Re y))| + |((Im x2),(Re y))|))) + |(((Im x1) + (Im x2)),(Im y))| by A1, A2, A6, A5, RVSUM_1:120 .= (((|((Re x1),(Re y))| + |((Re x2),(Re y))|) - ( * (|((Re x1),(Im y))| + |((Re x2),(Im y))|))) + ( * (|((Im x1),(Re y))| + |((Im x2),(Re y))|))) + (|((Im x1),(Im y))| + |((Im x2),(Im y))|) by A1, A2, A5, A4, RVSUM_1:120 .= |(x1,y)| + |(x2,y)| ; hence |((x1 + x2),y)| = |(x1,y)| + |(x2,y)| ; ::_thesis: verum end; theorem Th67: :: COMPLSP2:67 for x1, x2 being FinSequence of COMPLEX st len x1 = len x2 holds |((- x1),x2)| = - |(x1,x2)| proof let x1, x2 be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 implies |((- x1),x2)| = - |(x1,x2)| ) assume A1: len x1 = len x2 ; ::_thesis: |((- x1),x2)| = - |(x1,x2)| A2: len ( * x1) = len x1 by Th3; |((- x1),x2)| = |((( * ) * x1),x2)| .= |(( * ( * x1)),x2)| by Th53 .= * |(( * x1),x2)| by A1, A2, Th59 .= * ( * |(x1,x2)|) by A1, Th59 .= (- 1) * |(x1,x2)| ; hence |((- x1),x2)| = - |(x1,x2)| ; ::_thesis: verum end; theorem Th68: :: COMPLSP2:68 for x1, x2 being FinSequence of COMPLEX st len x1 = len x2 holds |(x1,(- x2))| = - |(x1,x2)| proof let x1, x2 be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 implies |(x1,(- x2))| = - |(x1,x2)| ) assume A1: len x1 = len x2 ; ::_thesis: |(x1,(- x2))| = - |(x1,x2)| A2: len ( * x2) = len x2 by Th3; |(x1,(- x2))| = |(x1,(( * ) * x2))| .= |(x1,( * ( * x2)))| by Th53 .= - ( * |(x1,( * x2))|) by A1, A2, Th60 .= - ( * (- ( * |(x1,x2)|))) by A1, Th60 .= - |(x1,x2)| ; hence |(x1,(- x2))| = - |(x1,x2)| ; ::_thesis: verum end; theorem :: COMPLSP2:69 for x1, x2 being FinSequence of COMPLEX st len x1 = len x2 holds |((- x1),(- x2))| = |(x1,x2)| proof let x1, x2 be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 implies |((- x1),(- x2))| = |(x1,x2)| ) assume A1: len x1 = len x2 ; ::_thesis: |((- x1),(- x2))| = |(x1,x2)| then len (- x2) = len x1 by Th5; then |((- x1),(- x2))| = - |(x1,(- x2))| by Th67 .= - (- |(x1,x2)|) by A1, Th68 ; hence |((- x1),(- x2))| = |(x1,x2)| ; ::_thesis: verum end; theorem Th70: :: COMPLSP2:70 for x1, x2, x3 being FinSequence of COMPLEX st len x1 = len x2 & len x2 = len x3 holds |((x1 - x2),x3)| = |(x1,x3)| - |(x2,x3)| proof let x1, x2, x3 be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 & len x2 = len x3 implies |((x1 - x2),x3)| = |(x1,x3)| - |(x2,x3)| ) assume that A1: len x1 = len x2 and A2: len x2 = len x3 ; ::_thesis: |((x1 - x2),x3)| = |(x1,x3)| - |(x2,x3)| len (- x2) = len x2 by Th5; then |((x1 - x2),x3)| = |(x1,x3)| + |((- x2),x3)| by A1, A2, Th66 .