:: FF_SIEC semantic presentation begin definition let X, Y be set ; assume A1: X misses Y ; func PTempty_f_net (X,Y) -> strict Pnet equals :Def1: :: FF_SIEC:def 1 PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #); correctness coherence PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #) is strict Pnet; proof set M = PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #); Flow PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #) c= [: the carrier of PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #), the carrier' of PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #):] \/ [: the carrier' of PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #), the carrier of PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #):] by XBOOLE_1:13; hence PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #) is strict Pnet by A1, NET_1:def_2; ::_thesis: verum end; end; :: deftheorem Def1 defines PTempty_f_net FF_SIEC:def_1_:_ for X, Y being set st X misses Y holds PTempty_f_net (X,Y) = PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #); definition let X be set ; func Tempty_f_net X -> strict Pnet equals :: FF_SIEC:def 2 PTempty_f_net (X,{}); correctness coherence PTempty_f_net (X,{}) is strict Pnet; ; func Pempty_f_net X -> strict Pnet equals :: FF_SIEC:def 3 PTempty_f_net ({},X); correctness coherence PTempty_f_net ({},X) is strict Pnet; ; end; :: deftheorem defines Tempty_f_net FF_SIEC:def_2_:_ for X being set holds Tempty_f_net X = PTempty_f_net (X,{}); :: deftheorem defines Pempty_f_net FF_SIEC:def_3_:_ for X being set holds Pempty_f_net X = PTempty_f_net ({},X); definition let x be set ; func Tsingle_f_net x -> strict Pnet equals :: FF_SIEC:def 4 PTempty_f_net ({},{x}); correctness coherence PTempty_f_net ({},{x}) is strict Pnet; ; func Psingle_f_net x -> strict Pnet equals :: FF_SIEC:def 5 PTempty_f_net ({x},{}); correctness coherence PTempty_f_net ({x},{}) is strict Pnet; ; end; :: deftheorem defines Tsingle_f_net FF_SIEC:def_4_:_ for x being set holds Tsingle_f_net x = PTempty_f_net ({},{x}); :: deftheorem defines Psingle_f_net FF_SIEC:def_5_:_ for x being set holds Psingle_f_net x = PTempty_f_net ({x},{}); definition func empty_f_net -> strict Pnet equals :: FF_SIEC:def 6 PTempty_f_net ({},{}); correctness coherence PTempty_f_net ({},{}) is strict Pnet; ; end; :: deftheorem defines empty_f_net FF_SIEC:def_6_:_ empty_f_net = PTempty_f_net ({},{}); theorem :: FF_SIEC:1 for X, Y being set st X misses Y holds ( the carrier of (PTempty_f_net (X,Y)) = X & the carrier' of (PTempty_f_net (X,Y)) = Y & Flow (PTempty_f_net (X,Y)) = {} ) proof let X, Y be set ; ::_thesis: ( X misses Y implies ( the carrier of (PTempty_f_net (X,Y)) = X & the carrier' of (PTempty_f_net (X,Y)) = Y & Flow (PTempty_f_net (X,Y)) = {} ) ) assume X misses Y ; ::_thesis: ( the carrier of (PTempty_f_net (X,Y)) = X & the carrier' of (PTempty_f_net (X,Y)) = Y & Flow (PTempty_f_net (X,Y)) = {} ) then PTempty_f_net (X,Y) = PT_net_Str(# X,Y,({} (X,Y)),({} (Y,X)) #) by Def1; hence ( the carrier of (PTempty_f_net (X,Y)) = X & the carrier' of (PTempty_f_net (X,Y)) = Y & Flow (PTempty_f_net (X,Y)) = {} ) ; ::_thesis: verum end; theorem :: FF_SIEC:2 for X being set holds ( the carrier of (Tempty_f_net X) = X & the carrier' of (Tempty_f_net X) = {} & Flow (Tempty_f_net X) = {} ) proof let X be set ; ::_thesis: ( the carrier of (Tempty_f_net X) = X & the carrier' of (Tempty_f_net X) = {} & Flow (Tempty_f_net X) = {} ) Tempty_f_net X = PT_net_Str(# X,{},({} (X,{})),({} ({},X)) #) by Def1, XBOOLE_1:65; hence ( the carrier of (Tempty_f_net X) = X & the carrier' of (Tempty_f_net X) = {} & Flow (Tempty_f_net X) = {} ) ; ::_thesis: verum end; theorem :: FF_SIEC:3 for X being set holds ( the carrier of (Pempty_f_net X) = {} & the carrier' of (Pempty_f_net X) = X & Flow (Pempty_f_net X) = {} ) proof let X be set ; ::_thesis: ( the carrier of (Pempty_f_net X) = {} & the carrier' of (Pempty_f_net X) = X & Flow (Pempty_f_net X) = {} ) {} misses X by XBOOLE_1:65; then Pempty_f_net X = PT_net_Str(# {},X,({} ({},X)),({} (X,{})) #) by Def1; hence ( the carrier of (Pempty_f_net X) = {} & the carrier' of (Pempty_f_net X) = X & Flow (Pempty_f_net X) = {} ) ; ::_thesis: verum end; theorem :: FF_SIEC:4 for x being set holds ( the carrier of (Tsingle_f_net x) = {} & the carrier' of (Tsingle_f_net x) = {x} & Flow (Tsingle_f_net x) = {} ) proof let x be set ; ::_thesis: ( the carrier of (Tsingle_f_net x) = {} & the carrier' of (Tsingle_f_net x) = {x} & Flow (Tsingle_f_net x) = {} ) {} misses {x} by XBOOLE_1:65; then Tsingle_f_net x = PT_net_Str(# {},{x},({} ({},{x})),({} ({x},{})) #) by Def1; hence ( the carrier of (Tsingle_f_net x) = {} & the carrier' of (Tsingle_f_net x) = {x} & Flow (Tsingle_f_net x) = {} ) ; ::_thesis: verum end; theorem :: FF_SIEC:5 for x being set holds ( the carrier of (Psingle_f_net x) = {x} & the carrier' of (Psingle_f_net x) = {} & Flow (Psingle_f_net x) = {} ) proof let x be set ; ::_thesis: ( the carrier of (Psingle_f_net x) = {x} & the carrier' of (Psingle_f_net x) = {} & Flow (Psingle_f_net x) = {} ) Psingle_f_net x = PT_net_Str(# {x},{},({} ({x},{})),({} ({},{x})) #) by Def1, XBOOLE_1:65; hence ( the carrier of (Psingle_f_net x) = {x} & the carrier' of (Psingle_f_net x) = {} & Flow (Psingle_f_net x) = {} ) ; ::_thesis: verum end; theorem :: FF_SIEC:6 ( the carrier of empty_f_net = {} & the carrier' of empty_f_net = {} & Flow empty_f_net = {} ) proof empty_f_net = PT_net_Str(# {},{},({} ({},{})),({} ({},{})) #) by Def1, XBOOLE_1:65; hence ( the carrier of empty_f_net = {} & the carrier' of empty_f_net = {} & Flow empty_f_net = {} ) ; ::_thesis: verum end; theorem Th7: :: FF_SIEC:7 for x, y being set for M being Pnet holds ( ( [x,y] in Flow M & x in the carrier' of M implies ( not x in the carrier of M & not y in the carrier' of M & y in the carrier of M ) ) & ( [x,y] in Flow M & y in the carrier' of M implies ( not y in the carrier of M & not x in the carrier' of M & x in the carrier of M ) ) & ( [x,y] in Flow M & x in the carrier of M implies ( not y in the carrier of M & not x in the carrier' of M & y in the carrier' of M ) ) & ( [x,y] in Flow M & y in the carrier of M implies ( not x in the carrier of M & not y in the carrier' of M & x in the carrier' of M ) ) ) proof let x, y be set ; ::_thesis: for M being Pnet holds ( ( [x,y] in Flow M & x in the carrier' of M implies ( not x in the carrier of M & not y in the carrier' of M & y in the carrier of M ) ) & ( [x,y] in Flow M & y in the carrier' of M implies ( not y in the carrier of M & not x in the carrier' of M & x in the carrier of M ) ) & ( [x,y] in Flow M & x in the carrier of M implies ( not y in the carrier of M & not x in the carrier' of M & y in the carrier' of M ) ) & ( [x,y] in Flow M & y in the carrier of M implies ( not x in the carrier of M & not y in the carrier' of M & x in the carrier' of M ) ) ) let M be Pnet; ::_thesis: ( ( [x,y] in Flow M & x in the carrier' of M implies ( not x in the carrier of M & not y in the carrier' of M & y in the carrier of M ) ) & ( [x,y] in Flow M & y in the carrier' of M implies ( not y in the carrier of M & not x in the carrier' of M & x in the carrier of M ) ) & ( [x,y] in Flow M & x in the carrier of M implies ( not y in the carrier of M & not x in the carrier' of M & y in the carrier' of M ) ) & ( [x,y] in Flow M & y in the carrier of M implies ( not x in the carrier of M & not y in the carrier' of M & x in the carrier' of M ) ) ) A1: the carrier of M misses the carrier' of M by NET_1:def_2; Flow M c= [: the carrier of M, the carrier' of M:] \/ [: the carrier' of M, the carrier of M:] by NET_1:def_2; hence ( ( [x,y] in Flow M & x in the carrier' of M implies ( not x in the carrier of M & not y in the carrier' of M & y in the carrier of M ) ) & ( [x,y] in Flow M & y in the carrier' of M implies ( not y in the carrier of M & not x in the carrier' of M & x in the carrier of M ) ) & ( [x,y] in Flow M & x in the carrier of M implies ( not y in the carrier of M & not x in the carrier' of M & y in the carrier' of M ) ) & ( [x,y] in Flow M & y in the carrier of M implies ( not x in the carrier of M & not y in the carrier' of M & x in the carrier' of M ) ) ) by A1, SYSREL:7; ::_thesis: verum end; theorem Th8: :: FF_SIEC:8 for M being Pnet holds ( Flow M c= [:(Elements M),(Elements M):] & (Flow M) ~ c= [:(Elements M),(Elements M):] ) proof let M be Pnet; ::_thesis: ( Flow M c= [:(Elements M),(Elements M):] & (Flow M) ~ c= [:(Elements M),(Elements M):] ) A1: the carrier of M c= Elements M by XBOOLE_1:7; A2: the carrier' of M c= Elements M by XBOOLE_1:7; then A3: [: the carrier of M, the carrier' of M:] c= [:(Elements M),(Elements M):] by A1, ZFMISC_1:96; [: the carrier' of M, the carrier of M:] c= [:(Elements M),(Elements M):] by A1, A2, ZFMISC_1:96; then A4: [: the carrier of M, the carrier' of M:] \/ [: the carrier' of M, the carrier of M:] c= [:(Elements M),(Elements M):] by A3, XBOOLE_1:8; Flow M c= [: the carrier of M, the carrier' of M:] \/ [: the carrier' of M, the carrier of M:] by NET_1:def_2; then Flow M c= [:(Elements M),(Elements M):] by A4, XBOOLE_1:1; hence ( Flow M c= [:(Elements M),(Elements M):] & (Flow M) ~ c= [:(Elements M),(Elements M):] ) by SYSREL:4; ::_thesis: verum end; theorem Th9: :: FF_SIEC:9 for M being Pnet holds ( rng ((Flow M) | the carrier' of M) c= the carrier of M & rng (((Flow M) ~) | the carrier' of M) c= the carrier of M & rng ((Flow M) | the carrier of M) c= the carrier' of M & rng (((Flow M) ~) | the carrier of M) c= the carrier' of M & rng (id the carrier' of M) c= the carrier' of M & dom (id