:: CSSPACE2 semantic presentation begin Lm1: for seq being Complex_Sequence holds Partial_Sums (seq *') = (Partial_Sums seq) *' proof let seq be Complex_Sequence; ::_thesis: Partial_Sums (seq *') = (Partial_Sums seq) *' defpred S1[ Element of NAT ] means (Partial_Sums (seq *')) . $1 = ((Partial_Sums seq) *') . $1; A1: now__::_thesis:_for_n_being_Element_of_NAT_st_S1[n]_holds_ S1[n_+_1] let n be Element of NAT ; ::_thesis: ( S1[n] implies S1[n + 1] ) assume A2: S1[n] ; ::_thesis: S1[n + 1] (Partial_Sums (seq *')) . (n + 1) = ((Partial_Sums (seq *')) . n) + ((seq *') . (n + 1)) by SERIES_1:def_1 .= (((Partial_Sums seq) *') . n) + ((seq . (n + 1)) *') by A2, COMSEQ_2:def_2 .= (((Partial_Sums seq) . n) *') + ((seq . (n + 1)) *') by COMSEQ_2:def_2 .= (((Partial_Sums seq) . n) + (seq . (n + 1))) *' by COMPLEX1:32 .= ((Partial_Sums seq) . (n + 1)) *' by SERIES_1:def_1 ; hence S1[n + 1] by COMSEQ_2:def_2; ::_thesis: verum end; (Partial_Sums (seq *')) . 0 = (seq *') . 0 by SERIES_1:def_1 .= (seq . 0) *' by COMSEQ_2:def_2 .= ((Partial_Sums seq) . 0) *' by SERIES_1:def_1 ; then A3: S1[ 0 ] by COMSEQ_2:def_2; for n being Element of NAT holds S1[n] from NAT_1:sch_1(A3, A1); hence Partial_Sums (seq *') = (Partial_Sums seq) *' by FUNCT_2:63; ::_thesis: verum end; Lm2: for a, b being Real holds 0 <= (a ^2) + (b ^2) proof let a, b be Real; ::_thesis: 0 <= (a ^2) + (b ^2) ( 0 <= a ^2 & 0 <= b ^2 ) by XREAL_1:63; then 0 + 0 <= (a ^2) + (b ^2) by XREAL_1:7; hence 0 <= (a ^2) + (b ^2) ; ::_thesis: verum end; Lm3: for z1, z2 being Complex st (Re z1) * (Im z2) = (Re z2) * (Im z1) & ((Re z1) * (Re z2)) + ((Im z1) * (Im z2)) >= 0 holds |.(z1 + z2).| = |.z1.| + |.z2.| proof let z1, z2 be Complex; ::_thesis: ( (Re z1) * (Im z2) = (Re z2) * (Im z1) & ((Re z1) * (Re z2)) + ((Im z1) * (Im z2)) >= 0 implies |.(z1 + z2).| = |.z1.| + |.z2.| ) assume that A1: (Re z1) * (Im z2) = (Re z2) * (Im z1) and A2: ((Re z1) * (Re z2)) + ((Im z1) * (Im z2)) >= 0 ; ::_thesis: |.(z1 + z2).| = |.z1.| + |.z2.| set r1 = Re z1; set r2 = Re z2; set i1 = Im z1; set i2 = Im z2; A3: (Re (z1 + z2)) ^2 = ((Re z1) + (Re z2)) ^2 by COMPLEX1:8 .= (((Re z1) ^2) + ((2 * (Re z1)) * (Re z2))) + ((Re z2) ^2) ; ((Re z1) * (Re z2)) + ((Im z1) * (Im z2)) = abs (((Re z1) * (Re z2)) + ((Im z1) * (Im z2))) by A2, ABSVALUE:def_1; then A4: ((Re z1) * (Re z2)) + ((Im z1) * (Im z2)) = sqrt ((((Re z1) * (Re z2)) + ((Im z1) * (Im z2))) ^2) by COMPLEX1:72; A5: (Im (z1 + z2)) ^2 = ((Im z1) + (Im z2)) ^2 by COMPLEX1:8 .= (((Im z1) ^2) + ((2 * (Im z1)) * (Im z2))) + ((Im z2) ^2) ; A6: 0 <= ((Re z2) ^2) + ((Im z2) ^2) by Lm2; then A7: (sqrt (((Re z2) ^2) + ((Im z2) ^2))) ^2 = ((Re z2) ^2) + ((Im z2) ^2) by SQUARE_1:def_2; A8: 0 <= sqrt (((Re z2) ^2) + ((Im z2) ^2)) by A6, SQUARE_1:def_2; A9: 0 <= ((Re z1) ^2) + ((Im z1) ^2) by Lm2; then 0 <= sqrt (((Re z1) ^2) + ((Im z1) ^2)) by SQUARE_1:def_2; then A10: 0 + 0 <= (sqrt (((Re z1) ^2) + ((Im z1) ^2))) + (sqrt (((Re z2) ^2) + ((Im z2) ^2))) by A8, XREAL_1:7; ((((Re z1) ^2) + ((Im z1) ^2)) * (((Re z2) ^2) + ((Im z2) ^2))) - ((((Re z1) * (Re z2)) + ((Im z1) * (Im z2))) ^2) = (((Re z1) * (Im z2)) - ((Im z1) * (Re z2))) ^2 ; then sqrt ((((Re z1) * (Re z2)) + ((Im z1) * (Im z2))) ^2) = sqrt ((((Re z1) ^2) + ((Im z1) ^2)) * (((Re z2) ^2) + ((Im z2) ^2))) by A1, XCMPLX_1:15; then A11: sqrt ((((Re z1) * (Re z2)) + ((Im z1) * (Im z2))) ^2) = (sqrt (((Re z1) ^2) + ((Im z1) ^2))) * (sqrt (((Re z2) ^2) + ((Im z2) ^2))) by A9, A6, SQUARE_1:29; (sqrt (((Re z1) ^2) + ((Im z1) ^2))) ^2 = ((Re z1) ^2) + ((Im z1) ^2) by A9, SQUARE_1:def_2; then sqrt (((Re (z1 + z2)) ^2) + ((Im (z1 + z2)) ^2)) = sqrt (((sqrt (((Re z1) ^2) + ((Im z1) ^2))) + (sqrt (((Re z2) ^2) + ((Im z2) ^2)))) ^2) by A7, A3, A5, A4, A11; then sqrt (((Re (z1 + z2)) ^2) + ((Im (z1 + z2)) ^2)) = (sqrt (((Re z1) ^2) + ((Im z1) ^2))) + (sqrt (((Re z2) ^2) + ((Im z2) ^2))) by A10, SQUARE_1:22; then sqrt (((Re (z1 + z2)) ^2) + ((Im (z1 + z2)) ^2)) = (sqrt (((Re z1) ^2) + ((Im z1) ^2))) + |.z2.| by COMPLEX1:def_12; then sqrt (((Re (z1 + z2)) ^2) + ((Im (z1 + z2)) ^2)) = |.z1.| + |.z2.| by COMPLEX1:def_12; hence |.(z1 + z2).| = |.z1.| + |.z2.| by COMPLEX1:def_12; ::_thesis: verum end; Lm4: for seq being Complex_Sequence for n being Element of NAT st ( for i being Element of NAT holds ( (Re seq) . i >= 0 & (Im seq) . i = 0 ) ) holds |.(Partial_Sums seq).| . n = (Partial_Sums |.seq.|) . n proof let seq be Complex_Sequence; ::_thesis: for n being Element of NAT st ( for i being Element of NAT holds ( (Re seq) . i >= 0 & (Im seq) . i = 0 ) ) holds |.(Partial_Sums seq).| . n = (Partial_Sums |.seq.|) . n let n be Element of NAT ; ::_thesis: ( ( for i being Element of NAT holds ( (Re seq) . i >= 0 & (Im seq) . i = 0 ) ) implies |.(Partial_Sums seq).| . n = (Partial_Sums |.seq.|) . n ) defpred S1[ Element of NAT ] means |.(Partial_Sums seq).| . $1 = (Partial_Sums |.seq.|) . $1; assume A1: for i being Element of NAT holds ( (Re seq) . i >= 0 & (Im seq) . i = 0 ) ; ::_thesis: |.(Partial_Sums seq).| . n = (Partial_Sums |.seq.|) . n A2: now__::_thesis:_for_m_being_Element_of_NAT_st_S1[m]_holds_ S1[m_+_1] let m be Element of NAT ; ::_thesis: ( S1[m] implies S1[m + 1] ) assume A3: S1[m] ; ::_thesis: S1[m + 1] thus S1[m + 1] ::_thesis: verum proof for i being Element of NAT holds (Partial_Sums (Re seq)) . i >= 0 proof defpred S2[ Element of NAT ] means (Partial_Sums (Re seq)) . $1 >= 0 ; let i be Element of NAT ; ::_thesis: (Partial_Sums (Re seq)) . i >= 0 A4: now__::_thesis:_for_k_being_Element_of_NAT_st_S2[k]_holds_ S2[k_+_1] let k be Element of NAT ; ::_thesis: ( S2[k] implies S2[k + 1] ) assume A5: S2[k] ; ::_thesis: S2[k + 1] ( (Partial_Sums (Re seq)) . (k + 1) = ((Partial_Sums (Re seq)) . k) + ((Re seq) . (k + 1)) & (Re seq) . (k + 1) >= 0 ) by A1, SERIES_1:def_1; then (Partial_Sums (Re seq)) . (k + 1) >= 0 + 0 by A5, XREAL_1:7; hence S2[k + 1] ; ::_thesis: verum end; (Partial_Sums (Re seq)) . 0 = (Re seq) . 0 by SERIES_1:def_1; then A6: S2[ 0 ] by A1; for i being Element of NAT holds S2[i] from NAT_1:sch_1(A6, A4); hence (Partial_Sums (Re seq)) . i >= 0 ; ::_thesis: verum end; then (Partial_Sums (Re seq)) . m >= 0 ; then (Re (Partial_Sums seq)) . m >= 0 by COMSEQ_3:26; then A7: Re ((Partial_Sums seq) . m) >= 0 by COMSEQ_3:def_5; set z2 = seq . (m + 1); set z1 = (Partial_Sums seq) . m; A8: |.(Partial_Sums seq).| . (m + 1) = |.((Partial_Sums seq) . (m + 1)).| by VALUED_1:18 .= |.(((Partial_Sums seq) . m) + (seq . (m + 1))).| by SERIES_1:def_1 ; for i being Element of NAT holds (Partial_Sums (Im seq)) . i = 0 proof defpred S2[ Element of NAT ] means (Partial_Sums (Im seq)) . $1 = 0 ; let i be Element of NAT ; ::_thesis: (Partial_Sums (Im seq)) . i = 0 A9: now__::_thesis:_for_k_being_Element_of_NAT_st_S2[k]_holds_ S2[k_+_1] let k be Element of NAT ; ::_thesis: ( S2[k] implies S2[k + 1] ) A10: (Partial_Sums (Im seq)) . (k + 1) = ((Partial_Sums (Im seq)) . k) + ((Im seq) . (k + 1)) by SERIES_1:def_1; assume S2[k] ; ::_thesis: S2[k + 1] hence S2[k + 1] by A1, A10; ::_thesis: verum end; (Partial_Sums (Im seq)) . 0 = (Im seq) . 0 by SERIES_1:def_1; then A11: S2[ 0 ] by A1; for i being Element of NAT holds S2[i] from NAT_1:sch_1(A11, A9); hence (Partial_Sums (Im seq)) . i = 0 ; ::_thesis: verum end; then (Partial_Sums (Im seq)) . m = 0 ; then (Im (Partial_Sums seq)) . m = 0 by COMSEQ_3:26; then A12: Im ((Partial_Sums seq) . m) = 0 by COMSEQ_3:def_6; (Im seq) . (m + 1) = 0 by A1; then Im (seq . (m + 1)) = 0 by COMSEQ_3:def_6; then A13: (Re ((Partial_Sums seq) . m)) * (Im (seq . (m + 1))) = (Re (seq . (m + 1))) * (Im ((Partial_Sums seq) . m)) by A12; (Re seq) . (m + 1) >= 0 by A1; then Re (seq . (m + 1)) >= 0 by COMSEQ_3:def_5; then ((Re ((Partial_Sums seq) . m)) * (Re (seq . (m + 1)))) + ((Im ((Partial_Sums seq) . m)) * (Im (seq . (m + 1)))) >= 0 by A7, A12, XREAL_1:127; then |.(Partial_Sums seq).| . (m + 1) = |.((Partial_Sums seq) . m).| + |.(seq . (m + 1)).| by A8, A13, Lm3 .= (|.(Partial_Sums seq).| . m) + |.(seq . (m + 1)).| by VALUED_1:18 .= ((Partial_Sums |.seq.|) . m) + (|.seq.| . (m + 1)) by A3, VALUED_1:18 ; hence S1[m + 1] by SERIES_1:def_1; ::_thesis: verum end; end; |.(Partial_Sums seq).| . 0 = |.((Partial_Sums seq) . 0).| by VALUED_1:18 .= |.(seq . 0).| by SERIES_1:def_1 .= |.seq.| . 0 by VALUED_1:18 ; then A14: S1[ 0 ] by SERIES_1:def_1; for m being Element of NAT holds S1[m] from NAT_1:sch_1(A14, A2); hence |.(Partial_Sums seq).| . n = (Partial_Sums |.seq.|) . n ; ::_thesis: verum end; Lm5: for seq being Complex_Sequence st seq is summable holds Sum (seq *') = (Sum seq) *' proof let seq be Complex_Sequence; ::_thesis: ( seq is summable implies Sum (seq *') = (Sum seq) *' ) assume A1: seq is summable ; ::_thesis: Sum (seq *') = (Sum seq) *' Sum (seq *') = lim (Partial_Sums (seq *')) by COMSEQ_3:def_7 .= lim ((Partial_Sums seq) *') by Lm1 .= (lim (Partial_Sums seq)) *' by A1, COMSEQ_2:12 ; hence Sum (seq *') = (Sum seq) *' by COMSEQ_3:def_7; ::_thesis: verum end; Lm6: for seq being Complex_Sequence st seq is absolutely_summable holds |.(Sum seq).| <= Sum |.seq.| proof let seq be Complex_Sequence; ::_thesis: ( seq is absolutely_summable implies |.(Sum seq).| <= Sum |.seq.| ) A1: for k being Element of NAT holds |.(Partial_Sums seq).| . k <= (Partial_Sums |.seq.|) . k proof let k be Element of NAT ; ::_thesis: |.(Partial_Sums seq).| . k <= (Partial_Sums |.seq.|) . k |.((Partial_Sums seq) . k).| <= (Partial_Sums |.seq.|) . k by COMSEQ_3:30; hence |.(Partial_Sums seq).| . k <= (Partial_Sums |.seq.|) . k by VALUED_1:18; ::_thesis: verum end; assume A2: seq is absolutely_summable ; ::_thesis: |.(Sum seq).| <= Sum |.seq.| then reconsider Pseq = Partial_Sums seq as convergent Complex_Sequence ; A3: |.(Sum seq).| = |.(lim (Partial_Sums seq)).| by COMSEQ_3:def_7 .= lim |.(Partial_Sums seq).| by A2, SEQ_2:27 ; ( |.Pseq.| is convergent & Partial_Sums |.seq.| is convergent ) by A2, SERIES_1:def_2; then lim |.(Partial_Sums seq).| <= lim (Partial_Sums |.seq.|) by A1, SEQ_2:18; hence |.(Sum seq).| <= Sum |.seq.| by A3, SERIES_1:def_3; ::_thesis: verum end; Lm7: for seq being Complex_Sequence st seq is summable & ( for n being Element of NAT holds ( (Re seq) . n >= 0 & (Im seq) . n = 0 ) ) holds |.(Sum seq).| = Sum |.seq.| proof let seq be Complex_Sequence; ::_thesis: ( seq is summable & ( for n being Element of NAT holds ( (Re seq) . n >= 0 & (Im seq) . n = 0 ) ) implies |.(Sum seq).| = Sum |.seq.| ) assume that A1: seq is summable and A2: for n being Element of NAT holds ( (Re seq) . n >= 0 & (Im seq) . n = 0 ) ; ::_thesis: |.(Sum seq).| = Sum |.seq.