= |(x1,x3)| + (- |(x2,x3)|) by A2, Th67 ; hence |((x1 - x2),x3)| = |(x1,x3)| - |(x2,x3)| ; ::_thesis: verum end; theorem Th71: :: COMPLSP2:71 for x, y1, y2 being FinSequence of COMPLEX st len x = len y1 & len y1 = len y2 holds |(x,(y1 + y2))| = |(x,y1)| + |(x,y2)| proof let x, y1, y2 be FinSequence of COMPLEX ; ::_thesis: ( len x = len y1 & len y1 = len y2 implies |(x,(y1 + y2))| = |(x,y1)| + |(x,y2)| ) assume that A1: len x = len y1 and A2: len y1 = len y2 ; ::_thesis: |(x,(y1 + y2))| = |(x,y1)| + |(x,y2)| A3: ( len (Re y1) = len y1 & len (Re y2) = len y2 ) by Th48; A4: len (Im x) = len x by Th48; A5: ( len (Im y1) = len y1 & len (Im y2) = len y2 ) by Th48; A6: len (Re x) = len x by Th48; |(x,(y1 + y2))| = ((|((Re x),((Re y1) + (Re y2)))| - ( * |((Re x),(Im (y1 + y2)))|)) + ( * |((Im x),(Re (y1 + y2)))|)) + |((Im x),(Im (y1 + y2)))| by A2, Th49 .= ((|((Re x),((Re y1) + (Re y2)))| - ( * |((Re x),(Im (y1 + y2)))|)) + ( * |((Im x),(Re (y1 + y2)))|)) + |((Im x),((Im y1) + (Im y2)))| by A2, Th49 .= ((|((Re x),((Re y1) + (Re y2)))| - ( * |((Re x),((Im y1) + (Im y2)))|)) + ( * |((Im x),(Re (y1 + y2)))|)) + |((Im x),((Im y1) + (Im y2)))| by A2, Th49 .= ((|((Re x),((Re y1) + (Re y2)))| - ( * |((Re x),((Im y1) + (Im y2)))|)) + ( * |((Im x),((Re y1) + (Re y2)))|)) + |((Im x),((Im y1) + (Im y2)))| by A2, Th49 .= (((|((Re x),(Re y1))| + |((Re x),(Re y2))|) - ( * |((Re x),((Im y1) + (Im y2)))|)) + ( * |((Im x),((Re y1) + (Re y2)))|)) + |((Im x),((Im y1) + (Im y2)))| by A1, A2, A3, A6, RVSUM_1:120 .= (((|((Re x),(Re y1))| + |((Re x),(Re y2))|) - ( * |((Re x),((Im y1) + (Im y2)))|)) + ( * |((Im x),((Re y1) + (Re y2)))|)) + (|((Im x),(Im y1))| + |((Im x),(Im y2))|) by A1, A2, A5, A4, RVSUM_1:120 .= (((|((Re x),(Re y1))| + |((Re x),(Re y2))|) - ( * (|((Re x),(Im y1))| + |((Re x),(Im y2))|))) + ( * |((Im x),((Re y1) + (Re y2)))|)) + (|((Im x),(Im y1))| + |((Im x),(Im y2))|) by A1, A2, A6, A5, RVSUM_1:120 .= (((|((Re x),(Re y1))| + |((Re x),(Re y2))|) - ( * (|((Re x),(Im y1))| + |((Re x),(Im y2))|))) + ( * (|((Im x),(Re y1))| + |((Im x),(Re y2))|))) + (|((Im x),(Im y1))| + |((Im x),(Im y2))|) by A1, A2, A3, A4, RVSUM_1:120 .= |(x,y1)| + |(x,y2)| ; hence |(x,(y1 + y2))| = |(x,y1)| + |(x,y2)| ; ::_thesis: verum end; theorem Th72: :: COMPLSP2:72 for x, y1, y2 being FinSequence of COMPLEX st len x = len y1 & len y1 = len y2 holds |(x,(y1 - y2))| = |(x,y1)| - |(x,y2)| proof let x, y1, y2 be FinSequence of COMPLEX ; ::_thesis: ( len x = len y1 & len y1 = len y2 implies |(x,(y1 - y2))| = |(x,y1)| - |(x,y2)| ) assume that A1: len x = len y1 and A2: len y1 = len y2 ; ::_thesis: |(x,(y1 - y2))| = |(x,y1)| - |(x,y2)| A3: ( len (Re y1) = len y1 & len (Re y2) = len y2 ) by Th48; A4: len (Im x) = len x by Th48; A5: ( len (Im y1) = len y1 & len (Im y2) = len y2 ) by Th48; A6: len (Re x) = len x by Th48; |(x,(y1 - y2))| = ((|((Re x),((Re y1) - (Re y2)))| - ( * |((Re x),(Im (y1 - y2)))|)) + ( * |((Im x),(Re (y1 - y2)))|)) + |((Im x),(Im (y1 - y2)))| by A2, Th52 .= ((|((Re x),((Re y1) - (Re y2)))| - ( * |((Re x),(Im (y1 - y2)))|)) + ( * |((Im x),(Re (y1 - y2)))|)) + |((Im x),((Im y1) - (Im y2)))| by A2, Th52 .= ((|((Re x),((Re y1) - (Re y2)))| - ( * |((Re x),((Im y1) - (Im y2)))|)) + ( * |((Im x),(Re (y1 - y2)))|)) + |((Im x),((Im y1) - (Im y2)))| by A2, Th52 .= ((|((Re x),((Re y1) - (Re y2)))| - ( * |((Re x),((Im y1) - (Im y2)))|)) + ( * |((Im x),((Re y1) - (Re y2)))|)) + |((Im x),((Im y1) - (Im y2)))| by A2, Th52 .= (((|((Re x),(Re y1))| - |((Re x),(Re y2))|) - ( * |((Re x),((Im y1) - (Im y2)))|)) + ( * |((Im x),((Re y1) - (Re y2)))|)) + |((Im x),((Im y1) - (Im y2)))| by A1, A2, A3, A6, RVSUM_1:124 .= (((|((Re x),(Re y1))| - |((Re x),(Re y2))|) - ( * |((Re x),((Im y1) - (Im y2)))|)) + ( * |((Im x),((Re y1) - (Re y2)))|)) + (|((Im x),(Im y1))| - |((Im x),(Im y2))|) by A1, A2, A5, A4, RVSUM_1:124 .= (((|((Re x),(Re y1))| - |((Re x),(Re y2))|) - ( * (|((Re x),(Im y1))| - |((Re x),(Im y2))|))) + ( * |((Im x),((Re y1) - (Re y2)))|)) + (|((Im x),(Im y1))| - |((Im x),(Im y2))|) by A1, A2, A6, A5, RVSUM_1:124 .= (((|((Re x),(Re y1))| - |((Re x),(Re y2))|) - ( * (|((Re x),(Im y1))| - |((Re x),(Im y2))|))) + ( * (|((Im x),(Re y1))| - |((Im x),(Re y2))|))) + (|((Im x),(Im y1))| - |((Im x),(Im y2))|) by A1, A2, A3, A4, RVSUM_1:124 .= |(x,y1)| - |(x,y2)| ; hence |(x,(y1 - y2))| = |(x,y1)| - |(x,y2)| ; ::_thesis: verum end; theorem Th73: :: COMPLSP2:73 for x1, x2, y1, y2 being FinSequence of COMPLEX st len x1 = len x2 & len x2 = len y1 & len y1 = len y2 holds |((x1 + x2),(y1 + y2))| = ((|(x1,y1)| + |(x1,y2)|) + |(x2,y1)|) + |(x2,y2)| proof let x1, x2, y1, y2 be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 & len x2 = len y1 & len y1 = len y2 implies |((x1 + x2),(y1 + y2))| = ((|(x1,y1)| + |(x1,y2)|) + |(x2,y1)|) + |(x2,y2)| ) assume that A1: len x1 = len x2 and A2: len x2 = len y1 and A3: len y1 = len y2 ; ::_thesis: |((x1 + x2),(y1 + y2))| = ((|(x1,y1)| + |(x1,y2)|) + |(x2,y1)|) + |(x2,y2)| |((x1 + x2),y2)| = |(x1,y2)| + |(x2,y2)| by A1, A2, A3, Th66; then A4: |((x1 + x2),y1)| + |((x1 + x2),y2)| = (|(x1,y1)| + |(x2,y1)|) + (|(x1,y2)| + |(x2,y2)|) by