the carrier' of M) c= the carrier' of M & rng (id the carrier of M) c= the carrier of M & dom (id the carrier of M) c= the carrier of M ) proof let M be Pnet; ::_thesis: ( rng ((Flow M) | the carrier' of M) c= the carrier of M & rng (((Flow M) ~) | the carrier' of M) c= the carrier of M & rng ((Flow M) | the carrier of M) c= the carrier' of M & rng (((Flow M) ~) | the carrier of M) c= the carrier' of M & rng (id the carrier' of M) c= the carrier' of M & dom (id the carrier' of M) c= the carrier' of M & rng (id the carrier of M) c= the carrier of M & dom (id the carrier of M) c= the carrier of M ) A1: for x being set st x in rng ((Flow M) | the carrier' of M) holds x in the carrier of M proof let x be set ; ::_thesis: ( x in rng ((Flow M) | the carrier' of M) implies x in the carrier of M ) assume x in rng ((Flow M) | the carrier' of M) ; ::_thesis: x in the carrier of M then consider y being set such that A2: [y,x] in (Flow M) | the carrier' of M by XTUPLE_0:def_13; A3: y in the carrier' of M by A2, RELAT_1:def_11; [y,x] in Flow M by A2, RELAT_1:def_11; hence x in the carrier of M by A3, Th7; ::_thesis: verum end; A4: for x being set st x in rng (((Flow M) ~) | the carrier' of M) holds x in the carrier of M proof let x be set ; ::_thesis: ( x in rng (((Flow M) ~) | the carrier' of M) implies x in the carrier of M ) assume x in rng (((Flow M) ~) | the carrier' of M) ; ::_thesis: x in the carrier of M then consider y being set such that A5: [y,x] in ((Flow M) ~) | the carrier' of M by XTUPLE_0:def_13; A6: [y,x] in (Flow M) ~ by A5, RELAT_1:def_11; A7: y in the carrier' of M by A5, RELAT_1:def_11; [x,y] in Flow M by A6, RELAT_1:def_7; hence x in the carrier of M by A7, Th7; ::_thesis: verum end; A8: for x being set st x in rng ((Flow M) | the carrier of M) holds x in the carrier' of M proof let x be set ; ::_thesis: ( x in rng ((Flow M) | the carrier of M) implies x in the carrier' of M ) assume x in rng ((Flow M) | the carrier of M) ; ::_thesis: x in the carrier' of M then consider y being set such that A9: [y,x] in (Flow M) | the carrier of M by XTUPLE_0:def_13; A10: y in the carrier of M by A9, RELAT_1:def_11; [y,x] in Flow M by A9, RELAT_1:def_11; hence x in the carrier' of M by A10, Th7; ::_thesis: verum end; for x being set st x in rng (((Flow M) ~) | the carrier of M) holds x in the carrier' of M proof let x be set ; ::_thesis: ( x in rng (((Flow M) ~) | the carrier of M) implies x in the carrier' of M ) assume x in rng (((Flow M) ~) | the carrier of M) ; ::_thesis: x in the carrier' of M then consider y being set such that A11: [y,x] in ((Flow M) ~) | the carrier of M by XTUPLE_0:def_13; A12: [y,x] in (Flow M) ~ by A11, RELAT_1:def_11; A13: y in the carrier of M by A11, RELAT_1:def_11; [x,y] in Flow M by A12, RELAT_1:def_7; hence x in the carrier' of M by A13, Th7; ::_thesis: verum end; hence ( rng ((Flow M) | the carrier' of M) c= the carrier of M & rng (((Flow M) ~) | the carrier' of M) c= the carrier of M & rng ((Flow M) | the carrier of M) c= the carrier' of M & rng (((Flow M) ~) | the carrier of M) c= the carrier' of M & rng (id the carrier' of M) c= the carrier' of M & dom (id the carrier' of M) c= the carrier' of M & rng (id the carrier of M) c= the carrier of M & dom (id the carrier of M) c= the carrier of M ) by A1, A4, A8, TARSKI:def_3; ::_thesis: verum end; Lm1: for A, B, C, D being set st B misses D & A c= B & C c= D holds A misses C proof let A, B, C, D be set ; ::_thesis: ( B misses D & A c= B & C c= D implies A misses C ) assume that A1: B misses D and A2: A c= B and A3: C c= D ; ::_thesis: A misses C assume A meets C ; ::_thesis: contradiction then A4: ex x being set st x in A /\ C by XBOOLE_0:4; A /\ C c= B /\ D by A2, A3, XBOOLE_1:27; hence contradiction by A1, A4, XBOOLE_0:4; ::_thesis: verum end; theorem Th10: :: FF_SIEC:10 for M being Pnet holds ( rng ((Flow M) | the carrier' of M) misses dom ((Flow M) | the carrier' of M) & rng ((Flow M) | the carrier' of M) misses dom (((Flow M) ~) | the carrier' of M) & rng ((Flow M) | the carrier' of M) misses dom (id the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom ((Flow M) | the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom (((Flow M) ~) | the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom (id the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng ((Flow M) | the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng (((Flow M) ~) | the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng (id the carrier of M) & dom (((Flow M) ~) | the carrier' of M) misses rng ((Flow M) | the carrier' of M) & dom (((Flow M) ~) | the carrier' of M) misses rng (((Flow M) ~) | the carrier' of M) & dom (((Flow M) ~) | the carrier' of M) misses rng (id the carrier of M) & rng ((Flow M) | the carrier of M) misses dom ((Flow M) | the carrier of M) & rng ((Flow M) | the carrier of M) misses dom (((Flow M) ~) | the carrier of M) & rng ((Flow M) | the carrier of M) misses dom (id the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom ((Flow M) | the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom (((Flow M) ~) | the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom (id the carrier of M) & dom ((Flow M) | the carrier of M) misses rng ((Flow M) | the carrier of M) & dom ((Flow M) | the carrier of M) misses rng (((Flow M) ~) | the carrier of M) & dom ((Flow M) | the carrier of M) misses rng (id the carrier' of M) & dom (((Flow M) ~) | the carrier of M) misses rng ((Flow M) | the carrier of M) & dom (((Flow M) ~) | the carrier of M) misses rng (((Flow M) ~) | the carrier of M) & dom (((Flow M) ~) | the carrier of M) misses rng (id the carrier' of M) ) proof let M be Pnet; ::_thesis: ( rng ((Flow M) | the carrier' of M) misses dom ((Flow M) | the carrier' of M) & rng ((Flow M) | the carrier' of M) misses dom (((Flow M) ~) | the carrier' of M) & rng ((Flow M) | the carrier' of M) misses dom (id the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom ((Flow M) | the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom (((Flow M) ~) | the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom (id the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng ((Flow M) | the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng (((Flow M) ~) | the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng (id the carrier of M) & dom (((Flow M) ~) | the carrier' of M) misses rng ((Flow M) | the carrier' of M) & dom (((Flow M) ~) | the carrier' of M) misses rng (((Flow M) ~) | the carrier' of M) & dom (((Flow M) ~) | the carrier' of M) misses rng (id the carrier of M) & rng ((Flow M) | the carrier of M) misses dom ((Flow M) | the carrier of M) & rng ((Flow M) | the carrier of M) misses dom (((Flow M) ~) | the carrier of M) & rng ((Flow M) | the carrier of M) misses dom (id the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom ((Flow M) | the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom (((Flow M) ~) | the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom (id the carrier of M) & dom ((Flow M) | the carrier of M) misses rng ((Flow M) | the carrier of M) & dom ((Flow M) | the carrier of M) misses rng (((Flow M) ~) | the carrier of M) & dom ((Flow M) | the carrier of M) misses rng (id the carrier' of M) & dom (((Flow M) ~) | the carrier of M) misses rng ((Flow M) | the carrier of M) & dom (((Flow M) ~) | the carrier of M) misses rng (((Flow M) ~) | the carrier of M) & dom (((Flow M) ~) | the carrier of M) misses rng (id the carrier' of M) ) set R = (Flow M) | the carrier' of M; set S = ((Flow M) ~) | the carrier' of M; set T = id the carrier' of M; set R1 = (Flow M) | the carrier of M; set S1 = ((Flow M) ~) | the carrier of M; set T1 = id the carrier of M; A1: dom ((Flow M) | the carrier' of M) c= the carrier' of M by RELAT_1:58; A2: rng ((Flow M) | the carrier' of M) c= the carrier of M by Th9; A3: dom (((Flow M) ~) | the carrier' of M) c= the carrier' of M by RELAT_1:58; A4: rng (((Flow M) ~) | the carrier' of M) c= the carrier of M by Th9; A5: dom ((Flow M) | the carrier of M) c= the carrier of M by RELAT_1:58; A6: rng ((Flow M) | the carrier of M) c= the carrier' of M by Th9; A7: dom (((Flow M) ~) | the carrier of M) c= the carrier of M by RELAT_1:58; A8: rng (((Flow M) ~) | the carrier of M) c= the carrier' of M by Th9; the carrier of M misses the carrier' of M by NET_1:def_2; hence ( rng ((Flow M) | the carrier' of M) misses dom ((Flow M) | the carrier' of M) & rng ((Flow M) | the carrier' of M) misses dom (((Flow M) ~) | the carrier' of M) & rng ((Flow M) | the carrier' of M) misses dom (id the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom ((Flow M) | the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom (((Flow M) ~) | the carrier' of M) & rng (((Flow M) ~) | the carrier' of M) misses dom (id the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng ((Flow M) | the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng (((Flow M) ~) | the carrier' of M) & dom ((Flow M) | the carrier' of M) misses rng (id the carrier of M) & dom (((Flow M) ~) | the carrier' of M) misses rng ((Flow M) | the carrier' of M) & dom (((Flow M) ~) | the carrier' of M) misses rng (((Flow M) ~) | the carrier' of M) & dom (((Flow M) ~) | the carrier' of M) misses rng (id the carrier of M) & rng ((Flow M) | the carrier of M) misses dom ((Flow M) | the carrier of M) & rng ((Flow M) | the carrier of M) misses dom (((Flow M) ~) | the carrier of M) & rng ((Flow M) | the carrier of M) misses dom (id the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom ((Flow M) | the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom (((Flow