| for x being set st x in NAT holds |.(Partial_Sums seq).| . x = (Partial_Sums |.seq.|) . x by A2, Lm4; then |.(Partial_Sums seq).| = Partial_Sums |.seq.| by FUNCT_2:12; then lim |.(Partial_Sums seq).| = Sum |.seq.| by SERIES_1:def_3; then |.(lim (Partial_Sums seq)).| = Sum |.seq.| by A1, SEQ_2:27; hence |.(Sum seq).| = Sum |.seq.| by COMSEQ_3:def_7; ::_thesis: verum end; Lm8: for seq being Complex_Sequence for n being Element of NAT holds ( (Re (seq (#) (seq *'))) . n >= 0 & (Im (seq (#) (seq *'))) . n = 0 ) proof let seq be Complex_Sequence; ::_thesis: for n being Element of NAT holds ( (Re (seq (#) (seq *'))) . n >= 0 & (Im (seq (#) (seq *'))) . n = 0 ) let n be Element of NAT ; ::_thesis: ( (Re (seq (#) (seq *'))) . n >= 0 & (Im (seq (#) (seq *'))) . n = 0 ) reconsider z1 = seq . n as Element of COMPLEX ; A1: ( 0 <= (Re z1) ^2 & 0 <= (Im z1) ^2 ) by XREAL_1:63; (Re (seq (#) (seq *'))) . n = Re ((seq (#) (seq *')) . n) by COMSEQ_3:def_5 .= Re ((seq . n) * ((seq *') . n)) by VALUED_1:5 .= Re ((seq . n) * ((seq . n) *')) by COMSEQ_2:def_2 .= ((Re z1) ^2) + ((Im z1) ^2) by COMPLEX1:40 ; then (Re (seq (#) (seq *'))) . n >= 0 + 0 by A1, XREAL_1:7; hence (Re (seq (#) (seq *'))) . n >= 0 ; ::_thesis: (Im (seq (#) (seq *'))) . n = 0 (Im (seq (#) (seq *'))) . n = Im ((seq (#) (seq *')) . n) by COMSEQ_3:def_6 .= Im ((seq . n) * ((seq *') . n)) by VALUED_1:5 .= Im ((seq . n) * ((seq . n) *')) by COMSEQ_2:def_2 ; hence (Im (seq (#) (seq *'))) . n = 0 by COMPLEX1:40; ::_thesis: verum end; Lm9: for x being set holds ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & |.(seq_id x).| (#) |.(seq_id x).| is summable ) ) proof for x being set holds ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & |.(seq_id x).| (#) |.(seq_id x).| is summable ) ) proof let x be set ; ::_thesis: ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & |.(seq_id x).| (#) |.(seq_id x).| is summable ) ) ( x in the_set_of_ComplexSequences iff x is Complex_Sequence ) by CSSPACE:def_1; hence ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & |.(seq_id x).| (#) |.(seq_id x).| is summable ) ) by CSSPACE:def_11, CSSPACE:def_18; ::_thesis: verum end; hence for x being set holds ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & |.(seq_id x).| (#) |.(seq_id x).| is summable ) ) ; ::_thesis: verum end; Lm10: 0. Complex_l2_Space = CZeroseq proof thus 0. Complex_l2_Space = 0. Linear_Space_of_ComplexSequences by CSSPACE:12, CSSPACE:def_10, CSSPACE:def_18 .= CZeroseq by CSSPACE:def_7 ; ::_thesis: verum end; Lm11: for u being VECTOR of Complex_l2_Space holds u = seq_id u proof let u be VECTOR of Complex_l2_Space; ::_thesis: u = seq_id u u is VECTOR of Linear_Space_of_ComplexSequences by CLVECT_1:29, CSSPACE:13, CSSPACE:def_18; hence u = seq_id u by CSSPACE:15; ::_thesis: verum end; Lm12: for u, v being VECTOR of Complex_l2_Space holds u + v = (seq_id u) + (seq_id v) proof set W = the_set_of_l2ComplexSequences ; set L1 = Linear_Space_of_ComplexSequences ; let u, v be VECTOR of Complex_l2_Space; ::_thesis: u + v = (seq_id u) + (seq_id v) reconsider u1 = u, v1 = v as VECTOR of Linear_Space_of_ComplexSequences by CLVECT_1:29, CSSPACE:13, CSSPACE:def_18; dom the addF of Linear_Space_of_ComplexSequences = [: the carrier of Linear_Space_of_ComplexSequences, the carrier of Linear_Space_of_ComplexSequences:] by FUNCT_2:def_1; then A1: dom ( the addF of Linear_Space_of_ComplexSequences || the_set_of_l2ComplexSequences) = [:the_set_of_l2ComplexSequences,the_set_of_l2ComplexSequences:] by RELAT_1:62, ZFMISC_1:96; u + v = ( the addF of Linear_Space_of_ComplexSequences || the_set_of_l2ComplexSequences) . [u,v] by CSSPACE:12, CSSPACE:def_8, CSSPACE:def_18 .= u1 + v1 by A1, CSSPACE:def_18, FUNCT_1:47 ; hence u + v = (seq_id u) + (seq_id v) by CSSPACE:15; ::_thesis: verum end; Lm13: for r being Complex for u being VECTOR of Complex_l2_Space holds r * u = r (#) (seq_id u) proof set W = the_set_of_l2ComplexSequences ; set L1 = Linear_Space_of_ComplexSequences ; let r be Complex; ::_thesis: for u being VECTOR of Complex_l2_Space holds r * u = r (#) (seq_id u) let u be VECTOR of Complex_l2_Space; ::_thesis: r * u = r (#) (seq_id u) reconsider u1 = u as VECTOR of Linear_Space_of_ComplexSequences by CLVECT_1:29, CSSPACE:13, CSSPACE:def_18; dom the Mult of Linear_Space_of_ComplexSequences = [:COMPLEX, the carrier of Linear_Space_of_ComplexSequences:] by FUNCT_2:def_1; then A1: dom ( the Mult of Linear_Space_of_ComplexSequences | [:COMPLEX,the_set_of_l2ComplexSequences:]) = [:COMPLEX,the_set_of_l2ComplexSequences:] by RELAT_1:62, ZFMISC_1:96; reconsider r = r as Element of COMPLEX by XCMPLX_0:def_2; r * u = the Mult of Complex_l2_Space . [r,u] by CLVECT_1:def_1 .= ( the Mult of Linear_Space_of_ComplexSequences | [:COMPLEX,the_set_of_l2ComplexSequences:]) . [r,u] by CSSPACE:12, CSSPACE:def_9, CSSPACE:def_18 .= the Mult of Linear_Space_of_ComplexSequences . [r,u] by A1, CSSPACE:def_18, FUNCT_1:47 .= r * u1 by CLVECT_1:def_1 ; hence r * u = r (#) (seq_id u) by CSSPACE:15; ::_thesis: verum end; Lm14: for u being VECTOR of Complex_l2_Space holds ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) proof let u be VECTOR of Complex_l2_Space; ::_thesis: ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) - u = (- 1r) * u by CLVECT_1:3 .= (- 1r) (#) (seq_id u) by Lm13 .= - (seq_id u) by COMSEQ_1:11 ; hence ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) by Lm11; ::_thesis: verum end; Lm15: for u, v being VECTOR of Complex_l2_Space holds u - v = (seq_id u) - (seq_id v) proof let u, v be VECTOR of Complex_l2_Space; ::_thesis: u - v = (seq_id u) - (seq_id v) thus u - v = (seq_id u) + (seq_id (- v)) by Lm12 .= (seq_id u) - (seq_id v) by Lm14 ; ::_thesis: verum end; Lm16: for v, w being VECTOR of Complex_l2_Space holds |.(seq_id v).| (#) |.(seq_id w).| is summable proof set q0 = 1 / 2; let u, v be VECTOR of Complex_l2_Space; ::_thesis: |.(seq_id u).| (#) |.(seq_id v).| is summable set p = |.(seq_id v).| (#) |.(seq_id v).|; set q = |.(seq_id u).| (#) |.(seq_id u).|; set r = abs (|.(seq_id u).| (#) |.(seq_id v).|); A1: for n being Element of NAT holds 0 <= (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n proof set rr = |.(seq_id u).| (#) |.(seq_id v).|; let n be Element of NAT ; ::_thesis: 0 <= (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n reconsider tt = abs ((|.(seq_id u).| (#) |.(seq_id v).|) . n) as Real ; A2: 0 <= tt by COMPLEX1:46; (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n = 2 * ((abs (|.(seq_id u).| (#) |.(seq_id v).|)) . n) by SEQ_1:9 .= 2 * (abs ((|.(seq_id u).| (#) |.(seq_id v).|) . n)) by SEQ_1:12 ; hence 0 <= (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n by A2, XREAL_1:127; ::_thesis: verum end; A3: for n being Element of NAT holds (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n <= ((|.(seq_id v).| (#) |.(seq_id v).|) + (|.(seq_id u).| (#) |.(seq_id u).|)) . n proof set s = seq_id v; set t = seq_id u; let n be Element of NAT ; ::_thesis: (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n <= ((|.(seq_id v).| (#) |.(seq_id v).|) + (|.(seq_id u).| (#) |.(seq_id u).|)) . n reconsider sn = |.((seq_id v) . n).|, tn = |.((seq_id u) . n).| as Real ; reconsider ss = abs sn, tt = abs tn as Real ; A4: ((|.(seq_id v).| (#) |.(seq_id v).|) + (|.(seq_id u).| (#) |.(seq_id u).|)) . n = ((|.(seq_id v).| (#) |.(seq_id v).|) . n) + ((|.(seq_id u).| (#) |.(seq_id u).|) . n) by SEQ_1:7 .= ((|.(seq_id v).| . n) * (|.(seq_id v).| . n)) + ((|.(seq_id u).| (#) |.(seq_id u).|) . n) by SEQ_1:8 .= ((|.(seq_id v).| . n) * (|.(seq_id v).| . n)) + ((|.(seq_id u).| . n) * (|.(seq_id u).| . n)) by SEQ_1:8 .= (|.((seq_id v) . n).| * (|.(seq_id v).| . n)) + ((|.(seq_id u).| . n) * (|.(seq_id u).| . n)) by VALUED_1:18 .= (sn ^2) + ((|.(seq_id u).| . n) * (|.(seq_id u).| . n)) by VALUED_1:18 .= (sn ^2) + (|.((seq_id u) . n).| * (|.(seq_id u).| . n)) by VALUED_1:18 .= ((abs sn) ^2) + ((abs tn) ^2) by VALUED_1:18 ; A5: 0 <= ((abs sn) - (abs tn)) ^2 by XREAL_1:63; (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n = 2 * ((abs (|.(seq_id u).| (#) |.(seq_id v).|)) . n) by SEQ_1:9 .= 2 * (abs ((|.(seq_id u).| (#) |.(seq_id v).|) . n)) by SEQ_1:12 .= 2 * (abs ((|.(seq_id u).| . n) * (|.(seq_id v).| . n))) by SEQ_1:8 .= 2 * ((abs (|.(seq_id u).| . n)) * (abs (|.(seq_id v).| . n))) by COMPLEX1:65 .= 2 * ((abs |.((seq_id u) . n).|) * (abs (|.(seq_id v).| . n))) by VALUED_1:18 .= 2 * (ss * tt) by VALUED_1:18 .= (2 * (abs sn)) * (abs tn) ; then 0 + ((2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n) <= ((((|.(seq_id v).| (#) |.(seq_id v).|) + (|.(seq_id u).| (#) |.(seq_id u).|)) . n) - ((2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n)) + ((2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n) by A4, A5, XREAL_1:7; hence (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) . n <= ((|.(seq_id v).| (#) |.(seq_id v).|) + (|.(seq_id u).| (#) |.(seq_id u).|)) . n ; ::_thesis: verum end; A6: (1 / 2) (#) (2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|))) = ((1 / 2) * 2) (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|)) by SEQ_1:23 .= abs (|.(seq_id u).| (#) |.(seq_id v).|) by SEQ_1:27 ; ( |.(seq_id v).| (#) |.(seq_id v).| is summable & |.(seq_id u).| (#) |.(seq_id u).| is summable ) by CSSPACE:def_11, CSSPACE:def_18; then (|.(seq_id v).| (#) |.(seq_id v).|) + (|.(seq_id u).| (#) |.(seq_id u).|) is summable by SERIES_1:7; then 2 (#) (abs (|.(seq_id u).| (#) |.(seq_id v).|)) is summable by A1, A3, SERIES_1:20; then abs (|.(seq_id u).| (#) |.(seq_id v).|) is summable by A6, SERIES_1:10; then |.(seq_id u).| (#) |.(seq_id v).| is absolutely_summable by SERIES_1:def_4; hence |.(seq_id u).| (#) |.(seq_id v).| is summable ; ::_thesis: verum end; Lm17: for v, w being VECTOR of Complex_l2_Space holds v .|. w = Sum ((seq_id v) (#) ((seq_id w) *')) proof let v, w be VECTOR of Complex_l2_Space; ::_thesis: v .|. w = Sum ((seq_id v) (#) ((seq_id w) *')) thus v .|. w = the scalar of Complex_l2_Space . (v,w) by CSSPACE:def_12 .= Sum ((seq_id v) (#) ((seq_id w) *')) by CSSPACE:def_17, CSSPACE:def_18 ; ::_thesis: verum end; Lm18: for seq being Complex_Sequence holds |.seq.| = |.(seq *').| proof let seq be Complex_Sequence; ::_thesis: |.seq.| = |.(seq *').| reconsider rseq1 = |.seq.| as Real_Sequence ; reconsider rseq2 = |.(seq *').| as Real_Sequence ; for n being Element of NAT holds |.seq.| . n = |.(seq *').| . n proof let n be Element of NAT ; ::_thesis: |.seq.| . n = |.(seq *').| . n |.(seq *').| . n = |.((seq *') . n).| by VALUED_1:18 .= |.((seq . n) *').| by COMSEQ_2:def_2 .