A1, A2, Th66; len (x1 + x2) = len x1 by A1, Th6; hence |((x1 + x2),(y1 + y2))| = ((|(x1,y1)| + |(x1,y2)|) + |(x2,y1)|) + |(x2,y2)| by A1, A2, A3, A4, Th71; ::_thesis: verum end; theorem Th74: :: COMPLSP2:74 for x1, x2, y1, y2 being FinSequence of COMPLEX st len x1 = len x2 & len x2 = len y1 & len y1 = len y2 holds |((x1 - x2),(y1 - y2))| = ((|(x1,y1)| - |(x1,y2)|) - |(x2,y1)|) + |(x2,y2)| proof let x1, x2, y1, y2 be FinSequence of COMPLEX ; ::_thesis: ( len x1 = len x2 & len x2 = len y1 & len y1 = len y2 implies |((x1 - x2),(y1 - y2))| = ((|(x1,y1)| - |(x1,y2)|) - |(x2,y1)|) + |(x2,y2)| ) assume that A1: len x1 = len x2 and A2: len x2 = len y1 and A3: len y1 = len y2 ; ::_thesis: |((x1 - x2),(y1 - y2))| = ((|(x1,y1)| - |(x1,y2)|) - |(x2,y1)|) + |(x2,y2)| |(x1,(y1 - y2))| = |(x1,y1)| - |(x1,y2)| by A1, A2, A3, Th72; then A4: |(x1,(y1 - y2))| - |(x2,(y1 - y2))| = (|(x1,y1)| - |(x1,y2)|) - (|(x2,y1)| - |(x2,y2)|) by A2, A3, Th72; len (y1 - y2) = len y1 by A3, Th7; hence |((x1 - x2),(y1 - y2))| = ((|(x1,y1)| - |(x1,y2)|) - |(x2,y1)|) + |(x2,y2)| by A1, A2, A4, Th70; ::_thesis: verum end; theorem Th75: :: COMPLSP2:75 for x, y being FinSequence of COMPLEX holds |(x,y)| = |(y,x)| *' proof let x, y be FinSequence of COMPLEX ; ::_thesis: |(x,y)| = |(y,x)| *' set x1 = |((Re y),(Re x))|; set x2 = |((Re y),(Im x))|; set y1 = |((Im y),(Re x))|; set y2 = |((Im y),(Im x))|; reconsider x19 = |((Re y),(Re x))|, x29 = |((Re y),(Im x))|, y19 = |((Im y),(Re x))|, y29 = |((Im y),(Im x))| as Element of REAL ; A1: Im x19 = 0 by COMPLEX1:def_2; A2: Im x29 = 0 by COMPLEX1:def_2; A3: Im y29 = 0 by COMPLEX1:def_2; A4: Im y19 = 0 by COMPLEX1:def_2; reconsider x19 = |((Re y),(Re x))|, x29 = |((Re y),(Im x))|, y19 = |((Im y),(Re x))|, y29 = |((Im y),(Im x))| as Element of COMPLEX by XCMPLX_0:def_2; |(y,x)| *' = ((x19 + y29) + ( * (y19 - x29))) *' .= ((x19 + y29) *') + (( * (y19 - x29)) *') by COMPLEX1:32 .= ((x19 *') + (y29 *')) + (( * (y19 - x29)) *') by COMPLEX1:32 .= (x19 + (y29 *')) + (( * (y19 - x29)) *') by A1, COMPLEX1:38 .= (x19 + y29) + (( * (y19 - x29)) *') by A3, COMPLEX1:38 .= (x19 + y29) + ((- ) * ((y19 - x29) *')) by COMPLEX1:31, COMPLEX1:35 .= (x19 + y29) + ((- ) * ((y19 *') - (x29 *'))) by COMPLEX1:34 .= (x19 + y29) + ((- ) * (y19 - (x29 *'))) by A4, COMPLEX1:38 .= (x19 + y29) + ((- ) * (y19 - x29)) by A2, COMPLEX1:38 .