M) ~) | the carrier of M) & rng (((Flow M) ~) | the carrier of M) misses dom (id the carrier of M) & dom ((Flow M) | the carrier of M) misses rng ((Flow M) | the carrier of M) & dom ((Flow M) | the carrier of M) misses rng (((Flow M) ~) | the carrier of M) & dom ((Flow M) | the carrier of M) misses rng (id the carrier' of M) & dom (((Flow M) ~) | the carrier of M) misses rng ((Flow M) | the carrier of M) & dom (((Flow M) ~) | the carrier of M) misses rng (((Flow M) ~) | the carrier of M) & dom (((Flow M) ~) | the carrier of M) misses rng (id the carrier' of M) ) by A1, A2, A3, A4, A5, A6, A7, A8, Lm1; ::_thesis: verum end; theorem Th11: :: FF_SIEC:11 for M being Pnet holds ( ((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M) = {} & ((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M) = {} & ((Flow M) | the carrier of M) * ((Flow M) | the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M) = {} & ((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M) = {} ) proof let M be Pnet; ::_thesis: ( ((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M) = {} & ((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M) = {} & ((Flow M) | the carrier of M) * ((Flow M) | the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M) = {} & ((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M) = {} ) A1: rng ((Flow M) | the carrier' of M) misses dom ((Flow M) | the carrier' of M) by Th10; A2: rng (((Flow M) ~) | the carrier' of M) misses dom (((Flow M) ~) | the carrier' of M) by Th10; A3: rng ((Flow M) | the carrier' of M) misses dom (((Flow M) ~) | the carrier' of M) by Th10; A4: rng (((Flow M) ~) | the carrier' of M) misses dom ((Flow M) | the carrier' of M) by Th10; A5: rng ((Flow M) | the carrier of M) misses dom ((Flow M) | the carrier of M) by Th10; A6: rng (((Flow M) ~) | the carrier of M) misses dom (((Flow M) ~) | the carrier of M) by Th10; A7: rng ((Flow M) | the carrier of M) misses dom (((Flow M) ~) | the carrier of M) by Th10; rng (((Flow M) ~) | the carrier of M) misses dom ((Flow M) | the carrier of M) by Th10; hence ( ((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M) = {} & ((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M) = {} & ((Flow M) | the carrier of M) * ((Flow M) | the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M) = {} & ((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M) = {} ) by A1, A2, A3, A4, A5, A6, A7, RELAT_1:44; ::_thesis: verum end; theorem Th12: :: FF_SIEC:12 for M being Pnet holds ( ((Flow M) | the carrier' of M) * (id the carrier of M) = (Flow M) | the carrier' of M & (((Flow M) ~) | the carrier' of M) * (id the carrier of M) = ((Flow M) ~) | the carrier' of M & (id the carrier' of M) * ((Flow M) | the carrier' of M) = (Flow M) | the carrier' of M & (id the carrier' of M) * (((Flow M) ~) | the carrier' of M) = ((Flow M) ~) | the carrier' of M & ((Flow M) | the carrier of M) * (id the carrier' of M) = (Flow M) | the carrier of M & (((Flow M) ~) | the carrier of M) * (id the carrier' of M) = ((Flow M) ~) | the carrier of M & (id the carrier of M) * ((Flow M) | the carrier of M) = (Flow M) | the carrier of M & (id the carrier of M) * (((Flow M) ~) | the carrier of M) = ((Flow M) ~) | the carrier of M & ((Flow M) | the carrier of M) * (id the carrier' of M) = (Flow M) | the carrier of M & (((Flow M) ~) | the carrier of M) * (id the carrier' of M) = ((Flow M) ~) | the carrier of M & (id the carrier' of M) * ((Flow M) | the carrier of M) = {} & (id the carrier' of M) * (((Flow M) ~) | the carrier of M) = {} & ((Flow M) | the carrier of M) * (id the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * (id the carrier of M) = {} & (id the carrier of M) * ((Flow M) | the carrier' of M) = {} & (id the carrier of M) * (((Flow M) ~) | the carrier' of M) = {} & ((Flow M) | the carrier' of M) * (id the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * (id the carrier' of M) = {} ) proof let M be Pnet; ::_thesis: ( ((Flow M) | the carrier' of M) * (id the carrier of M) = (Flow M) | the carrier' of M & (((Flow M) ~) | the carrier' of M) * (id the carrier of M) = ((Flow M) ~) | the carrier' of M & (id the carrier' of M) * ((Flow M) | the carrier' of M) = (Flow M) | the carrier' of M & (id the carrier' of M) * (((Flow M) ~) | the carrier' of M) = ((Flow M) ~) | the carrier' of M & ((Flow M) | the carrier of M) * (id the carrier' of M) = (Flow M) | the carrier of M & (((Flow M) ~) | the carrier of M) * (id the carrier' of M) = ((Flow M) ~) | the carrier of M & (id the carrier of M) * ((Flow M) | the carrier of M) = (Flow M) | the carrier of M & (id the carrier of M) * (((Flow M) ~) | the carrier of M) = ((Flow M) ~) | the carrier of M & ((Flow M) | the carrier of M) * (id the carrier' of M) = (Flow M) | the carrier of M & (((Flow M) ~) | the carrier of M) * (id the carrier' of M) = ((Flow M) ~) | the carrier of M & (id the carrier' of M) * ((Flow M) | the carrier of M) = {} & (id the carrier' of M) * (((Flow M) ~) | the carrier of M) = {} & ((Flow M) | the carrier of M) * (id the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * (id the carrier of M) = {} & (id the carrier of M) * ((Flow M) | the carrier' of M) = {} & (id the carrier of M) * (((Flow M) ~) | the carrier' of M) = {} & ((Flow M) | the carrier' of M) * (id the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * (id the carrier' of M) = {} ) A1: rng ((Flow M) | the carrier' of M) c= the carrier of M by Th9; A2: rng (((Flow M) ~) | the carrier' of M) c= the carrier of M by Th9; A3: rng ((Flow M) | the carrier of M) c= the carrier' of M by Th9; A4: rng (((Flow M) ~) | the carrier of M) c= the carrier' of M by Th9; A5: dom ((Flow M) | the carrier of M) misses rng (id the carrier' of M) by Th10; A6: dom (((Flow M) ~) | the carrier of M) misses rng (id the carrier' of M) by Th10; A7: rng ((Flow M) | the carrier of M) misses dom (id the carrier of M) by Th10; A8: rng (((Flow M) ~) | the carrier of M) misses dom (id the carrier of M) by Th10; A9: rng (id the carrier of M) misses dom ((Flow M) | the carrier' of M) by Th10; A10: rng (id the carrier of M) misses dom (((Flow M) ~) | the carrier' of M) by Th10; A11: rng ((Flow M) | the carrier' of M) misses dom (id the carrier' of M) by Th10; rng (((Flow M) ~) | the carrier' of M) misses dom (id the carrier' of M) by Th10; hence ( ((Flow M) | the carrier' of M) * (id the carrier of M) = (Flow M) | the carrier' of M & (((Flow M) ~) | the carrier' of M) * (id the carrier of M) = ((Flow M) ~) | the carrier' of M & (id the carrier' of M) * ((Flow M) | the carrier' of M) = (Flow M) | the carrier' of M & (id the carrier' of M) * (((Flow M) ~) | the carrier' of M) = ((Flow M) ~) | the carrier' of M & ((Flow M) | the carrier of M) * (id the carrier' of M) = (Flow M) | the carrier of M & (((Flow M) ~) | the carrier of M) * (id the carrier' of M) = ((Flow M) ~) | the carrier of M & (id the carrier of M) * ((Flow M) | the carrier of M) = (Flow M) | the carrier of M & (id the carrier of M) * (((Flow M) ~) | the carrier of M) = ((Flow M) ~) | the carrier of M & ((Flow M) | the carrier of M) * (id the carrier' of M) = (Flow M) | the carrier of M & (((Flow M) ~) | the carrier of M) * (id the carrier' of M) = ((Flow M) ~) | the carrier of M & (id the carrier' of M) * ((Flow M) | the carrier of M) = {} & (id the carrier' of M) * (((Flow M) ~) | the carrier of M) = {} & ((Flow M) | the carrier of M) * (id the carrier of M) = {} & (((Flow M) ~) | the carrier of M) * (id the carrier of M) = {} & (id the carrier of M) * ((Flow M) | the carrier' of M) = {} & (id the carrier of M) * (((Flow M) ~) | the carrier' of M) = {} & ((Flow M) | the carrier' of M) * (id the carrier' of M) = {} & (((Flow M) ~) | the carrier' of M) * (id the carrier' of M) = {} ) by A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, RELAT_1:44, RELAT_1:51, RELAT_1:53, RELAT_1:58; ::_thesis: verum end; theorem Th13: :: FF_SIEC:13 for M being Pnet holds ( ((Flow M) ~) | the carrier' of M misses id (Elements M) & (Flow M) | the carrier' of M misses id (Elements M) & ((Flow M) ~) | the carrier of M misses id (Elements M) & (Flow M) | the carrier of M misses id (Elements M) ) proof let M be Pnet; ::_thesis: ( ((Flow M) ~) | the carrier' of M misses id (Elements M) & (Flow M) | the carrier' of M misses id (Elements M) & ((Flow M) ~) | the carrier of M misses id (Elements M) & (Flow M) | the carrier of M misses id (Elements M) ) set T = id (Elements M); thus ((Flow M) ~) | the carrier' of M misses id (Elements M) ::_thesis: ( (Flow M) | the carrier' of M misses id (Elements M) & ((Flow M) ~) | the carrier of M misses id (Elements M) & (Flow M) | the carrier of M misses id (Elements M) ) proof set R = ((Flow M) ~) | the carrier' of M; for x, y being set holds not [x,y] in (((Flow M) ~) | the carrier' of M) /\ (id (Elements M)) proof let x, y be set ; ::_thesis: not [x,y] in (((Flow M) ~) | the carrier' of M) /\ (id (Elements M)) assume A1: [x,y] in (((Flow M) ~) | the carrier' of M) /\ (id (Elements M)) ; ::_thesis: contradiction then A2: [x,y] in ((Flow M) ~) | the carrier' of M by XBOOLE_0:def_4; A3: [x,y] in id (Elements M) by A1, XBOOLE_0:def_4; A4: [x,y] in (Flow M) ~ by A2, RELAT_1:def_11; A5: x in the carrier' of M by A2, RELAT_1:def_11; [y,x] in Flow M by A4, RELAT_1:def_7; then x <> y by A5, Th7; hence contradiction by A3, RELAT_1:def_10; ::_thesis: verum end; then (((Flow M) ~) | the carrier' of M) /\ (id (Elements M)) = {} by RELAT_1:37; hence ((Flow M) ~) | the carrier' of M misses id (Elements M) by XBOOLE_0:def_7; ::_thesis: verum end; thus (Flow M) | the carrier' of M misses id (Elements