= |.(seq . n).| by COMPLEX1:53 ; hence |.seq.| . n = |.(seq *').| . n by VALUED_1:18; ::_thesis: verum end; then for n being set st n in NAT holds rseq1 . n = rseq2 . n ; hence |.seq.| = |.(seq *').| by FUNCT_2:12; ::_thesis: verum end; Lm19: for x being set holds ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & (seq_id x) (#) ((seq_id x) *') is absolutely_summable ) ) proof A1: for x being set st x is Element of Complex_l2_Space holds ( x is Complex_Sequence & (seq_id x) (#) ((seq_id x) *') is absolutely_summable ) proof let x be set ; ::_thesis: ( x is Element of Complex_l2_Space implies ( x is Complex_Sequence & (seq_id x) (#) ((seq_id x) *') is absolutely_summable ) ) A2: |.(seq_id x).| = |.((seq_id x) *').| by Lm18; assume A3: x is Element of Complex_l2_Space ; ::_thesis: ( x is Complex_Sequence & (seq_id x) (#) ((seq_id x) *') is absolutely_summable ) then x in the_set_of_ComplexSequences by CSSPACE:def_11, CSSPACE:def_18; hence x is Complex_Sequence by CSSPACE:def_1; ::_thesis: (seq_id x) (#) ((seq_id x) *') is absolutely_summable |.(seq_id x).| (#) |.(seq_id x).| is summable by A3, Lm16; then |.((seq_id x) (#) ((seq_id x) *')).| is summable by A2, COMSEQ_1:46; hence (seq_id x) (#) ((seq_id x) *') is absolutely_summable by COMSEQ_3:def_9; ::_thesis: verum end; for x being set st x is Complex_Sequence & (seq_id x) (#) ((seq_id x) *') is absolutely_summable holds x is Element of Complex_l2_Space proof let x be set ; ::_thesis: ( x is Complex_Sequence & (seq_id x) (#) ((seq_id x) *') is absolutely_summable implies x is Element of Complex_l2_Space ) assume that A4: x is Complex_Sequence and A5: (seq_id x) (#) ((seq_id x) *') is absolutely_summable ; ::_thesis: x is Element of Complex_l2_Space |.((seq_id x) (#) ((seq_id x) *')).| is summable by A5; then |.(seq_id x).| (#) |.((seq_id x) *').| is summable by COMSEQ_1:46; then A6: |.(seq_id x).| (#) |.(seq_id x).| is summable by Lm18; x in the_set_of_ComplexSequences by A4, CSSPACE:def_1; hence x is Element of Complex_l2_Space by A6, CSSPACE:def_11, CSSPACE:def_18; ::_thesis: verum end; hence for x being set holds ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & (seq_id x) (#) ((seq_id x) *') is absolutely_summable ) ) by A1; ::_thesis: verum end; theorem :: CSSPACE2:1 ( the carrier of Complex_l2_Space = the_set_of_l2ComplexSequences & ( for x being set holds ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & |.(seq_id x).| (#) |.(seq_id x).| is summable ) ) ) & ( for x being set holds ( x is Element of Complex_l2_Space iff ( x is Complex_Sequence & (seq_id x) (#) ((seq_id x) *') is absolutely_summable ) ) ) & 0. Complex_l2_Space = CZeroseq & ( for u being VECTOR of Complex_l2_Space holds u = seq_id u ) & ( for u, v being VECTOR of Complex_l2_Space holds u + v = (seq_id u) + (seq_id v) ) & ( for r being Complex for u being VECTOR of Complex_l2_Space holds r * u = r (#) (seq_id u) ) & ( for u being VECTOR of Complex_l2_Space holds ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) ) & ( for u, v being VECTOR of Complex_l2_Space holds u - v = (seq_id u) - (seq_id v) ) & ( for v, w being VECTOR of Complex_l2_Space holds ( |.(seq_id v).| (#) |.(seq_id w).| is summable & ( for v, w being VECTOR of Complex_l2_Space holds v .|. w = Sum ((seq_id v) (#) ((seq_id w) *')) ) ) ) ) by Lm9, Lm10, Lm11, Lm12, Lm13, Lm14, Lm15, Lm16, Lm17, Lm19, CSSPACE:def_18; theorem Th2: :: CSSPACE2:2 for x, y, z being Point of Complex_l2_Space for a being Complex holds ( ( x .|. x = 0 implies x = 0. Complex_l2_Space ) & ( x = 0. Complex_l2_Space implies x .|. x = 0 ) & Re (x .|. x) >= 0 & Im (x .|. x) = 0 & x .|. y = (y .|. x) *' & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) proof let x, y, z be Point of Complex_l2_Space; ::_thesis: for a being Complex holds ( ( x .|. x = 0 implies x = 0. Complex_l2_Space ) & ( x = 0. Complex_l2_Space implies x .|. x = 0 ) & Re (x .|. x) >= 0 & Im (x .|. x) = 0 & x .|. y = (y .|. x) *' & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) let a be Complex; ::_thesis: ( ( x .|. x = 0 implies x = 0. Complex_l2_Space ) & ( x = 0. Complex_l2_Space implies x .|. x = 0 ) & Re (x .|. x) >= 0 & Im (x .|. x) = 0 & x .|. y = (y .|. x) *' & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) set seqx = seq_id x; A1: x .|. x = the scalar of Complex_l2_Space . (x,x) by CSSPACE:def_12 .= Sum ((seq_id x) (#) ((seq_id x) *')) by CSSPACE:def_17, CSSPACE:def_18 ; A2: (seq_id x) (#) ((seq_id x) *') is absolutely_summable by Lm19; then Sum ((seq_id x) (#) ((seq_id x) *')) = (Sum (Re ((seq_id x) (#) ((seq_id x) *')))) + ((Sum (Im ((seq_id x) (#) ((seq_id x) *')))) * ) by COMSEQ_3:53; then A3: ( Re (x .|. x) = Sum (Re ((seq_id x) (#) ((seq_id x) *'))) & Im (x .|. x) = Sum (Im ((seq_id x) (#) ((seq_id x) *'))) ) by A1, COMPLEX1:12; A4: now__::_thesis:_(_x_.|._x_=_0_implies_x_=_0._Complex_l2_Space_) set seq = seq_id x; A5: x .|. x = the scalar of Complex_l2_Space . (x,x) by CSSPACE:def_12 .= Sum ((seq_id x) (#) ((seq_id x) *')) by CSSPACE:def_17, CSSPACE:def_18 ; set rseq = Re ((seq_id x) (#) ((seq_id x) *')); A6: for n being Element of NAT holds (Re ((seq_id x) (#) ((seq_id x) *'))) . n = ((Re ((seq_id x) . n)) ^2) + ((Im ((seq_id x) . n)) ^2) proof let n be Element of NAT ; ::_thesis: (Re ((seq_id x) (#) ((seq_id x) *'))) . n = ((Re ((seq_id x) . n)) ^2) + ((Im ((seq_id x) . n)) ^2) (Re ((seq_id x) (#) ((seq_id x) *'))) . n = (((Re (seq_id x)) (#) (Re ((seq_id x) *'))) - ((Im (seq_id x)) (#) (Im ((seq_id x) *')))) . n by COMSEQ_3:21 .= (((Re (seq_id x)) (#) (Re ((seq_id x) *'))) . n) + ((- ((Im (seq_id x)) (#) (Im ((seq_id x) *')))) . n) by SEQ_1:7 .= (((Re (seq_id x)) (#) (Re ((seq_id x) *'))) . n) + (- (((Im (seq_id x)) (#) (Im ((seq_id x) *'))) . n)) by SEQ_1:10 .= (((Re (seq_id x)) (#) (Re ((seq_id x) *'))) . n) - (((Im (seq_id x)) (#) (Im ((seq_id x) *'))) . n) .= (((Re (seq_id x)) . n) * ((Re ((seq_id x) *')) . n)) - (((Im (seq_id x)) (#) (Im ((seq_id x) *'))) . n) by SEQ_1:8 .= (((Re (seq_id x)) . n) * ((Re ((seq_id x) *')) . n)) - (((Im (seq_id x)) . n) * ((Im ((seq_id x) *')) . n)) by SEQ_1:8 .= ((Re ((seq_id x) . n)) * ((Re ((seq_id x) *')) . n)) - (((Im (seq_id x)) . n) * ((Im ((seq_id x) *')) . n)) by COMSEQ_3:def_5 .= ((Re ((seq_id x) . n)) * (Re (((seq_id x) *') . n))) - (((Im (seq_id x)) . n) * ((Im ((seq_id x) *')) . n)) by COMSEQ_3:def_5 .= ((Re ((seq_id x) . n)) * (Re (((seq_id x) *') . n))) - ((Im ((seq_id x) . n)) * ((Im ((seq_id x) *')) . n)) by COMSEQ_3:def_6 .= ((Re ((seq_id x) . n)) * (Re (((seq_id x) *') . n))) - ((Im ((seq_id x) . n)) * (Im (((seq_id x) *') . n))) by COMSEQ_3:def_6 .= ((Re ((seq_id x) . n)) * (Re (((seq_id x) . n) *'))) - ((Im ((seq_id x) . n)) * (Im (((seq_id x) *') . n))) by COMSEQ_2:def_2 .= ((Re ((seq_id x) . n)) * (Re (((seq_id x) . n) *'))) - ((Im ((seq_id x) . n)) * (Im (((seq_id x) . n) *'))) by COMSEQ_2:def_2 .= ((Re ((seq_id x) . n)) * (Re ((seq_id x) . n))) - ((Im ((seq_id x) . n)) * (Im (((seq_id x) . n) *'))) by COMPLEX1:27 .= ((Re ((seq_id x) . n)) * (Re ((seq_id x) . n))) - ((Im ((seq_id x) . n)) * (- (Im ((seq_id x) . n)))) by COMPLEX1:27 .= ((Re ((seq_id x) . n)) ^2) + ((Im ((seq_id x) . n)) * (Im ((seq_id x) . n))) ; hence (Re ((seq_id x) (#) ((seq_id x) *'))) . n = ((Re ((seq_id x) . n)) ^2) + ((Im ((seq_id x) . n)) ^2) ; ::_thesis: verum end; A7: for n being Element of NAT holds 0 <= (Re ((seq_id x) (#) ((seq_id x) *'))) . n proof let n be Element of NAT ; ::_thesis: 0 <= (Re ((seq_id x) (#) ((seq_id x) *'))) . n A8: (Im ((seq_id x) . n)) ^2 >= 0 by XREAL_1:63; ( (Re ((seq_id x) (#) ((seq_id x) *'))) . n = ((Re ((seq_id x) . n)) ^2) + ((Im ((seq_id x) . n)) ^2) & (Re ((seq_id x) . n)) ^2 >= 0 ) by A6, XREAL_1:63; then (Re ((seq_id x) (#) ((seq_id x) *'))) . n >= 0 + 0 by A8, XREAL_1:7; hence 0 <= (Re ((seq_id x) (#) ((seq_id x) *'))) . n ; ::_thesis: verum end; A9: (seq_id x) (#) ((seq_id x) *') is absolutely_summable by Lm19; assume x .|. x = 0 ; ::_thesis: x = 0. Complex_l2_Space then (Sum (Re ((seq_id x) (#) ((seq_id x) *')))) + ((Sum (Im ((seq_id x) (#) ((seq_id x) *')))) * ) = 0 by A5, A9, COMSEQ_3:53; then A10: Sum (Re ((seq_id x) (#) ((seq_id x) *'))) = 0 by COMPLEX1:4, COMPLEX1:12; A11: for n being Element of NAT holds (seq_id x) . n = 0 proof let n be Element of NAT ; ::_thesis: (seq_id x) . n = 0 (Re ((seq_id x) (#) ((seq_id x) *'))) . n = ((Re ((seq_id x) . n)) ^2) + ((Im ((seq_id x) . n)) ^2) by A6; then ((Re ((seq_id x) . n)) ^2) + ((Im ((seq_id x) . n)) ^2) = 0 by A9, A10, A7, RSSPACE:17; hence (seq_id x) . n = 0 by COMPLEX1:5; ::_thesis: verum end; x is Element of the_set_of_ComplexSequences by CSSPACE:def_11, CSSPACE:def_18; hence x = 0. Complex_l2_Space by A11, Lm10, CSSPACE:def_6; ::_thesis: verum end; A12: now__::_thesis:_(_x_=_0._Complex_l2_Space_implies_x_.|._x_=_0_) assume A13: x = 0. Complex_l2_Space ; ::_thesis: x .|. x = 0 A14: for n being Element of NAT holds ((seq_id x) (#) ((seq_id x) *')) . n = 0 proof let n be Element of NAT ; ::_thesis: ((seq_id x) (#) ((seq_id x) *')) . n = 0 thus ((seq_id x) (#) ((seq_id x) *')) . n = ((seq_id x) . n) * (((seq_id x) *') . n) by VALUED_1:5 .= 0c * (((seq_id x) *') . n) by A13, Lm10, CSSPACE:def_6 .= 0 ; ::_thesis: verum end; thus x .|. x = the scalar of Complex_l2_Space . (x,x) by CSSPACE:def_12 .= Sum ((seq_id x) (#) ((seq_id x) *')) by CSSPACE:def_17, CSSPACE:def_18 .= 0 by A14, CSSPACE:80 ; ::_thesis: verum end; set seqy = seq_id y; A15: for n being Element of NAT holds 0 <= (Re ((seq_id x) (#) ((seq_id x) *'))) . n proof let n be Element of NAT ; ::_thesis: 0 <= (Re ((seq_id x) (#) ((seq_id x) *'))) . n A16: ( (Re ((seq_id x) . n)) ^2 >= 0 & (Im ((seq_id x) . n)) ^2 >= 0 ) by XREAL_1:63; (Re ((seq_id x) (#) ((seq_id x) *'))) . n = Re (((seq_id x) (#) ((seq_id x) *')) . n) by COMSEQ_3:def_5 .= Re (((seq_id x) . n) * (((seq_id x) *') . n)) by VALUED_1:5 .= Re (((seq_id x) . n) * (((seq_id x) . n) *')) by COMSEQ_2:def_2 .= ((Re ((seq_id x) . n)) ^2) + ((Im ((seq_id x) . n)) ^2) by COMPLEX1:40 ; then (Re ((seq_id x) (#) ((seq_id x) *'))) . n >= 0 + 0 by A16, XREAL_1:7; hence 0 <= (Re ((seq_id x) (#) ((seq_id x) *'))) . n ; ::_thesis: verum end; |.(seq_id x).| (#) |.(seq_id y).| is summable by Lm16; then |.((seq_id x) *').| (#) |.(seq_id y).| is summable by Lm18; then |.(((seq_id x) *') (#) (seq_id y)).| is summable by COMSEQ_1:46; then A17: ((seq_id x) *') (#) (seq_id y) is absolutely_summable by COMSEQ_3:def_9; set seqz = seq_id z; A18: for n being Element of NAT holds (Im ((seq_id x) (#) ((seq_id x) *'))) . n = 0 proof let n be Element of NAT ; ::_thesis: (Im ((seq_id x) (#) ((seq_id x) *'))) . n = 0 (Im ((seq_id x) (#) ((seq_id x) *'))) . n = Im (((seq_id x) (#) ((seq_id x) *')) . n) by COMSEQ_3:def_6 .