= |(x,y)| ; hence |(x,y)| = |(y,x)| *' ; ::_thesis: verum end; theorem :: COMPLSP2:76 for x, y being FinSequence of COMPLEX st len x = len y holds |((x + y),(x + y))| = (|(x,x)| + (2 * (Re |(x,y)|))) + |(y,y)| proof let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies |((x + y),(x + y))| = (|(x,x)| + (2 * (Re |(x,y)|))) + |(y,y)| ) set z = |(x,y)|; assume len x = len y ; ::_thesis: |((x + y),(x + y))| = (|(x,x)| + (2 * (Re |(x,y)|))) + |(y,y)| then |((x + y),(x + y))| = ((|(x,x)| + |(x,y)|) + |(y,x)|) + |(y,y)| by Th73 .= ((|(x,x)| + |(x,y)|) + (|(x,y)| *')) + |(y,y)| by Th75 .= (|(x,x)| + (|(x,y)| + (|(x,y)| *'))) + |(y,y)| .= (|(x,x)| + (2 * (Re |(x,y)|))) + |(y,y)| by Th24 ; hence |((x + y),(x + y))| = (|(x,x)| + (2 * (Re |(x,y)|))) + |(y,y)| ; ::_thesis: verum end; theorem :: COMPLSP2:77 for x, y being FinSequence of COMPLEX st len x = len y holds |((x - y),(x - y))| = (|(x,x)| - (2 * (Re |(x,y)|))) + |(y,y)| proof let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies |((x - y),(x - y))| = (|(x,x)| - (2 * (Re |(x,y)|))) + |(y,y)| ) set z = |(x,y)|; assume len x = len y ; ::_thesis: |((x - y),(x - y))| = (|(x,x)| - (2 * (Re |(x,y)|))) + |(y,y)| then |((x - y),(x - y))| = ((|(x,x)| - |(x,y)|) - |(y,x)|) + |(y,y)| by Th74 .= ((|(x,x)| - |(x,y)|) - (|(x,y)| *')) + |(y,y)| by Th75 .= (|(x,x)| - (|(x,y)| + (|(x,y)| *'))) + |(y,y)| .= (|(x,x)| - (2 * (Re |(x,y)|))) + |(y,y)| by Th24 ; hence |((x - y),(x - y))| = (|(x,x)| - (2 * (Re |(x,y)|))) + |(y,y)| ; ::_thesis: verum end; theorem Th78: :: COMPLSP2:78 for a being Element of COMPLEX for x, y being FinSequence of COMPLEX st len x = len y holds |((a * x),y)| = a * |(x,y)| proof let a be Element of COMPLEX ; ::_thesis: for x, y being FinSequence of COMPLEX st len x = len y holds |((a * x),y)| = a * |(x,y)| let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies |((a * x),y)| = a * |(x,y)| ) assume A1: len x = len y ; ::_thesis: |((a * x),y)| = a * |(x,y)| A2: ( len ((Re a) * (Im x)) = len (Im x) & len ((Im a) * (Re x)) = len (Re x) ) by RVSUM_1:117; A3: ( len ((Re a) * (Re x)) = len (Re x) & len ((Im a) * (Im x)) = len (Im x) ) by RVSUM_1:117; A4: len (Re x) = len x by Th48; A5: len (Im y) = len y by Th48; A6: len (Re y) = len y by Th48; A7: len (Im x) = len x by Th48; |((a * x),y)| = ((|((((Re a) * (Re x)) - ((Im a) * (Im x))),(Re y))| - ( * |((Re (a * x)),(Im y))|)) + ( * |((Im (a * x)),(Re y))|)) + |((Im (a * x)),(Im y))| by Th65 .= ((|((((Re a) * (Re x)) - ((Im a) * (Im x))),(Re y))| - ( * |((((Re a) * (Re x)) - ((Im a) * (Im x))),(Im y))|)) + ( * |((Im (a * x)),(Re y))|)) + |((Im (a * x)),(Im y))| by Th65 .= ((|((((Re a) * (Re x)) - ((Im a) * (Im x))),(Re y))| - ( * |((((Re a) * (Re x)) - ((Im a) * (Im x))),(Im y))|)) + ( * |((((Im a) * (Re x)) + ((Re a) * (Im x))),(Re y))|)) + |((Im (a * x)),(Im y))| by Th65 .