M) ::_thesis: ( ((Flow M) ~) | the carrier of M misses id (Elements M) & (Flow M) | the carrier of M misses id (Elements M) ) proof set R = (Flow M) | the carrier' of M; for x, y being set holds not [x,y] in ((Flow M) | the carrier' of M) /\ (id (Elements M)) proof let x, y be set ; ::_thesis: not [x,y] in ((Flow M) | the carrier' of M) /\ (id (Elements M)) assume A6: [x,y] in ((Flow M) | the carrier' of M) /\ (id (Elements M)) ; ::_thesis: contradiction then A7: [x,y] in (Flow M) | the carrier' of M by XBOOLE_0:def_4; A8: [x,y] in id (Elements M) by A6, XBOOLE_0:def_4; A9: x in the carrier' of M by A7, RELAT_1:def_11; [x,y] in Flow M by A7, RELAT_1:def_11; then x <> y by A9, Th7; hence contradiction by A8, RELAT_1:def_10; ::_thesis: verum end; then ((Flow M) | the carrier' of M) /\ (id (Elements M)) = {} by RELAT_1:37; hence (Flow M) | the carrier' of M misses id (Elements M) by XBOOLE_0:def_7; ::_thesis: verum end; thus ((Flow M) ~) | the carrier of M misses id (Elements M) ::_thesis: (Flow M) | the carrier of M misses id (Elements M) proof set R = ((Flow M) ~) | the carrier of M; for x, y being set holds not [x,y] in (((Flow M) ~) | the carrier of M) /\ (id (Elements M)) proof let x, y be set ; ::_thesis: not [x,y] in (((Flow M) ~) | the carrier of M) /\ (id (Elements M)) assume A10: [x,y] in (((Flow M) ~) | the carrier of M) /\ (id (Elements M)) ; ::_thesis: contradiction then A11: [x,y] in ((Flow M) ~) | the carrier of M by XBOOLE_0:def_4; A12: [x,y] in id (Elements M) by A10, XBOOLE_0:def_4; A13: [x,y] in (Flow M) ~ by A11, RELAT_1:def_11; A14: x in the carrier of M by A11, RELAT_1:def_11; [y,x] in Flow M by A13, RELAT_1:def_7; then x <> y by A14, Th7; hence contradiction by A12, RELAT_1:def_10; ::_thesis: verum end; then (((Flow M) ~) | the carrier of M) /\ (id (Elements M)) = {} by RELAT_1:37; hence ((Flow M) ~) | the carrier of M misses id (Elements M) by XBOOLE_0:def_7; ::_thesis: verum end; set R = (Flow M) | the carrier of M; for x, y being set holds not [x,y] in ((Flow M) | the carrier of M) /\ (id (Elements M)) proof let x, y be set ; ::_thesis: not [x,y] in ((Flow M) | the carrier of M) /\ (id (Elements M)) assume A15: [x,y] in ((Flow M) | the carrier of M) /\ (id (Elements M)) ; ::_thesis: contradiction then A16: [x,y] in (Flow M) | the carrier of M by XBOOLE_0:def_4; A17: [x,y] in id (Elements M) by A15, XBOOLE_0:def_4; A18: x in the carrier of M by A16, RELAT_1:def_11; [x,y] in Flow M by A16, RELAT_1:def_11; then x <> y by A18, Th7; hence contradiction by A17, RELAT_1:def_10; ::_thesis: verum end; then ((Flow M) | the carrier of M) /\ (id (Elements M)) = {} by RELAT_1:37; hence (Flow M) | the carrier of M misses id (Elements M) by XBOOLE_0:def_7; ::_thesis: verum end; theorem Th14: :: FF_SIEC:14 for M being Pnet holds ( ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M & (((Flow M) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M & ((((Flow M) ~) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M & (((Flow M) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier of M & ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M & (((Flow M) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier of M & ((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M & (((Flow M) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M ) proof let M be Pnet; ::_thesis: ( ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M & (((Flow M) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M & ((((Flow M) ~) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M & (((Flow M) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier of M & ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M & (((Flow M) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier of M & ((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M & (((Flow M) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M ) A1: ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M proof set R = ((Flow M) ~) | the carrier' of M; set S = id the carrier of M; set T = id (Elements M); A2: id the carrier of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A3: ((Flow M) ~) | the carrier' of M misses id (Elements M) by Th13; ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((((Flow M) ~) | the carrier' of M) \ (id (Elements M))) \/ ((id the carrier of M) \ (id (Elements M))) by XBOOLE_1:42 .= ((((Flow M) ~) | the carrier' of M) \ (id (Elements M))) \/ {} by A2, XBOOLE_1:37 .= ((Flow M) ~) | the carrier' of M by A3, XBOOLE_1:83 ; hence ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M ; ::_thesis: verum end; A4: (((Flow M) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M proof set R = (Flow M) | the carrier' of M; set S = id the carrier of M; set T = id (Elements M); A5: id the carrier of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A6: (Flow M) | the carrier' of M misses id (Elements M) by Th13; (((Flow M) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = (((Flow M) | the carrier' of M) \ (id (Elements M))) \/ ((id the carrier of M) \ (id (Elements M))) by XBOOLE_1:42 .= (((Flow M) | the carrier' of M) \ (id (Elements M))) \/ {} by A5, XBOOLE_1:37 .= (Flow M) | the carrier' of M by A6, XBOOLE_1:83 ; hence (((Flow M) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M ; ::_thesis: verum end; A7: ((((Flow M) ~) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M proof set R = ((Flow M) ~) | the carrier of M; set S = id the carrier of M; set T = id (Elements M); A8: id the carrier of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A9: ((Flow M) ~) | the carrier of M misses id (Elements M) by Th13; ((((Flow M) ~) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((((Flow M) ~) | the carrier of M) \ (id (Elements M))) \/ ((id the carrier of M) \ (id (Elements M))) by XBOOLE_1:42 .= ((((Flow M) ~) | the carrier of M) \ (id (Elements M))) \/ {} by A8, XBOOLE_1:37 .= ((Flow M) ~) | the carrier of M by A9, XBOOLE_1:83 ; hence ((((Flow M) ~) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M ; ::_thesis: verum end; A10: (((Flow M) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier of M proof set R = (Flow M) | the carrier of M; set S = id the carrier of M; set T = id (Elements M); A11: id the carrier of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A12: (Flow M) | the carrier of M misses id (Elements M) by Th13; (((Flow M) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = (((Flow M) | the carrier of M) \ (id (Elements M))) \/ ((id the carrier of M) \ (id (Elements M))) by XBOOLE_1:42 .= (((Flow M) | the carrier of M) \ (id (Elements M))) \/ {} by A11, XBOOLE_1:37 .= (Flow M) | the carrier of M by A12, XBOOLE_1:83 ; hence (((Flow M) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier of M ; ::_thesis: verum end; A13: ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M proof set R = ((Flow M) ~) | the carrier of M; set S = id the carrier' of M; set T = id (Elements M); A14: id the carrier' of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A15: ((Flow M) ~) | the carrier of M misses id (Elements M) by Th13; ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((((Flow M) ~) | the carrier of M) \ (id (Elements M))) \/ ((id the carrier' of M) \ (id (Elements M))) by XBOOLE_1:42 .= ((((Flow M) ~) | the carrier of M) \ (id (Elements M))) \/ {} by A14, XBOOLE_1:37 .= ((Flow M) ~) | the carrier of M by A15, XBOOLE_1:83 ; hence ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M ; ::_thesis: verum end; A16: (((Flow M) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier of M proof set R = (Flow M) | the carrier of M; set S = id the carrier' of M; set T = id (Elements M); A17: id the carrier' of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A18: (Flow M) | the carrier of M misses id (Elements M) by Th13; (((Flow M) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (((Flow M) | the carrier of M) \ (id (Elements M))) \/ ((id the carrier' of M) \ (id (Elements M))) by XBOOLE_1:42 .= (((Flow M) | the carrier of M) \ (id (Elements M))) \/ {} by A17, XBOOLE_1:37 .= (Flow M) | the carrier of M by A18, XBOOLE_1:83 ; hence (((Flow M) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier of M ; ::_thesis: verum end; A19: ((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M proof set R = ((Flow M) ~) | the carrier' of M; set S = id the carrier' of M; set T = id (Elements M); A20: id the carrier' of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A21: ((Flow M) ~) | the carrier' of M misses id (Elements M) by Th13; ((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((((Flow M) ~) | the carrier' of M) \ (id (Elements M))) \/ ((id the carrier' of M) \ (id (Elements M))) by XBOOLE_1:42 .= ((((Flow M) ~) | the carrier' of M) \ (id (Elements M))) \/ {} by A20, XBOOLE_1:37 .= ((Flow M) ~) | the carrier' of M by A21, XBOOLE_1:83 ; hence ((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M ; ::_thesis: verum end; (((Flow M) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M proof set R = (Flow M) | the carrier' of M; set S = id the carrier' of M; set T = id (Elements M); A22: id the carrier' of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A23: (Flow M) | the carrier' of M misses id (Elements M) by Th13; (((Flow M) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (((Flow M) | the carrier' of M) \ (id (Elements M))) \/ ((id the carrier' of M) \ (id (Elements M))) by XBOOLE_1:42 .= (((Flow M) | the carrier' of M) \ (id (Elements M))) \/ {} by A22, XBOOLE_1:37 .