= Im (((seq_id x) . n) * (((seq_id x) *') . n)) by VALUED_1:5 .= Im (((seq_id x) . n) * (((seq_id x) . n) *')) by COMSEQ_2:def_2 ; hence (Im ((seq_id x) (#) ((seq_id x) *'))) . n = 0 by COMPLEX1:40; ::_thesis: verum end; |.(seq_id x).| (#) |.(seq_id z).| is summable by Lm16; then |.(seq_id x).| (#) |.((seq_id z) *').| is summable by Lm18; then |.((seq_id x) (#) ((seq_id z) *')).| is summable by COMSEQ_1:46; then A19: (seq_id x) (#) ((seq_id z) *') is absolutely_summable by COMSEQ_3:def_9; |.(seq_id y).| (#) |.(seq_id z).| is summable by Lm16; then |.(seq_id y).| (#) |.((seq_id z) *').| is summable by Lm18; then |.((seq_id y) (#) ((seq_id z) *')).| is summable by COMSEQ_1:46; then A20: (seq_id y) (#) ((seq_id z) *') is absolutely_summable by COMSEQ_3:def_9; A21: (x + y) .|. z = the scalar of Complex_l2_Space . ((x + y),z) by CSSPACE:def_12 .= Sum ((seq_id (x + y)) (#) ((seq_id z) *')) by CSSPACE:def_17, CSSPACE:def_18 .= Sum ((seq_id ((seq_id x) + (seq_id y))) (#) ((seq_id z) *')) by Lm12 .= Sum (((seq_id x) + (seq_id y)) (#) ((seq_id z) *')) by CSSPACE:1 .= Sum (((seq_id x) (#) ((seq_id z) *')) + ((seq_id y) (#) ((seq_id z) *'))) by COMSEQ_1:10 .= (Sum ((seq_id x) (#) ((seq_id z) *'))) + (Sum ((seq_id y) (#) ((seq_id z) *'))) by A19, A20, COMSEQ_3:54 .= ( the scalar of Complex_l2_Space . (x,z)) + (Sum ((seq_id y) (#) ((seq_id z) *'))) by CSSPACE:def_17, CSSPACE:def_18 .= ( the scalar of Complex_l2_Space . (x,z)) + ( the scalar of Complex_l2_Space . (y,z)) by CSSPACE:def_17, CSSPACE:def_18 .= (x .|. z) + ( the scalar of Complex_l2_Space . (y,z)) by CSSPACE:def_12 .= (x .|. z) + (y .|. z) by CSSPACE:def_12 ; |.(seq_id x).| (#) |.(seq_id y).| is summable by Lm16; then |.(seq_id x).| (#) |.((seq_id y) *').| is summable by Lm18; then |.((seq_id x) (#) ((seq_id y) *')).| is summable by COMSEQ_1:46; then A22: (seq_id x) (#) ((seq_id y) *') is absolutely_summable by COMSEQ_3:def_9; A23: a in COMPLEX by XCMPLX_0:def_2; A24: (a * x) .|. y = the scalar of Complex_l2_Space . ((a * x),y) by CSSPACE:def_12 .= Sum ((seq_id (a * x)) (#) ((seq_id y) *')) by CSSPACE:def_17, CSSPACE:def_18 .= Sum ((seq_id (a (#) (seq_id x))) (#) ((seq_id y) *')) by Lm13 .= Sum ((a (#) (seq_id x)) (#) ((seq_id y) *')) by CSSPACE:1 .= Sum (a (#) ((seq_id x) (#) ((seq_id y) *'))) by A23, COMSEQ_1:12 .= a * (Sum ((seq_id x) (#) ((seq_id y) *'))) by A22, COMSEQ_3:56 .= a * ( the scalar of Complex_l2_Space . (x,y)) by CSSPACE:def_17, CSSPACE:def_18 .= a * (x .|. y) by CSSPACE:def_12 ; x .|. y = the scalar of Complex_l2_Space . (x,y) by CSSPACE:def_12 .= Sum ((seq_id x) (#) ((seq_id y) *')) by CSSPACE:def_17, CSSPACE:def_18 .= Sum ((((seq_id x) *') *') (#) ((seq_id y) *')) .= Sum ((((seq_id x) *') (#) (seq_id y)) *') by COMSEQ_2:5 .= (Sum (((seq_id x) *') (#) (seq_id y))) *' by A17, Lm5 .= ( the scalar of Complex_l2_Space . (y,x)) *' by CSSPACE:def_17, CSSPACE:def_18 .= (y .|. x) *' by CSSPACE:def_12 ; hence ( ( x .|. x = 0 implies x = 0. Complex_l2_Space ) & ( x = 0. Complex_l2_Space implies x .|. x = 0 ) & Re (x .|. x) >= 0 & Im (x .|. x) = 0 & x .|. y = (y .|. x) *' & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) by A4, A12, A2, A3, A15, A18, A21, A24, RSSPACE:16, SERIES_1:18; ::_thesis: verum end; registration cluster Complex_l2_Space -> ComplexUnitarySpace-like ; coherence Complex_l2_Space is ComplexUnitarySpace-like by Th2, CSSPACE:def_13; end; Lm20: for x, y being Complex holds 2 * |.(x * y).| <= (|.x.| ^2) + (|.y.| ^2) proof let x, y be Complex; ::_thesis: 2 * |.(x * y).| <= (|.x.| ^2) + (|.y.| ^2) set a = |.x.|; set b = |.y.|; (|.x.| - |.y.|) ^2 = ((|.x.| * |.x.|) - ((|.x.| * |.y.|) + (|.x.| * |.y.|))) + (|.y.| * |.y.|) ; then ( |.x.| * |.y.| = |.(x * y).| & ((|.x.| * |.x.|) + (|.y.| * |.y.|)) - ((|.x.| * |.y.|) + (|.x.| * |.y.|)) >= 0 ) by COMPLEX1:65, XREAL_1:63; hence 2 * |.(x * y).| <= (|.x.| ^2) + (|.y.| ^2) by XREAL_1:49; ::_thesis: verum end; Lm21: for x, y being Complex holds ( |.(x + y).| * |.(x + y).| <= ((2 * |.x.|) * |.x.|) + ((2 * |.y.|) * |.y.|) & |.x.| * |.x.| <= ((2 * |.(x - y).|) * |.(x - y).|) + ((2 * |.y.|) * |.y.|) ) proof A1: now__::_thesis:_for_x,_y_being_Complex_holds_|.(x_+_y).|_*_|.(x_+_y).|_<=_((2_*_|.x.|)_*_|.x.|)_+_((2_*_|.y.|)_*_|.y.|) let x, y be Complex; ::_thesis: |.(x + y).| * |.(x + y).| <= ((2 * |.x.|) * |.x.|) + ((2 * |.y.|) * |.y.|) A2: ( |.(x * x).| = |.x.| * |.x.| & |.(y * y).| = |.y.| * |.y.| ) by COMPLEX1:65; |.((((x * x) + (x * y)) + (x * y)) + (y * y)).| <= |.(((x * x) + (x * y)) + (x * y)).| + |.(y * y).| by COMPLEX1:56; then A3: |.((((x * x) + (x * y)) + (x * y)) + (y * y)).| - |.(y * y).| <= |.(((x * x) + (x * y)) + (x * y)).| by XREAL_1:20; |.(((x * x) + (x * y)) + (x * y)).| <= |.((x * x) + (x * y)).| + |.(x * y).| by COMPLEX1:56; then ( |.((x * x) + (x * y)).| <= |.(x * x).| + |.(x * y).| & |.(((x * x) + (x * y)) + (x * y)).| - |.(x * y).| <= |.((x * x) + (x * y)).| ) by COMPLEX1:56, XREAL_1:20; then |.(((x * x) + (x * y)) + (x * y)).| - |.(x * y).| <= |.(x * x).| + |.(x * y).| by XXREAL_0:2; then A4: |.(((x * x) + (x * y)) + (x * y)).| <= (|.(x * x).| + |.(x * y).|) + |.(x * y).| by XREAL_1:20; |.(x + y).| * |.(x + y).| = |.((x + y) * (x + y)).| by COMPLEX1:65 .= |.((((x * x) + (x * y)) + (x * y)) + (y * y)).| ; then (|.(x + y).| * |.(x + y).|) - |.(y * y).| <= |.(x * x).| + (2 * |.(x * y).|) by A3, A4, XXREAL_0:2; then A5: ((|.(x + y).| * |.(x + y).|) - |.(y * y).|) - |.(x * x).| <= 2 * |.(x * y).| by XREAL_1:20; 2 * |.(x * y).| <= (|.x.| ^2) + (|.y.| ^2) by Lm20; then ((|.(x + y).| * |.(x + y).|) - |.(y * y).|) - |.(x * x).| <= (|.x.| ^2) + (|.y.| ^2) by A5, XXREAL_0:2; then (|.(x + y).| * |.(x + y).|) - (|.y.| * |.y.|) <= ((|.x.| * |.x.|) + (|.y.| * |.y.|)) + (|.x.| * |.x.|) by A2, XREAL_1:20; then |.(x + y).| * |.(x + y).| <= ((2 * (|.x.| * |.x.|)) + (|.y.| * |.y.|)) + (|.y.| * |.y.|) by XREAL_1:20; hence |.(x + y).| * |.(x + y).| <= ((2 * |.x.|) * |.x.|) + ((2 * |.y.|) * |.y.|) ; ::_thesis: verum end; now__::_thesis:_for_x,_y_being_Complex_holds_|.x.|_*_|.x.|_<=_((2_*_|.(x_-_y).|)_*_|.(x_-_y).|)_+_((2_*_|.y.|)_*_|.y.|) let x, y be Complex; ::_thesis: |.x.| * |.x.| <= ((2 * |.(x - y).|) * |.(x - y).|) + ((2 * |.y.|) * |.y.|) |.((x - y) + y).| = |.x.| ; hence |.x.| * |.x.| <= ((2 * |.(x - y).|) * |.(x - y).|) + ((2 * |.y.|) * |.y.|) by A1; ::_thesis: verum end; hence for x, y being Complex holds ( |.(x + y).| * |.(x + y).| <= ((2 * |.x.|) * |.x.|) + ((2 * |.y.|) * |.y.|) & |.x.| * |.x.| <= ((2 * |.(x - y).|) * |.(x - y).|) + ((2 * |.y.|) * |.y.|) ) by A1; ::_thesis: verum end; Lm22: for c being Complex for seq being Complex_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = |.((seq . m) - c).| * |.((seq . m) - c).| ) holds ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) proof let c be Complex; ::_thesis: for seq being Complex_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = |.((seq . m) - c).| * |.((seq . m) - c).| ) holds ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) reconsider c1 = c as Element of COMPLEX by XCMPLX_0:def_2; reconsider cseq = NAT --> c1 as Complex_Sequence ; A1: for n being Element of NAT holds cseq . n = c by FUNCOP_1:7; then A2: cseq is convergent by COMSEQ_2:9; let seq be Complex_Sequence; ::_thesis: ( seq is convergent implies for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = |.((seq . m) - c).| * |.((seq . m) - c).| ) holds ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) ) assume A3: seq is convergent ; ::_thesis: for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = |.((seq . m) - c).| * |.((seq . m) - c).| ) holds ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) reconsider seq1 = seq - cseq as convergent Complex_Sequence by A3, A2; |.seq1.| is convergent ; then A4: lim (|.(seq - cseq).| (#) |.(seq - cseq).|) = (lim |.(seq - cseq).|) * (lim |.(seq - cseq).|) by SEQ_2:15 .= |.((lim seq) - (lim cseq)).| * (lim |.(seq - cseq).|) by A3, A2, SEQ_2:31 .= |.((lim seq) - (lim cseq)).| * |.((lim seq) - (lim cseq)).| by A3, A2, SEQ_2:31 .= |.((lim seq) - c).| * |.((lim seq) - (lim cseq)).| by A1, COMSEQ_2:10 .= |.((lim seq) - c).| * |.((lim seq) - c).| by A1, COMSEQ_2:10 ; let rseq be Real_Sequence; ::_thesis: ( ( for m being Element of NAT holds rseq . m = |.((seq . m) - c).| * |.((seq . m) - c).| ) implies ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) ) assume A5: for i being Element of NAT holds rseq . i = |.((seq . i) - c).| * |.((seq . i) - c).| ; ::_thesis: ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) now__::_thesis:_for_i_being_Element_of_NAT_holds_rseq_._i_=_(|.(seq_-_cseq).|_(#)_|.(seq_-_cseq).|)_._i let i be Element of NAT ; ::_thesis: rseq . i = (|.(seq - cseq).| (#) |.(seq - cseq).|) . i thus rseq . i = |.((seq . i) - c).| * |.((seq . i) - c).| by A5 .= |.((seq . i) - (cseq . i)).| * |.((seq . i) - c).| by FUNCOP_1:7 .= |.((seq . i) - (cseq . i)).| * |.((seq . i) - (cseq . i)).| by FUNCOP_1:7 .= |.((seq . i) + ((- cseq) . i)).| * |.((seq . i) + (- (cseq . i))).| by VALUED_1:8 .= |.((seq . i) + ((- cseq) . i)).| * |.((seq . i) + ((- cseq) . i)).| by VALUED_1:8 .= |.((seq + (- cseq)) . i).| * |.((seq . i) + ((- cseq) . i)).| by VALUED_1:1 .= |.((seq - cseq) . i).| * |.((seq + (- cseq)) . i).| by VALUED_1:1 .= (|.(seq - cseq).| . i) * |.((seq - cseq) . i).| by VALUED_1:18 .= (|.(seq - cseq).| . i) * (|.(seq - cseq).| . i) by VALUED_1:18 .= (|.(seq - cseq).| (#) |.(seq - cseq).|) . i by SEQ_1:8 ; ::_thesis: verum end; then A6: for x being set st x in NAT holds rseq . x = (|.(seq - cseq).| (#) |.(seq - cseq).|) . x ; |.seq1.| (#) |.seq1.| is convergent ; hence ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) by A6, A4, FUNCT_2:12; ::_thesis: verum end; Lm23: for c being Complex for seq1 being Real_Sequence for seq being Complex_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) proof let c be Complex; ::_thesis: for seq1 being Real_Sequence for seq being Complex_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) let seq1 be Real_Sequence; ::_thesis: for seq being Complex_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) let seq be Complex_Sequence; ::_thesis: ( seq is convergent & seq1 is convergent implies for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) ) assume that A1: seq is convergent and A2: seq1 is convergent ; ::_thesis: for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) reconsider c1 = c as Element of COMPLEX by XCMPLX_0:def_2; reconsider cseq = NAT --> c1 as Complex_Sequence ; A3: for n being Element of NAT holds cseq . n = c by FUNCOP_1:7; then A4: cseq is convergent by COMSEQ_2:9; then reconsider s = seq - cseq as convergent Complex_Sequence by A1; A5: |.s.