:: EUCLID_3 semantic presentation begin definition let z be complex number ; func cpx2euc z -> Point of (TOP-REAL 2) equals :: EUCLID_3:def 1 |[(Re z),(Im z)]|; correctness coherence |[(Re z),(Im z)]| is Point of (TOP-REAL 2); ; end; :: deftheorem defines cpx2euc EUCLID_3:def_1_:_ for z being complex number holds cpx2euc z = |[(Re z),(Im z)]|; definition let p be Point of (TOP-REAL 2); func euc2cpx p -> Element of COMPLEX equals :: EUCLID_3:def 2 (p `1) + ((p `2) * ); correctness coherence (p `1) + ((p `2) * ) is Element of COMPLEX ; by XCMPLX_0:def_2; end; :: deftheorem defines euc2cpx EUCLID_3:def_2_:_ for p being Point of (TOP-REAL 2) holds euc2cpx p = (p `1) + ((p `2) * ); theorem Th1: :: EUCLID_3:1 for z being complex number holds euc2cpx (cpx2euc z) = z proof let z be complex number ; ::_thesis: euc2cpx (cpx2euc z) = z ( |[(Re z),(Im z)]| `1 = Re z & |[(Re z),(Im z)]| `2 = Im z ) by EUCLID:52; hence euc2cpx (cpx2euc z) = z by COMPLEX1:13; ::_thesis: verum end; theorem Th2: :: EUCLID_3:2 for p being Point of (TOP-REAL 2) holds cpx2euc (euc2cpx p) = p proof let p be Point of (TOP-REAL 2); ::_thesis: cpx2euc (euc2cpx p) = p ( Re ((p `1) + ((p `2) * )) = p `1 & Im ((p `1) + ((p `2) * )) = p `2 ) by COMPLEX1:12; hence cpx2euc (euc2cpx p) = p by EUCLID:53; ::_thesis: verum end; theorem :: EUCLID_3:3 for z1, z2 being complex number st cpx2euc z1 = cpx2euc z2 holds z1 = z2 proof let z1, z2 be complex number ; ::_thesis: ( cpx2euc z1 = cpx2euc z2 implies z1 = z2 ) assume A1: cpx2euc z1 = cpx2euc z2 ; ::_thesis: z1 = z2 z2 = euc2cpx (cpx2euc z2) by Th1; hence z1 = z2 by A1, Th1; ::_thesis: verum end; theorem Th4: :: EUCLID_3:4 for p1, p2 being Point of (TOP-REAL 2) st euc2cpx p1 = euc2cpx p2 holds p1 = p2 proof let p1, p2 be Point of (TOP-REAL 2); ::_thesis: ( euc2cpx p1 = euc2cpx p2 implies p1 = p2 ) assume A1: euc2cpx p1 = euc2cpx p2 ; ::_thesis: p1 = p2 p2 = cpx2euc (euc2cpx p2) by Th2; hence p1 = p2 by A1, Th2; ::_thesis: verum end; theorem Th5: :: EUCLID_3:5 for x1, x2 being Real holds cpx2euc (x1 + (x2 * )) = |[x1,x2]| proof let x1, x2 be Real; ::_thesis: cpx2euc (x1 + (x2 * )) = |[x1,x2]| Re (x1 + (x2 * )) = x1 by COMPLEX1:12; hence cpx2euc (x1 + (x2 * )) = |[x1,x2]| by COMPLEX1:12; ::_thesis: verum end; theorem Th6: :: EUCLID_3:6 for z1, z2 being complex number holds |[(Re (z1 + z2)),(Im (z1 + z2))]| = |[((Re z1) + (Re z2)),((Im z1) + (Im z2))]| proof let z1, z2 be complex number ; ::_thesis: |[(Re (z1 + z2)),(Im (z1 + z2))]| = |[((Re z1) + (Re z2)),((Im z1) + (Im z2))]| |[(Re (z1 + z2)),(Im (z1 + z2))]| `2 = Im (z1 + z2) by EUCLID:52; then A1: |[(Re (z1 + z2)),(Im (z1 + z2))]| `2 = (Im z1) + (Im z2) by COMPLEX1:8; |[(Re (z1 + z2)),(Im (z1 + z2))]| `1 = Re (z1 + z2) by EUCLID:52; then |[(Re (z1 + z2)),(Im (z1 + z2))]| `1 = (Re z1) + (Re z2) by COMPLEX1:8; hence |[(Re (z1 + z2)),(Im (z1 + z2))]| = |[((Re z1) + (Re z2)),((Im z1) + (Im z2))]| by A1, EUCLID:53; ::_thesis: verum end; theorem Th7: :: EUCLID_3:7 for z1, z2 being complex number holds cpx2euc (z1 + z2) = (cpx2euc z1) + (cpx2euc z2) proof let z1, z2 be complex number ; ::_thesis: cpx2euc (z1 + z2) = (cpx2euc z1) + (cpx2euc z2) (cpx2euc z1) + (cpx2euc z2) = |[((Re z1) + (Re z2)),((Im z1) + (Im z2))]| by EUCLID:56; hence cpx2euc (z1 + z2) = (cpx2euc z1) + (cpx2euc z2) by Th6; ::_thesis: verum end; theorem Th8: :: EUCLID_3:8 for p1, p2 being Point of (TOP-REAL 2) holds ((p1 + p2) `1) + (((p1 + p2) `2) * ) = ((p1 `1) + (p2 `1)) + (((p1 `2) + (p2 `2)) * ) proof let p1, p2 be Point of (TOP-REAL 2); ::_thesis: ((p1 + p2) `1) + (((p1 + p2) `2) * ) = ((p1 `1) + (p2 `1)) + (((p1 `2) + (p2 `2)) * ) A1: p1 + p2 = |[((p1 `1) + (p2 `1)),((p1 `2) + (p2 `2))]| by EUCLID:55; A2: Im (((p1 `1) + (p2 `1)) + (((p1 `2) + (p2 `2)) * )) = (p1 `2) + (p2 `2) by COMPLEX1:12; A3: ( Im (((p1 + p2) `1) + (((p1 + p2) `2) * )) = (p1 + p2) `2 & Re (((p1 `1) + (p2 `1)) + (((p1 `2) + (p2 `2)) * )) = (p1 `1) + (p2 `1) ) by COMPLEX1:12; Re (((p1 + p2) `1) + (((p1 + p2) `2) * )) = (p1 + p2) `1 by COMPLEX1:12; then Re (((p1 + p2) `1) + (((p1 + p2) `2) * )) = (p1 `1) + (p2 `1) by A1, EUCLID:52; hence ((p1 + p2) `1) + (((p1 + p2) `2) * ) = ((p1 `1) + (p2 `1)) + (((p1 `2) + (p2 `2)) * ) by A1, A3, A2, COMPLEX1:3, EUCLID:52; ::_thesis: verum end; theorem Th9: :: EUCLID_3:9 for p1, p2 being Point of (TOP-REAL 2) holds euc2cpx (p1 + p2) = (euc2cpx p1) + (euc2cpx p2) proof let p1, p2 be Point of (TOP-REAL 2); ::_thesis: euc2cpx (p1 + p2) = (euc2cpx p1) + (euc2cpx p2) euc2cpx (p1 + p2) = ((p1 `1) + (p2 `1)) + (((p1 `2) + (p2 `2)) * ) by Th8; hence euc2cpx (p1 + p2) = (euc2cpx p1) + (euc2cpx p2) ; ::_thesis: verum end; theorem Th10: :: EUCLID_3:10 for z being complex number holds |[(Re (- z)),(Im (- z))]| = |[(- (Re z)),(- (Im z))]| proof let z be complex number ; ::_thesis: |[(Re (- z)),(Im (- z))]| = |[(- (Re z)),(- (Im z))]| |[(Re (- z)),(Im (- z))]| `2 = Im (- z) by EUCLID:52; then A1: |[(Re (- z)),(Im (- z))]| `2 = - (Im z) by COMPLEX1:17; |[(Re (- z)),(Im (- z))]| `1 = Re (- z) by EUCLID:52; then |[(Re (- z)),(Im (- z))]| `1 = - (Re z) by COMPLEX1:17; hence |[(Re (- z)),(Im (- z))]| = |[(- (Re z)),(- (Im z))]| by A1, EUCLID:53; ::_thesis: verum end; theorem Th11: :: EUCLID_3:11 for z being complex number holds cpx2euc (- z) = - (cpx2euc z) proof let z be complex number ; ::_thesis: cpx2euc (- z) = - (cpx2euc z) - (cpx2euc z) = |[(- (Re z)),(- (Im z))]| by EUCLID:60; hence cpx2euc (- z) = - (cpx2euc z) by Th10; ::_thesis: verum end; theorem Th12: :: EUCLID_3:12 for p being Point of (TOP-REAL 2) holds ((- p) `1) + (((- p) `2) * ) = (- (p `1)) + ((- (p `2)) * ) proof let p be Point of (TOP-REAL 2); ::_thesis: ((- p) `1) + (((- p) `2) * ) = (- (p `1)) + ((- (p `2)) * ) A1: - p = |[(- (p `1)),(- (p `2))]| by EUCLID:59; (- (p `1)) + ((- (p `2)) * ) = (- (p `1)) + ((- (p `2)) * ) ; then A2: ( Re ((- (p `1)) + (- ((p `2) * ))) = - (p `1) & Im ((- (p `1)) + (- ((p `2) * ))) = - (p `2) ) by COMPLEX1:12; Re (((- p) `1) + (((- p) `2) * )) = (- p) `1 by COMPLEX1:12; then ( Im (((- p) `1) + (((- p) `2) * )) = (- p) `2 & Re (((- p) `1) + (((- p) `2) * )) = - (p `1) ) by A1, COMPLEX1:12, EUCLID:52; hence ((- p) `1) + (((- p) `2) * ) = (- (p `1)) + ((- (p `2)) * ) by A1, A2, COMPLEX1:3, EUCLID:52; ::_thesis: verum end; theorem Th13: :: EUCLID_3:13 for p being Point of (TOP-REAL 2) holds euc2cpx (- p) = - (euc2cpx p) proof let p be Point of (TOP-REAL 2); ::_thesis: euc2cpx (- p) = - (euc2cpx p) - (euc2cpx p) = (- (p `1)) + ((- (p `2)) * ) ; hence euc2cpx (- p) = - (euc2cpx p) by Th12; ::_thesis: verum end; theorem :: EUCLID_3:14 for z1, z2 being complex number holds cpx2euc (z1 - z2) = (cpx2euc z1) - (cpx2euc z2) proof let z1, z2 be complex number ; ::_thesis: cpx2euc (z1 - z2) = (cpx2euc z1) - (cpx2euc z2) thus cpx2euc (z1 - z2) = cpx2euc (z1 + (- z2)) .= (cpx2euc z1) + (cpx2euc (- z2)) by Th7 .= (cpx2euc z1) - (cpx2euc z2) by Th11 ; ::_thesis: verum end; theorem Th15: :: EUCLID_3:15 for p1, p2 being Point of (TOP-REAL 2) holds euc2cpx (p1 - p2) = (euc2cpx p1) - (euc2cpx p2) proof let p1, p2 be Point of (TOP-REAL 2); ::_thesis: euc2cpx (p1 - p2) = (euc2cpx p1) - (euc2cpx p2) thus euc2cpx (p1 - p2) = (euc2cpx p1) + (euc2cpx (- p2)) by Th9 .= (euc2cpx p1) + (- (euc2cpx p2)) by Th13 .= (euc2cpx p1) - (euc2cpx p2) ; ::_thesis: verum end; theorem Th16: :: EUCLID_3:16 cpx2euc 0c = 0. (TOP-REAL 2) by COMPLEX1:4, EUCLID:54; theorem Th17: :: EUCLID_3:17 euc2cpx (0. (TOP-REAL 2)) = 0c by Th1, Th16; theorem :: EUCLID_3:18 for p being Point of (TOP-REAL 2) st euc2cpx p = 0c holds p = 0. (TOP-REAL 2) by Th2, Th16; theorem :: EUCLID_3:19 for z being complex number for r being Real holds cpx2euc (r * z) = r * (cpx2euc z) proof let z be complex number ; ::_thesis: for r being Real holds cpx2euc (r * z) = r * (cpx2euc z) let r be Real; ::_thesis: cpx2euc (r * z) = r * (cpx2euc z) A1: ( (cpx2euc z) `1 = Re z & (cpx2euc z) `2 = Im z ) by EUCLID:52; r = r + (0 * ) ; then A2: ( Re r = r & Im r = 0 ) by COMPLEX1:12; then A3: Im (r * z) = (r * (Im z)) + (0 * (Re z)) by COMPLEX1:9 .= r * (Im z) ; Re (r * z) = (r * (Re z)) - (0 * (Im z)) by A2, COMPLEX1:9 .= r * (Re z) ; hence cpx2euc (r * z) = r * (cpx2euc z) by A3, A1, EUCLID:57; ::_thesis: verum end; theorem :: EUCLID_3:20 for r being Real for p being Point of (TOP-REAL 2) holds euc2cpx (r * p) = r * (euc2cpx p) proof let r be Real; ::_thesis: for p being Point of (TOP-REAL 2) holds euc2cpx (r * p) = r * (euc2cpx p) let p be Point of (TOP-REAL 2); ::_thesis: euc2cpx (r * p) = r * (euc2cpx p) r * p = |[(r * (p `1)),(r * (p `2))]| by EUCLID:57; then ( (r * p) `1 = r * (p `1) & (r * p) `2 = r * (p `2) ) by EUCLID:52; hence euc2cpx (r * p) = r * (euc2cpx p) ; ::_thesis: verum end; theorem Th21: :: EUCLID_3:21 for p being Point of (TOP-REAL 2) holds |.(euc2cpx p).| = sqrt (((p `1) ^2) + ((p `2) ^2)) proof let p be Point of (TOP-REAL 2); ::_thesis: |.(euc2cpx p).| = sqrt (((p `1) ^2) + ((p `2) ^2)) Re (euc2cpx p) = p `1 by COMPLEX1:12; hence |.(euc2cpx p).| = sqrt (((p `1) ^2) + ((p `2) ^2)) by COMPLEX1:12; ::_thesis: verum end; theorem :: EUCLID_3:22 for f being FinSequence of REAL st len f = 2 holds |.f.| = sqrt (((f . 1) ^2) + ((f . 2) ^2)) proof let f be FinSequence of REAL ; ::_thesis: ( len f = 2 implies |.f.| = sqrt (((f . 1) ^2) + ((f . 2) ^2)) ) A1: ( (sqr f) . 1 = (f . 1) ^2 & (sqr f) . 2 = (f . 2) ^2 ) by VALUED_1:11; ( dom (sqr f) = dom f & Seg (len (sqr f)) = dom (sqr f) ) by FINSEQ_1:def_3, VALUED_1:11; then A2: len (sqr f) = len f by FINSEQ_1:def_3; assume len f = 2 ; ::_thesis: |.f.| = sqrt (((f . 1) ^2) + ((f . 2) ^2)) then sqr f = <*((f . 1) ^2),((f . 2) ^2)*> by A1, A2, FINSEQ_1:44; then Sum (sqr f) = Sum (<*((f . 1) ^2)*> ^ <*((f . 2) ^2)*>) by FINSEQ_1:def_9 .= (Sum <*((f . 1) ^2)*>) + ((f . 2) ^2) by RVSUM_1:74 .= ((f . 1) ^2) + ((f . 2) ^2) by RVSUM_1:73 ; hence |.f.| = sqrt (((f . 1) ^2) + ((f . 2) ^2)) ; ::_thesis: verum end; theorem :: EUCLID_3:23 for f being FinSequence of REAL for p being Point of (TOP-REAL 2) st len f = 2 & p = f holds |.p.| = |.f.| ; theorem :: EUCLID_3:24 for z being complex number holds |.(cpx2euc z).| = sqrt (((Re z) ^2) + ((Im z) ^2)) proof let z be complex number ; ::_thesis: |.(cpx2euc z).| = sqrt (((Re z) ^2) + ((Im z) ^2)) ( |[(Re z),(Im z)]| `1 = Re z & |[(Re z),(Im z)]| `2 = Im z ) by EUCLID:52; hence |.(cpx2euc z).| = sqrt (((Re z) ^2) + ((Im z) ^2)) by JGRAPH_3:1; ::_thesis: verum end; theorem Th25: :: EUCLID_3:25 for p being Point of (TOP-REAL 2) holds |.(euc2cpx p).| = |.p.| proof let p be Point of (TOP-REAL 2); ::_thesis: |.(euc2cpx p).| = |.p.| |.p.| = sqrt (((p `1) ^2) + ((p `2) ^2)) by JGRAPH_3:1; hence |.(euc2cpx p).| = |.p.| by Th21; ::_thesis: verum end; definition let p be Point of (TOP-REAL 2); func Arg p -> Real equals :: EUCLID_3:def 3 Arg (euc2cpx p); correctness coherence Arg (euc2cpx p) is Real; ; end; :: deftheorem defines Arg EUCLID_3:def_3_:_ for p being Point of (TOP-REAL 2) holds Arg p = Arg (euc2cpx p); theorem :: EUCLID_3:26 for z being Element of COMPLEX for p being Point of (TOP-REAL 2) st ( z = euc2cpx p or p = cpx2euc z ) holds Arg z = Arg p proof let z be Element of COMPLEX ; ::_thesis: for p being Point of (TOP-REAL 2) st ( z = euc2cpx p or p = cpx2euc z ) holds Arg z = Arg p let p be Point of (TOP-REAL 2); ::_thesis: ( ( z = euc2cpx p or p = cpx2euc z ) implies Arg z = Arg p ) assume A1: ( z = euc2cpx p or p = cpx2euc z ) ; ::_thesis: Arg z = Arg p percases ( z = euc2cpx p or p = cpx2euc z ) by A1; suppose z = euc2cpx p ; ::_thesis: Arg z = Arg p hence Arg z = Arg p ; ::_thesis: verum end; suppose p = cpx2euc z ; ::_thesis: Arg z = Arg p hence Arg z = Arg p by Th1; ::_thesis: verum end; end; end; theorem :: EUCLID_3:27 for x1, x2 being Real for p being Point of (TOP-REAL 2) st x1 = |.p.| * (cos (Arg p)) & x2 = |.p.| * (sin (Arg p)) holds p = |[x1,x2]| proof let x1, x2 be Real; ::_thesis: for p being Point of (TOP-REAL 2) st x1 = |.p.| * (cos (Arg p)) & x2 = |.p.| * (sin (Arg p)) holds p = |[x1,x2]| let p be Point of (TOP-REAL 2); ::_thesis: ( x1 = |.p.| * (cos (Arg p)) & x2 = |.p.| * (sin (Arg p)) implies p = |[x1,x2]| ) assume ( x1 = |.p.| * (cos (Arg p)) & x2 = |.p.| * (sin (Arg p)) ) ; ::_thesis: p = |[x1,x2]| then ( x1 = |.(euc2cpx p).| * (cos (Arg (euc2cpx p))) & x2 = |.(euc2cpx p).| * (sin (Arg (euc2cpx p))) ) by Th25; then euc2cpx p = x1 + (x2 * ) by COMPLEX2:12; then p = cpx2euc (x1 + (x2 * )) by Th2; hence p = |[x1,x2]| by Th5; ::_thesis: verum end; theorem :: EUCLID_3:28 Arg (0. (TOP-REAL 2)) = 0 by Th17, COMPTRIG:35; theorem :: EUCLID_3:29 for p being Point of (TOP-REAL 2) st p <> 0. (TOP-REAL 2) holds ( ( Arg p < PI implies Arg (- p) = (Arg p) + PI ) & ( Arg p >= PI implies Arg (- p) = (Arg p) - PI ) ) proof let p be Point of (TOP-REAL 2); ::_thesis: ( p <> 0. (TOP-REAL 2) implies ( ( Arg p < PI implies Arg (- p) = (Arg p) + PI ) & ( Arg p >= PI implies Arg (- p) = (Arg p) - PI ) ) ) assume p <> 0. (TOP-REAL 2) ; ::_thesis: ( ( Arg p < PI implies Arg (- p) = (Arg p) + PI ) & ( Arg p >= PI implies Arg (- p) = (Arg p) - PI ) ) then A1: euc2cpx p <> 0c by Th2, Th16; Arg (- p) = Arg (- (euc2cpx p)) by Th13; hence ( ( Arg p < PI implies Arg (- p) = (Arg p) + PI ) & ( Arg p >= PI implies Arg (- p) = (Arg p) - PI ) ) by A1, COMPLEX2:13; ::_thesis: verum end; theorem :: EUCLID_3:30 for p being Point of (TOP-REAL 2) st Arg p = 0 holds ( p = |[|.p.