= ((|((((Re a) * (Re x)) - ((Im a) * (Im x))),(Re y))| - ( * |((((Re a) * (Re x)) - ((Im a) * (Im x))),(Im y))|)) + ( * |((((Im a) * (Re x)) + ((Re a) * (Im x))),(Re y))|)) + |((((Im a) * (Re x)) + ((Re a) * (Im x))),(Im y))| by Th65 .= (((|(((Re a) * (Re x)),(Re y))| - |(((Im a) * (Im x)),(Re y))|) - ( * |((((Re a) * (Re x)) - ((Im a) * (Im x))),(Im y))|)) + ( * |((((Im a) * (Re x)) + ((Re a) * (Im x))),(Re y))|)) + |((((Im a) * (Re x)) + ((Re a) * (Im x))),(Im y))| by A1, A4, A6, A7, A3, RVSUM_1:124 .= (((|(((Re a) * (Re x)),(Re y))| - |(((Im a) * (Im x)),(Re y))|) - ( * (|(((Re a) * (Re x)),(Im y))| - |(((Im a) * (Im x)),(Im y))|))) + ( * |((((Im a) * (Re x)) + ((Re a) * (Im x))),(Re y))|)) + |((((Im a) * (Re x)) + ((Re a) * (Im x))),(Im y))| by A1, A4, A7, A5, A3, RVSUM_1:124 .= (((|(((Re a) * (Re x)),(Re y))| - |(((Im a) * (Im x)),(Re y))|) - ( * (|(((Re a) * (Re x)),(Im y))| - |(((Im a) * (Im x)),(Im y))|))) + ( * (|(((Im a) * (Re x)),(Re y))| + |(((Re a) * (Im x)),(Re y))|))) + |((((Im a) * (Re x)) + ((Re a) * (Im x))),(Im y))| by A1, A4, A6, A7, A2, RVSUM_1:120 .= (((|(((Re a) * (Re x)),(Re y))| - |(((Im a) * (Im x)),(Re y))|) - ( * (|(((Re a) * (Re x)),(Im y))| - |(((Im a) * (Im x)),(Im y))|))) + ( * (|(((Im a) * (Re x)),(Re y))| + |(((Re a) * (Im x)),(Re y))|))) + (|(((Im a) * (Re x)),(Im y))| + |(((Re a) * (Im x)),(Im y))|) by A1, A4, A7, A5, A2, RVSUM_1:120 .= (((|(((Re a) * (Re x)),(Re y))| - |(((Im a) * (Im x)),(Re y))|) - ( * (((Re a) * |((Re x),(Im y))|) - |(((Im a) * (Im x)),(Im y))|))) + ( * (|(((Im a) * (Re x)),(Re y))| + |(((Re a) * (Im x)),(Re y))|))) + (|(((Im a) * (Re x)),(Im y))| + |(((Re a) * (Im x)),(Im y))|) by A1, A4, A5, RVSUM_1:121 .= (((|(((Re a) * (Re x)),(Re y))| - |(((Im a) * (Im x)),(Re y))|) - ( * (((Re a) * |((Re x),(Im y))|) - ((Im a) * |((Im x),(Im y))|)))) + ( * (|(((Im a) * (Re x)),(Re y))| + |(((Re a) * (Im x)),(Re y))|))) + (|(((Im a) * (Re x)),(Im y))| + |(((Re a) * (Im x)),(Im y))|) by A1, A7, A5, RVSUM_1:121 .= (((((Re a) * |((Re x),(Re y))|) - |(((Im a) * (Im x)),(Re y))|) - ( * (((Re a) * |((Re x),(Im y))|) - ((Im a) * |((Im x),(Im y))|)))) + ( * (|(((Im a) * (Re x)),(Re y))| + |(((Re a) * (Im x)),(Re y))|))) + (|(((Im a) * (Re x)),(Im y))| + |(((Re a) * (Im x)),(Im y))|) by A1, A4, A6, RVSUM_1:121 .= (((((Re a) * |((Re x),(Re y))|) - ((Im a) * |((Im x),(Re y))|)) - ( * (((Re a) * |((Re x),(Im y))|) - ((Im a) * |((Im x),(Im y))|)))) + ( * (|(((Im a) * (Re x)),(Re y))| + |(((Re a) * (Im x)),(Re y))|))) + (|(((Im a) * (Re x)),(Im y))| + |(((Re a) * (Im x)),(Im y))|) by A1, A6, A7, RVSUM_1:121 .