| is convergent ; then A6: |.(seq - cseq).| (#) |.(seq - cseq).| is convergent ; let rseq be Real_Sequence; ::_thesis: ( ( for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ) implies ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) ) assume A7: for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ; ::_thesis: ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) now__::_thesis:_for_i_being_Element_of_NAT_holds_rseq_._i_=_((|.(seq_-_cseq).|_(#)_|.(seq_-_cseq).|)_+_seq1)_._i let i be Element of NAT ; ::_thesis: rseq . i = ((|.(seq - cseq).| (#) |.(seq - cseq).|) + seq1) . i thus rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) by A7 .= (|.((seq . i) - (cseq . i)).| * |.((seq . i) - c).|) + (seq1 . i) by FUNCOP_1:7 .= (|.((seq . i) - (cseq . i)).| * |.((seq . i) - (cseq . i)).|) + (seq1 . i) by FUNCOP_1:7 .= (|.((seq . i) + ((- cseq) . i)).| * |.((seq . i) + (- (cseq . i))).|) + (seq1 . i) by VALUED_1:8 .= (|.((seq . i) + ((- cseq) . i)).| * |.((seq . i) + ((- cseq) . i)).|) + (seq1 . i) by VALUED_1:8 .= (|.((seq + (- cseq)) . i).| * |.((seq . i) + ((- cseq) . i)).|) + (seq1 . i) by VALUED_1:1 .= (|.((seq - cseq) . i).| * |.((seq + (- cseq)) . i).|) + (seq1 . i) by VALUED_1:1 .= ((|.(seq - cseq).| . i) * |.((seq - cseq) . i).|) + (seq1 . i) by VALUED_1:18 .= ((|.(seq - cseq).| . i) * (|.(seq - cseq).| . i)) + (seq1 . i) by VALUED_1:18 .= ((|.(seq - cseq).| (#) |.(seq - cseq).|) . i) + (seq1 . i) by SEQ_1:8 .= ((|.(seq - cseq).| (#) |.(seq - cseq).|) + seq1) . i by SEQ_1:7 ; ::_thesis: verum end; then A8: rseq = (|.(seq - cseq).| (#) |.(seq - cseq).|) + seq1 by FUNCT_2:63; lim (|.(seq - cseq).| (#) |.(seq - cseq).|) = (lim |.(seq - cseq).|) * (lim |.(seq - cseq).|) by A5, SEQ_2:15 .= |.((lim seq) - (lim cseq)).| * (lim |.(seq - cseq).|) by A1, A4, SEQ_2:31 .= |.((lim seq) - (lim cseq)).| * |.((lim seq) - (lim cseq)).| by A1, A4, SEQ_2:31 .= |.((lim seq) - c).| * |.((lim seq) - (lim cseq)).| by A3, COMSEQ_2:10 .= |.((lim seq) - c).| * |.((lim seq) - c).| by A3, COMSEQ_2:10 ; hence ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) by A2, A8, A6, SEQ_2:6; ::_thesis: verum end; registration cluster Complex_l2_Space -> complete ; coherence Complex_l2_Space is complete proof let vseq be sequence of Complex_l2_Space; :: according to CLVECT_2:def_11 ::_thesis: ( not vseq is Cauchy or vseq is convergent ) assume A1: vseq is Cauchy ; ::_thesis: vseq is convergent defpred S1[ set , set ] means ex i being Element of NAT st ( c1 = i & ex seqi being Complex_Sequence st ( ( for n being Element of NAT holds seqi . n = (seq_id (vseq . n)) . i ) & seqi is convergent & c2 = lim seqi ) ); A2: for x being set st x in NAT holds ex y being set st ( y in COMPLEX & S1[x,y] ) proof let x be set ; ::_thesis: ( x in NAT implies ex y being set st ( y in COMPLEX & S1[x,y] ) ) assume x in NAT ; ::_thesis: ex y being set st ( y in COMPLEX & S1[x,y] ) then reconsider i = x as Element of NAT ; deffunc H1( set ) -> Element of COMPLEX = (seq_id (vseq . c1)) . i; consider seqi being Complex_Sequence such that A3: for n being Element of NAT holds seqi . n = H1(n) from COMSEQ_1:sch_1(); take lim seqi ; ::_thesis: ( lim seqi in COMPLEX & S1[x, lim seqi] ) now__::_thesis:_for_e_being_Real_st_e_>_0_holds_ ex_k_being_Element_of_NAT_st_ for_m_being_Element_of_NAT_st_k_<=_m_holds_ |.((seqi_._m)_-_(seqi_._k)).|_<_e let e be Real; ::_thesis: ( e > 0 implies ex k being Element of NAT st for m being Element of NAT st k <= m holds |.((seqi . m) - (seqi . k)).| < e ) assume A4: e > 0 ; ::_thesis: ex k being Element of NAT st for m being Element of NAT st k <= m holds |.((seqi . m) - (seqi . k)).| < e thus ex k being Element of NAT st for m being Element of NAT st k <= m holds |.((seqi . m) - (seqi . k)).| < e ::_thesis: verum proof consider k being Element of NAT such that A5: for n, m being Element of NAT st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < e by A1, A4, CLVECT_2:58; now__::_thesis:_for_m_being_Element_of_NAT_st_k_<=_m_holds_ |.((seqi_._m)_-_(seqi_._k)).|_<_e reconsider e1 = e as Real ; set vk = vseq . k; let m be Element of NAT ; ::_thesis: ( k <= m implies |.((seqi . m) - (seqi . k)).| < e ) assume A6: k <= m ; ::_thesis: |.((seqi . m) - (seqi . k)).| < e set vm = vseq . m; ||.((vseq . m) - (vseq . k)).|| < e by A5, A6; then A7: sqrt |.(((vseq . m) - (vseq . k)) .|. ((vseq . m) - (vseq . k))).| < e by CSSPACE:def_15; set seqmk = seq_id ((vseq . m) - (vseq . k)); A8: sqrt (|.((seqi . m) - (seqi . k)).| * |.((seqi . m) - (seqi . k)).|) = sqrt (|.((seqi . m) - (seqi . k)).| ^2) .= |.((seqi . m) - (seqi . k)).| by COMPLEX1:46, SQUARE_1:22 ; seq_id ((vseq . m) - (vseq . k)) = seq_id ((seq_id (vseq . m)) - (seq_id (vseq . k))) by Lm15 .= (seq_id (vseq . m)) + (- (seq_id (vseq . k))) by CSSPACE:1 ; then (seq_id ((vseq . m) - (vseq . k))) . i = ((seq_id (vseq . m)) . i) + ((- (seq_id (vseq . k))) . i) by VALUED_1:1 .= ((seq_id (vseq . m)) . i) + (- ((seq_id (vseq . k)) . i)) by VALUED_1:8 .= ((seq_id (vseq . m)) . i) - ((seq_id (vseq . k)) . i) .= (seqi . m) - ((seq_id (vseq . k)) . i) by A3 .= (seqi . m) - (seqi . k) by A3 ; then |.((seqi . m) - (seqi . k)).| * |.((seqi . m) - (seqi . k)).| = (|.(seq_id ((vseq . m) - (vseq . k))).| . i) * |.((seq_id ((vseq . m) - (vseq . k))) . i).| by VALUED_1:18 .= (|.(seq_id ((vseq . m) - (vseq . k))).| . i) * (|.(seq_id ((vseq . m) - (vseq . k))).| . i) by VALUED_1:18 ; then (|.(seq_id ((vseq . m) - (vseq . k))).| . i) * (|.((seq_id ((vseq . m) - (vseq . k))) *').| . i) = |.((seqi . m) - (seqi . k)).| * |.((seqi . m) - (seqi . k)).| by Lm18; then A9: |.((seqi . m) - (seqi . k)).| * |.((seqi . m) - (seqi . k)).| = (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) . i by SEQ_1:8; 0 <= |.((seqi . m) - (seqi . k)).| by COMPLEX1:46; then A10: 0 <= |.((seqi . m) - (seqi . k)).| * |.((seqi . m) - (seqi . k)).| by XREAL_1:127; ( (seq_id ((vseq . m) - (vseq . k))) (#) ((seq_id ((vseq . m) - (vseq . k))) *') is absolutely_summable & ( for j being Element of NAT holds ( (Re ((seq_id ((vseq . m) - (vseq . k))) (#) ((seq_id ((vseq . m) - (vseq . k))) *'))) . j >= 0 & (Im ((seq_id ((vseq . m) - (vseq . k))) (#) ((seq_id ((vseq . m) - (vseq . k))) *'))) . j = 0 ) ) ) by Lm8, Lm19; then |.(Sum ((seq_id ((vseq . m) - (vseq . k))) (#) ((seq_id ((vseq . m) - (vseq . k))) *'))).| = Sum |.((seq_id ((vseq . m) - (vseq . k))) (#) ((seq_id ((vseq . m) - (vseq . k))) *')).| by Lm7 .= Sum (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) by COMSEQ_1:46 ; then A11: sqrt (Sum (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|)) < e by A7, Lm17; A12: for i being Element of NAT holds 0 <= (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) . i proof let i be Element of NAT ; ::_thesis: 0 <= (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) . i (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) . i = (|.(seq_id ((vseq . m) - (vseq . k))).| . i) * (|.((seq_id ((vseq . m) - (vseq . k))) *').| . i) by SEQ_1:8 .= (|.(seq_id ((vseq . m) - (vseq . k))).| . i) * (|.(seq_id ((vseq . m) - (vseq . k))).| . i) by Lm18 ; hence 0 <= (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) . i by XREAL_1:63; ::_thesis: verum end; |.(seq_id ((vseq . m) - (vseq . k))).| (#) |.(seq_id ((vseq . m) - (vseq . k))).| is summable by CSSPACE:def_11, CSSPACE:def_18; then A13: |.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').| is summable by Lm18; then A14: 0 <= Sum (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) by A12, SERIES_1:18; then 0 <= sqrt (Sum (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|)) by SQUARE_1:def_2; then (sqrt (Sum (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|))) ^2 < e1 ^2 by A11, SQUARE_1:16; then A15: Sum (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) < e * e by A14, SQUARE_1:def_2; (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) . i <= Sum (|.(seq_id ((vseq . m) - (vseq . k))).| (#) |.((seq_id ((vseq . m) - (vseq . k))) *').|) by A13, A12, RSSPACE2:3; then A16: |.((seqi . m) - (seqi . k)).| * |.((seqi . m) - (seqi . k)).| < e * e by A15, A9, XXREAL_0:2; sqrt (e * e) = sqrt (e1 ^2) .= e by A4, SQUARE_1:22 ; hence |.((seqi . m) - (seqi . k)).| < e by A10, A16, A8, SQUARE_1:27; ::_thesis: verum end; hence ex k being Element of NAT st for m being Element of NAT st k <= m holds |.((seqi . m) - (seqi . k)).| < e ; ::_thesis: verum end; end; then seqi is convergent by COMSEQ_3:46; hence ( lim seqi in COMPLEX & S1[x, lim seqi] ) by A3; ::_thesis: verum end; consider f being Function of NAT,COMPLEX such that A17: for x being set st x in NAT holds S1[x,f . x] from FUNCT_2:sch_1(A2); reconsider tseq = f as Complex_Sequence ; set seqt = seq_id tseq; A18: now__::_thesis:_for_i_being_Element_of_NAT_ex_seqi_being_Complex_Sequence_st_ (_(_for_n_being_Element_of_NAT_holds_seqi_._n_=_(seq_id_(vseq_._n))_._i_)_&_seqi_is_convergent_&_tseq_._i_=_lim_seqi_) let i be Element of NAT ; ::_thesis: ex seqi being Complex_Sequence st ( ( for n being Element of NAT holds seqi . n = (seq_id (vseq . n)) . i ) & seqi is convergent & tseq . i = lim seqi ) reconsider x = i as set ; ex i0 being Element of NAT st ( x = i0 & ex seqi being Complex_Sequence st ( ( for n being Element of NAT holds seqi . n = (seq_id (vseq . n)) . i0 ) & seqi is convergent & f . x = lim seqi ) ) by A17; hence ex seqi being Complex_Sequence st ( ( for n being Element of NAT holds seqi . n = (seq_id (vseq . n)) . i ) & seqi is convergent & tseq . i = lim seqi ) ; ::_thesis: verum end; A19: for e being Real st e > 0 holds ex k being Element of NAT st for n being Element of NAT st n >= k holds ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e * e ) proof let e1 be Real; ::_thesis: ( e1 > 0 implies ex k being Element of NAT st for n being Element of NAT st n >= k holds ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e1 * e1 ) ) assume A20: e1 > 0 ; ::_thesis: ex k being Element of NAT st for n being Element of NAT st n >= k holds ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e1 * e1 ) set e = e1 / 2; A21: e1 / 2 > 0 by A20, XREAL_1:215; then consider k being Element of NAT such that A22: for n, m being Element of NAT st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < e1 / 2 by A1, CLVECT_2:58; e1 / 2 < e1 by A20, XREAL_1:216; then A23: (e1 / 2) * (e1 / 2) < e1 * e1 by A21, XREAL_1:97; A24: for m, n being Element of NAT st n >= k & m >= k holds ( |.