|,0]| & p `2 = 0 ) proof let p be Point of (TOP-REAL 2); ::_thesis: ( Arg p = 0 implies ( p = |[|.p.|,0]| & p `2 = 0 ) ) assume Arg p = 0 ; ::_thesis: ( p = |[|.p.|,0]| & p `2 = 0 ) then A1: ( euc2cpx p = |.(euc2cpx p).| + (0 * ) & Im (euc2cpx p) = 0 ) by COMPLEX2:15, COMPLEX2:21; ( cpx2euc (|.(euc2cpx p).| + (0 * )) = |[|.(euc2cpx p).|,0]| & |.(euc2cpx p).| = |.p.| ) by Th5, Th25; hence ( p = |[|.p.|,0]| & p `2 = 0 ) by A1, Th2, COMPLEX1:12; ::_thesis: verum end; theorem Th31: :: EUCLID_3:31 for p being Point of (TOP-REAL 2) st p <> 0. (TOP-REAL 2) holds ( Arg p < PI iff Arg (- p) >= PI ) proof let p be Point of (TOP-REAL 2); ::_thesis: ( p <> 0. (TOP-REAL 2) implies ( Arg p < PI iff Arg (- p) >= PI ) ) assume p <> 0. (TOP-REAL 2) ; ::_thesis: ( Arg p < PI iff Arg (- p) >= PI ) then A1: euc2cpx p <> 0c by Th2, Th16; Arg (- p) = Arg (- (euc2cpx p)) by Th13; hence ( Arg p < PI iff Arg (- p) >= PI ) by A1, COMPLEX2:16; ::_thesis: verum end; theorem :: EUCLID_3:32 for p1, p2 being Point of (TOP-REAL 2) st ( p1 <> p2 or p1 - p2 <> 0. (TOP-REAL 2) ) holds ( Arg (p1 - p2) < PI iff Arg (p2 - p1) >= PI ) proof let p1, p2 be Point of (TOP-REAL 2); ::_thesis: ( ( p1 <> p2 or p1 - p2 <> 0. (TOP-REAL 2) ) implies ( Arg (p1 - p2) < PI iff Arg (p2 - p1) >= PI ) ) assume ( p1 <> p2 or p1 - p2 <> 0. (TOP-REAL 2) ) ; ::_thesis: ( Arg (p1 - p2) < PI iff Arg (p2 - p1) >= PI ) then A1: p1 - p2 <> 0. (TOP-REAL 2) by EUCLID:43; - (p1 - p2) = p2 - p1 by EUCLID:44; hence ( Arg (p1 - p2) < PI iff Arg (p2 - p1) >= PI ) by A1, Th31; ::_thesis: verum end; theorem :: EUCLID_3:33 for p being Point of (TOP-REAL 2) holds ( Arg p in ].0,PI.[ iff p `2 > 0 ) proof let p be Point of (TOP-REAL 2); ::_thesis: ( Arg p in ].0,PI.[ iff p `2 > 0 ) Im (euc2cpx p) = p `2 by COMPLEX1:12; hence ( Arg p in ].0,PI.[ iff p `2 > 0 ) by COMPLEX2:18; ::_thesis: verum end; theorem :: EUCLID_3:34 for p1, p2 being Point of (TOP-REAL 2) st Arg p1 < PI & Arg p2 < PI holds Arg (p1 + p2) < PI proof let p1, p2 be Point of (TOP-REAL 2); ::_thesis: ( Arg p1 < PI & Arg p2 < PI implies Arg (p1 + p2) < PI ) assume ( Arg p1 < PI & Arg p2 < PI ) ; ::_thesis: Arg (p1 + p2) < PI then Arg ((euc2cpx p1) + (euc2cpx p2)) < PI by COMPLEX2:20; hence Arg (p1 + p2) < PI by Th9; ::_thesis: verum end; definition let p1, p2, p3 be Point of (TOP-REAL 2); func angle (p1,p2,p3) -> Real equals :: EUCLID_3:def 4 angle ((euc2cpx p1),(euc2cpx p2),(euc2cpx p3)); correctness coherence angle ((euc2cpx p1),(euc2cpx p2),(euc2cpx p3)) is Real; by XREAL_0:def_1; end; :: deftheorem defines angle EUCLID_3:def_4_:_ for p1, p2, p3 being Point of (TOP-REAL 2) holds angle (p1,p2,p3) = angle ((euc2cpx p1),(euc2cpx p2),(euc2cpx p3)); theorem :: EUCLID_3:35 for p1, p2, p3 being Point of (TOP-REAL 2) holds angle (p1,p2,p3) = angle ((p1 - p2),(0. (TOP-REAL 2)),(p3 - p2)) proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: angle (p1,p2,p3) = angle ((p1 - p2),(0. (TOP-REAL 2)),(p3 - p2)) ( (euc2cpx p1) - (euc2cpx p2) = euc2cpx (p1 - p2) & (euc2cpx p3) - (euc2cpx p2) = euc2cpx (p3 - p2) ) by Th15; hence angle (p1,p2,p3) = angle ((p1 - p2),(0. (TOP-REAL 2)),(p3 - p2)) by Th17, COMPLEX2:71; ::_thesis: verum end; theorem :: EUCLID_3:36 for p1, p2, p3 being Point of (TOP-REAL 2) st angle (p1,p2,p3) = 0 holds ( Arg (p1 - p2) = Arg (p3 - p2) & angle (p3,p2,p1) = 0 ) proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( angle (p1,p2,p3) = 0 implies ( Arg (p1 - p2) = Arg (p3 - p2) & angle (p3,p2,p1) = 0 ) ) assume A1: angle (p1,p2,p3) = 0 ; ::_thesis: ( Arg (p1 - p2) = Arg (p3 - p2) & angle (p3,p2,p1) = 0 ) ( (euc2cpx p1) - (euc2cpx p2) = euc2cpx (p1 - p2) & (euc2cpx p3) - (euc2cpx p2) = euc2cpx (p3 - p2) ) by Th15; hence ( Arg (p1 - p2) = Arg (p3 - p2) & angle (p3,p2,p1) = 0 ) by A1, COMPLEX2:74; ::_thesis: verum end; theorem :: EUCLID_3:37 for p1, p2, p3 being Point of (TOP-REAL 2) st angle (p1,p2,p3) <> 0 holds angle (p3,p2,p1) = (2 * PI) - (angle (p1,p2,p3)) proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( angle (p1,p2,p3) <> 0 implies angle (p3,p2,p1) = (2 * PI) - (angle (p1,p2,p3)) ) assume angle (p1,p2,p3) <> 0 ; ::_thesis: angle (p3,p2,p1) = (2 * PI) - (angle (p1,p2,p3)) then (angle (p3,p2,p1)) + (angle (p1,p2,p3)) = 2 * PI by COMPLEX2:80; hence angle (p3,p2,p1) = (2 * PI) - (angle (p1,p2,p3)) ; ::_thesis: verum end; theorem :: EUCLID_3:38 for p1, p2, p3 being Point of (TOP-REAL 2) st angle (p3,p2,p1) <> 0 holds angle (p3,p2,p1) = (2 * PI) - (angle (p1,p2,p3)) proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( angle (p3,p2,p1) <> 0 implies angle (p3,p2,p1) = (2 * PI) - (angle (p1,p2,p3)) ) assume angle (p3,p2,p1) <> 0 ; ::_thesis: angle (p3,p2,p1) = (2 * PI) - (angle (p1,p2,p3)) then (angle (p3,p2,p1)) + (angle (p1,p2,p3)) = 2 * PI by COMPLEX2:80; hence angle (p3,p2,p1) = (2 * PI) - (angle (p1,p2,p3)) ; ::_thesis: verum end; theorem Th39: :: EUCLID_3:39 for x, y being Element of COMPLEX holds Re (x .|. y) = ((Re x) * (Re y)) + ((Im x) * (Im y)) proof let x, y be Element of COMPLEX ; ::_thesis: Re (x .|. y) = ((Re x) * (Re y)) + ((Im x) * (Im y)) x .|. y = (((Re x) * (Re y)) + ((Im x) * (Im y))) + (((- ((Re x) * (Im y))) + ((Im x) * (Re y))) * ) by COMPLEX2:29; hence Re (x .|. y) = ((Re x) * (Re y)) + ((Im x) * (Im y)) by COMPLEX1:12; ::_thesis: verum end; theorem Th40: :: EUCLID_3:40 for x, y being Element of COMPLEX holds Im (x .|. y) = (- ((Re x) * (Im y))) + ((Im x) * (Re y)) proof let x, y be Element of COMPLEX ; ::_thesis: Im (x .|. y) = (- ((Re x) * (Im y))) + ((Im x) * (Re y)) x .|. y = (((Re x) * (Re y)) + ((Im x) * (Im y))) + (((- ((Re x) * (Im y))) + ((Im x) * (Re y))) * ) by COMPLEX2:29; hence Im (x .|. y) = (- ((Re x) * (Im y))) + ((Im x) * (Re y)) by COMPLEX1:12; ::_thesis: verum end; theorem Th41: :: EUCLID_3:41 for p, q being Point of (TOP-REAL 2) holds |(p,q)| = ((p `1) * (q `1)) + ((p `2) * (q `2)) proof let p, q be Point of (TOP-REAL 2); ::_thesis: |(p,q)| = ((p `1) * (q `1)) + ((p `2) * (q `2)) (p + q) `1 = (p `1) + (q `1) by TOPREAL3:2; then A1: ((p + q) `1) ^2 = (((p `1) ^2) + ((2 * (p `1)) * (q `1))) + ((q `1) ^2) by SQUARE_1:4; (p + q) `2 = (p `2) + (q `2) by TOPREAL3:2; then A2: ((p + q) `2) ^2 = (((p `2) ^2) + ((2 * (p `2)) * (q `2))) + ((q `2) ^2) by SQUARE_1:4; (p - q) `2 = (p `2) - (q `2) by TOPREAL3:3; then A3: ((p - q) `2) ^2 = (((p `2) ^2) - ((2 * (p `2)) * (q `2))) + ((q `2) ^2) by SQUARE_1:5; (p - q) `1 = (p `1) - (q `1) by TOPREAL3:3; then A4: ((p - q) `1) ^2 = (((p `1) ^2) - ((2 * (p `1)) * (q `1))) + ((q `1) ^2) by SQUARE_1:5; |(p,q)| = (1 / 4) * ((|.(p + q).| ^2) - (|.(p - q).| ^2)) by EUCLID_2:49 .= (1 / 4) * (((((p + q) `1) ^2) + (((p + q) `2) ^2)) - (|.(p - q).| ^2)) by JGRAPH_3:1 .= (1 / 4) * (((((p + q) `1) ^2) + (((p + q) `2) ^2)) - ((((p - q) `1) ^2) + (((p - q) `2) ^2))) by JGRAPH_3:1 .= (1 / 4) * (((((p + q) `1) ^2) - (((p - q) `1) ^2)) + ((((p + q) `2) ^2) - (((p - q) `2) ^2))) ; hence |(p,q)| = ((p `1) * (q `1)) + ((p `2) * (q `2)) by A1, A2, A4, A3; ::_thesis: verum end; theorem Th42: :: EUCLID_3:42 for p1, p2 being Point of (TOP-REAL 2) holds |(p1,p2)| = Re ((euc2cpx p1) .|. (euc2cpx p2)) proof let p1, p2 be Point of (TOP-REAL 2); ::_thesis: |(p1,p2)| = Re ((euc2cpx p1) .|. (euc2cpx p2)) A1: ( p1 `1 = Re (euc2cpx p1) & p1 `2 = Im (euc2cpx p1) ) by COMPLEX1:12; A2: ( p2 `1 = Re (euc2cpx p2) & p2 `2 = Im (euc2cpx p2) ) by COMPLEX1:12; thus |(p1,p2)| = ((p1 `1) * (p2 `1)) + ((p1 `2) * (p2 `2)) by Th41 .= Re ((euc2cpx p1) .|. (euc2cpx p2)) by A1, A2, Th39 ; ::_thesis: verum end; theorem :: EUCLID_3:43 for p1, p2, p3 being Point of (TOP-REAL 2) st p1 <> 0. (TOP-REAL 2) & p2 <> 0. (TOP-REAL 2) holds ( |(p1,p2)| = 0 iff ( angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 or angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) ) proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( p1 <> 0. (TOP-REAL 2) & p2 <> 0. (TOP-REAL 2) implies ( |(p1,p2)| = 0 iff ( angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 or angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) ) ) assume ( p1 <> 0. (TOP-REAL 2) & p2 <> 0. (TOP-REAL 2) ) ; ::_thesis: ( |(p1,p2)| = 0 iff ( angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 or angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) ) then A1: ( euc2cpx p1 <> 0c & euc2cpx p2 <> 0c ) by Th2, Th16; |(p1,p2)| = Re ((euc2cpx p1) .|. (euc2cpx p2)) by Th42; hence ( |(p1,p2)| = 0 iff ( angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 or angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) ) by A1, Th17, COMPLEX2:75; ::_thesis: verum end; theorem :: EUCLID_3:44 for p1, p2 being Point of (TOP-REAL 2) st p1 <> 0. (TOP-REAL 2) & p2 <> 0. (TOP-REAL 2) holds ( ( ( not (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = |.p1.| * |.p2.| & not (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = - (|.p1.| * |.p2.|) ) or angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 or angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) & ( ( not angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 & not angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) or (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = |.p1.| * |.p2.| or (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = - (|.p1.| * |.p2.|) ) ) proof let p1, p2 be Point of (TOP-REAL 2); ::_thesis: ( p1 <> 0. (TOP-REAL 2) & p2 <> 0. (TOP-REAL 2) implies ( ( ( not (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = |.p1.| * |.p2.| & not (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = - (|.p1.| * |.p2.|) ) or angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 or angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) & ( ( not angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 & not angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) or (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = |.p1.| * |.p2.| or (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = - (|.p1.| * |.p2.|) ) ) ) A1: ( p2 `1 = Re (euc2cpx p2) & p2 `2 = Im (euc2cpx p2) ) by COMPLEX1:12; ( p1 `1 = Re (euc2cpx p1) & p1 `2 = Im (euc2cpx p1) ) by COMPLEX1:12; then A2: Im ((euc2cpx p1) .|. (euc2cpx p2)) = (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) by A1, Th40; assume ( p1 <> 0. (TOP-REAL 2) & p2 <> 0. (TOP-REAL 2) ) ; ::_thesis: ( ( ( not (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = |.p1.| * |.p2.| & not (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = - (|.p1.| * |.p2.|) ) or angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 or angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) & ( ( not angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 & not angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) or (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = |.p1.| * |.p2.| or (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = - (|.p1.| * |.p2.|) ) ) then A3: ( euc2cpx p1 <> 0c & euc2cpx p2 <> 0c ) by Th2, Th16; ( |.(euc2cpx p1).| = |.p1.| & |.(euc2cpx p2).| = |.p2.| ) by Th25; hence ( ( ( not (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = |.p1.| * |.p2.| & not (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = - (|.p1.| * |.p2.|) ) or angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 or angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) & ( ( not angle (p1,(0. (TOP-REAL 2)),p2) = PI / 2 & not angle (p1,(0. (TOP-REAL 2)),p2) = (3 / 2) * PI ) or (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = |.p1.| * |.p2.| or (- ((p1 `1) * (p2 `2))) + ((p1 `2) * (p2 `1)) = - (|.p1.| * |.p2.|) ) ) by A3, A2, Th17, COMPLEX2:76; ::_thesis: verum end; theorem :: EUCLID_3:45 for p1, p2, p3 being Point of (TOP-REAL 2) st p1 <> p2 & p3 <> p2 holds ( |((p1 - p2),(p3 - p2))| = 0 iff ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) ) proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( p1 <> p2 & p3 <> p2 implies ( |((p1 - p2),(p3 - p2))| = 0 iff ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) ) ) assume that A1: p1 <> p2 and A2: p3 <> p2 ; ::_thesis: ( |((p1 - p2),(p3 - p2))| = 0 iff ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) ) p1 - p2 <> 0. (TOP-REAL 2) by A1, EUCLID:43; then A3: euc2cpx (p1 - p2) <> 0c by Th2, Th16; p3 - p2 <> 0. (TOP-REAL 2) by A2, EUCLID:43; then A4: euc2cpx (p3 - p2) <> 0c by Th2, Th16; A5: ( (euc2cpx p1) - (euc2cpx p2) = euc2cpx (p1 - p2) & (euc2cpx p3) - (euc2cpx p2) = euc2cpx (p3 - p2) ) by Th15; hereby ::_thesis: ( ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) implies |((p1 - p2),(p3 - p2))| = 0 ) assume |((p1 - p2),(p3 - p2))| = 0 ; ::_thesis: ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) then Re ((euc2cpx (p1 - p2)) .