= (((((Re a) * |((Re x),(Re y))|) - ((Im a) * |((Im x),(Re y))|)) - ( * (((Re a) * |((Re x),(Im y))|) - ((Im a) * |((Im x),(Im y))|)))) + ( * (((Im a) * |((Re x),(Re y))|) + |(((Re a) * (Im x)),(Re y))|))) + (|(((Im a) * (Re x)),(Im y))| + |(((Re a) * (Im x)),(Im y))|) by A1, A4, A6, RVSUM_1:121 .= (((((Re a) * |((Re x),(Re y))|) - ((Im a) * |((Im x),(Re y))|)) - ( * (((Re a) * |((Re x),(Im y))|) - ((Im a) * |((Im x),(Im y))|)))) + ( * (((Im a) * |((Re x),(Re y))|) + ((Re a) * |((Im x),(Re y))|)))) + (|(((Im a) * (Re x)),(Im y))| + |(((Re a) * (Im x)),(Im y))|) by A1, A6, A7, RVSUM_1:121 .= (((((Re a) * |((Re x),(Re y))|) - ((Im a) * |((Im x),(Re y))|)) - ( * (((Re a) * |((Re x),(Im y))|) - ((Im a) * |((Im x),(Im y))|)))) + ( * (((Im a) * |((Re x),(Re y))|) + ((Re a) * |((Im x),(Re y))|)))) + (((Im a) * |((Re x),(Im y))|) + |(((Re a) * (Im x)),(Im y))|) by A1, A4, A5, RVSUM_1:121 .= (((((Re a) * |((Re x),(Re y))|) - ((Im a) * |((Im x),(Re y))|)) - ( * (((Re a) * |((Re x),(Im y))|) - ((Im a) * |((Im x),(Im y))|)))) + ( * (((Im a) * |((Re x),(Re y))|) + ((Re a) * |((Im x),(Re y))|)))) + (((Im a) * |((Re x),(Im y))|) + ((Re a) * |((Im x),(Im y))|)) by A1, A7, A5, RVSUM_1:121 .= ((((((Re a) * |((Re x),(Re y))|) + (( * (Im a)) * |((Re x),(Re y))|)) - (((Re a) * ) * |((Re x),(Im y))|)) + ((Im a) * |((Re x),(Im y))|)) + (((Re a) * ( * |((Im x),(Re y))|)) - ((Im a) * |((Im x),(Re y))|))) + (((Re a) + ( * (Im a))) * |((Im x),(Im y))|) .= ((((((Re a) * |((Re x),(Re y))|) + (( * (Im a)) * |((Re x),(Re y))|)) - (((Re a) * ) * |((Re x),(Im y))|)) + ((Im a) * |((Re x),(Im y))|)) + (((Re a) + ( * (Im a))) * ( * |((Im x),(Re y))|))) + (a * |((Im x),(Im y))|) by COMPLEX1:13 .= (((((Re a) * |((Re x),(Re y))|) + (( * (Im a)) * |((Re x),(Re y))|)) - (((Re a) + ( * (Im a))) * ( * |((Re x),(Im y))|))) + (a * ( * |((Im x),(Re y))|))) + (a * |((Im x),(Im y))|) by COMPLEX1:13 .= (((((Re a) + ( * (Im a))) * |((Re x),(Re y))|) - (a * ( * |((Re x),(Im y))|))) + (a * ( * |((Im x),(Re y))|))) + (a * |((Im x),(Im y))|) by COMPLEX1:13 .= (((a * |((Re x),(Re y))|) - (a * ( * |((Re x),(Im y))|))) + (a * ( * |((Im x),(Re y))|))) + (a * |((Im x),(Im y))|) by COMPLEX1:13 .