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).| is summable & Sum (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) < (e1 / 2) * (e1 / 2) & ( for i being Element of NAT holds 0 <= (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) . i ) ) proof let m, n be Element of NAT ; ::_thesis: ( n >= k & m >= k implies ( |.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).| is summable & Sum (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) < (e1 / 2) * (e1 / 2) & ( for i being Element of NAT holds 0 <= (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) . i ) ) ) assume ( n >= k & m >= k ) ; ::_thesis: ( |.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).| is summable & Sum (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) < (e1 / 2) * (e1 / 2) & ( for i being Element of NAT holds 0 <= (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) . i ) ) then ||.((vseq . n) - (vseq . m)).|| < e1 / 2 by A22; then A25: sqrt |.(((vseq . n) - (vseq . m)) .|. ((vseq . n) - (vseq . m))).| < e1 / 2 by CSSPACE:def_15; ( (seq_id ((vseq . n) - (vseq . m))) (#) ((seq_id ((vseq . n) - (vseq . m))) *') is absolutely_summable & ( for j being Element of NAT holds ( (Re ((seq_id ((vseq . n) - (vseq . m))) (#) ((seq_id ((vseq . n) - (vseq . m))) *'))) . j >= 0 & (Im ((seq_id ((vseq . n) - (vseq . m))) (#) ((seq_id ((vseq . n) - (vseq . m))) *'))) . j = 0 ) ) ) by Lm8, Lm19; then |.(Sum ((seq_id ((vseq . n) - (vseq . m))) (#) ((seq_id ((vseq . n) - (vseq . m))) *'))).| = Sum |.((seq_id ((vseq . n) - (vseq . m))) (#) ((seq_id ((vseq . n) - (vseq . m))) *')).| by Lm7 .= Sum (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.((seq_id ((vseq . n) - (vseq . m))) *').|) by COMSEQ_1:46 .= Sum (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) by Lm18 .= Sum |.((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))).| by COMSEQ_1:46 ; then A26: sqrt (Sum |.((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))).|) < e1 / 2 by A25, Lm17; A27: for i being Element of NAT holds 0 <= (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) . i proof let i be Element of NAT ; ::_thesis: 0 <= (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) . i (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) . i = |.((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))).| . i by COMSEQ_1:46 .= |.(((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i).| by VALUED_1:18 ; hence 0 <= (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) . i by COMPLEX1:46; ::_thesis: verum end; |.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).| is summable by CSSPACE:def_11, CSSPACE:def_18; then 0 <= Sum (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) by A27, SERIES_1:18; then A28: 0 <= Sum |.((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))).| by COMSEQ_1:46; then 0 <= sqrt (Sum |.((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))).|) by SQUARE_1:def_2; then (sqrt (Sum |.((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))).|)) ^2 < (e1 / 2) ^2 by A26, SQUARE_1:16; then Sum |.((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))).| < (e1 / 2) * (e1 / 2) by A28, SQUARE_1:def_2; hence ( |.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).| is summable & Sum (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) < (e1 / 2) * (e1 / 2) & ( for i being Element of NAT holds 0 <= (|.(seq_id ((vseq . n) - (vseq . m))).| (#) |.(seq_id ((vseq . n) - (vseq . m))).|) . i ) ) by A27, COMSEQ_1:46, CSSPACE:def_11, CSSPACE:def_18; ::_thesis: verum end; A29: for n, i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i ) proof let n be Element of NAT ; ::_thesis: for i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i ) defpred S2[ Element of NAT ] means for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . c1 ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . c1 ); A30: for m, k being Element of NAT holds seq_id ((vseq . m) - (vseq . k)) = (seq_id (vseq . m)) - (seq_id (vseq . k)) proof let m, k be Element of NAT ; ::_thesis: seq_id ((vseq . m) - (vseq . k)) = (seq_id (vseq . m)) - (seq_id (vseq . k)) thus seq_id ((vseq . m) - (vseq . k)) = seq_id ((seq_id (vseq . m)) - (seq_id (vseq . k))) by Lm15 .= (seq_id (vseq . m)) - (seq_id (vseq . k)) by CSSPACE:1 ; ::_thesis: verum end; now__::_thesis:_for_i_being_Element_of_NAT_st_(_for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_(|.(seq_id_((vseq_._m)_-_(vseq_._n))).|_(#)_|.(seq_id_((vseq_._m)_-_(vseq_._n))).|))_._i_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(|.((seq_id_tseq)_-_(seq_id_(vseq_._n))).|_(#)_|.((seq_id_tseq)_-_(seq_id_(vseq_._n))).|))_._i_)_)_holds_ for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_(|.(seq_id_((vseq_._m)_-_(vseq_._n))).|_(#)_|.(seq_id_((vseq_._m)_-_(vseq_._n))).|))_._(i_+_1)_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(|.((seq_id_tseq)_-_(seq_id_(vseq_._n))).|_(#)_|.((seq_id_tseq)_-_(seq_id_(vseq_._n))).|))_._(i_+_1)_) let i be Element of NAT ; ::_thesis: ( ( for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i ) ) implies for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . (i + 1) ) ) assume A31: for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i ) ; ::_thesis: for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . (i + 1) ) thus for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . (i + 1) ) ::_thesis: verum proof deffunc H1( Element of NAT ) -> Element of REAL = (Partial_Sums (|.(seq_id ((vseq . c1) - (vseq . n))).| (#) |.(seq_id ((vseq . c1) - (vseq . n))).|)) . i; consider rseqb being Real_Sequence such that A32: for m being Element of NAT holds rseqb . m = H1(m) from SEQ_1:sch_1(); consider seq0 being Complex_Sequence such that A33: for m being Element of NAT holds seq0 . m = (seq_id (vseq . m)) . (i + 1) and A34: seq0 is convergent and A35: tseq . (i + 1) = lim seq0 by A18; let rseq be Real_Sequence; ::_thesis: ( ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . (i + 1) ) implies ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . (i + 1) ) ) assume A36: for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . (i + 1) ; ::_thesis: ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . (i + 1) ) A37: now__::_thesis:_for_m_being_Element_of_NAT_holds_rseq_._m_=_(|.((seq0_._m)_-_((seq_id_(vseq_._n))_._(i_+_1))).|_*_|.((seq0_._m)_-_((seq_id_(vseq_._n))_._(i_+_1))).|)_+_(rseqb_._m) let m be Element of NAT ; ::_thesis: rseq . m = (|.((seq0 . m) - ((seq_id (vseq . n)) . (i + 1))).| * |.((seq0 . m) - ((seq_id (vseq . n)) . (i + 1))).|) + (rseqb . m) thus rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . (i + 1) by A36 .= ((|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|) . (i + 1)) + ((Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i) by SERIES_1:def_1 .= ((|.((seq_id (vseq . m)) - (seq_id (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|) . (i + 1)) + ((Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i) by A30 .= ((|.((seq_id (vseq . m)) - (seq_id (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|) . (i + 1)) + (rseqb . m) by A32 .= ((|.((seq_id (vseq . m)) - (seq_id (vseq . n))).| (#) |.((seq_id (vseq . m)) - (seq_id (vseq . n))).|) . (i + 1)) + (rseqb . m) by A30 .= ((|.((seq_id (vseq . m)) + (- (seq_id (vseq . n)))).| . (i + 1)) * (|.((seq_id (vseq . m)) - (seq_id (vseq . n))).| . (i + 1))) + (rseqb . m) by SEQ_1:8 .= (|.(((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1)).| * (|.((seq_id (vseq . m)) + (- (seq_id (vseq . n)))).| . (i + 1))) + (rseqb . m) by VALUED_1:18 .= (|.(((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1)).| * |.(((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1)).|) + (rseqb . m) by VALUED_1:18 .= (|.(((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))).| * |.(((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1)).|) + (rseqb . m) by VALUED_1:1 .= (|.(((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))).| * |.(((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))).|) + (rseqb . m) by VALUED_1:1 .= (|.(((seq_id (vseq . m)) . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1)))).| * |.(((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))).|) + (rseqb . m) by VALUED_1:8 .= (|.(((seq_id (vseq . m)) . (i + 1)) - ((seq_id (vseq . n)) . (i + 1))).| * |.(((seq_id (vseq . m)) . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1)))).|) + (rseqb . m) by VALUED_1:8 .= (|.((seq0 . m) - ((seq_id (vseq . n)) . (i + 1))).| * |.(((seq_id (vseq . m)) . (i + 1)) - ((seq_id (vseq . n)) . (i + 1))).|) + (rseqb . m) by A33 .= (|.((seq0 . m) - ((seq_id (vseq . n)) . (i + 1))).| * |.((seq0 . m) - ((seq_id (vseq . n)) . (i + 1))).|) + (rseqb . m) by A33 ; ::_thesis: verum end; A38: rseqb is convergent by A31, A32; then lim rseq = (|.((lim seq0) - ((seq_id (vseq . n)) . (i + 1))).| * |.((lim seq0) - ((seq_id (vseq . n)) . (i + 1))).|) + (lim rseqb) by A34, A37, Lm23 .= (|.((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))).| * |.((tseq . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1)))).|) + (lim rseqb) by A35, VALUED_1:8 .= (|.((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))).| * |.((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))).|) + (lim rseqb) by VALUED_1:8 .= (|.((tseq + (- (seq_id (vseq . n)))) . (i + 1)).| * |.((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))).|) + (lim rseqb) by VALUED_1:1 .= (|.((tseq + (- (seq_id (vseq . n)))) . (i + 1)).| * |.((tseq + (- (seq_id (vseq . n)))) . (i + 1)).|) + (lim rseqb) by VALUED_1:1 .= ((|.(tseq + (- (seq_id (vseq . n)))).| . (i + 1)) * |.((tseq + (- (seq_id (vseq . n)))) . (i + 1)).|) + (lim rseqb) by VALUED_1:18 .= ((|.(tseq - (seq_id (vseq . n))).| . (i + 1)) * (|.(tseq + (- (seq_id (vseq . n)))).| . (i + 1))) + (lim rseqb) by VALUED_1:18 .= ((|.(tseq - (seq_id (vseq . n))).| (#) |.(tseq - (seq_id (vseq . n))).|) . (i + 1)) + (lim rseqb) by SEQ_1:8 .= ((|.(tseq - (seq_id (vseq . n))).| (#) |.(tseq - (seq_id (vseq . n))).|) . (i + 1)) + ((Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i) by A31, A32 .= ((|.(tseq - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) . (i + 1)) + ((Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i) by CSSPACE:1 .= ((|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) . (i + 1)) + ((Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i) by CSSPACE:1 .