= (Flow M) | the carrier' of M by A23, XBOOLE_1:83 ; hence (((Flow M) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M ; ::_thesis: verum end; hence ( ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M & (((Flow M) | the carrier' of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M & ((((Flow M) ~) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M & (((Flow M) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M)) = (Flow M) | the carrier of M & ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier of M & (((Flow M) | the carrier of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier of M & ((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = ((Flow M) ~) | the carrier' of M & (((Flow M) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M)) = (Flow M) | the carrier' of M ) by A1, A4, A7, A10, A13, A16, A19; ::_thesis: verum end; theorem Th15: :: FF_SIEC:15 for M being Pnet holds ( ((Flow M) | the carrier of M) ~ = ((Flow M) ~) | the carrier' of M & ((Flow M) | the carrier' of M) ~ = ((Flow M) ~) | the carrier of M ) proof let M be Pnet; ::_thesis: ( ((Flow M) | the carrier of M) ~ = ((Flow M) ~) | the carrier' of M & ((Flow M) | the carrier' of M) ~ = ((Flow M) ~) | the carrier of M ) set R = Flow M; set X = the carrier of M; set Y = the carrier' of M; for x, y being set st [x,y] in ((Flow M) | the carrier of M) ~ holds [x,y] in ((Flow M) ~) | the carrier' of M proof let x, y be set ; ::_thesis: ( [x,y] in ((Flow M) | the carrier of M) ~ implies [x,y] in ((Flow M) ~) | the carrier' of M ) assume [x,y] in ((Flow M) | the carrier of M) ~ ; ::_thesis: [x,y] in ((Flow M) ~) | the carrier' of M then A1: [y,x] in (Flow M) | the carrier of M by RELAT_1:def_7; then A2: [y,x] in Flow M by RELAT_1:def_11; A3: y in the carrier of M by A1, RELAT_1:def_11; A4: [x,y] in (Flow M) ~ by A2, RELAT_1:def_7; x in the carrier' of M by A2, A3, Th7; hence [x,y] in ((Flow M) ~) | the carrier' of M by A4, RELAT_1:def_11; ::_thesis: verum end; then A5: ((Flow M) | the carrier of M) ~ c= ((Flow M) ~) | the carrier' of M by RELAT_1:def_3; for x, y being set st [x,y] in ((Flow M) ~) | the carrier' of M holds [x,y] in ((Flow M) | the carrier of M) ~ proof let x, y be set ; ::_thesis: ( [x,y] in ((Flow M) ~) | the carrier' of M implies [x,y] in ((Flow M) | the carrier of M) ~ ) assume A6: [x,y] in ((Flow M) ~) | the carrier' of M ; ::_thesis: [x,y] in ((Flow M) | the carrier of M) ~ then [x,y] in (Flow M) ~ by RELAT_1:def_11; then A7: [y,x] in Flow M by RELAT_1:def_7; x in the carrier' of M by A6, RELAT_1:def_11; then y in the carrier of M by A7, Th7; then [y,x] in (Flow M) | the carrier of M by A7, RELAT_1:def_11; hence [x,y] in ((Flow M) | the carrier of M) ~ by RELAT_1:def_7; ::_thesis: verum end; then A8: ((Flow M) ~) | the carrier' of M c= ((Flow M) | the carrier of M) ~ by RELAT_1:def_3; for x, y being set st [x,y] in ((Flow M) | the carrier' of M) ~ holds [x,y] in ((Flow M) ~) | the carrier of M proof let x, y be set ; ::_thesis: ( [x,y] in ((Flow M) | the carrier' of M) ~ implies [x,y] in ((Flow M) ~) | the carrier of M ) assume [x,y] in ((Flow M) | the carrier' of M) ~ ; ::_thesis: [x,y] in ((Flow M) ~) | the carrier of M then A9: [y,x] in (Flow M) | the carrier' of M by RELAT_1:def_7; then A10: [y,x] in Flow M by RELAT_1:def_11; A11: y in the carrier' of M by A9, RELAT_1:def_11; A12: [x,y] in (Flow M) ~ by A10, RELAT_1:def_7; x in the carrier of M by A10, A11, Th7; hence [x,y] in ((Flow M) ~) | the carrier of M by A12, RELAT_1:def_11; ::_thesis: verum end; then A13: ((Flow M) | the carrier' of M) ~ c= ((Flow M) ~) | the carrier of M by RELAT_1:def_3; for x, y being set st [x,y] in ((Flow M) ~) | the carrier of M holds [x,y] in ((Flow M) | the carrier' of M) ~ proof let x, y be set ; ::_thesis: ( [x,y] in ((Flow M) ~) | the carrier of M implies [x,y] in ((Flow M) | the carrier' of M) ~ ) assume A14: [x,y] in ((Flow M) ~) | the carrier of M ; ::_thesis: [x,y] in ((Flow M) | the carrier' of M) ~ then [x,y] in (Flow M) ~ by RELAT_1:def_11; then A15: [y,x] in Flow M by RELAT_1:def_7; x in the carrier of M by A14, RELAT_1:def_11; then y in the carrier' of M by A15, Th7; then [y,x] in (Flow M) | the carrier' of M by A15, RELAT_1:def_11; hence [x,y] in ((Flow M) | the carrier' of M) ~ by RELAT_1:def_7; ::_thesis: verum end; then ((Flow M) ~) | the carrier of M c= ((Flow M) | the carrier' of M) ~ by RELAT_1:def_3; hence ( ((Flow M) | the carrier of M) ~ = ((Flow M) ~) | the carrier' of M & ((Flow M) | the carrier' of M) ~ = ((Flow M) ~) | the carrier of M ) by A5, A8, A13, XBOOLE_0:def_10; ::_thesis: verum end; theorem Th16: :: FF_SIEC:16 for M being Pnet holds ( ((Flow M) | the carrier of M) \/ ((Flow M) | the carrier' of M) = Flow M & ((Flow M) | the carrier' of M) \/ ((Flow M) | the carrier of M) = Flow M & (((Flow M) | the carrier of M) ~) \/ (((Flow M) | the carrier' of M) ~) = (Flow M) ~ & (((Flow M) | the carrier' of M) ~) \/ (((Flow M) | the carrier of M) ~) = (Flow M) ~ ) proof let M be Pnet; ::_thesis: ( ((Flow M) | the carrier of M) \/ ((Flow M) | the carrier' of M) = Flow M & ((Flow M) | the carrier' of M) \/ ((Flow M) | the carrier of M) = Flow M & (((Flow M) | the carrier of M) ~) \/ (((Flow M) | the carrier' of M) ~) = (Flow M) ~ & (((Flow M) | the carrier' of M) ~) \/ (((Flow M) | the carrier of M) ~) = (Flow M) ~ ) set R = Flow M; Flow M c= [:(Elements M),(Elements M):] by Th8; then ((Flow M) | the carrier of M) \/ ((Flow M) | the carrier' of M) = Flow M by SYSREL:9; hence ( ((Flow M) | the carrier of M) \/ ((Flow M) | the carrier' of M) = Flow M & ((Flow M) | the carrier' of M) \/ ((Flow M) | the carrier of M) = Flow M & (((Flow M) | the carrier of M) ~) \/ (((Flow M) | the carrier' of M) ~) = (Flow M) ~ & (((Flow M) | the carrier' of M) ~) \/ (((Flow M) | the carrier of M) ~) = (Flow M) ~ ) by RELAT_1:23; ::_thesis: verum end; definition let M be Pnet; func f_enter M -> Relation equals :: FF_SIEC:def 7 (((Flow M) ~) | the carrier' of M) \/ (id the carrier of M); correctness coherence (((Flow M) ~) | the carrier' of M) \/ (id the carrier of M) is Relation; ; func f_exit M -> Relation equals :: FF_SIEC:def 8 ((Flow M) | the carrier' of M) \/ (id the carrier of M); correctness coherence ((Flow M) | the carrier' of M) \/ (id the carrier of M) is Relation; ; end; :: deftheorem defines f_enter FF_SIEC:def_7_:_ for M being Pnet holds f_enter M = (((Flow M) ~) | the carrier' of M) \/ (id the carrier of M); :: deftheorem defines f_exit FF_SIEC:def_8_:_ for M being Pnet holds f_exit M = ((Flow M) | the carrier' of M) \/ (id the carrier of M); theorem :: FF_SIEC:17 for M being Pnet holds ( f_exit M c= [:(Elements M),(Elements M):] & f_enter M c= [:(Elements M),(Elements M):] ) proof let M be Pnet; ::_thesis: ( f_exit M c= [:(Elements M),(Elements M):] & f_enter M c= [:(Elements M),(Elements M):] ) A1: id the carrier of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; id (Elements M) c= [:(Elements M),(Elements M):] by RELSET_1:13; then A2: id the carrier of M c= [:(Elements M),(Elements M):] by A1, XBOOLE_1:1; A3: (Flow M) | the carrier' of M c= Flow M by RELAT_1:59; Flow M c= [:(Elements M),(Elements M):] by Th8; then (Flow M) | the carrier' of M c= [:(Elements M),(Elements M):] by A3, XBOOLE_1:1; hence f_exit M c= [:(Elements M),(Elements M):] by A2, XBOOLE_1:8; ::_thesis: f_enter M c= [:(Elements M),(Elements M):] A4: id the carrier of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; id (Elements M) c= [:(Elements M),(Elements M):] by RELSET_1:13; then A5: id the carrier of M c= [:(Elements M),(Elements M):] by A4, XBOOLE_1:1; A6: ((Flow M) ~) | the carrier' of M c= (Flow M) ~ by RELAT_1:59; (Flow M) ~ c= [:(Elements M),(Elements M):] by Th8; then ((Flow M) ~) | the carrier' of M c= [:(Elements M),(Elements M):] by A6, XBOOLE_1:1; hence f_enter M c= [:(Elements M),(Elements M):] by A5, XBOOLE_1:8; ::_thesis: verum end; theorem :: FF_SIEC:18 for M being Pnet holds ( dom (f_exit M) c= Elements M & rng (f_exit M) c= Elements M & dom (f_enter M) c= Elements M & rng (f_enter M) c= Elements M ) proof let M be Pnet; ::_thesis: ( dom (f_exit M) c= Elements M & rng (f_exit M) c= Elements M & dom (f_enter M) c= Elements M & rng (f_enter M) c= Elements M ) A1: for x being set st x in dom (f_exit M) holds x in Elements M proof let x be set ; ::_thesis: ( x in dom (f_exit M) implies x in Elements M ) assume x in dom (f_exit M) ; ::_thesis: x in Elements M then x in (dom ((Flow M) | the carrier' of M)) \/ (dom (id the carrier of M)) by RELAT_1:1; then ( x in dom ((Flow M) | the carrier' of M) or x in dom (id the carrier of M) ) by XBOOLE_0:def_3; then ( x in the carrier' of M or x in the carrier of M ) by RELAT_1:57; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; A2: for x being set st x in rng (f_exit M) holds x in Elements M proof let x be set ; ::_thesis: ( x in rng (f_exit M) implies x in Elements M ) assume x in rng (f_exit M) ; ::_thesis: x in Elements M then A3: x in (rng ((Flow M) | the carrier' of M)) \/ (rng (id the carrier of M)) by RELAT_1:12; A4: ( x in rng ((Flow M) | the carrier' of M) implies x in Elements M ) proof assume x in rng ((Flow M) | the carrier' of M) ; ::_thesis: x in Elements M then consider y being set such that A5: [y,x] in (Flow M) | the carrier' of M by XTUPLE_0:def_13; A6: y in the carrier' of M by A5, RELAT_1:def_11; [y,x] in Flow M by A5, RELAT_1:def_11; then ( x in the carrier' of M or x in the carrier of M ) by A6, Th7; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; ( x in rng (id the carrier of M) implies x in Elements M ) proof assume x in rng (id the carrier of M) ; ::_thesis: x in Elements M then ( x in the carrier' of M or x in the carrier of M ) ; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; hence x in Elements M by A3, A4, XBOOLE_0:def_3; ::_thesis: verum end; A7: for x being set st x in dom (f_enter M) holds x in Elements M proof let x be set ; ::_thesis: ( x in dom (f_enter M) implies x in Elements M ) assume x in dom (f_enter M) ; ::_thesis: x in Elements M then x in (dom (((Flow M) ~) | the carrier' of M)) \/ (dom (id the carrier of M)) by RELAT_1:1; then ( x in dom (((Flow M) ~) | the carrier' of M) or x in dom (id the carrier of M) ) by XBOOLE_0:def_3; then ( x in the carrier' of M or x in the carrier of M ) by RELAT_1:57; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; for x being set st x in rng (f_enter M) holds x in Elements M proof let x be set ; ::_thesis: ( x in rng (f_enter M) implies x in Elements M ) assume x in rng (f_enter M) ; ::_thesis: x in Elements M then A8: x in (rng (((Flow M) ~) | the carrier' of M)) \/ (rng (id the carrier of M)) by RELAT_1:12; A9: ( x in rng (((Flow M) ~) | the carrier' of M) implies x in Elements M ) proof assume x in rng (((Flow M) ~) | the carrier' of M) ; ::_thesis: x in Elements M then consider y being set such that A10: [y,x] in ((Flow M) ~) | the carrier' of M by XTUPLE_0:def_13; A11: [y,x] in (Flow M) ~ by A10, RELAT_1:def_11; A12: y in the carrier' of M by A10, RELAT_1:def_11; [x,y] in Flow M by A11, RELAT_1:def_7; then ( x in the carrier' of M or x in the carrier of M ) by A12, Th7; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; ( x in rng (id the carrier of M) implies x in Elements M ) proof assume x in rng (id the carrier of M) ; ::_thesis: x in Elements M then ( x in the carrier' of M or x in the carrier of M ) ; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; hence x in Elements M by A8, A9, XBOOLE_0:def_3; ::_thesis: verum end; hence ( dom (f_exit M) c= Elements M & rng (f_exit M) c= Elements M & dom (f_enter M) c= Elements M & rng (f_enter M) c= Elements M ) by A1, A2, A7, TARSKI:def_3; ::_thesis: verum end; theorem :: FF_SIEC:19 for M being Pnet holds ( (f_exit M) * (f_exit M) = f_exit M & (f_exit M) * (f_enter M) = f_exit M & (f_enter M) * (f_enter M) = f_enter M & (f_enter M) * (f_exit M) = f_enter M ) proof let M be Pnet; ::_thesis: ( (f_exit M) * (f_exit M) = f_exit M & (f_exit M) * (f_enter M) = f_exit M & (f_enter M) * (f_enter M) = f_enter M & (f_enter M) * (f_exit M) = f_enter M ) A1: (f_exit M) * (f_exit M) = f_exit M proof set R = (Flow M) | the carrier' of M; set S = id the carrier of M; A2: (id the carrier of M) * ((Flow M) | the carrier' of M) = {} by Th12; A3: ((Flow M) | the carrier' of M) * (id the carrier of M) = (Flow M) | the carrier' of M by Th12; A4: (id the carrier of M) * (id the carrier of M) = id the carrier of M by SYSREL:12; (f_exit M) * (f_exit M) = (((Flow M) | the carrier' of M) * (((Flow M) | the carrier' of M) \/ (id the carrier of M))) \/ ((id the carrier of M) * (((Flow M) | the carrier' of M) \/ (id the carrier of M))) by SYSREL:6 .= ((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ (((Flow M) | the carrier' of M) * (id the carrier of M))) \/ ((id the carrier of M) * (((Flow M) | the carrier' of M) \/ (id the carrier of M))) by RELAT_1:32 .= ((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ (((Flow M) | the carrier' of M) * (id the carrier of M))) \/ (((id the carrier of M) * ((Flow M) | the carrier' of M)) \/ ((id the carrier of M) * (id the carrier of M))) by RELAT_1:32 .= ({} \/ ((Flow M) | the carrier' of M)) \/ ({} \/ (id the carrier of M)) by A2, A3, A4, Th11 .= f_exit M ; hence (f_exit M) * (f_exit M) = f_exit M ; ::_thesis: verum end; A5: (f_exit M) * (f_enter M) = f_exit M proof set R = (Flow M) | the carrier' of M; set S = id the carrier of M; set T = ((Flow M) ~) | the carrier' of M; A6: (id the carrier of M) * (((Flow M) ~) | the carrier' of M) = {} by Th12; A7: ((Flow M) | the carrier' of M) * (id the carrier of M) = (Flow M) | the carrier' of M by Th12; A8: (id the carrier of M) * (id the carrier of M) = id the carrier of M by SYSREL:12; (f_exit M) * (f_enter M) = (((Flow M) | the carrier' of M) * ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M))) \/ ((id the carrier of M) * ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M))) by SYSREL:6 .= ((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ (((Flow M) | the carrier' of M) * (id the carrier of M))) \/ ((id the carrier of M) * ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M))) by RELAT_1:32 .= ((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ (((Flow M) | the carrier' of M) * (id the carrier of M))) \/ (((id the carrier of M) * (((Flow M) ~) | the carrier' of M)) \/ ((id the carrier of M) * (id the carrier of M))) by RELAT_1:32 .= ({} \/ ((Flow M) | the carrier' of M)) \/ ({} \/ (id the carrier of M)) by A6, A7, A8, Th11 .= f_exit M ; hence (f_exit M) * (f_enter M) = f_exit M ; ::_thesis: verum end; A9: (f_enter M) * (f_enter M) = f_enter M proof set R = ((Flow M) ~) | the carrier' of M; set S = id the carrier of M; A10: (id the carrier of M) * (((Flow M) ~) | the carrier' of M) = {} by Th12; A11: (((Flow M) ~) | the carrier' of M) * (id the carrier of M) = ((Flow M) ~) | the carrier' of M by Th12; A12: (id the carrier of M) * (id the carrier of M) = id the carrier of M by SYSREL:12; (f_enter M) * (f_enter M) = ((((Flow M) ~) | the carrier' of M) * ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M))) \/ ((id the carrier of M) * ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M))) by SYSREL:6 .= (((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier of M))) \/ ((id the carrier of M) * ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M))) by RELAT_1:32 .= (((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier of M))) \/ (((id the carrier of M) * (((Flow M) ~) | the carrier' of M)) \/ ((id the carrier of M) * (id the carrier of M))) by RELAT_1:32 .= ({} \/ (((Flow M) ~) | the carrier' of M)) \/ ({} \/ (id the carrier of M)) by A10, A11, A12, Th11 .= f_enter M ; hence (f_enter M) * (f_enter M) = f_enter M ; ::_thesis: verum end; (f_enter M) * (f_exit M) = f_enter M proof set R = (Flow M) | the carrier' of M; set S = id the carrier of M; set T = ((Flow M) ~) | the carrier' of M; A13: (((Flow M) ~) | the carrier' of M) * (id the carrier of M) = ((Flow M) ~) | the carrier' of M by Th12; A14: (id the carrier of M) * ((Flow M) | the carrier' of M) = {} by Th12; A15: (id the carrier of M) * (id the carrier of M) = id the carrier of M by SYSREL:12; (f_enter M) * (f_exit M) = ((((Flow M) ~) | the carrier' of M) * (((Flow M) | the carrier' of M) \/ (id the carrier of M))) \/ ((id the carrier of M) * (((Flow M) | the carrier' of M) \/ (id the carrier of M))) by SYSREL:6 .= (((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier of M))) \/ ((id the carrier of M) * (((Flow M) | the carrier' of M) \/ (id the carrier of M))) by RELAT_1:32 .= (((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier of M))) \/ (((id the carrier of M) * ((Flow M) | the carrier' of M)) \/ ((id the carrier of M) * (id the carrier of M))) by RELAT_1:32 .= ({} \/ (((Flow M) ~) | the carrier' of M)) \/ ({} \/ (id the carrier of M)) by A13, A14, A15, Th11 .= f_enter M ; hence (f_enter M) * (f_exit M) = f_enter M ; ::_thesis: verum end; hence ( (f_exit M) * (f_exit M) = f_exit M & (f_exit M) * (f_enter M) = f_exit M & (f_enter M) * (f_enter M) = f_enter M & (f_enter M) * (f_exit M) = f_enter M ) by A1, A5, A9; ::_thesis: verum end; theorem :: FF_SIEC:20 for M being Pnet holds ( (f_exit M) * ((f_exit M) \ (id (Elements M))) = {} & (f_enter M) * ((f_enter M) \ (id (Elements M))) = {} ) proof let M be Pnet; ::_thesis: ( (f_exit M) * ((f_exit M) \ (id (Elements M))) = {} & (f_enter M) * ((f_enter M) \ (id (Elements M))) = {} ) set S = id the carrier of M; thus (f_exit M) * ((f_exit M) \ (id (Elements M))) = {} ::_thesis: (f_enter M) * ((f_enter M) \ (id (Elements M))) = {} proof set R = (Flow M) | the carrier' of M; A1: (id the carrier of M) * ((Flow M) | the carrier' of M) = {} by Th12; (f_exit M) * ((f_exit M) \ (id (Elements M))) = (((Flow M) | the carrier' of M) \/ (id the carrier of M)) * ((Flow M) | the carrier' of M) by Th14 .= (((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((id the carrier of M) * ((Flow M) | the carrier' of M)) by SYSREL:6 .= {} by A1, Th11 ; hence (f_exit M) * ((f_exit M) \ (id (Elements M))) = {} ; ::_thesis: verum end; set R = ((Flow M) ~) | the carrier' of M; A2: (id the carrier of M) * (((Flow M) ~) | the carrier' of M) = {} by Th12; (f_enter M) * ((f_enter M) \ (id (Elements M))) = ((((Flow M) ~) | the carrier' of M) \/ (id the carrier of M)) * (((Flow M) ~) | the carrier' of M) by Th14 .= ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier' of M)) by SYSREL:6 .= {} by A2, Th11 ; hence (f_enter M) * ((f_enter M) \ (id (Elements M))) = {} ; ::_thesis: verum end; definition let M be Pnet; func f_prox M -> Relation equals :: FF_SIEC:def 9 (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M); correctness coherence (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M) is Relation; ; func f_flow M -> Relation equals :: FF_SIEC:def 10 (Flow M) \/ (id (Elements M)); correctness coherence (Flow M) \/ (id (Elements M)) is Relation; ; end; :: deftheorem defines f_prox FF_SIEC:def_9_:_ for M being Pnet holds f_prox M = (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M); :: deftheorem defines f_flow FF_SIEC:def_10_:_ for M being Pnet holds f_flow M = (Flow M) \/ (id (Elements M)); theorem :: FF_SIEC:21 for M being Pnet holds ( (f_prox M) * (f_prox M) = f_prox M & ((f_prox M) \ (id (Elements M))) * (f_prox M) = {} & ((f_prox M) \/ ((f_prox M) ~)) \/ (id (Elements M)) = (f_flow M) \/ ((f_flow M) ~) ) proof let M be Pnet; ::_thesis: ( (f_prox M) * (f_prox M) = f_prox M & ((f_prox M) \ (id (Elements M))) * (f_prox M) = {} & ((f_prox M) \/ ((f_prox M) ~)) \/ (id (Elements M)) = (f_flow M) \/ ((f_flow M) ~) ) set R = (Flow M) | the carrier of M; set S = ((Flow M) ~) | the carrier of M; set T = id the carrier of M; set Q = id (Elements M); A1: ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) \ (id (Elements M)) = ((((Flow M) | the carrier of M) \/ (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) \/ (id the carrier of M))) \ (id (Elements M)) by XBOOLE_1:5 .