|. (euc2cpx (p3 - p2))) = 0 by Th42; then ( angle ((euc2cpx (p1 - p2)),0c,(euc2cpx (p3 - p2))) = PI / 2 or angle ((euc2cpx (p1 - p2)),0c,(euc2cpx (p3 - p2))) = (3 / 2) * PI ) by A3, A4, COMPLEX2:75; hence ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) by A5, COMPLEX2:71; ::_thesis: verum end; A6: |((p1 - p2),(p3 - p2))| = Re ((euc2cpx (p1 - p2)) .|. (euc2cpx (p3 - p2))) by Th42; assume ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) ; ::_thesis: |((p1 - p2),(p3 - p2))| = 0 then ( angle ((euc2cpx (p1 - p2)),0c,(euc2cpx (p3 - p2))) = PI / 2 or angle ((euc2cpx (p1 - p2)),0c,(euc2cpx (p3 - p2))) = (3 / 2) * PI ) by A5, COMPLEX2:71; hence |((p1 - p2),(p3 - p2))| = 0 by A6, A3, A4, COMPLEX2:75; ::_thesis: verum end; theorem :: EUCLID_3:46 for p1, p2, p3 being Point of (TOP-REAL 2) st p1 <> p2 & p3 <> p2 & ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) holds (|.(p1 - p2).| ^2) + (|.(p3 - p2).| ^2) = |.(p1 - p3).| ^2 proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( p1 <> p2 & p3 <> p2 & ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) implies (|.(p1 - p2).| ^2) + (|.(p3 - p2).| ^2) = |.(p1 - p3).| ^2 ) assume that A1: ( p1 <> p2 & p3 <> p2 ) and A2: ( angle (p1,p2,p3) = PI / 2 or angle (p1,p2,p3) = (3 / 2) * PI ) ; ::_thesis: (|.(p1 - p2).| ^2) + (|.(p3 - p2).| ^2) = |.(p1 - p3).| ^2 A3: ( (euc2cpx p1) - (euc2cpx p2) = euc2cpx (p1 - p2) & (euc2cpx p3) - (euc2cpx p2) = euc2cpx (p3 - p2) ) by Th15; A4: ( (euc2cpx p1) - (euc2cpx p3) = euc2cpx (p1 - p3) & |.(euc2cpx (p1 - p2)).| = |.(p1 - p2).| ) by Th15, Th25; A5: ( |.(euc2cpx (p3 - p2)).| = |.(p3 - p2).| & |.(euc2cpx (p1 - p3)).| = |.(p1 - p3).| ) by Th25; ( euc2cpx p1 <> euc2cpx p2 & euc2cpx p3 <> euc2cpx p2 ) by A1, Th4; hence (|.(p1 - p2).| ^2) + (|.(p3 - p2).| ^2) = |.(p1 - p3).| ^2 by A2, A3, A4, A5, COMPLEX2:77; ::_thesis: verum end; theorem :: EUCLID_3:47 for p1, p2, p3 being Point of (TOP-REAL 2) st p2 <> p1 & p1 <> p3 & p3 <> p2 & angle (p2,p1,p3) < PI holds ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( p2 <> p1 & p1 <> p3 & p3 <> p2 & angle (p2,p1,p3) < PI implies ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI ) assume that A1: ( p2 <> p1 & p1 <> p3 ) and A2: p3 <> p2 and A3: angle (p2,p1,p3) < PI ; ::_thesis: ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI A4: ( euc2cpx p1 <> euc2cpx p2 & euc2cpx p1 <> euc2cpx p3 ) by A1, Th4; A5: euc2cpx p3 <> euc2cpx p2 by A2, Th4; percases ( 0 = angle ((euc2cpx p2),(euc2cpx p1),(euc2cpx p3)) or 0 < angle ((euc2cpx p2),(euc2cpx p1),(euc2cpx p3)) ) by COMPLEX2:70; supposeA6: 0 = angle ((euc2cpx p2),(euc2cpx p1),(euc2cpx p3)) ; ::_thesis: ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI now__::_thesis:_((angle_(p2,p1,p3))_+_(angle_(p1,p3,p2)))_+_(angle_(p3,p2,p1))_=_PI percases ( ( angle ((euc2cpx p1),(euc2cpx p3),(euc2cpx p2)) = 0 & angle ((euc2cpx p3),(euc2cpx p2),(euc2cpx p1)) = PI ) or ( angle ((euc2cpx p1),(euc2cpx p3),(euc2cpx p2)) = PI & angle ((euc2cpx p3),(euc2cpx p2),(euc2cpx p1)) = 0 ) ) by A4, A5, A6, COMPLEX2:87; suppose ( angle ((euc2cpx p1),(euc2cpx p3),(euc2cpx p2)) = 0 & angle ((euc2cpx p3),(euc2cpx p2),(euc2cpx p1)) = PI ) ; ::_thesis: ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI hence ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI by A6; ::_thesis: verum end; suppose ( angle ((euc2cpx p1),(euc2cpx p3),(euc2cpx p2)) = PI & angle ((euc2cpx p3),(euc2cpx p2),(euc2cpx p1)) = 0 ) ; ::_thesis: ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI hence ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI by A6; ::_thesis: verum end; end; end; hence ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI ; ::_thesis: verum end; suppose 0 < angle ((euc2cpx p2),(euc2cpx p1),(euc2cpx p3)) ; ::_thesis: ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI hence ((angle (p2,p1,p3)) + (angle (p1,p3,p2))) + (angle (p3,p2,p1)) = PI by A3, A4, COMPLEX2:84; ::_thesis: verum end; end; end; definition let n be Element of NAT ; let p1, p2, p3 be Point of (TOP-REAL n); func Triangle (p1,p2,p3) -> Subset of (TOP-REAL n) equals :: EUCLID_3:def 5 ((LSeg (p1,p2)) \/ (LSeg (p2,p3))) \/ (LSeg (p3,p1)); correctness coherence ((LSeg (p1,p2)) \/ (LSeg (p2,p3))) \/ (LSeg (p3,p1)) is Subset of (TOP-REAL n); ; end; :: deftheorem defines Triangle EUCLID_3:def_5_:_ for n being Element of NAT for p1, p2, p3 being Point of (TOP-REAL n) holds Triangle (p1,p2,p3) = ((LSeg (p1,p2)) \/ (LSeg (p2,p3))) \/ (LSeg (p3,p1)); definition let n be Element of NAT ; let p1, p2, p3 be Point of (TOP-REAL n); func closed_inside_of_triangle (p1,p2,p3) -> Subset of (TOP-REAL n) equals :: EUCLID_3:def 6 { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ; correctness coherence { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } is Subset of (TOP-REAL n); proof defpred S1[ set ] means ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & $1 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ); { p where p is Element of (TOP-REAL n) : S1[p] } is Subset of (TOP-REAL n) from DOMAIN_1:sch_7(); hence { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } is Subset of (TOP-REAL n) ; ::_thesis: verum end; end; :: deftheorem defines closed_inside_of_triangle EUCLID_3:def_6_:_ for n being Element of NAT for p1, p2, p3 being Point of (TOP-REAL n) holds closed_inside_of_triangle (p1,p2,p3) = { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ; definition let n be Element of NAT ; let p1, p2, p3 be Point of (TOP-REAL n); func inside_of_triangle (p1,p2,p3) -> Subset of (TOP-REAL n) equals :: EUCLID_3:def 7 (closed_inside_of_triangle (p1,p2,p3)) \ (Triangle (p1,p2,p3)); correctness coherence (closed_inside_of_triangle (p1,p2,p3)) \ (Triangle (p1,p2,p3)) is Subset of (TOP-REAL n); ; end; :: deftheorem defines inside_of_triangle EUCLID_3:def_7_:_ for n being Element of NAT for p1, p2, p3 being Point of (TOP-REAL n) holds inside_of_triangle (p1,p2,p3) = (closed_inside_of_triangle (p1,p2,p3)) \ (Triangle (p1,p2,p3)); definition let n be Element of NAT ; let p1, p2, p3 be Point of (TOP-REAL n); func outside_of_triangle (p1,p2,p3) -> Subset of (TOP-REAL n) equals :: EUCLID_3:def 8 { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( ( 0 > a1 or 0 > a2 or 0 > a3 ) & (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ; correctness coherence { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( ( 0 > a1 or 0 > a2 or 0 > a3 ) & (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } is Subset of (TOP-REAL n); proof defpred S1[ set ] means ex a1, a2, a3 being Real st ( ( 0 > a1 or 0 > a2 or 0 > a3 ) & (a1 + a2) + a3 = 1 & $1 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ); { p where p is Point of (TOP-REAL n) : S1[p] } is Subset of (TOP-REAL n) from DOMAIN_1:sch_7(); hence { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( ( 0 > a1 or 0 > a2 or 0 > a3 ) & (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } is Subset of (TOP-REAL n) ; ::_thesis: verum end; end; :: deftheorem defines outside_of_triangle EUCLID_3:def_8_:_ for n being Element of NAT for p1, p2, p3 being Point of (TOP-REAL n) holds outside_of_triangle (p1,p2,p3) = { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( ( 0 > a1 or 0 > a2 or 0 > a3 ) & (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ; definition let n be Element of NAT ; let p1, p2, p3 be Point of (TOP-REAL n); func plane (p1,p2,p3) -> Subset of (TOP-REAL n) equals :: EUCLID_3:def 9 (outside_of_triangle (p1,p2,p3)) \/ (closed_inside_of_triangle (p1,p2,p3)); correctness coherence (outside_of_triangle (p1,p2,p3)) \/ (closed_inside_of_triangle (p1,p2,p3)) is Subset of (TOP-REAL n); ; end; :: deftheorem defines plane EUCLID_3:def_9_:_ for n being Element of NAT for p1, p2, p3 being Point of (TOP-REAL n) holds plane (p1,p2,p3) = (outside_of_triangle (p1,p2,p3)) \/ (closed_inside_of_triangle (p1,p2,p3)); theorem Th48: :: EUCLID_3:48 for n being Element of NAT for p1, p2, p3, p being Point of (TOP-REAL n) st p in plane (p1,p2,p3) holds ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) proof let n be Element of NAT ; ::_thesis: for p1, p2, p3, p being Point of (TOP-REAL n) st p in plane (p1,p2,p3) holds ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) let p1, p2, p3, p be Point of (TOP-REAL n); ::_thesis: ( p in plane (p1,p2,p3) implies ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ) assume A1: p in plane (p1,p2,p3) ; ::_thesis: ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) now__::_thesis:_(_(_p_in_outside_of_triangle_(p1,p2,p3)_&_ex_a1,_a2,_a3_being_Real_st_ (_(a1_+_a2)_+_a3_=_1_&_p_=_((a1_*_p1)_+_(a2_*_p2))_+_(a3_*_p3)_)_)_or_(_p_in_closed_inside_of_triangle_(p1,p2,p3)_&_ex_a1,_a2,_a3_being_Real_st_ (_(a1_+_a2)_+_a3_=_1_&_p_=_((a1_*_p1)_+_(a2_*_p2))_+_(a3_*_p3)_)_)_) percases ( p in outside_of_triangle (p1,p2,p3) or p in closed_inside_of_triangle (p1,p2,p3) ) by A1, XBOOLE_0:def_3; case p in outside_of_triangle (p1,p2,p3) ; ::_thesis: ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) then ex p4 being Point of (TOP-REAL n) st ( p4 = p & ex a1, a2, a3 being Real st ( ( 0 > a1 or 0 > a2 or 0 > a3 ) & (a1 + a2) + a3 = 1 & p4 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ) ; hence ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ; ::_thesis: verum end; case p in closed_inside_of_triangle (p1,p2,p3) ; ::_thesis: ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) then ex p4 being Point of (TOP-REAL n) st ( p4 = p & ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p4 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ) ; hence ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ; ::_thesis: verum end; end; end; hence ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ; ::_thesis: verum end; theorem :: EUCLID_3:49 for n being Element of NAT for p1, p2, p3 being Point of (TOP-REAL n) holds Triangle (p1,p2,p3) c= closed_inside_of_triangle (p1,p2,p3) proof let n be Element of NAT ; ::_thesis: for p1, p2, p3 being Point of (TOP-REAL n) holds Triangle (p1,p2,p3) c= closed_inside_of_triangle (p1,p2,p3) let p1, p2, p3 be Point of (TOP-REAL n); ::_thesis: Triangle (p1,p2,p3) c= closed_inside_of_triangle (p1,p2,p3) ((LSeg (p1,p2)) \/ (LSeg (p2,p3))) \/ (LSeg (p3,p1)) c= closed_inside_of_triangle (p1,p2,p3) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in ((LSeg (p1,p2)) \/ (LSeg (p2,p3))) \/ (LSeg (p3,p1)) or x in closed_inside_of_triangle (p1,p2,p3) ) assume A1: x in ((LSeg (p1,p2)) \/ (LSeg (p2,p3))) \/ (LSeg (p3,p1)) ; ::_thesis: x in closed_inside_of_triangle (p1,p2,p3) then reconsider p0 = x as Point of (TOP-REAL n) ; A2: ( x in (LSeg (p1,p2)) \/ (LSeg (p2,p3)) or x in LSeg (p3,p1) ) by A1, XBOOLE_0:def_3; now__::_thesis:_(_(_x_in_LSeg_(p1,p2)_&_ex_a1,_a2,_a3_being_Real_st_ (_0_<=_a1_&_0_<=_a2_&_0_<=_a3_&_(a1_+_a2)_+_a3_=_1_&_p0_=_((a1_*_p1)_+_(a2_*_p2))_+_(a3_*_p3)_)_)_or_(_x_in_LSeg_(p2,p3)_&_ex_a1,_a2,_a3_being_Real_st_ (_0_<=_a1_&_0_<=_a2_&_0_<=_a3_&_(a1_+_a2)_+_a3_=_1_&_p0_=_((a1_*_p1)_+_(a2_*_p2))_+_(a3_*_p3)_)_)_or_(_x_in_LSeg_(p3,p1)_&_ex_a1,_a2,_a3_being_Real_st_ (_0_<=_a1_&_0_<=_a2_&_0_<=_a3_&_(a1_+_a2)_+_a3_=_1_&_p0_=_((a1_*_p1)_+_(a2_*_p2))_+_(a3_*_p3)_)_)_) percases ( x in LSeg (p1,p2) or x in LSeg (p2,p3) or x in LSeg (p3,p1) ) by A2, XBOOLE_0:def_3; case x in LSeg (p1,p2) ; ::_thesis: ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) then consider lambda being Real such that A3: x = ((1 - lambda) * p1) + (lambda * p2) and A4: 0 <= lambda and A5: lambda <= 1 ; A6: p0 = (((1 - lambda) * p1) + (lambda * p2)) + (0. (TOP-REAL n)) by A3, EUCLID:27 .= (((1 - lambda) * p1) + (lambda * p2)) + (0 * p3) by EUCLID:29 ; A7: ((1 - lambda) + lambda) + 0 = 1 ; 1 - lambda >= 0 by A5, XREAL_1:48; hence ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) by A4, A7, A6; ::_thesis: verum end; case x in LSeg (p2,p3) ; ::_thesis: ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) then consider lambda being Real such that A8: x = ((1 - lambda) * p2) + (lambda * p3) and A9: 0 <= lambda and A10: lambda <= 1 ; A11: p0 = ((0. (TOP-REAL n)) + ((1 - lambda) * p2)) + (lambda * p3) by A8, EUCLID:27 .= ((0 * p1) + ((1 - lambda) * p2)) + (lambda * p3) by EUCLID:29 ; A12: (0 + (1 - lambda)) + lambda = 1 ; 1 - lambda >= 0 by A10, XREAL_1:48; hence ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) by A9, A12, A11; ::_thesis: verum end; case x in LSeg (p3,p1) ; ::_thesis: ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) then consider lambda being Real such that A13: x = ((1 - lambda) * p3) + (lambda * p1) and A14: 0 <= lambda and A15: lambda <= 1 ; A16: p0 = ((lambda * p1) + (0. (TOP-REAL n))) + ((1 - lambda) * p3) by A13, EUCLID:27 .