= (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . (i + 1) by SERIES_1:def_1 ; hence ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . (i + 1) ) by A38, A34, A37, Lm23; ::_thesis: verum end; end; then A39: for i being Element of NAT st S2[i] holds S2[i + 1] ; now__::_thesis:_for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_(|.(seq_id_((vseq_._m)_-_(vseq_._n))).|_(#)_|.(seq_id_((vseq_._m)_-_(vseq_._n))).|))_._0_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(|.((seq_id_tseq)_-_(seq_id_(vseq_._n))).|_(#)_|.((seq_id_tseq)_-_(seq_id_(vseq_._n))).|))_._0_) let rseq be Real_Sequence; ::_thesis: ( ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . 0 ) implies ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . 0 ) ) assume A40: for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . 0 ; ::_thesis: ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . 0 ) thus ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . 0 ) ::_thesis: verum proof consider rseq0 being Complex_Sequence such that A41: for m being Element of NAT holds rseq0 . m = (seq_id (vseq . m)) . 0 and A42: rseq0 is convergent and A43: tseq . 0 = lim rseq0 by A18; A44: now__::_thesis:_for_m_being_Element_of_NAT_holds_rseq_._m_=_|.((rseq0_._m)_-_((seq_id_(vseq_._n))_._0)).|_*_|.((rseq0_._m)_-_((seq_id_(vseq_._n))_._0)).| let m be Element of NAT ; ::_thesis: rseq . m = |.((rseq0 . m) - ((seq_id (vseq . n)) . 0)).| * |.((rseq0 . m) - ((seq_id (vseq . n)) . 0)).| thus rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . 0 by A40 .= (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|) . 0 by SERIES_1:def_1 .= (|.((seq_id (vseq . m)) - (seq_id (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|) . 0 by A30 .= (|.((seq_id (vseq . m)) - (seq_id (vseq . n))).| (#) |.((seq_id (vseq . m)) - (seq_id (vseq . n))).|) . 0 by A30 .= (|.((seq_id (vseq . m)) + (- (seq_id (vseq . n)))).| . 0) * (|.((seq_id (vseq . m)) - (seq_id (vseq . n))).| . 0) by SEQ_1:8 .= |.(((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0).| * (|.((seq_id (vseq . m)) + (- (seq_id (vseq . n)))).| . 0) by VALUED_1:18 .= |.(((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0).| * |.(((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0).| by VALUED_1:18 .= |.(((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0)).| * |.(((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0).| by VALUED_1:1 .= |.(((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0)).| * |.(((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0)).| by VALUED_1:1 .= |.(((seq_id (vseq . m)) . 0) + (- ((seq_id (vseq . n)) . 0))).| * |.(((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0)).| by VALUED_1:8 .= |.(((seq_id (vseq . m)) . 0) + (- ((seq_id (vseq . n)) . 0))).| * |.(((seq_id (vseq . m)) . 0) + (- ((seq_id (vseq . n)) . 0))).| by VALUED_1:8 .= |.((rseq0 . m) - ((seq_id (vseq . n)) . 0)).| * |.(((seq_id (vseq . m)) . 0) - ((seq_id (vseq . n)) . 0)).| by A41 .= |.((rseq0 . m) - ((seq_id (vseq . n)) . 0)).| * |.((rseq0 . m) - ((seq_id (vseq . n)) . 0)).| by A41 ; ::_thesis: verum end; then lim rseq = |.((tseq . 0) - ((seq_id (vseq . n)) . 0)).| * |.((tseq . 0) - ((seq_id (vseq . n)) . 0)).| by A42, A43, Lm22 .= |.((tseq . 0) + ((- (seq_id (vseq . n))) . 0)).| * |.((tseq . 0) + (- ((seq_id (vseq . n)) . 0))).| by VALUED_1:8 .= |.((tseq . 0) + ((- (seq_id (vseq . n))) . 0)).| * |.((tseq . 0) + ((- (seq_id (vseq . n))) . 0)).| by VALUED_1:8 .= |.((tseq + (- (seq_id (vseq . n)))) . 0).| * |.((tseq . 0) + ((- (seq_id (vseq . n))) . 0)).| by VALUED_1:1 .= |.((tseq - (seq_id (vseq . n))) . 0).| * |.((tseq + (- (seq_id (vseq . n)))) . 0).| by VALUED_1:1 .= (|.(tseq - (seq_id (vseq . n))).| . 0) * |.((tseq - (seq_id (vseq . n))) . 0).| by VALUED_1:18 .= (|.(tseq - (seq_id (vseq . n))).| . 0) * (|.(tseq - (seq_id (vseq . n))).| . 0) by VALUED_1:18 .= (|.(tseq - (seq_id (vseq . n))).| (#) |.(tseq - (seq_id (vseq . n))).|) . 0 by SEQ_1:8 .= (Partial_Sums (|.(tseq - (seq_id (vseq . n))).| (#) |.(tseq - (seq_id (vseq . n))).|)) . 0 by SERIES_1:def_1 .= (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.(tseq - (seq_id (vseq . n))).|)) . 0 by CSSPACE:1 .= (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . 0 by CSSPACE:1 ; hence ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . 0 ) by A42, A44, Lm22; ::_thesis: verum end; end; then A45: S2[ 0 ] ; for i being Element of NAT holds S2[i] from NAT_1:sch_1(A45, A39); hence for i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i ) ; ::_thesis: verum end; for n being Element of NAT st n >= k holds ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e1 * e1 ) proof let n be Element of NAT ; ::_thesis: ( n >= k implies ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e1 * e1 ) ) assume A46: n >= k ; ::_thesis: ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e1 * e1 ) A47: for i being Element of NAT st 0 <= i holds (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i <= (e1 / 2) * (e1 / 2) proof let i be Element of NAT ; ::_thesis: ( 0 <= i implies (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i <= (e1 / 2) * (e1 / 2) ) assume 0 <= i ; ::_thesis: (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i <= (e1 / 2) * (e1 / 2) deffunc H1( Element of NAT ) -> Element of REAL = (Partial_Sums (|.(seq_id ((vseq . c1) - (vseq . n))).| (#) |.(seq_id ((vseq . c1) - (vseq . n))).|)) . i; consider rseq being Real_Sequence such that A48: for m being Element of NAT holds rseq . m = H1(m) from SEQ_1:sch_1(); A49: for m being Element of NAT st m >= k holds rseq . m <= (e1 / 2) * (e1 / 2) proof let m be Element of NAT ; ::_thesis: ( m >= k implies rseq . m <= (e1 / 2) * (e1 / 2) ) assume A50: m >= k ; ::_thesis: rseq . m <= (e1 / 2) * (e1 / 2) ( |.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).| is summable & ( for i being Element of NAT holds 0 <= (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|) . i ) ) by A24, A46, A50; then A51: (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i <= Sum (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|) by RSSPACE2:3; A52: rseq . m = (Partial_Sums (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|)) . i by A48; Sum (|.(seq_id ((vseq . m) - (vseq . n))).| (#) |.(seq_id ((vseq . m) - (vseq . n))).|) < (e1 / 2) * (e1 / 2) by A24, A46, A50; hence rseq . m <= (e1 / 2) * (e1 / 2) by A52, A51, XXREAL_0:2; ::_thesis: verum end; ( rseq is convergent & lim rseq = (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i ) by A29, A48; hence (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i <= (e1 / 2) * (e1 / 2) by A49, RSSPACE2:5; ::_thesis: verum end; now__::_thesis:_for_i_being_Element_of_NAT_holds_(Partial_Sums_(|.((seq_id_tseq)_-_(seq_id_(vseq_._n))).|_(#)_|.((seq_id_tseq)_-_(seq_id_(vseq_._n))).|))_._i_<_e1_*_e1 let i be Element of NAT ; ::_thesis: (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i < e1 * e1 (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i <= (e1 / 2) * (e1 / 2) by A47, NAT_1:2; hence (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) . i < e1 * e1 by A23, XXREAL_0:2; ::_thesis: verum end; then A53: Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) is bounded_above by SEQ_2:def_3; A54: for i being Element of NAT holds 0 <= (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) . i proof let i be Element of NAT ; ::_thesis: 0 <= (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) . i (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) . i = (|.((seq_id tseq) - (seq_id (vseq . n))).| . i) * (|.((seq_id tseq) - (seq_id (vseq . n))).| . i) by SEQ_1:8; hence 0 <= (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) . i by XREAL_1:63; ::_thesis: verum end; then A55: |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable by A53, SERIES_1:17; then Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) is convergent by SERIES_1:def_2; then ( Sum (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) = lim (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) & lim (Partial_Sums (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|)) <= (e1 / 2) * (e1 / 2) ) by A47, RSSPACE2:5, SERIES_1:def_3; then A56: Sum (|.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).|) < e1 * e1 by A23, XXREAL_0:2; |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.(((seq_id tseq) - (seq_id (vseq . n))) *').| is summable by A55, Lm18; then |.(((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *')).| is summable by COMSEQ_1:46; then ((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *') is absolutely_summable by COMSEQ_3:def_9; then A57: |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| <= Sum |.(((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *')).| by Lm6; |.((seq_id tseq) - (seq_id (vseq . n))).| = |.(((seq_id tseq) - (seq_id (vseq . n))) *').| by Lm18; then Sum |.(((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *')).| < e1 * e1 by A56, COMSEQ_1:46; hence ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e1 * e1 ) by A54, A53, A57, SERIES_1:17, XXREAL_0:2; ::_thesis: verum end; hence ex k being Element of NAT st for n being Element of NAT st n >= k holds ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e1 * e1 ) ; ::_thesis: verum end; A58: |.(seq_id tseq).| (#) |.(seq_id tseq).| is summable proof set d = |.(seq_id tseq).| (#) |.(seq_id tseq).|; A59: for i being Element of NAT holds 0 <= (|.(seq_id tseq).| (#) |.(seq_id tseq).|) . i proof let i be Element of NAT ; ::_thesis: 0 <= (|.(seq_id tseq).| (#) |.(seq_id tseq).|) . i (|.(seq_id tseq).| (#) |.(seq_id tseq).|) . i = (|.(seq_id tseq).| . i) * (|.(seq_id tseq).| . i) by SEQ_1:8; hence 0 <= (|.(seq_id tseq).| (#) |.(seq_id tseq).|) . i by XREAL_1:63; ::_thesis: verum end; consider m being Element of NAT such that A60: for n being Element of NAT st n >= m holds ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < 1 * 1 ) by A19; set b = |.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|; set a = |.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|; |.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).| is summable by CSSPACE:def_11, CSSPACE:def_18; then A61: 2 (#) (|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|) is summable by SERIES_1:10; A62: for i being Element of NAT holds (|.(seq_id tseq).| (#) |.(seq_id tseq).|) . i <= ((2 (#) (|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|)) + (2 (#) (|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|))) . i proof let i be Element of NAT ; ::_thesis: (|.(seq_id tseq).| (#) |.(seq_id tseq).