= ((((Flow M) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M))) \/ (((((Flow M) ~) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M))) by XBOOLE_1:42 .= ((Flow M) | the carrier of M) \/ (((((Flow M) ~) | the carrier of M) \/ (id the carrier of M)) \ (id (Elements M))) by Th14 .= ((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M) by Th14 ; A2: (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) * (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) = ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) * ((Flow M) | the carrier of M)) \/ ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) * (((Flow M) ~) | the carrier of M)) by RELAT_1:32 .= ((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) * (((Flow M) ~) | the carrier of M)) by SYSREL:6 .= ((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) by SYSREL:6 .= ({} \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) by Th11 .= ({} \/ {}) \/ ((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) by Th11 .= ({} \/ {}) \/ ({} \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) by Th11 .= {} by Th11 ; A3: ((Flow M) | the carrier of M) \/ ((((Flow M) ~) | the carrier of M) ~) = ((Flow M) | the carrier of M) \/ ((((Flow M) | the carrier' of M) ~) ~) by Th15 .= Flow M by Th16 ; A4: (((Flow M) | the carrier of M) ~) \/ (((Flow M) ~) | the carrier of M) = (((Flow M) | the carrier of M) ~) \/ (((Flow M) | the carrier' of M) ~) by Th15 .= (Flow M) ~ by Th16 ; A5: ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) ~) \/ (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) = ((((Flow M) | the carrier of M) ~) \/ ((((Flow M) ~) | the carrier of M) ~)) \/ (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) by RELAT_1:23 .= ((((Flow M) | the carrier of M) ~) \/ ((((Flow M) ~) | the carrier of M) \/ ((Flow M) | the carrier of M))) \/ ((((Flow M) ~) | the carrier of M) ~) by XBOOLE_1:4 .= (((((Flow M) | the carrier of M) ~) \/ (((Flow M) ~) | the carrier of M)) \/ ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) ~) by XBOOLE_1:4 .= (Flow M) \/ ((Flow M) ~) by A3, A4, XBOOLE_1:4 ; A6: (f_prox M) \/ ((f_prox M) ~) = ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) ~) \/ ((id the carrier of M) ~)) by RELAT_1:23 .= (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) \/ ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) ~)) \/ ((id the carrier of M) ~) by XBOOLE_1:4 .= (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) ~)) \/ (id the carrier of M)) \/ ((id the carrier of M) ~) by XBOOLE_1:4 .= ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) ~)) \/ ((id the carrier of M) \/ ((id the carrier of M) ~)) by XBOOLE_1:4 .= ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) ~)) \/ ((id the carrier of M) \/ (id the carrier of M)) .= ((Flow M) \/ ((Flow M) ~)) \/ (id the carrier of M) by A5 ; A7: id the carrier of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A8: (f_prox M) * (f_prox M) = (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (id the carrier of M)) by RELAT_1:32 .= ((((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * ((Flow M) | the carrier of M)) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (((Flow M) ~) | the carrier of M))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (id the carrier of M)) by RELAT_1:32 .= ((((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) * ((Flow M) | the carrier of M)) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (((Flow M) ~) | the carrier of M))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (id the carrier of M)) by SYSREL:6 .= ((((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (((Flow M) ~) | the carrier of M))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (id the carrier of M)) by SYSREL:6 .= ((((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) * (((Flow M) ~) | the carrier of M)) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M)))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (id the carrier of M)) by SYSREL:6 .= ((((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M)))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (id the carrier of M)) * (id the carrier of M)) by SYSREL:6 .= ((((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M)))) \/ (((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) * (id the carrier of M)) \/ ((id the carrier of M) * (id the carrier of M))) by SYSREL:6 .= ((((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M)))) \/ (((((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ ((id the carrier of M) * (id the carrier of M))) by SYSREL:6 .= ((({} \/ ((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M))) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M)))) \/ (((((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ ((id the carrier of M) * (id the carrier of M))) by Th11 .= ((({} \/ {}) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M)))) \/ (((((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ ((id the carrier of M) * (id the carrier of M))) by Th11 .= ((({} \/ {}) \/ ((id the carrier of M) * ((Flow M) | the carrier of M))) \/ (({} \/ ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M))) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M)))) \/ (((((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ ((id the carrier of M) * (id the carrier of M))) by Th11 .= (((id the carrier of M) * ((Flow M) | the carrier of M)) \/ ({} \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M)))) \/ (((((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ ((id the carrier of M) * (id the carrier of M))) by Th11 .= (((Flow M) | the carrier of M) \/ ((id the carrier of M) * (((Flow M) ~) | the carrier of M))) \/ (((((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ ((id the carrier of M) * (id the carrier of M))) by Th12 .= (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (((((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ ((id the carrier of M) * (id the carrier of M))) by Th12 .= (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (((((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ (id the carrier of M)) by SYSREL:12 .= (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ (({} \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M))) \/ (id the carrier of M)) by Th12 .= (((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) \/ ({} \/ (id the carrier of M)) by Th12 .= f_prox M ; A9: ((f_prox M) \ (id (Elements M))) * (f_prox M) = {} \/ ((((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M)) * (id the carrier of M)) by A1, A2, RELAT_1:32 .= (((Flow M) | the carrier of M) * (id the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M)) by SYSREL:6 .= {} \/ ((((Flow M) ~) | the carrier of M) * (id the carrier of M)) by Th12 .= {} by Th12 ; ((f_prox M) \/ ((f_prox M) ~)) \/ (id (Elements M)) = ((Flow M) \/ ((Flow M) ~)) \/ ((id the carrier of M) \/ (id (Elements M))) by A6, XBOOLE_1:4 .= ((Flow M) \/ ((Flow M) ~)) \/ (id (Elements M)) by A7, XBOOLE_1:12 .= ((Flow M) \/ (id (Elements M))) \/ (((Flow M) ~) \/ (id (Elements M))) by XBOOLE_1:5 .= ((Flow M) \/ (id (Elements M))) \/ (((Flow M) ~) \/ ((id (Elements M)) ~)) .= (f_flow M) \/ ((f_flow M) ~) by RELAT_1:23 ; hence ( (f_prox M) * (f_prox M) = f_prox M & ((f_prox M) \ (id (Elements M))) * (f_prox M) = {} & ((f_prox M) \/ ((f_prox M) ~)) \/ (id (Elements M)) = (f_flow M) \/ ((f_flow M) ~) ) by A8, A9; ::_thesis: verum end; definition let M be Pnet; func f_places M -> set equals :: FF_SIEC:def 11 the carrier of M; correctness coherence the carrier of M is set ; ; func f_transitions M -> set equals :: FF_SIEC:def 12 the carrier' of M; correctness coherence the carrier' of M is set ; ; func f_pre M -> Relation equals :: FF_SIEC:def 13 (Flow M) | the carrier' of M; correctness coherence (Flow M) | the carrier' of M is Relation; ; func f_post M -> Relation equals :: FF_SIEC:def 14 ((Flow M) ~) | the carrier' of M; correctness coherence ((Flow M) ~) | the carrier' of M is Relation; ; end; :: deftheorem defines f_places FF_SIEC:def_11_:_ for M being Pnet holds f_places M = the carrier of M; :: deftheorem defines f_transitions FF_SIEC:def_12_:_ for M being Pnet holds f_transitions M = the carrier' of M; :: deftheorem defines f_pre FF_SIEC:def_13_:_ for M being Pnet holds f_pre M = (Flow M) | the carrier' of M; :: deftheorem defines f_post FF_SIEC:def_14_:_ for M being Pnet holds f_post M = ((Flow M) ~) | the carrier' of M; theorem :: FF_SIEC:22 for M being Pnet holds ( f_pre M c= [:(f_transitions M),(f_places M):] & f_post M c= [:(f_transitions M),(f_places M):] ) proof let M be Pnet; ::_thesis: ( f_pre M c= [:(f_transitions M),(f_places M):] & f_post M c= [:(f_transitions M),(f_places M):] ) A1: for x, y being set st [x,y] in f_pre M holds [x,y] in [:(f_transitions M),(f_places M):] proof let x, y be set ; ::_thesis: ( [x,y] in f_pre M implies [x,y] in [:(f_transitions M),(f_places M):] ) assume A2: [x,y] in