= ((lambda * p1) + (0 * p2)) + ((1 - lambda) * p3) by EUCLID:29 ; A17: (lambda + 0) + (1 - lambda) = 1 ; 1 - lambda >= 0 by A15, XREAL_1:48; hence ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) by A14, A17, A16; ::_thesis: verum end; end; end; hence x in closed_inside_of_triangle (p1,p2,p3) ; ::_thesis: verum end; hence Triangle (p1,p2,p3) c= closed_inside_of_triangle (p1,p2,p3) ; ::_thesis: verum end; definition let n be Element of NAT ; let q1, q2 be Point of (TOP-REAL n); predq1,q2 are_lindependent2 means :Def10: :: EUCLID_3:def 10 for a1, a2 being Real st (a1 * q1) + (a2 * q2) = 0. (TOP-REAL n) holds ( a1 = 0 & a2 = 0 ); end; :: deftheorem Def10 defines are_lindependent2 EUCLID_3:def_10_:_ for n being Element of NAT for q1, q2 being Point of (TOP-REAL n) holds ( q1,q2 are_lindependent2 iff for a1, a2 being Real st (a1 * q1) + (a2 * q2) = 0. (TOP-REAL n) holds ( a1 = 0 & a2 = 0 ) ); notation let n be Element of NAT ; let q1, q2 be Point of (TOP-REAL n); antonym q1,q2 are_ldependent2 for q1,q2 are_lindependent2 ; end; theorem Th50: :: EUCLID_3:50 for n being Element of NAT for q1, q2 being Point of (TOP-REAL n) st q1,q2 are_lindependent2 holds ( q1 <> q2 & q1 <> 0. (TOP-REAL n) & q2 <> 0. (TOP-REAL n) ) proof let n be Element of NAT ; ::_thesis: for q1, q2 being Point of (TOP-REAL n) st q1,q2 are_lindependent2 holds ( q1 <> q2 & q1 <> 0. (TOP-REAL n) & q2 <> 0. (TOP-REAL n) ) let q1, q2 be Point of (TOP-REAL n); ::_thesis: ( q1,q2 are_lindependent2 implies ( q1 <> q2 & q1 <> 0. (TOP-REAL n) & q2 <> 0. (TOP-REAL n) ) ) assume A1: q1,q2 are_lindependent2 ; ::_thesis: ( q1 <> q2 & q1 <> 0. (TOP-REAL n) & q2 <> 0. (TOP-REAL n) ) assume A2: ( q1 = q2 or q1 = 0. (TOP-REAL n) or q2 = 0. (TOP-REAL n) ) ; ::_thesis: contradiction now__::_thesis:_(_(_q1_=_q2_&_contradiction_)_or_(_q1_=_0._(TOP-REAL_n)_&_contradiction_)_or_(_q2_=_0._(TOP-REAL_n)_&_contradiction_)_) percases ( q1 = q2 or q1 = 0. (TOP-REAL n) or q2 = 0. (TOP-REAL n) ) by A2; caseA3: q1 = q2 ; ::_thesis: contradiction (1 * q1) + ((- 1) * q2) = (1 * q1) + (- q2) by EUCLID:39 .= q1 + (- q2) by EUCLID:29 .= 0. (TOP-REAL n) by A3, EUCLID:36 ; hence contradiction by A1, Def10; ::_thesis: verum end; case q1 = 0. (TOP-REAL n) ; ::_thesis: contradiction then (1 * q1) + (0 * q2) = (0. (TOP-REAL n)) + (0 * q2) by EUCLID:28 .= (0. (TOP-REAL n)) + (0. (TOP-REAL n)) by EUCLID:29 .= 0. (TOP-REAL n) by EUCLID:27 ; hence contradiction by A1, Def10; ::_thesis: verum end; case q2 = 0. (TOP-REAL n) ; ::_thesis: contradiction then (0 * q1) + (1 * q2) = (0 * q1) + (0. (TOP-REAL n)) by EUCLID:28 .= (0. (TOP-REAL n)) + (0. (TOP-REAL n)) by EUCLID:29 .= 0. (TOP-REAL n) by EUCLID:27 ; hence contradiction by A1, Def10; ::_thesis: verum end; end; end; hence contradiction ; ::_thesis: verum end; theorem Th51: :: EUCLID_3:51 for n being Element of NAT for p1, p2, p3, p0 being Point of (TOP-REAL n) st p2 - p1,p3 - p1 are_lindependent2 & p0 in plane (p1,p2,p3) holds ex a1, a2, a3 being Real st ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 & ( for b1, b2, b3 being Real st p0 = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a1 & b2 = a2 & b3 = a3 ) ) ) proof let n be Element of NAT ; ::_thesis: for p1, p2, p3, p0 being Point of (TOP-REAL n) st p2 - p1,p3 - p1 are_lindependent2 & p0 in plane (p1,p2,p3) holds ex a1, a2, a3 being Real st ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 & ( for b1, b2, b3 being Real st p0 = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a1 & b2 = a2 & b3 = a3 ) ) ) let p1, p2, p3, p0 be Point of (TOP-REAL n); ::_thesis: ( p2 - p1,p3 - p1 are_lindependent2 & p0 in plane (p1,p2,p3) implies ex a1, a2, a3 being Real st ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 & ( for b1, b2, b3 being Real st p0 = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a1 & b2 = a2 & b3 = a3 ) ) ) ) assume that A1: p2 - p1,p3 - p1 are_lindependent2 and A2: p0 in plane (p1,p2,p3) ; ::_thesis: ex a1, a2, a3 being Real st ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 & ( for b1, b2, b3 being Real st p0 = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a1 & b2 = a2 & b3 = a3 ) ) ) set q2 = p2 - p1; set q3 = p3 - p1; consider a01, a02, a03 being Real such that A3: (a01 + a02) + a03 = 1 and A4: p0 = ((a01 * p1) + (a02 * p2)) + (a03 * p3) by A2, Th48; for b1, b2, b3 being Real st p0 = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a01 & b2 = a02 & b3 = a03 ) proof A5: p0 + (- p1) = (((a01 * p1) + (a02 * p2)) + (a03 * p3)) + (- (((a01 + a02) + a03) * p1)) by A3, A4, EUCLID:29 .= (((a01 * p1) + (a02 * p2)) + (a03 * p3)) + (- (((a01 + a02) * p1) + (a03 * p1))) by EUCLID:33 .= (((a01 * p1) + (a02 * p2)) + (a03 * p3)) + (- (((a01 * p1) + (a02 * p1)) + (a03 * p1))) by EUCLID:33 .= (((a01 * p1) + (a02 * p2)) + (a03 * p3)) + ((- ((a01 * p1) + (a02 * p1))) - (a03 * p1)) by EUCLID:38 .= (((a01 * p1) + (a02 * p2)) + (a03 * p3)) + (((- (a01 * p1)) - (a02 * p1)) - (a03 * p1)) by EUCLID:38 .= ((a01 * p1) + ((a02 * p2) + (a03 * p3))) + (((- (a01 * p1)) + (- (a02 * p1))) + (- (a03 * p1))) by EUCLID:26 .= ((a01 * p1) + ((a02 * p2) + (a03 * p3))) + ((- (a01 * p1)) + ((- (a02 * p1)) + (- (a03 * p1)))) by EUCLID:26 .= ((((a02 * p2) + (a03 * p3)) + (a01 * p1)) - (a01 * p1)) + ((- (a02 * p1)) + (- (a03 * p1))) by EUCLID:26 .= ((a02 * p2) + (a03 * p3)) + ((- (a02 * p1)) + (- (a03 * p1))) by EUCLID:48 .= (((a02 * p2) + (a03 * p3)) + (- (a02 * p1))) + (- (a03 * p1)) by EUCLID:26 .= (((a02 * p2) + (- (a02 * p1))) + (a03 * p3)) + (- (a03 * p1)) by EUCLID:26 .= (((a02 * p2) + (a02 * (- p1))) + (a03 * p3)) + (- (a03 * p1)) by EUCLID:40 .= ((a02 * (p2 + (- p1))) + (a03 * p3)) + (- (a03 * p1)) by EUCLID:32 .= (a02 * (p2 + (- p1))) + ((a03 * p3) + (- (a03 * p1))) by EUCLID:26 .= (a02 * (p2 + (- p1))) + ((a03 * p3) + (a03 * (- p1))) by EUCLID:40 .= (a02 * (p2 - p1)) + (a03 * (p3 - p1)) by EUCLID:32 ; let b1, b2, b3 be Real; ::_thesis: ( p0 = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 implies ( b1 = a01 & b2 = a02 & b3 = a03 ) ) assume that A6: p0 = ((b1 * p1) + (b2 * p2)) + (b3 * p3) and A7: (b1 + b2) + b3 = 1 ; ::_thesis: ( b1 = a01 & b2 = a02 & b3 = a03 ) p0 + (- p1) = (((b1 * p1) + (b2 * p2)) + (b3 * p3)) + (- (((b1 + b2) + b3) * p1)) by A6, A7, EUCLID:29 .= (((b1 * p1) + (b2 * p2)) + (b3 * p3)) + (- (((b1 + b2) * p1) + (b3 * p1))) by EUCLID:33 .= (((b1 * p1) + (b2 * p2)) + (b3 * p3)) + (- (((b1 * p1) + (b2 * p1)) + (b3 * p1))) by EUCLID:33 .= (((b1 * p1) + (b2 * p2)) + (b3 * p3)) + ((- ((b1 * p1) + (b2 * p1))) - (b3 * p1)) by EUCLID:38 .= (((b1 * p1) + (b2 * p2)) + (b3 * p3)) + (((- (b1 * p1)) - (b2 * p1)) - (b3 * p1)) by EUCLID:38 .= ((b1 * p1) + ((b2 * p2) + (b3 * p3))) + (((- (b1 * p1)) + (- (b2 * p1))) + (- (b3 * p1))) by EUCLID:26 .= ((b1 * p1) + ((b2 * p2) + (b3 * p3))) + ((- (b1 * p1)) + ((- (b2 * p1)) + (- (b3 * p1)))) by EUCLID:26 .= ((((b2 * p2) + (b3 * p3)) + (b1 * p1)) - (b1 * p1)) + ((- (b2 * p1)) + (- (b3 * p1))) by EUCLID:26 .= ((b2 * p2) + (b3 * p3)) + ((- (b2 * p1)) + (- (b3 * p1))) by EUCLID:48 .= (((b2 * p2) + (b3 * p3)) + (- (b2 * p1))) + (- (b3 * p1)) by EUCLID:26 .= (((b2 * p2) + (- (b2 * p1))) + (b3 * p3)) + (- (b3 * p1)) by EUCLID:26 .= (((b2 * p2) + (b2 * (- p1))) + (b3 * p3)) + (- (b3 * p1)) by EUCLID:40 .= ((b2 * (p2 + (- p1))) + (b3 * p3)) + (- (b3 * p1)) by EUCLID:32 .= (b2 * (p2 + (- p1))) + ((b3 * p3) + (- (b3 * p1))) by EUCLID:26 .= (b2 * (p2 + (- p1))) + ((b3 * p3) + (b3 * (- p1))) by EUCLID:40 .= (b2 * (p2 - p1)) + (b3 * (p3 - p1)) by EUCLID:32 ; then ((b2 * (p2 - p1)) + (b3 * (p3 - p1))) + (- ((a02 * (p2 - p1)) + (a03 * (p3 - p1)))) = 0. (TOP-REAL n) by A5, EUCLID:36; then ((b2 * (p2 - p1)) + (b3 * (p3 - p1))) + ((- (a02 * (p2 - p1))) - (a03 * (p3 - p1))) = 0. (TOP-REAL n) by EUCLID:38; then (((b2 * (p2 - p1)) + (b3 * (p3 - p1))) + (- (a02 * (p2 - p1)))) + (- (a03 * (p3 - p1))) = 0. (TOP-REAL n) by EUCLID:26; then (((b2 * (p2 - p1)) + (- (a02 * (p2 - p1)))) + (b3 * (p3 - p1))) + (- (a03 * (p3 - p1))) = 0. (TOP-REAL n) by EUCLID:26; then (((b2 * (p2 - p1)) + ((- a02) * (p2 - p1))) + (b3 * (p3 - p1))) + (- (a03 * (p3 - p1))) = 0. (TOP-REAL n) by EUCLID:40; then (((b2 + (- a02)) * (p2 - p1)) + (b3 * (p3 - p1))) + (- (a03 * (p3 - p1))) = 0. (TOP-REAL n) by EUCLID:33; then ((b2 + (- a02)) * (p2 - p1)) + ((b3 * (p3 - p1)) + (- (a03 * (p3 - p1)))) = 0. (TOP-REAL n) by EUCLID:26; then ((b2 + (- a02)) * (p2 - p1)) + ((b3 * (p3 - p1)) + ((- a03) * (p3 - p1))) = 0. (TOP-REAL n) by EUCLID:40; then ((b2 + (- a02)) * (p2 - p1)) + ((b3 + (- a03)) * (p3 - p1)) = 0. (TOP-REAL n) by EUCLID:33; then ( (b2 - a02) + a02 = 0 + a02 & b3 + (- a03) = 0 ) by A1, Def10; hence ( b1 = a01 & b2 = a02 & b3 = a03 ) by A3, A7; ::_thesis: verum end; hence ex a1, a2, a3 being Real st ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 & ( for b1, b2, b3 being Real st p0 = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a1 & b2 = a2 & b3 = a3 ) ) ) by A3, A4; ::_thesis: verum end; theorem Th52: :: EUCLID_3:52 for n being Element of NAT for p1, p2, p3, p0 being Point of (TOP-REAL n) st ex a1, a2, a3 being Real st ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 ) holds p0 in plane (p1,p2,p3) proof let n be Element of NAT ; ::_thesis: for p1, p2, p3, p0 being Point of (TOP-REAL n) st ex a1, a2, a3 being Real st ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 ) holds p0 in plane (p1,p2,p3) let p1, p2, p3, p0 be Point of (TOP-REAL n); ::_thesis: ( ex a1, a2, a3 being Real st ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 ) implies p0 in plane (p1,p2,p3) ) given a1, a2, a3 being Real such that A1: ( p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) & (a1 + a2) + a3 = 1 ) ; ::_thesis: p0 in plane (p1,p2,p3) now__::_thesis:_(_(_(_0_>_a1_or_0_>_a2_or_0_>_a3_)_&_p0_in_plane_(p1,p2,p3)_)_or_(_0_<=_a1_&_0_<=_a2_&_0_<=_a3_&_p0_in_plane_(p1,p2,p3)_)_) percases ( 0 > a1 or 0 > a2 or 0 > a3 or ( 0 <= a1 & 0 <= a2 & 0 <= a3 ) ) ; case ( 0 > a1 or 0 > a2 or 0 > a3 ) ; ::_thesis: p0 in plane (p1,p2,p3) then p0 in outside_of_triangle (p1,p2,p3) by A1; hence p0 in plane (p1,p2,p3) by XBOOLE_0:def_3; ::_thesis: verum end; case ( 0 <= a1 & 0 <= a2 & 0 <= a3 ) ; ::_thesis: p0 in plane (p1,p2,p3) then p0 in closed_inside_of_triangle (p1,p2,p3) by A1; hence p0 in plane (p1,p2,p3) by XBOOLE_0:def_3; ::_thesis: verum end; end; end; hence p0 in plane (p1,p2,p3) ; ::_thesis: verum end; theorem :: EUCLID_3:53 for n being Element of NAT for p1, p2, p3 being Point of (TOP-REAL n) holds plane (p1,p2,p3) = { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } proof let n be Element of NAT ; ::_thesis: for p1, p2, p3 being Point of (TOP-REAL n) holds plane (p1,p2,p3) = { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } let p1, p2, p3 be Point of (TOP-REAL n); ::_thesis: plane (p1,p2,p3) = { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } thus plane (p1,p2,p3) c= { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } :: according to XBOOLE_0:def_10 ::_thesis: { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } c= plane (p1,p2,p3) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in plane (p1,p2,p3) or x in { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ) assume A1: x in plane (p1,p2,p3) ; ::_thesis: x in { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } then reconsider p0 = x as Point of (TOP-REAL n) ; ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) by A1, Th48; hence x in { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ; ::_thesis: verum end; let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } or x in plane (p1,p2,p3) ) assume x in { p where p is Point of (TOP-REAL n) : ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ; ::_thesis: x in plane (p1,p2,p3) then ex p being Point of (TOP-REAL n) st ( p = x & ex a1, a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ) ; hence x in plane (p1,p2,p3) by Th52; ::_thesis: verum end; theorem Th54: :: EUCLID_3:54 for p1, p2, p3 being Point of (TOP-REAL 2) st p2 - p1,p3 - p1 are_lindependent2 holds plane (p1,p2,p3) = REAL 2 proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( p2 - p1,p3 - p1 are_lindependent2 implies plane (p1,p2,p3) = REAL 2 ) assume A1: p2 - p1,p3 - p1 are_lindependent2 ; ::_thesis: plane (p1,p2,p3) = REAL 2 the carrier of (TOP-REAL 2) = REAL 2 by EUCLID:22; hence plane (p1,p2,p3) c= REAL 2 ; :: according to XBOOLE_0:def_10 ::_thesis: REAL 2 c= plane (p1,p2,p3) let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in REAL 2 or x in plane (p1,p2,p3) ) assume x in REAL 2 ; ::_thesis: x in plane (p1,p2,p3) then reconsider p0 = x as Point of (TOP-REAL 2) by EUCLID:22; set q2 = p2 - p1; set q3 = p3 - p1; set p = p0 - p1; A2: p3 - p1 <> 0. (TOP-REAL 2) by A1, Th50; now__::_thesis:_(_(_(p3_-_p1)_`1_<>_0_&_x_in_plane_(p1,p2,p3)_)_or_(_(p3_-_p1)_`2_<>_0_&_x_in_plane_(p1,p2,p3)_)_) percases ( (p3 - p1) `1 <> 0 or (p3 - p1) `2 <> 0 ) by A2, EUCLID:53, EUCLID:54; caseA3: (p3 - p1) `1 <> 0 ; ::_thesis: x in plane (p1,p2,p3) A4: now__::_thesis:_not_(((p2_-_p1)_`2)_*_((p3_-_p1)_`1))_-_(((p2_-_p1)_`1)_*_((p3_-_p1)_`2))_=_0 assume (((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)) = 0 ; ::_thesis: contradiction then (p2 - p1) `2 = (((p2 - p1) `1) * ((p3 - p1) `2)) / ((p3 - p1) `1) by A3, XCMPLX_1:89; then p2 - p1 = |[((p2 - p1) `1),((((p2 - p1) `1) * ((p3 - p1) `2)) / ((p3 - p1) `1))]| by EUCLID:53 .= |[(((p2 - p1) `1) * 1),((((p2 - p1) `1) * ((p3 - p1) `2)) * (((p3 - p1) `1) "))]| by XCMPLX_0:def_9 .