= a * |(x,y)| ; hence |((a * x),y)| = a * |(x,y)| ; ::_thesis: verum end; theorem Th79: :: COMPLSP2:79 for a being Element of COMPLEX for x, y being FinSequence of COMPLEX st len x = len y holds |(x,(a * y))| = (a *') * |(x,y)| proof let a be Element of COMPLEX ; ::_thesis: for x, y being FinSequence of COMPLEX st len x = len y holds |(x,(a * y))| = (a *') * |(x,y)| let x, y be FinSequence of COMPLEX ; ::_thesis: ( len x = len y implies |(x,(a * y))| = (a *') * |(x,y)| ) assume A1: len x = len y ; ::_thesis: |(x,(a * y))| = (a *') * |(x,y)| |(x,(a * y))| = |((a * y),x)| *' by Th75 .= (a * |(y,x)|) *' by A1, Th78 .= (a *') * (|(y,x)| *') by COMPLEX1:35 .= (a *') * |(x,y)| by Th75 ; hence |(x,(a * y))| = (a *') * |(x,y)| ; ::_thesis: verum end; theorem :: COMPLSP2:80 for a, b being Element of COMPLEX for x, y, z being FinSequence of COMPLEX st len x = len y & len y = len z holds |(((a * x) + (b * y)),z)| = (a * |(x,z)|) + (b * |(y,z)|) proof let a, b be Element of COMPLEX ; ::_thesis: for x, y, z being FinSequence of COMPLEX st len x = len y & len y = len z holds |(((a * x) + (b * y)),z)| = (a * |(x,z)|) + (b * |(y,z)|) let x, y, z be FinSequence of COMPLEX ; ::_thesis: ( len x = len y & len y = len z implies |(((a * x) + (b * y)),z)| = (a * |(x,z)|) + (b * |(y,z)|) ) assume that A1: len x = len y and A2: len y = len z ; ::_thesis: |(((a * x) + (b * y)),z)| = (a * |(x,z)|) + (b * |(y,z)|) ( len (a * x) = len x & len (b * y) = len y ) by Th3; then |(((a * x) + (b * y)),z)| = |((a * x),z)| + |((b * y),z)| by A1, A2, Th66 .= (a * |(x,z)|) + |((b * y),z)| by A1, A2, Th78 .= (a * |(x,z)|) + (b * |(y,z)|) by A2, Th78 ; hence |(((a * x) + (b * y)),z)| = (a * |(x,z)|) + (b * |(y,z)|) ; ::_thesis: verum end; theorem :: COMPLSP2:81 for a, b being Element of COMPLEX for x, y, z being FinSequence of COMPLEX st len x = len y & len y = len z holds |(x,((a * y) + (b * z)))| = ((a *') * |(x,y)|) + ((b *') * |(x,z)|) proof let a, b be Element of COMPLEX ; ::_thesis: for x, y, z being FinSequence of COMPLEX st len x = len y & len y = len z holds |(x,((a * y) + (b * z)))| = ((a *') * |(x,y)|) + ((b *') * |(x,z)|) let x, y, z be FinSequence of COMPLEX ; ::_thesis: ( len x = len y & len y = len z implies |(x,((a * y) + (b * z)))| = ((a *') * |(x,y)|) + ((b *') * |(x,z)|) ) assume that A1: len x = len y and A2: len y = len z ; ::_thesis: |(x,((a * y) + (b * z)))| = ((a *') * |(x,y)|) + ((b *') * |(x,z)|) ( len (a * y) = len y & len (b * z) = len z ) by Th3; then |(x,((a * y) + (b * z)))| = |(x,(a * y))| + |(x,(b * z))| by A1, A2, Th71 .= ((a *') * |(x,y)|) + |(x,(b * z))| by A1, Th79 .= ((a *') * |(x,y)|) + ((b *') * |(x,z)|) by A1, A2, Th79 ; hence |(x,((a * y) + (b * z)))| = ((a *') * |(x,y)|) + ((b *') * |(x,z)|) ; ::_thesis: verum end;