|) . i <= ((2 (#) (|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|)) + (2 (#) (|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|))) . i A63: ((2 (#) (|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|)) + (2 (#) (|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|))) . i = ((2 (#) (|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|)) . i) + ((2 (#) (|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|)) . i) by SEQ_1:7 .= (2 * ((|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|) . i)) + ((2 (#) (|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|)) . i) by SEQ_1:9 .= (2 * ((|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|) . i)) + (2 * ((|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|) . i)) by SEQ_1:9 ; set y = (seq_id (vseq . m)) . i; set x = (seq_id tseq) . i; A64: 2 * ((|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|) . i) = 2 * ((|.(seq_id (vseq . m)).| . i) * (|.(seq_id (vseq . m)).| . i)) by SEQ_1:8 .= 2 * (|.((seq_id (vseq . m)) . i).| * (|.(seq_id (vseq . m)).| . i)) by VALUED_1:18 .= 2 * (|.((seq_id (vseq . m)) . i).| * |.((seq_id (vseq . m)) . i).|) by VALUED_1:18 .= (2 * |.((seq_id (vseq . m)) . i).|) * |.((seq_id (vseq . m)) . i).| ; |.((seq_id tseq) - (seq_id (vseq . m))).| . i = |.(((seq_id tseq) + (- (seq_id (vseq . m)))) . i).| by VALUED_1:18 .= |.(((seq_id tseq) . i) + ((- (seq_id (vseq . m))) . i)).| by VALUED_1:1 .= |.(((seq_id tseq) . i) + (- ((seq_id (vseq . m)) . i))).| by VALUED_1:8 .= |.(((seq_id tseq) . i) - ((seq_id (vseq . m)) . i)).| ; then (|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|) . i = |.(((seq_id tseq) . i) - ((seq_id (vseq . m)) . i)).| * |.(((seq_id tseq) . i) - ((seq_id (vseq . m)) . i)).| by SEQ_1:8; then A65: 2 * ((|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|) . i) = (2 * |.(((seq_id tseq) . i) - ((seq_id (vseq . m)) . i)).|) * |.(((seq_id tseq) . i) - ((seq_id (vseq . m)) . i)).| ; (|.(seq_id tseq).| (#) |.(seq_id tseq).|) . i = (|.(seq_id tseq).| . i) * (|.(seq_id tseq).| . i) by SEQ_1:8 .= |.((seq_id tseq) . i).| * (|.(seq_id tseq).| . i) by VALUED_1:18 .= |.((seq_id tseq) . i).| * |.((seq_id tseq) . i).| by VALUED_1:18 ; hence (|.(seq_id tseq).| (#) |.(seq_id tseq).|) . i <= ((2 (#) (|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|)) + (2 (#) (|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|))) . i by A63, A65, A64, Lm21; ::_thesis: verum end; |.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).| is summable by A60; then 2 (#) (|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|) is summable by SERIES_1:10; then (2 (#) (|.((seq_id tseq) - (seq_id (vseq . m))).| (#) |.((seq_id tseq) - (seq_id (vseq . m))).|)) + (2 (#) (|.(seq_id (vseq . m)).| (#) |.(seq_id (vseq . m)).|)) is summable by A61, SERIES_1:7; hence |.(seq_id tseq).| (#) |.(seq_id tseq).| is summable by A59, A62, SERIES_1:20; ::_thesis: verum end; tseq in the_set_of_ComplexSequences by CSSPACE:def_1; then reconsider tv = tseq as Point of Complex_l2_Space by A58, CSSPACE:def_11, CSSPACE:def_18; for e being Real st e > 0 holds ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e proof let e be Real; ::_thesis: ( e > 0 implies ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e ) assume A66: e > 0 ; ::_thesis: ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e consider m being Element of NAT such that A67: for n being Element of NAT st n >= m holds ( |.((seq_id tseq) - (seq_id (vseq . n))).| (#) |.((seq_id tseq) - (seq_id (vseq . n))).| is summable & |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e * e ) by A19, A66; now__::_thesis:_for_n_being_Element_of_NAT_st_n_>=_m_holds_ ||.((vseq_._n)_-_tv).||_<_e tseq in the_set_of_ComplexSequences by CSSPACE:def_1; then reconsider u = tseq as VECTOR of Complex_l2_Space by A58, CSSPACE:def_11, CSSPACE:def_18; let n be Element of NAT ; ::_thesis: ( n >= m implies ||.((vseq . n) - tv).|| < e ) assume A68: n >= m ; ::_thesis: ||.((vseq . n) - tv).|| < e reconsider v = vseq . n as VECTOR of Complex_l2_Space ; set seqvn = seq_id (vseq . n); 0 <= Re ((u - v) .|. (u - v)) by CSSPACE:def_13; then A69: 0 <= |.((u - v) .|. (u - v)).| by CSSPACE:34; seq_id (u - v) = u - v by Lm11; then A70: seq_id (u - v) = (seq_id tseq) - (seq_id (vseq . n)) by Lm15; |.(Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) (((seq_id tseq) - (seq_id (vseq . n))) *'))).| < e * e by A67, A68; then |.((u - v) .|. (u - v)).| < e * e by A70, Lm17; then A71: sqrt |.((u - v) .|. (u - v)).| < sqrt (e ^2) by A69, SQUARE_1:27; ||.((vseq . n) - tv).|| = ||.(- (tv - (vseq . n))).|| by RLVECT_1:33 .= ||.(tv - (vseq . n)).|| by CSSPACE:47 .= sqrt |.((u - v) .|. (u - v)).| by CSSPACE:def_15 ; hence ||.((vseq . n) - tv).|| < e by A66, A71, SQUARE_1:22; ::_thesis: verum end; hence ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e ; ::_thesis: verum end; hence vseq is convergent by CLVECT_2:9; ::_thesis: verum end; end; registration clusterV80() right_complementable V131() V132() V133() vector-distributive scalar-distributive scalar-associative scalar-unital ComplexUnitarySpace-like complete for CUNITSTR ; existence ex b1 being ComplexUnitarySpace st b1 is complete proof take Complex_l2_Space ; ::_thesis: Complex_l2_Space is complete thus Complex_l2_Space is complete ; ::_thesis: verum end; end; definition mode ComplexHilbertSpace is complete ComplexUnitarySpace; end; begin theorem :: CSSPACE2:3 for z1, z2 being Complex st (Re z1) * (Im z2) = (Re z2) * (Im z1) & ((Re z1) * (Re z2)) + ((Im z1) * (Im z2)) >= 0 holds |.(z1 + z2).| = |.z1.| + |.z2.| by Lm3; theorem :: CSSPACE2:4 for x, y being Complex holds 2 * |.(x * y).| <= (|.x.| ^2) + (|.y.| ^2) by Lm20; theorem :: CSSPACE2:5 for x, y being Complex holds ( |.(x + y).| * |.(x + y).| <= ((2 * |.x.|) * |.x.|) + ((2 * |.y.|) * |.y.|) & |.x.| * |.x.| <= ((2 * |.(x - y).|) * |.(x - y).|) + ((2 * |.y.|) * |.y.|) ) by Lm21; theorem :: CSSPACE2:6 canceled; theorem :: CSSPACE2:7 for seq being Complex_Sequence holds Partial_Sums (seq *') = (Partial_Sums seq) *' by Lm1; theorem :: CSSPACE2:8 for seq being Complex_Sequence for n being Element of NAT st ( for i being Element of NAT holds ( (Re seq) . i >= 0 & (Im seq) . i = 0 ) ) holds |.(Partial_Sums seq).| . n = (Partial_Sums |.seq.|) . n by Lm4; theorem :: CSSPACE2:9 for seq being Complex_Sequence st seq is summable holds Sum (seq *') = (Sum seq) *' by Lm5; theorem :: CSSPACE2:10 for seq being Complex_Sequence st seq is absolutely_summable holds |.(Sum seq).| <= Sum |.seq.| by Lm6; theorem :: CSSPACE2:11 for seq being Complex_Sequence st seq is summable & ( for n being Element of NAT holds ( (Re seq) . n >= 0 & (Im seq) . n = 0 ) ) holds |.(Sum seq).| = Sum |.seq.| by Lm7; theorem :: CSSPACE2:12 for seq being Complex_Sequence for n being Element of NAT holds ( (Re (seq (#) (seq *'))) . n >= 0 & (Im (seq (#) (seq *'))) . n = 0 ) by Lm8; theorem :: CSSPACE2:13 for seq being Complex_Sequence st seq is absolutely_summable & Sum |.seq.| = 0 holds for n being Element of NAT holds seq . n = 0c proof let seq be Complex_Sequence; ::_thesis: ( seq is absolutely_summable & Sum |.seq.| = 0 implies for n being Element of NAT holds seq . n = 0c ) assume that A1: seq is absolutely_summable and A2: Sum |.seq.| = 0 ; ::_thesis: for n being Element of NAT holds seq . n = 0c A3: for n being Element of NAT holds (Partial_Sums |.seq.|) . n <= Sum |.seq.| proof let n be Element of NAT ; ::_thesis: (Partial_Sums |.seq.|) . n <= Sum |.seq.| (Partial_Sums |.seq.|) . n <= lim (Partial_Sums |.seq.|) by A1, SEQ_4:37; hence (Partial_Sums |.seq.|) . n <= Sum |.seq.| by SERIES_1:def_3; ::_thesis: verum end; A4: now__::_thesis:_for_n_being_Element_of_NAT_holds_not_|.seq.|_._n_<>_0 assume ex n being Element of NAT st |.seq.| . n <> 0 ; ::_thesis: contradiction then consider n1 being Element of NAT such that A5: |.seq.| . n1 <> 0 ; A6: for n being Element of NAT holds 0 <= (Partial_Sums |.seq.|) . n proof let n be Element of NAT ; ::_thesis: 0 <= (Partial_Sums |.seq.|) . n |.seq.| . 0 = |.(seq . 0).| by VALUED_1:18; then A7: 0 <= |.seq.| . 0 by COMPLEX1:46; ( n = n + 0 & (Partial_Sums |.seq.|) . 0 = |.seq.| . 0 ) by SERIES_1:def_1; hence 0 <= (Partial_Sums |.seq.|) . n by A7, SEQM_3:5; ::_thesis: verum end; (Partial_Sums |.seq.|) . n1 > 0 proof now__::_thesis:_(_(_n1_=_0_&_(Partial_Sums_|.seq.|)_._n1_>_0_)_or_(_n1_<>_0_&_(Partial_Sums_|.seq.|)_._n1_>_0_)_) percases ( n1 = 0 or n1 <> 0 ) ; case n1 = 0 ; ::_thesis: (Partial_Sums |.seq.|) . n1 > 0 then (Partial_Sums |.seq.|) . n1 <> 0 by A5, SERIES_1:def_1; hence (Partial_Sums |.seq.|) . n1 > 0 by A6; ::_thesis: verum end; caseA8: n1 <> 0 ; ::_thesis: (Partial_Sums |.seq.|) . n1 > 0 set nn = n1 - 1; |.seq.| . n1 = |.(seq . n1).| by VALUED_1:18; then A9: ( (n1 - 1) + 1 = n1 & 0 <= |.seq.| . n1 ) by COMPLEX1:46; 0 <= n1 by NAT_1:2; then 0 + 1 <= n1 by A8, INT_1:7; then A10: n1 - 1 is Element of NAT by INT_1:5; then 0 <= (Partial_Sums |.seq.|) . (n1 - 1) by A6; then (|.seq.| . n1) + 0 <= (|.seq.| . n1) + ((Partial_Sums |.seq.|) . (n1 - 1)) by XREAL_1:7; hence (Partial_Sums |.seq.|) . n1 > 0 by A5, A10, A9, SERIES_1:def_1; ::_thesis: verum end; end; end; hence (Partial_Sums |.seq.|) . n1 > 0 ; ::_thesis: verum end; hence contradiction by A2, A3; ::_thesis: verum end; for n being Element of NAT holds seq . n = 0c proof let n be Element of NAT ; ::_thesis: seq . n = 0c 0 = |.seq.| . n by A4 .= |.(seq . n).| by VALUED_1:18 ; hence seq . n = 0c by COMPLEX1:45; ::_thesis: verum end; hence for n being Element of NAT holds seq . n = 0c ; ::_thesis: verum end; theorem :: CSSPACE2:14 for seq being Complex_Sequence holds |.seq.| = |.(seq *').| by Lm18; theorem :: CSSPACE2:15 for c being Complex for seq being Complex_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = |.((seq . m) - c).| * |.((seq . m) - c).| ) holds ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) by Lm22; theorem :: CSSPACE2:16 for c being Complex for seq1 being Real_Sequence for seq being Complex_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) by Lm23; theorem :: CSSPACE2:17 for c being Complex for seq being Complex_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = |.((seq . m) - c).| * |.((seq . m) - c).| ) holds ( rseq is convergent & lim rseq = |.((lim seq) - c).| * |.((lim seq) - c).| ) by Lm22; theorem :: CSSPACE2:18 for c being Complex for seq1 being Real_Sequence for seq being Complex_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (|.((seq . i) - c).| * |.((seq . i) - c).|) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (|.((lim seq) - c).| * |.((lim seq) - c).|) + (lim seq1) ) by Lm23;