= |[(((p2 - p1) `1) * 1),(((p2 - p1) `1) * (((p3 - p1) `2) * (((p3 - p1) `1) ")))]| .= ((p2 - p1) `1) * |[1,(((p3 - p1) `2) * (((p3 - p1) `1) "))]| by EUCLID:58 .= ((p2 - p1) `1) * |[((((p3 - p1) `1) ") * ((p3 - p1) `1)),((((p3 - p1) `1) ") * ((p3 - p1) `2))]| by A3, XCMPLX_0:def_7 .= ((p2 - p1) `1) * ((((p3 - p1) `1) ") * |[((p3 - p1) `1),((p3 - p1) `2)]|) by EUCLID:58 .= ((p2 - p1) `1) * ((((p3 - p1) `1) ") * (p3 - p1)) by EUCLID:53 .= (((p2 - p1) `1) * (((p3 - p1) `1) ")) * (p3 - p1) by EUCLID:30 ; then (p2 - p1) + (- ((((p2 - p1) `1) * (((p3 - p1) `1) ")) * (p3 - p1))) = 0. (TOP-REAL 2) by EUCLID:36; then (1 * (p2 - p1)) + (- ((((p2 - p1) `1) * (((p3 - p1) `1) ")) * (p3 - p1))) = 0. (TOP-REAL 2) by EUCLID:29; then (1 * (p2 - p1)) + ((- (((p2 - p1) `1) * (((p3 - p1) `1) "))) * (p3 - p1)) = 0. (TOP-REAL 2) by EUCLID:40; hence contradiction by A1, Def10; ::_thesis: verum end; set a = ((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))); set b = (((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1); A5: ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * ((p3 - p1) `1)) = ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1)) + (((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) by A3, XCMPLX_1:87 .= (p0 - p1) `1 ; A6: ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `2)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * ((p3 - p1) `2)) = ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `2)) + (((((p0 - p1) `1) / ((p3 - p1) `1)) - (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1)) / ((p3 - p1) `1))) * ((p3 - p1) `2)) by XCMPLX_1:120 .= (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `2)) - ((((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1)) / ((p3 - p1) `1)) * ((p3 - p1) `2))) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) .= (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `2)) - ((((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1)) * (((p3 - p1) `1) ")) * ((p3 - p1) `2))) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) by XCMPLX_0:def_9 .= ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * (((p2 - p1) `2) - ((((p2 - p1) `1) * (((p3 - p1) `1) ")) * ((p3 - p1) `2)))) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) .= ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * (((p2 - p1) `2) - ((((p2 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)))) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) by XCMPLX_0:def_9 .= ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * (((((p2 - p1) `2) / ((p3 - p1) `1)) * ((p3 - p1) `1)) - ((((p2 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)))) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) by A3, XCMPLX_1:87 .= ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * (((((p3 - p1) `1) / ((p3 - p1) `1)) * ((p2 - p1) `2)) - ((((p2 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)))) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) by XCMPLX_1:75 .= ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * (((((p3 - p1) `1) * (((p3 - p1) `1) ")) * ((p2 - p1) `2)) - ((((p2 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)))) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) by XCMPLX_0:def_9 .= ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((((p2 - p1) `2) * (((p3 - p1) `1) * (((p3 - p1) `1) "))) - (((((p3 - p1) `1) ") * ((p2 - p1) `1)) * ((p3 - p1) `2)))) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) by XCMPLX_0:def_9 .= (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * (((p3 - p1) `1) ")) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) .= (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) * (((p3 - p1) `1) ")) + ((((p0 - p1) `1) / ((p3 - p1) `1)) * ((p3 - p1) `2)) by A4, XCMPLX_1:87 .= (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) * (((p3 - p1) `1) ")) + (((((p3 - p1) `1) ") * ((p0 - p1) `1)) * ((p3 - p1) `2)) by XCMPLX_0:def_9 .= (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) + (((p3 - p1) `2) * ((p0 - p1) `1))) * (((p3 - p1) `1) ") .= (((p0 - p1) `2) * ((p3 - p1) `1)) / ((p3 - p1) `1) by XCMPLX_0:def_9 .= (p0 - p1) `2 by A3, XCMPLX_1:89 ; A7: ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * (p2 - p1)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * (p3 - p1)) = (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p1)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * (p3 - p1)) by EUCLID:49 .= (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2) + (- ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p1))) + ((((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) - (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p1)) by EUCLID:49 .= (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2) + (- ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p1))) + ((((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) + ((- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1))) * p1)) by EUCLID:40 .= (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2) + ((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) * p1)) + (((- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1))) * p1) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3)) by EUCLID:40 .= ((((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2) + ((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) * p1)) + ((- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1))) * p1)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) by EUCLID:26 .= (((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2) + (((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) * p1) + ((- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1))) * p1))) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) by EUCLID:26 .= ((((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) + (- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)))) * p1) + ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) by EUCLID:33 ; ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * (p2 - p1)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * (p3 - p1)) = ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * |[((p2 - p1) `1),((p2 - p1) `2)]|) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * (p3 - p1)) by EUCLID:53 .= ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * |[((p2 - p1) `1),((p2 - p1) `2)]|) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * |[((p3 - p1) `1),((p3 - p1) `2)]|) by EUCLID:53 .= |[((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1)),((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `2))]| + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * |[((p3 - p1) `1),((p3 - p1) `2)]|) by EUCLID:58 .= |[((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1)),((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `2))]| + |[(((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * ((p3 - p1) `1)),(((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * ((p3 - p1) `2))]| by EUCLID:58 .= |[(((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * ((p3 - p1) `1))),(((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `2)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * ((p3 - p1) `2)))]| by EUCLID:56 .= p0 - p1 by A5, A6, EUCLID:53 ; then A8: p0 = p1 + (((((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) + (- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)))) * p1) + ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3)) by A7, EUCLID:48 .= (p1 + ((((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) + (- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)))) * p1) + ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2))) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) by EUCLID:26 .= ((p1 + (((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) + (- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)))) * p1)) + ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) by EUCLID:26 .= (((1 * p1) + (((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) + (- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)))) * p1)) + ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) by EUCLID:29 .= (((1 + ((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) + (- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1))))) * p1) + ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * p2)) + (((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) * p3) by EUCLID:33 ; ((1 + ((- (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) + (- ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1))))) + (((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2))))) + ((((p0 - p1) `1) - ((((((p0 - p1) `2) * ((p3 - p1) `1)) - (((p3 - p1) `2) * ((p0 - p1) `1))) / ((((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)))) * ((p2 - p1) `1))) / ((p3 - p1) `1)) = 1 ; hence x in plane (p1,p2,p3) by A8, Th52; ::_thesis: verum end; caseA9: (p3 - p1) `2 <> 0 ; ::_thesis: x in plane (p1,p2,p3) now__::_thesis:_not_(((p2_-_p1)_`2)_*_((p3_-_p1)_`1))_-_(((p2_-_p1)_`1)_*_((p3_-_p1)_`2))_=_0 assume (((p2 - p1) `2) * ((p3 - p1) `1)) - (((p2 - p1) `1) * ((p3 - p1) `2)) = 0 ; ::_thesis: contradiction then (p2 - p1) `1 = (((p2 - p1) `2) * ((p3 - p1) `1)) / ((p3 - p1) `2) by A9, XCMPLX_1:89; then p2 - p1 = |[((((p2 - p1) `2) * ((p3 - p1) `1)) / ((p3 - p1) `2)),((p2 - p1) `2)]| by EUCLID:53 .= |[((((p2 - p1) `2) * ((p3 - p1) `1)) * (((p3 - p1) `2) ")),(((p2 - p1) `2) * 1)]| by XCMPLX_0:def_9 .= |[(((p2 - p1) `2) * (((p3 - p1) `1) * (((p3 - p1) `2) "))),(((p2 - p1) `2) * 1)]| .= ((p2 - p1) `2) * |[(((p3 - p1) `1) * (((p3 - p1) `2) ")),1]| by EUCLID:58 .= ((p2 - p1) `2) * |[((((p3 - p1) `2) ") * ((p3 - p1) `1)),((((p3 - p1) `2) ") * ((p3 - p1) `2))]| by A9, XCMPLX_0:def_7 .= ((p2 - p1) `2) * ((((p3 - p1) `2) ") * |[((p3 - p1) `1),((p3 - p1) `2)]|) by EUCLID:58 .= ((p2 - p1) `2) * ((((p3 - p1) `2) ") * (p3 - p1)) by EUCLID:53 .= (((p2 - p1) `2) * (((p3 - p1) `2) ")) * (p3 - p1) by EUCLID:30 ; then (p2 - p1) + (- ((((p2 - p1) `2) * (((p3 - p1) `2) ")) * (p3 - p1))) = 0. (TOP-REAL 2) by EUCLID:36; then (1 * (p2 - p1)) + (- ((((p2 - p1) `2) * (((p3 - p1) `2) ")) * (p3 - p1))) = 0. (TOP-REAL 2) by EUCLID:29; then (1 * (p2 - p1)) + ((- (((p2 - p1) `2) * (((p3 - p1) `2) "))) * (p3 - p1)) = 0. (TOP-REAL 2) by EUCLID:40; hence contradiction by A1, Def10; ::_thesis: verum end; then A10: - ((((p2 - p1) `2) * ((p3 - p1) `1)) + (- (((p2 - p1) `1) * ((p3 - p1) `2)))) <> - 0 ; set a = ((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))); set b = (((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2); A11: ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * ((p3 - p1) `2)) = ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2)) + (((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) by A9, XCMPLX_1:87 .= (p0 - p1) `2 ; A12: ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `1)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * ((p3 - p1) `1)) = ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `1)) + (((((p0 - p1) `2) / ((p3 - p1) `2)) - (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2)) / ((p3 - p1) `2))) * ((p3 - p1) `1)) by XCMPLX_1:120 .= (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `1)) - ((((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2)) / ((p3 - p1) `2)) * ((p3 - p1) `1))) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) .= (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `1)) - ((((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2)) * (((p3 - p1) `2) ")) * ((p3 - p1) `1))) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) by XCMPLX_0:def_9 .= ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * (((p2 - p1) `1) - ((((p2 - p1) `2) * (((p3 - p1) `2) ")) * ((p3 - p1) `1)))) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) .= ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * (((p2 - p1) `1) - ((((p2 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)))) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) by XCMPLX_0:def_9 .= ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * (((((p2 - p1) `1) / ((p3 - p1) `2)) * ((p3 - p1) `2)) - ((((p2 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)))) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) by A9, XCMPLX_1:87 .= ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * (((((p3 - p1) `2) / ((p3 - p1) `2)) * ((p2 - p1) `1)) - ((((p2 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)))) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) by XCMPLX_1:75 .= ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * (((((p3 - p1) `2) * (((p3 - p1) `2) ")) * ((p2 - p1) `1)) - ((((p2 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)))) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) by XCMPLX_0:def_9 .= ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((((p2 - p1) `1) * (((p3 - p1) `2) * (((p3 - p1) `2) "))) - (((((p3 - p1) `2) ") * ((p2 - p1) `2)) * ((p3 - p1) `1)))) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) by XCMPLX_0:def_9 .= (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * (((p3 - p1) `2) ")) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) .= (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) * (((p3 - p1) `2) ")) + ((((p0 - p1) `2) / ((p3 - p1) `2)) * ((p3 - p1) `1)) by A10, XCMPLX_1:87 .= (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) * (((p3 - p1) `2) ")) + (((((p3 - p1) `2) ") * ((p0 - p1) `2)) * ((p3 - p1) `1)) by XCMPLX_0:def_9 .= (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) + (((p3 - p1) `1) * ((p0 - p1) `2))) * (((p3 - p1) `2) ") .= (((p0 - p1) `1) * ((p3 - p1) `2)) / ((p3 - p1) `2) by XCMPLX_0:def_9 .= (p0 - p1) `1 by A9, XCMPLX_1:89 ; A13: ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * (p2 - p1)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * (p3 - p1)) = (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p1)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * (p3 - p1)) by EUCLID:49 .= (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2) + (- ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p1))) + ((((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) - (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p1)) by EUCLID:49 .= (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2) + (- ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p1))) + ((((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) + ((- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2))) * p1)) by EUCLID:40 .= (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2) + ((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) * p1)) + (((- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2))) * p1) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3)) by EUCLID:40 .= ((((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2) + ((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) * p1)) + ((- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2))) * p1)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) by EUCLID:26 .= (((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2) + (((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) * p1) + ((- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2))) * p1))) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) by EUCLID:26 .= ((((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) + (- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)))) * p1) + ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) by EUCLID:33 ; ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * (p2 - p1)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * (p3 - p1)) = ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * |[((p2 - p1) `1),((p2 - p1) `2)]|) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * (p3 - p1)) by EUCLID:53 .= ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * |[((p2 - p1) `1),((p2 - p1) `2)]|) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * |[((p3 - p1) `1),((p3 - p1) `2)]|) by EUCLID:53 .= |[((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `1)),((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))]| + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * |[((p3 - p1) `1),((p3 - p1) `2)]|) by EUCLID:58 .= |[((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `1)),((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))]| + |[(((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * ((p3 - p1) `1)),(((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * ((p3 - p1) `2))]| by EUCLID:58 .= |[(((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `1)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * ((p3 - p1) `1))),(((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * ((p3 - p1) `2)))]| by EUCLID:56 .= p0 - p1 by A11, A12, EUCLID:53 ; then A14: p0 = p1 + (((((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) + (- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)))) * p1) + ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3)) by A13, EUCLID:48 .= (p1 + ((((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) + (- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)))) * p1) + ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2))) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) by EUCLID:26 .= ((p1 + (((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) + (- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)))) * p1)) + ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) by EUCLID:26 .= (((1 * p1) + (((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) + (- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)))) * p1)) + ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) by EUCLID:29 .= (((1 + ((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) + (- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2))))) * p1) + ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * p2)) + (((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) * p3) by EUCLID:33 ; ((1 + ((- (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) + (- ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2))))) + (((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1))))) + ((((p0 - p1) `2) - ((((((p0 - p1) `1) * ((p3 - p1) `2)) - (((p3 - p1) `1) * ((p0 - p1) `2))) / ((((p2 - p1) `1) * ((p3 - p1) `2)) - (((p2 - p1) `2) * ((p3 - p1) `1)))) * ((p2 - p1) `2))) / ((p3 - p1) `2)) = 1 ; hence x in plane (p1,p2,p3) by A14, Th52; ::_thesis: verum end; end; end; hence x in plane (p1,p2,p3) ; ::_thesis: verum end; definition let n be Element of NAT ; let p1, p2, p3, p be Point of (TOP-REAL n); assume A1: ( p2 - p1,p3 - p1 are_lindependent2 & p in plane (p1,p2,p3) ) ; func tricord1 (p1,p2,p3,p) -> Real means :Def11: :: EUCLID_3:def 11 ex a2, a3 being Real st ( (it + a2) + a3 = 1 & p = ((it * p1) + (a2 * p2)) + (a3 * p3) ); existence ex b1, a2, a3 being Real st ( (b1 + a2) + a3 = 1 & p = ((b1 * p1) + (a2 * p2)) + (a3 * p3) ) proof ex a01, a02, a03 being Real st ( p = ((a01 * p1) + (a02 * p2)) + (a03 * p3) & (a01 + a02) + a03 = 1 & ( for b1, b2, b3 being Real st p = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a01 & b2 = a02 & b3 = a03 ) ) ) by A1, Th51; hence ex b1, a2, a3 being Real st ( (b1 + a2) + a3 = 1 & p = ((b1 * p1) + (a2 * p2)) + (a3 * p3) ) ; ::_thesis: verum end; uniqueness for b1, b2 being Real st ex a2, a3 being Real st ( (b1 + a2) + a3 = 1 & p = ((b1 * p1) + (a2 * p2)) + (a3 * p3) ) & ex a2, a3 being Real st ( (b2 + a2) + a3 = 1 & p = ((b2 * p1) + (a2 * p2)) + (a3 * p3) ) holds b1 = b2 proof let a1, b1 be Real; ::_thesis: ( ex a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) & ex a2, a3 being Real st ( (b1 + a2) + a3 = 1 & p = ((b1 * p1) + (a2 * p2)) + (a3 * p3) ) implies a1 = b1 ) assume that A2: ex a2, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) and A3: ex a2, a3 being Real st ( (b1 + a2) + a3 = 1 & p = ((b1 * p1) + (a2 * p2)) + (a3 * p3) ) ; ::_thesis: a1 = b1 consider a001, a002, a003 being Real such that p = ((a001 * p1) + (a002 * p2)) + (a003 * p3) and (a001 + a002) + a003 = 1 and A4: for b01, b02, b03 being Real st p = ((b01 * p1) + (b02 * p2)) + (b03 * p3) & (b01 + b02) + b03 = 1 holds ( b01 = a001 & b02 = a002 & b03 = a003 ) by A1, Th51; a1 = a001 by A2, A4; hence a1 = b1 by A3, A4; ::_thesis: verum end; end; :: deftheorem Def11 defines tricord1 EUCLID_3:def_11_:_ for n being Element of NAT for p1, p2, p3, p being Point of (TOP-REAL n) st p2 - p1,p3 - p1 are_lindependent2 & p in plane (p1,p2,p3) holds for b6 being Real holds ( b6 = tricord1 (p1,p2,p3,p) iff ex a2, a3 being Real st ( (b6 + a2) + a3 = 1 & p = ((b6 * p1) + (a2 * p2)) + (a3 * p3) ) ); definition let n be Element of NAT ; let p1, p2, p3, p be Point of (TOP-REAL n); assume A1: ( p2 - p1,p3 - p1 are_lindependent2 & p in plane (p1,p2,p3) ) ; func tricord2 (p1,p2,p3,p) -> Real means :Def12: :: EUCLID_3:def 12 ex a1, a3 being Real st ( (a1 + it) + a3 = 1 & p = ((a1 * p1) + (it * p2)) + (a3 * p3) ); existence ex b1, a1, a3 being Real st ( (a1 + b1) + a3 = 1 & p = ((a1 * p1) + (b1 * p2)) + (a3 * p3) ) proof ex a01, a02, a03 being Real st ( p = ((a01 * p1) + (a02 * p2)) + (a03 * p3) & (a01 + a02) + a03 = 1 & ( for b1, b2, b3 being Real st p = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a01 & b2 = a02 & b3 = a03 ) ) ) by A1, Th51; hence ex b1, a1, a3 being Real st ( (a1 + b1) + a3 = 1 & p = ((a1 * p1) + (b1 * p2)) + (a3 * p3) ) ; ::_thesis: verum end; uniqueness for b1, b2 being Real st ex a1, a3 being Real st ( (a1 + b1) + a3 = 1 & p = ((a1 * p1) + (b1 * p2)) + (a3 * p3) ) & ex a1, a3 being Real st ( (a1 + b2) + a3 = 1 & p = ((a1 * p1) + (b2 * p2)) + (a3 * p3) ) holds b1 = b2 proof let a2, b2 be Real; ::_thesis: ( ex a1, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) & ex a1, a3 being Real st ( (a1 + b2) + a3 = 1 & p = ((a1 * p1) + (b2 * p2)) + (a3 * p3) ) implies a2 = b2 ) assume that A2: ex a1, a3 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) and A3: ex a1, a3 being Real st ( (a1 + b2) + a3 = 1 & p = ((a1 * p1) + (b2 * p2)) + (a3 * p3) ) ; ::_thesis: a2 = b2 consider a001, a002, a003 being Real such that p = ((a001 * p1) + (a002 * p2)) + (a003 * p3) and (a001 + a002) + a003 = 1 and A4: for b01, b02, b03 being Real st p = ((b01 * p1) + (b02 * p2)) + (b03 * p3) & (b01 + b02) + b03 = 1 holds ( b01 = a001 & b02 = a002 & b03 = a003 ) by A1, Th51; a2 = a002 by A2, A4; hence a2 = b2 by A3, A4; ::_thesis: verum end; end; :: deftheorem Def12 defines tricord2 EUCLID_3:def_12_:_ for n being Element of NAT for p1, p2, p3, p being Point of (TOP-REAL n) st p2 - p1,p3 - p1 are_lindependent2 & p in plane (p1,p2,p3) holds for b6 being Real holds ( b6 = tricord2 (p1,p2,p3,p) iff ex a1, a3 being Real st ( (a1 + b6) + a3 = 1 & p = ((a1 * p1) + (b6 * p2)) + (a3 * p3) ) ); definition let n be Element of NAT ; let p1, p2, p3, p be Point of (TOP-REAL n); assume A1: ( p2 - p1,p3 - p1 are_lindependent2 & p in plane (p1,p2,p3) ) ; func tricord3 (p1,p2,p3,p) -> Real means :Def13: :: EUCLID_3:def 13 ex a1, a2 being Real st ( (a1 + a2) + it = 1 & p = ((a1 * p1) + (a2 * p2)) + (it * p3) ); existence ex b1, a1, a2 being Real st ( (a1 + a2) + b1 = 1 & p = ((a1 * p1) + (a2 * p2)) + (b1 * p3) ) proof ex a01, a02, a03 being Real st ( p = ((a01 * p1) + (a02 * p2)) + (a03 * p3) & (a01 + a02) + a03 = 1 & ( for b1, b2, b3 being Real st p = ((b1 * p1) + (b2 * p2)) + (b3 * p3) & (b1 + b2) + b3 = 1 holds ( b1 = a01 & b2 = a02 & b3 = a03 ) ) ) by A1, Th51; hence ex b1, a1, a2 being Real st ( (a1 + a2) + b1 = 1 & p = ((a1 * p1) + (a2 * p2)) + (b1 * p3) ) ; ::_thesis: verum end; uniqueness for b1, b2 being Real st ex a1, a2 being Real st ( (a1 + a2) + b1 = 1 & p = ((a1 * p1) + (a2 * p2)) + (b1 * p3) ) & ex a1, a2 being Real st ( (a1 + a2) + b2 = 1 & p = ((a1 * p1) + (a2 * p2)) + (b2 * p3) ) holds b1 = b2 proof let a3, b3 be Real; ::_thesis: ( ex a1, a2 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) & ex a1, a2 being Real st ( (a1 + a2) + b3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (b3 * p3) ) implies a3 = b3 ) assume that A2: ex a1, a2 being Real st ( (a1 + a2) + a3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) and A3: ex a1, a2 being Real st ( (a1 + a2) + b3 = 1 & p = ((a1 * p1) + (a2 * p2)) + (b3 * p3) ) ; ::_thesis: a3 = b3 consider a001, a002, a003 being Real such that p = ((a001 * p1) + (a002 * p2)) + (a003 * p3) and (a001 + a002) + a003 = 1 and A4: for b01, b02, b03 being Real st p = ((b01 * p1) + (b02 * p2)) + (b03 * p3) & (b01 + b02) + b03 = 1 holds ( b01 = a001 & b02 = a002 & b03 = a003 ) by A1, Th51; a3 = a003 by A2, A4; hence a3 = b3 by A3, A4; ::_thesis: verum end; end; :: deftheorem Def13 defines tricord3 EUCLID_3:def_13_:_ for n being Element of NAT for p1, p2, p3, p being Point of (TOP-REAL n) st p2 - p1,p3 - p1 are_lindependent2 & p in plane (p1,p2,p3) holds for b6 being Real holds ( b6 = tricord3 (p1,p2,p3,p) iff ex a1, a2 being Real st ( (a1 + a2) + b6 = 1 & p = ((a1 * p1) + (a2 * p2)) + (b6 * p3) ) ); definition let p1, p2, p3 be Point of (TOP-REAL 2); func trcmap1 (p1,p2,p3) -> Function of (TOP-REAL 2),R^1 means :: EUCLID_3:def 14 for p being Point of (TOP-REAL 2) holds it . p = tricord1 (p1,p2,p3,p); existence ex b1 being Function of (TOP-REAL 2),R^1 st for p being Point of (TOP-REAL 2) holds b1 . p = tricord1 (p1,p2,p3,p) proof defpred S1[ set , set ] means for p being Point of (TOP-REAL 2) st p = $1 holds $2 = tricord1 (p1,p2,p3,p); set X = the carrier of (TOP-REAL 2); set Y = the carrier of R^1; A1: for x being set st x in the carrier of (TOP-REAL 2) holds ex y being set st ( y in the carrier of R^1 & S1[x,y] ) proof let x be set ; ::_thesis: ( x in the carrier of (TOP-REAL 2) implies ex y being set st ( y in the carrier of R^1 & S1[x,y] ) ) assume x in the carrier of (TOP-REAL 2) ; ::_thesis: ex y being set st ( y in the carrier of R^1 & S1[x,y] ) then reconsider p0 = x as Point of (TOP-REAL 2) ; S1[x, tricord1 (p1,p2,p3,p0)] ; hence ex y being set st ( y in the carrier of R^1 & S1[x,y] ) by TOPMETR:17; ::_thesis: verum end; ex f being Function of the carrier of (TOP-REAL 2), the carrier of R^1 st for x being set st x in the carrier of (TOP-REAL 2) holds S1[x,f . x] from FUNCT_2:sch_1(A1); then consider g being Function of the carrier of (TOP-REAL 2), the carrier of R^1 such that A2: for x being set st x in the carrier of (TOP-REAL 2) holds for p being Point of (TOP-REAL 2) st p = x holds g . x = tricord1 (p1,p2,p3,p) ; reconsider f0 = g as Function of (TOP-REAL 2),R^1 ; for p being Point of (TOP-REAL 2) holds f0 . p = tricord1 (p1,p2,p3,p) by A2; hence ex b1 being Function of (TOP-REAL 2),R^1 st for p being Point of (TOP-REAL 2) holds b1 . p = tricord1 (p1,p2,p3,p) ; ::_thesis: verum end; uniqueness for b1, b2 being Function of (TOP-REAL 2),R^1 st ( for p being Point of (TOP-REAL 2) holds b1 . p = tricord1 (p1,p2,p3,p) ) & ( for p being Point of (TOP-REAL 2) holds b2 . p = tricord1 (p1,p2,p3,p) ) holds b1 = b2 proof let f1, f2 be Function of (TOP-REAL 2),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) holds f1 . p = tricord1 (p1,p2,p3,p) ) & ( for p being Point of (TOP-REAL 2) holds f2 . p = tricord1 (p1,p2,p3,p) ) implies f1 = f2 ) assume that A3: for p being Point of (TOP-REAL 2) holds f1 . p = tricord1 (p1,p2,p3,p) and A4: for p being Point of (TOP-REAL 2) holds f2 . p = tricord1 (p1,p2,p3,p) ; ::_thesis: f1 = f2 A5: for x being set st x in dom f1 holds f1 . x = f2 . x proof let x be set ; ::_thesis: ( x in dom f1 implies f1 . x = f2 . x ) assume x in dom f1 ; ::_thesis: f1 . x = f2 . x then reconsider p0 = x as Point of (TOP-REAL 2) by FUNCT_2:def_1; f1 . p0 = tricord1 (p1,p2,p3,p0) by A3; hence f1 . x = f2 . x by A4; ::_thesis: verum end; dom f1 = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; then dom f1 = dom f2 by FUNCT_2:def_1; hence f1 = f2 by A5, FUNCT_1:2; ::_thesis: verum end; end; :: deftheorem defines trcmap1 EUCLID_3:def_14_:_ for p1, p2, p3 being Point of (TOP-REAL 2) for b4 being Function of (TOP-REAL 2),R^1 holds ( b4 = trcmap1 (p1,p2,p3) iff for p being Point of (TOP-REAL 2) holds b4 . p = tricord1 (p1,p2,p3,p) ); definition let p1, p2, p3 be Point of (TOP-REAL 2); func trcmap2 (p1,p2,p3) -> Function of (TOP-REAL 2),R^1 means :: EUCLID_3:def 15 for p being Point of (TOP-REAL 2) holds it . p = tricord2 (p1,p2,p3,p); existence ex b1 being Function of (TOP-REAL 2),R^1 st for p being Point of (TOP-REAL 2) holds b1 . p = tricord2 (p1,p2,p3,p) proof defpred S1[ set , set ] means for p being Point of (TOP-REAL 2) st p = $1 holds $2 = tricord2 (p1,p2,p3,p); set X = the carrier of (TOP-REAL 2); set Y = the carrier of R^1; A1: for x being set st x in the carrier of (TOP-REAL 2) holds ex y being set st ( y in the carrier of R^1 & S1[x,y] ) proof let x be set ; ::_thesis: ( x in the carrier of (TOP-REAL 2) implies ex y being set st ( y in the carrier of R^1 & S1[x,y] ) ) assume x in the carrier of (TOP-REAL 2) ; ::_thesis: ex y being set st ( y in the carrier of R^1 & S1[x,y] ) then reconsider p0 = x as Point of (TOP-REAL 2) ; S1[x, tricord2 (p1,p2,p3,p0)] ; hence ex y being set st ( y in the carrier of R^1 & S1[x,y] ) by TOPMETR:17; ::_thesis: verum end; ex f being Function of the carrier of (TOP-REAL 2), the carrier of R^1 st for x being set st x in the carrier of (TOP-REAL 2) holds S1[x,f . x] from FUNCT_2:sch_1(A1); then consider g being Function of the carrier of (TOP-REAL 2), the carrier of R^1 such that A2: for x being set st x in the carrier of (TOP-REAL 2) holds for p being Point of (TOP-REAL 2) st p = x holds g . x = tricord2 (p1,p2,p3,p) ; reconsider f0 = g as Function of (TOP-REAL 2),R^1 ; for p being Point of (TOP-REAL 2) holds f0 . p = tricord2 (p1,p2,p3,p) by A2; hence ex b1 being Function of (TOP-REAL 2),R^1 st for p being Point of (TOP-REAL 2) holds b1 . p = tricord2 (p1,p2,p3,p) ; ::_thesis: verum end; uniqueness for b1, b2 being Function of (TOP-REAL 2),R^1 st ( for p being Point of (TOP-REAL 2) holds b1 . p = tricord2 (p1,p2,p3,p) ) & ( for p being Point of (TOP-REAL 2) holds b2 . p = tricord2 (p1,p2,p3,p) ) holds b1 = b2 proof let f1, f2 be Function of (TOP-REAL 2),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) holds f1 . p = tricord2 (p1,p2,p3,p) ) & ( for p being Point of (TOP-REAL 2) holds f2 . p = tricord2 (p1,p2,p3,p) ) implies f1 = f2 ) assume that A3: for p being Point of (TOP-REAL 2) holds f1 . p = tricord2 (p1,p2,p3,p) and A4: for p being Point of (TOP-REAL 2) holds f2 . p = tricord2 (p1,p2,p3,p) ; ::_thesis: f1 = f2 A5: for x being set st x in dom f1 holds f1 . x = f2 . x proof let x be set ; ::_thesis: ( x in dom f1 implies f1 . x = f2 . x ) assume x in dom f1 ; ::_thesis: f1 . x = f2 . x then reconsider p0 = x as Point of (TOP-REAL 2) by FUNCT_2:def_1; f1 . p0 = tricord2 (p1,p2,p3,p0) by A3; hence f1 . x = f2 . x by A4; ::_thesis: verum end; dom f1 = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; then dom f1 = dom f2 by FUNCT_2:def_1; hence f1 = f2 by A5, FUNCT_1:2; ::_thesis: verum end; end; :: deftheorem defines trcmap2 EUCLID_3:def_15_:_ for p1, p2, p3 being Point of (TOP-REAL 2) for b4 being Function of (TOP-REAL 2),R^1 holds ( b4 = trcmap2 (p1,p2,p3) iff for p being Point of (TOP-REAL 2) holds b4 . p = tricord2 (p1,p2,p3,p) ); definition let p1, p2, p3 be Point of (TOP-REAL 2); func trcmap3 (p1,p2,p3) -> Function of (TOP-REAL 2),R^1 means :: EUCLID_3:def 16 for p being Point of (TOP-REAL 2) holds it . p = tricord3 (p1,p2,p3,p); existence ex b1 being Function of (TOP-REAL 2),R^1 st for p being Point of (TOP-REAL 2) holds b1 . p = tricord3 (p1,p2,p3,p) proof defpred S1[ set , set ] means for p being Point of (TOP-REAL 2) st p = $1 holds $2 = tricord3 (p1,p2,p3,p); set X = the carrier of (TOP-REAL 2); set Y = the carrier of R^1; A1: for x being set st x in the carrier of (TOP-REAL 2) holds ex y being set st ( y in the carrier of R^1 & S1[x,y] ) proof let x be set ; ::_thesis: ( x in the carrier of (TOP-REAL 2) implies ex y being set st ( y in the carrier of R^1 & S1[x,y] ) ) assume x in the carrier of (TOP-REAL 2) ; ::_thesis: ex y being set st ( y in the carrier of R^1 & S1[x,y] ) then reconsider p0 = x as Point of (TOP-REAL 2) ; S1[x, tricord3 (p1,p2,p3,p0)] ; hence ex y being set st ( y in the carrier of R^1 & S1[x,y] ) by TOPMETR:17; ::_thesis: verum end; ex f being Function of the carrier of (TOP-REAL 2), the carrier of R^1 st for x being set st x in the carrier of (TOP-REAL 2) holds S1[x,f . x] from FUNCT_2:sch_1(A1); then consider g being Function of the carrier of (TOP-REAL 2), the carrier of R^1 such that A2: for x being set st x in the carrier of (TOP-REAL 2) holds for p being Point of (TOP-REAL 2) st p = x holds g . x = tricord3 (p1,p2,p3,p) ; reconsider f0 = g as Function of (TOP-REAL 2),R^1 ; for p being Point of (TOP-REAL 2) holds f0 . p = tricord3 (p1,p2,p3,p) by A2; hence ex b1 being Function of (TOP-REAL 2),R^1 st for p being Point of (TOP-REAL 2) holds b1 . p = tricord3 (p1,p2,p3,p) ; ::_thesis: verum end; uniqueness for b1, b2 being Function of (TOP-REAL 2),R^1 st ( for p being Point of (TOP-REAL 2) holds b1 . p = tricord3 (p1,p2,p3,p) ) & ( for p being Point of (TOP-REAL 2) holds b2 . p = tricord3 (p1,p2,p3,p) ) holds b1 = b2 proof let f1, f2 be Function of (TOP-REAL 2),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) holds f1 . p = tricord3 (p1,p2,p3,p) ) & ( for p being Point of (TOP-REAL 2) holds f2 . p = tricord3 (p1,p2,p3,p) ) implies f1 = f2 ) assume that A3: for p being Point of (TOP-REAL 2) holds f1 . p = tricord3 (p1,p2,p3,p) and A4: for p being Point of (TOP-REAL 2) holds f2 . p = tricord3 (p1,p2,p3,p) ; ::_thesis: f1 = f2 A5: for x being set st x in dom f1 holds f1 . x = f2 . x proof let x be set ; ::_thesis: ( x in dom f1 implies f1 . x = f2 . x ) assume x in dom f1 ; ::_thesis: f1 . x = f2 . x then reconsider p0 = x as Point of (TOP-REAL 2) by FUNCT_2:def_1; f1 . p0 = tricord3 (p1,p2,p3,p0) by A3; hence f1 . x = f2 . x by A4; ::_thesis: verum end; dom f1 = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; then dom f1 = dom f2 by FUNCT_2:def_1; hence f1 = f2 by A5, FUNCT_1:2; ::_thesis: verum end; end; :: deftheorem defines trcmap3 EUCLID_3:def_16_:_ for p1, p2, p3 being Point of (TOP-REAL 2) for b4 being Function of (TOP-REAL 2),R^1 holds ( b4 = trcmap3 (p1,p2,p3) iff for p being Point of (TOP-REAL 2) holds b4 . p = tricord3 (p1,p2,p3,p) ); theorem :: EUCLID_3:55 for p1, p2, p3, p being Point of (TOP-REAL 2) st p2 - p1,p3 - p1 are_lindependent2 holds ( p in outside_of_triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) < 0 or tricord2 (p1,p2,p3,p) < 0 or tricord3 (p1,p2,p3,p) < 0 ) ) proof let p1, p2, p3, p be Point of (TOP-REAL 2); ::_thesis: ( p2 - p1,p3 - p1 are_lindependent2 implies ( p in outside_of_triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) < 0 or tricord2 (p1,p2,p3,p) < 0 or tricord3 (p1,p2,p3,p) < 0 ) ) ) set i1 = tricord1 (p1,p2,p3,p); set i2 = tricord2 (p1,p2,p3,p); set i3 = tricord3 (p1,p2,p3,p); assume A1: p2 - p1,p3 - p1 are_lindependent2 ; ::_thesis: ( p in outside_of_triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) < 0 or tricord2 (p1,p2,p3,p) < 0 or tricord3 (p1,p2,p3,p) < 0 ) ) thus ( not p in outside_of_triangle (p1,p2,p3) or tricord1 (p1,p2,p3,p) < 0 or tricord2 (p1,p2,p3,p) < 0 or tricord3 (p1,p2,p3,p) < 0 ) ::_thesis: ( ( tricord1 (p1,p2,p3,p) < 0 or tricord2 (p1,p2,p3,p) < 0 or tricord3 (p1,p2,p3,p) < 0 ) implies p in outside_of_triangle (p1,p2,p3) ) proof p in the carrier of (TOP-REAL 2) ; then p in REAL 2 by EUCLID:22; then A2: p in plane (p1,p2,p3) by A1, Th54; assume p in outside_of_triangle (p1,p2,p3) ; ::_thesis: ( tricord1 (p1,p2,p3,p) < 0 or tricord2 (p1,p2,p3,p) < 0 or tricord3 (p1,p2,p3,p) < 0 ) then ex p0 being Point of (TOP-REAL 2) st ( p0 = p & ex a1, a2, a3 being Real st ( ( 0 > a1 or 0 > a2 or 0 > a3 ) & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ) ; hence ( tricord1 (p1,p2,p3,p) < 0 or tricord2 (p1,p2,p3,p) < 0 or tricord3 (p1,p2,p3,p) < 0 ) by A1, A2, Def11, Def12, Def13; ::_thesis: verum end; p in the carrier of (TOP-REAL 2) ; then p in REAL 2 by EUCLID:22; then A3: p in plane (p1,p2,p3) by A1, Th54; then consider a2, a3 being Real such that A4: ( ((tricord1 (p1,p2,p3,p)) + a2) + a3 = 1 & p = (((tricord1 (p1,p2,p3,p)) * p1) + (a2 * p2)) + (a3 * p3) ) by A1, Def11; assume A5: ( tricord1 (p1,p2,p3,p) < 0 or tricord2 (p1,p2,p3,p) < 0 or tricord3 (p1,p2,p3,p) < 0 ) ; ::_thesis: p in outside_of_triangle (p1,p2,p3) ( a2 = tricord2 (p1,p2,p3,p) & a3 = tricord3 (p1,p2,p3,p) ) by A1, A3, A4, Def12, Def13; hence p in outside_of_triangle (p1,p2,p3) by A5, A4; ::_thesis: verum end; theorem Th56: :: EUCLID_3:56 for p1, p2, p3, p being Point of (TOP-REAL 2) st p2 - p1,p3 - p1 are_lindependent2 holds ( p in Triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 & ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) ) ) proof let p1, p2, p3, p be Point of (TOP-REAL 2); ::_thesis: ( p2 - p1,p3 - p1 are_lindependent2 implies ( p in Triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 & ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) ) ) ) assume A1: p2 - p1,p3 - p1 are_lindependent2 ; ::_thesis: ( p in Triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 & ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) ) ) A2: for p0 being Point of (TOP-REAL 2) holds ( p0 in Triangle (p1,p2,p3) iff ( p0 in LSeg (p1,p2) or p0 in LSeg (p2,p3) or p0 in LSeg (p3,p1) ) ) proof let p0 be Point of (TOP-REAL 2); ::_thesis: ( p0 in Triangle (p1,p2,p3) iff ( p0 in LSeg (p1,p2) or p0 in LSeg (p2,p3) or p0 in LSeg (p3,p1) ) ) ( p0 in Triangle (p1,p2,p3) iff ( p0 in (LSeg (p1,p2)) \/ (LSeg (p2,p3)) or p0 in LSeg (p3,p1) ) ) by XBOOLE_0:def_3; hence ( p0 in Triangle (p1,p2,p3) iff ( p0 in LSeg (p1,p2) or p0 in LSeg (p2,p3) or p0 in LSeg (p3,p1) ) ) by XBOOLE_0:def_3; ::_thesis: verum end; thus ( p in Triangle (p1,p2,p3) implies ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 & ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) ) ) ::_thesis: ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 & ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) implies p in Triangle (p1,p2,p3) ) proof set x = p; assume A3: p in Triangle (p1,p2,p3) ; ::_thesis: ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 & ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) ) A4: now__::_thesis:_(_(_p_in_LSeg_(p1,p2)_&_ex_a1,_a2,_a3_being_Real_st_ (_0_<=_a1_&_0_<=_a2_&_0_<=_a3_&_(a1_+_a2)_+_a3_=_1_&_(_a1_=_0_or_a2_=_0_or_a3_=_0_)_&_p_=_((a1_*_p1)_+_(a2_*_p2))_+_(a3_*_p3)_)_)_or_(_p_in_LSeg_(p2,p3)_&_ex_a1,_a2,_a3_being_Real_st_ (_0_<=_a1_&_0_<=_a2_&_0_<=_a3_&_(a1_+_a2)_+_a3_=_1_&_(_a1_=_0_or_a2_=_0_or_a3_=_0_)_&_p_=_((a1_*_p1)_+_(a2_*_p2))_+_(a3_*_p3)_)_)_or_(_p_in_LSeg_(p3,p1)_&_ex_a1,_a2,_a3_being_Real_st_ (_0_<=_a1_&_0_<=_a2_&_0_<=_a3_&_(a1_+_a2)_+_a3_=_1_&_(_a1_=_0_or_a2_=_0_or_a3_=_0_)_&_p_=_((a1_*_p1)_+_(a2_*_p2))_+_(a3_*_p3)_)_)_) percases ( p in LSeg (p1,p2) or p in LSeg (p2,p3) or p in LSeg (p3,p1) ) by A2, A3; case p in LSeg (p1,p2) ; ::_thesis: ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & ( a1 = 0 or a2 = 0 or a3 = 0 ) & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) then consider lambda being Real such that A5: p = ((1 - lambda) * p1) + (lambda * p2) and A6: 0 <= lambda and A7: lambda <= 1 ; A8: p = (((1 - lambda) * p1) + (lambda * p2)) + (0. (TOP-REAL 2)) by A5, EUCLID:27 .= (((1 - lambda) * p1) + (lambda * p2)) + (0 * p3) by EUCLID:29 ; A9: ((1 - lambda) + lambda) + 0 = 1 ; 1 - lambda >= 0 by A7, XREAL_1:48; hence ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & ( a1 = 0 or a2 = 0 or a3 = 0 ) & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) by A6, A9, A8; ::_thesis: verum end; case p in LSeg (p2,p3) ; ::_thesis: ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & ( a1 = 0 or a2 = 0 or a3 = 0 ) & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) then consider lambda being Real such that A10: p = ((1 - lambda) * p2) + (lambda * p3) and A11: 0 <= lambda and A12: lambda <= 1 ; A13: p = ((0. (TOP-REAL 2)) + ((1 - lambda) * p2)) + (lambda * p3) by A10, EUCLID:27 .= ((0 * p1) + ((1 - lambda) * p2)) + (lambda * p3) by EUCLID:29 ; A14: (0 + (1 - lambda)) + lambda = 1 ; 1 - lambda >= 0 by A12, XREAL_1:48; hence ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & ( a1 = 0 or a2 = 0 or a3 = 0 ) & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) by A11, A14, A13; ::_thesis: verum end; case p in LSeg (p3,p1) ; ::_thesis: ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & ( a1 = 0 or a2 = 0 or a3 = 0 ) & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) then consider lambda being Real such that A15: p = ((1 - lambda) * p3) + (lambda * p1) and A16: 0 <= lambda and A17: lambda <= 1 ; A18: p = ((lambda * p1) + (0. (TOP-REAL 2))) + ((1 - lambda) * p3) by A15, EUCLID:27 .= ((lambda * p1) + (0 * p2)) + ((1 - lambda) * p3) by EUCLID:29 ; A19: (lambda + 0) + (1 - lambda) = 1 ; 1 - lambda >= 0 by A17, XREAL_1:48; hence ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & ( a1 = 0 or a2 = 0 or a3 = 0 ) & p = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) by A16, A19, A18; ::_thesis: verum end; end; end; p in the carrier of (TOP-REAL 2) ; then p in REAL 2 by EUCLID:22; then p in plane (p1,p2,p3) by A1, Th54; hence ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 & ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) ) by A1, A4, Def11, Def12, Def13; ::_thesis: verum end; thus ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 & ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) implies p in Triangle (p1,p2,p3) ) ::_thesis: verum proof set p0 = p; assume that A20: tricord1 (p1,p2,p3,p) >= 0 and A21: tricord2 (p1,p2,p3,p) >= 0 and A22: tricord3 (p1,p2,p3,p) >= 0 and A23: ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) ; ::_thesis: p in Triangle (p1,p2,p3) set i01 = tricord1 (p1,p2,p3,p); set i02 = tricord2 (p1,p2,p3,p); set i03 = tricord3 (p1,p2,p3,p); p in the carrier of (TOP-REAL 2) ; then p in REAL 2 by EUCLID:22; then A24: p in plane (p1,p2,p3) by A1, Th54; now__::_thesis:_(_(_tricord1_(p1,p2,p3,p)_=_0_&_(_p_in_LSeg_(p1,p2)_or_p_in_LSeg_(p2,p3)_or_p_in_LSeg_(p3,p1)_)_)_or_(_tricord2_(p1,p2,p3,p)_=_0_&_(_p_in_LSeg_(p1,p2)_or_p_in_LSeg_(p2,p3)_or_p_in_LSeg_(p3,p1)_)_)_or_(_tricord3_(p1,p2,p3,p)_=_0_&_(_p_in_LSeg_(p1,p2)_or_p_in_LSeg_(p2,p3)_or_p_in_LSeg_(p3,p1)_)_)_) percases ( tricord1 (p1,p2,p3,p) = 0 or tricord2 (p1,p2,p3,p) = 0 or tricord3 (p1,p2,p3,p) = 0 ) by A23; case tricord1 (p1,p2,p3,p) = 0 ; ::_thesis: ( p in LSeg (p1,p2) or p in LSeg (p2,p3) or p in LSeg (p3,p1) ) then consider a2, a3 being Real such that A25: (0 + a2) + a3 = 1 and A26: p = ((0 * p1) + (a2 * p2)) + (a3 * p3) by A1, A24, Def11; a2 = tricord2 (p1,p2,p3,p) by A1, A24, A25, A26, Def12; then A27: (1 - a3) + a3 >= 0 + a3 by A21, A25, XREAL_1:7; A28: p = ((0. (TOP-REAL 2)) + (a2 * p2)) + (a3 * p3) by A26, EUCLID:29 .= (a2 * p2) + (a3 * p3) by EUCLID:27 ; a3 = tricord3 (p1,p2,p3,p) by A1, A24, A25, A26, Def13; hence ( p in LSeg (p1,p2) or p in LSeg (p2,p3) or p in LSeg (p3,p1) ) by A22, A25, A28, A27; ::_thesis: verum end; case tricord2 (p1,p2,p3,p) = 0 ; ::_thesis: ( p in LSeg (p1,p2) or p in LSeg (p2,p3) or p in LSeg (p3,p1) ) then consider a1, a3 being Real such that A29: (a1 + 0) + a3 = 1 and A30: p = ((a1 * p1) + (0 * p2)) + (a3 * p3) by A1, A24, Def12; a1 = tricord1 (p1,p2,p3,p) by A1, A24, A29, A30, Def11; then A31: (1 - a3) + a3 >= 0 + a3 by A20, A29, XREAL_1:7; A32: p = ((a1 * p1) + (0. (TOP-REAL 2))) + (a3 * p3) by A30, EUCLID:29 .= (a1 * p1) + (a3 * p3) by EUCLID:27 ; a3 = tricord3 (p1,p2,p3,p) by A1, A24, A29, A30, Def13; then p in { (((1 - lambda) * p1) + (lambda * p3)) where lambda is Real : ( 0 <= lambda & lambda <= 1 ) } by A22, A29, A32, A31; hence ( p in LSeg (p1,p2) or p in LSeg (p2,p3) or p in LSeg (p3,p1) ) by RLTOPSP1:def_2; ::_thesis: verum end; case tricord3 (p1,p2,p3,p) = 0 ; ::_thesis: ( p in LSeg (p1,p2) or p in LSeg (p2,p3) or p in LSeg (p3,p1) ) then consider a1, a2 being Real such that A33: (a1 + a2) + 0 = 1 and A34: p = ((a1 * p1) + (a2 * p2)) + (0 * p3) by A1, A24, Def13; a1 = tricord1 (p1,p2,p3,p) by A1, A24, A33, A34, Def11; then A35: (1 - a2) + a2 >= 0 + a2 by A20, A33, XREAL_1:7; A36: p = ((a1 * p1) + (a2 * p2)) + (0. (TOP-REAL 2)) by A34, EUCLID:29 .= (a1 * p1) + (a2 * p2) by EUCLID:27 ; a2 = tricord2 (p1,p2,p3,p) by A1, A24, A33, A34, Def12; hence ( p in LSeg (p1,p2) or p in LSeg (p2,p3) or p in LSeg (p3,p1) ) by A21, A33, A36, A35; ::_thesis: verum end; end; end; hence p in Triangle (p1,p2,p3) by A2; ::_thesis: verum end; end; theorem :: EUCLID_3:57 for p1, p2, p3, p being Point of (TOP-REAL 2) st p2 - p1,p3 - p1 are_lindependent2 holds ( p in Triangle (p1,p2,p3) iff ( ( tricord1 (p1,p2,p3,p) = 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) >= 0 ) or ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) = 0 & tricord3 (p1,p2,p3,p) >= 0 ) or ( tricord1 (p1,p2,p3,p) >= 0 & tricord2 (p1,p2,p3,p) >= 0 & tricord3 (p1,p2,p3,p) = 0 ) ) ) by Th56; theorem Th58: :: EUCLID_3:58 for p1, p2, p3, p being Point of (TOP-REAL 2) st p2 - p1,p3 - p1 are_lindependent2 holds ( p in inside_of_triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 ) ) proof let p1, p2, p3, p be Point of (TOP-REAL 2); ::_thesis: ( p2 - p1,p3 - p1 are_lindependent2 implies ( p in inside_of_triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 ) ) ) assume A1: p2 - p1,p3 - p1 are_lindependent2 ; ::_thesis: ( p in inside_of_triangle (p1,p2,p3) iff ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 ) ) A2: inside_of_triangle (p1,p2,p3) c= { p0 where p0 is Point of (TOP-REAL 2) : ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in inside_of_triangle (p1,p2,p3) or x in { p0 where p0 is Point of (TOP-REAL 2) : ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ) assume A3: x in inside_of_triangle (p1,p2,p3) ; ::_thesis: x in { p0 where p0 is Point of (TOP-REAL 2) : ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } then A4: not x in Triangle (p1,p2,p3) by XBOOLE_0:def_5; x in closed_inside_of_triangle (p1,p2,p3) by A3, XBOOLE_0:def_5; then consider p0 being Point of (TOP-REAL 2) such that A5: p0 = x and A6: ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ; set i01 = tricord1 (p1,p2,p3,p0); set i02 = tricord2 (p1,p2,p3,p0); set i03 = tricord3 (p1,p2,p3,p0); consider a1, a2, a3 being Real such that A7: 0 <= a1 and A8: 0 <= a2 and A9: 0 <= a3 and A10: ( (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) by A6; p0 in the carrier of (TOP-REAL 2) ; then p0 in REAL 2 by EUCLID:22; then A11: p0 in plane (p1,p2,p3) by A1, Th54; then A12: a1 = tricord1 (p1,p2,p3,p0) by A1, A10, Def11; A13: a3 = tricord3 (p1,p2,p3,p0) by A1, A10, A11, Def13; then A14: tricord2 (p1,p2,p3,p0) <> 0 by A1, A4, A5, A7, A9, A12, Th56; A15: a2 = tricord2 (p1,p2,p3,p0) by A1, A10, A11, Def12; then A16: tricord3 (p1,p2,p3,p0) <> 0 by A1, A4, A5, A7, A8, A12, Th56; tricord1 (p1,p2,p3,p0) <> 0 by A1, A4, A5, A8, A9, A15, A13, Th56; hence x in { p0 where p0 is Point of (TOP-REAL 2) : ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } by A5, A7, A8, A9, A10, A12, A15, A13, A14, A16; ::_thesis: verum end; thus ( p in inside_of_triangle (p1,p2,p3) implies ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 ) ) ::_thesis: ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 implies p in inside_of_triangle (p1,p2,p3) ) proof p in the carrier of (TOP-REAL 2) ; then p in REAL 2 by EUCLID:22; then A17: p in plane (p1,p2,p3) by A1, Th54; assume A18: p in inside_of_triangle (p1,p2,p3) ; ::_thesis: ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 ) then p in closed_inside_of_triangle (p1,p2,p3) by XBOOLE_0:def_5; then consider p0 being Point of (TOP-REAL 2) such that A19: p0 = p and A20: ex a1, a2, a3 being Real st ( 0 <= a1 & 0 <= a2 & 0 <= a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ; not p in Triangle (p1,p2,p3) by A18, XBOOLE_0:def_5; then ( not tricord1 (p1,p2,p3,p0) >= 0 or not tricord2 (p1,p2,p3,p0) >= 0 or not tricord3 (p1,p2,p3,p0) >= 0 or ( not tricord1 (p1,p2,p3,p0) = 0 & not tricord2 (p1,p2,p3,p0) = 0 & not tricord3 (p1,p2,p3,p0) = 0 ) ) by A1, A19, Th56; hence ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 ) by A1, A19, A20, A17, Def11, Def12, Def13; ::_thesis: verum end; { p0 where p0 is Point of (TOP-REAL 2) : ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } c= inside_of_triangle (p1,p2,p3) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p0 where p0 is Point of (TOP-REAL 2) : ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } or x in inside_of_triangle (p1,p2,p3) ) assume x in { p0 where p0 is Point of (TOP-REAL 2) : ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } ; ::_thesis: x in inside_of_triangle (p1,p2,p3) then consider p0 being Point of (TOP-REAL 2) such that A21: x = p0 and A22: ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) ; A23: x in closed_inside_of_triangle (p1,p2,p3) by A21, A22; set i01 = tricord1 (p1,p2,p3,p0); set i02 = tricord2 (p1,p2,p3,p0); set i03 = tricord3 (p1,p2,p3,p0); consider a01, a02, a03 being Real such that A24: ( 0 < a01 & 0 < a02 & 0 < a03 ) and A25: ( (a01 + a02) + a03 = 1 & p0 = ((a01 * p1) + (a02 * p2)) + (a03 * p3) ) by A22; p0 in the carrier of (TOP-REAL 2) ; then p0 in REAL 2 by EUCLID:22; then A26: p0 in plane (p1,p2,p3) by A1, Th54; then A27: a03 = tricord3 (p1,p2,p3,p0) by A1, A25, Def13; ( a01 = tricord1 (p1,p2,p3,p0) & a02 = tricord2 (p1,p2,p3,p0) ) by A1, A25, A26, Def11, Def12; then not x in Triangle (p1,p2,p3) by A1, A21, A24, A27, Th56; hence x in inside_of_triangle (p1,p2,p3) by A23, XBOOLE_0:def_5; ::_thesis: verum end; then A28: inside_of_triangle (p1,p2,p3) = { p0 where p0 is Point of (TOP-REAL 2) : ex a1, a2, a3 being Real st ( 0 < a1 & 0 < a2 & 0 < a3 & (a1 + a2) + a3 = 1 & p0 = ((a1 * p1) + (a2 * p2)) + (a3 * p3) ) } by A2, XBOOLE_0:def_10; thus ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 implies p in inside_of_triangle (p1,p2,p3) ) ::_thesis: verum proof set i1 = tricord1 (p1,p2,p3,p); set i2 = tricord2 (p1,p2,p3,p); set i3 = tricord3 (p1,p2,p3,p); assume A29: ( tricord1 (p1,p2,p3,p) > 0 & tricord2 (p1,p2,p3,p) > 0 & tricord3 (p1,p2,p3,p) > 0 ) ; ::_thesis: p in inside_of_triangle (p1,p2,p3) p in the carrier of (TOP-REAL 2) ; then p in REAL 2 by EUCLID:22; then A30: p in plane (p1,p2,p3) by A1, Th54; then consider a2, a3 being Real such that A31: ( ((tricord1 (p1,p2,p3,p)) + a2) + a3 = 1 & p = (((tricord1 (p1,p2,p3,p)) * p1) + (a2 * p2)) + (a3 * p3) ) by A1, Def11; ( a2 = tricord2 (p1,p2,p3,p) & a3 = tricord3 (p1,p2,p3,p) ) by A1, A30, A31, Def12, Def13; hence p in inside_of_triangle (p1,p2,p3) by A28, A29, A31; ::_thesis: verum end; end; theorem :: EUCLID_3:59 for p1, p2, p3 being Point of (TOP-REAL 2) st p2 - p1,p3 - p1 are_lindependent2 holds not inside_of_triangle (p1,p2,p3) is empty proof let p1, p2, p3 be Point of (TOP-REAL 2); ::_thesis: ( p2 - p1,p3 - p1 are_lindependent2 implies not inside_of_triangle (p1,p2,p3) is empty ) assume A1: p2 - p1,p3 - p1 are_lindependent2 ; ::_thesis: not inside_of_triangle (p1,p2,p3) is empty set p0 = (((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3); set i01 = tricord1 (p1,p2,p3,((((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3))); set i02 = tricord2 (p1,p2,p3,((((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3))); set i03 = tricord3 (p1,p2,p3,((((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3))); (((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3) in the carrier of (TOP-REAL 2) ; then (((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3) in REAL 2 by EUCLID:22; then A2: ( ((1 / 3) + (1 / 3)) + (1 / 3) = 1 & (((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3) in plane (p1,p2,p3) ) by A1, Th54; then A3: 1 / 3 = tricord3 (p1,p2,p3,((((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3))) by A1, Def13; ( 1 / 3 = tricord1 (p1,p2,p3,((((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3))) & 1 / 3 = tricord2 (p1,p2,p3,((((1 / 3) * p1) + ((1 / 3) * p2)) + ((1 / 3) * p3))) ) by A1, A2, Def11, Def12; hence not inside_of_triangle (p1,p2,p3) is empty by A1, A3, Th58; ::_thesis: verum end;