f_pre M ; ::_thesis: [x,y] in [:(f_transitions M),(f_places M):] then A3: x in the carrier' of M by RELAT_1:def_11; [x,y] in Flow M by A2, RELAT_1:def_11; then y in the carrier of M by A3, Th7; hence [x,y] in [:(f_transitions M),(f_places M):] by A3, ZFMISC_1:87; ::_thesis: verum end; for x, y being set st [x,y] in f_post M holds [x,y] in [:(f_transitions M),(f_places M):] proof let x, y be set ; ::_thesis: ( [x,y] in f_post M implies [x,y] in [:(f_transitions M),(f_places M):] ) assume A4: [x,y] in f_post M ; ::_thesis: [x,y] in [:(f_transitions M),(f_places M):] then A5: [x,y] in (Flow M) ~ by RELAT_1:def_11; A6: x in the carrier' of M by A4, RELAT_1:def_11; [y,x] in Flow M by A5, RELAT_1:def_7; then y in the carrier of M by A6, Th7; hence [x,y] in [:(f_transitions M),(f_places M):] by A6, ZFMISC_1:87; ::_thesis: verum end; hence ( f_pre M c= [:(f_transitions M),(f_places M):] & f_post M c= [:(f_transitions M),(f_places M):] ) by A1, RELAT_1:def_3; ::_thesis: verum end; theorem :: FF_SIEC:23 for M being Pnet holds ( f_prox M c= [:(Elements M),(Elements M):] & f_flow M c= [:(Elements M),(Elements M):] ) proof let M be Pnet; ::_thesis: ( f_prox M c= [:(Elements M),(Elements M):] & f_flow M c= [:(Elements M),(Elements M):] ) A1: (Flow M) | the carrier of M c= Flow M by RELAT_1:59; Flow M c= [:(Elements M),(Elements M):] by Th8; then A2: (Flow M) | the carrier of M c= [:(Elements M),(Elements M):] by A1, XBOOLE_1:1; A3: ((Flow M) ~) | the carrier of M c= (Flow M) ~ by RELAT_1:59; (Flow M) ~ c= [:(Elements M),(Elements M):] by Th8; then A4: ((Flow M) ~) | the carrier of M c= [:(Elements M),(Elements M):] by A3, XBOOLE_1:1; the carrier of M c= Elements M by XBOOLE_1:7; then A5: [: the carrier of M, the carrier of M:] c= [:(Elements M),(Elements M):] by ZFMISC_1:96; id the carrier of M c= [: the carrier of M, the carrier of M:] by RELSET_1:13; then A6: id the carrier of M c= [:(Elements M),(Elements M):] by A5, XBOOLE_1:1; ((Flow M) | the carrier of M) \/ (((Flow M) ~) | the carrier of M) c= [:(Elements M),(Elements M):] by A2, A4, XBOOLE_1:8; hence f_prox M c= [:(Elements M),(Elements M):] by A6, XBOOLE_1:8; ::_thesis: f_flow M c= [:(Elements M),(Elements M):] A7: Flow M c= [:(Elements M),(Elements M):] by Th8; id (Elements M) c= [:(Elements M),(Elements M):] by RELSET_1:13; hence f_flow M c= [:(Elements M),(Elements M):] by A7, XBOOLE_1:8; ::_thesis: verum end; definition let M be Pnet; func f_entrance M -> Relation equals :: FF_SIEC:def 15 (((Flow M) ~) | the carrier of M) \/ (id the carrier' of M); correctness coherence (((Flow M) ~) | the carrier of M) \/ (id the carrier' of M) is Relation; ; func f_escape M -> Relation equals :: FF_SIEC:def 16 ((Flow M) | the carrier of M) \/ (id the carrier' of M); correctness coherence ((Flow M) | the carrier of M) \/ (id the carrier' of M) is Relation; ; end; :: deftheorem defines f_entrance FF_SIEC:def_15_:_ for M being Pnet holds f_entrance M = (((Flow M) ~) | the carrier of M) \/ (id the carrier' of M); :: deftheorem defines f_escape FF_SIEC:def_16_:_ for M being Pnet holds f_escape M = ((Flow M) | the carrier of M) \/ (id the carrier' of M); theorem :: FF_SIEC:24 for M being Pnet holds ( f_escape M c= [:(Elements M),(Elements M):] & f_entrance M c= [:(Elements M),(Elements M):] ) proof let M be Pnet; ::_thesis: ( f_escape M c= [:(Elements M),(Elements M):] & f_entrance M c= [:(Elements M),(Elements M):] ) A1: id the carrier' of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; id (Elements M) c= [:(Elements M),(Elements M):] by RELSET_1:13; then A2: id the carrier' of M c= [:(Elements M),(Elements M):] by A1, XBOOLE_1:1; A3: (Flow M) | the carrier of M c= Flow M by RELAT_1:59; Flow M c= [:(Elements M),(Elements M):] by Th8; then (Flow M) | the carrier of M c= [:(Elements M),(Elements M):] by A3, XBOOLE_1:1; hence f_escape M c= [:(Elements M),(Elements M):] by A2, XBOOLE_1:8; ::_thesis: f_entrance M c= [:(Elements M),(Elements M):] A4: id the carrier' of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; id (Elements M) c= [:(Elements M),(Elements M):] by RELSET_1:13; then A5: id the carrier' of M c= [:(Elements M),(Elements M):] by A4, XBOOLE_1:1; A6: ((Flow M) ~) | the carrier of M c= (Flow M) ~ by RELAT_1:59; (Flow M) ~ c= [:(Elements M),(Elements M):] by Th8; then ((Flow M) ~) | the carrier of M c= [:(Elements M),(Elements M):] by A6, XBOOLE_1:1; hence f_entrance M c= [:(Elements M),(Elements M):] by A5, XBOOLE_1:8; ::_thesis: verum end; theorem :: FF_SIEC:25 for M being Pnet holds ( dom (f_escape M) c= Elements M & rng (f_escape M) c= Elements M & dom (f_entrance M) c= Elements M & rng (f_entrance M) c= Elements M ) proof let M be Pnet; ::_thesis: ( dom (f_escape M) c= Elements M & rng (f_escape M) c= Elements M & dom (f_entrance M) c= Elements M & rng (f_entrance M) c= Elements M ) A1: for x being set st x in dom (f_escape M) holds x in Elements M proof let x be set ; ::_thesis: ( x in dom (f_escape M) implies x in Elements M ) assume x in dom (f_escape M) ; ::_thesis: x in Elements M then x in (dom ((Flow M) | the carrier of M)) \/ (dom (id the carrier' of M)) by RELAT_1:1; then ( x in dom ((Flow M) | the carrier of M) or x in dom (id the carrier' of M) ) by XBOOLE_0:def_3; then ( x in the carrier of M or x in the carrier' of M ) by RELAT_1:57; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; A2: for x being set st x in rng (f_escape M) holds x in Elements M proof let x be set ; ::_thesis: ( x in rng (f_escape M) implies x in Elements M ) assume x in rng (f_escape M) ; ::_thesis: x in Elements M then A3: x in (rng ((Flow M) | the carrier of M)) \/ (rng (id the carrier' of M)) by RELAT_1:12; A4: ( x in rng ((Flow M) | the carrier of M) implies x in Elements M ) proof assume x in rng ((Flow M) | the carrier of M) ; ::_thesis: x in Elements M then consider y being set such that A5: [y,x] in (Flow M) | the carrier of M by XTUPLE_0:def_13; A6: y in the carrier of M by A5, RELAT_1:def_11; [y,x] in Flow M by A5, RELAT_1:def_11; then ( x in the carrier of M or x in the carrier' of M ) by A6, Th7; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; ( x in rng (id the carrier' of M) implies x in Elements M ) proof assume x in rng (id the carrier' of M) ; ::_thesis: x in Elements M then ( x in the carrier of M or x in the carrier' of M ) ; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; hence x in Elements M by A3, A4, XBOOLE_0:def_3; ::_thesis: verum end; A7: for x being set st x in dom (f_entrance M) holds x in Elements M proof let x be set ; ::_thesis: ( x in dom (f_entrance M) implies x in Elements M ) assume x in dom (f_entrance M) ; ::_thesis: x in Elements M then x in (dom (((Flow M) ~) | the carrier of M)) \/ (dom (id the carrier' of M)) by RELAT_1:1; then ( x in dom (((Flow M) ~) | the carrier of M) or x in dom (id the carrier' of M) ) by XBOOLE_0:def_3; then ( x in the carrier of M or x in the carrier' of M ) by RELAT_1:57; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; for x being set st x in rng (f_entrance M) holds x in Elements M proof let x be set ; ::_thesis: ( x in rng (f_entrance M) implies x in Elements M ) assume x in rng (f_entrance M) ; ::_thesis: x in Elements M then A8: x in (rng (((Flow M) ~) | the carrier of M)) \/ (rng (id the carrier' of M)) by RELAT_1:12; A9: ( x in rng (((Flow M) ~) | the carrier of M) implies x in Elements M ) proof assume x in rng (((Flow M) ~) | the carrier of M) ; ::_thesis: x in Elements M then consider y being set such that A10: [y,x] in ((Flow M) ~) | the carrier of M by XTUPLE_0:def_13; A11: [y,x] in (Flow M) ~ by A10, RELAT_1:def_11; A12: y in the carrier of M by A10, RELAT_1:def_11; [x,y] in Flow M by A11, RELAT_1:def_7; then ( x in the carrier of M or x in the carrier' of M ) by A12, Th7; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; ( x in rng (id the carrier' of M) implies x in Elements M ) proof assume x in rng (id the carrier' of M) ; ::_thesis: x in Elements M then ( x in the carrier of M or x in the carrier' of M ) ; hence x in Elements M by XBOOLE_0:def_3; ::_thesis: verum end; hence x in Elements M by A8, A9, XBOOLE_0:def_3; ::_thesis: verum end; hence ( dom (f_escape M) c= Elements M & rng (f_escape M) c= Elements M & dom (f_entrance M) c= Elements M & rng (f_entrance M) c= Elements M ) by A1, A2, A7, TARSKI:def_3; ::_thesis: verum end; theorem :: FF_SIEC:26 for M being Pnet holds ( (f_escape M) * (f_escape M) = f_escape M & (f_escape M) * (f_entrance M) = f_escape M & (f_entrance M) * (f_entrance M) = f_entrance M & (f_entrance M) * (f_escape M) = f_entrance M ) proof let M be Pnet; ::_thesis: ( (f_escape M) * (f_escape M) = f_escape M & (f_escape M) * (f_entrance M) = f_escape M & (f_entrance M) * (f_entrance M) = f_entrance M & (f_entrance M) * (f_escape M) = f_entrance M ) set R = (Flow M) | the carrier of M; set S = id the carrier' of M; A1: (id the carrier' of M) * ((Flow M) | the carrier of M) = {} by Th12; A2: ((Flow M) | the carrier of M) * (id the carrier' of M) = (Flow M) | the carrier of M by Th12; A3: (id the carrier' of M) * (id the carrier' of M) = id the carrier' of M by SYSREL:12; A4: (f_escape M) * (f_escape M) = (((Flow M) | the carrier of M) * (((Flow M) | the carrier of M) \/ (id the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) | the carrier of M) \/ (id the carrier' of M))) by SYSREL:6 .= ((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ (((Flow M) | the carrier of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) | the carrier of M) \/ (id the carrier' of M))) by RELAT_1:32 .= ((((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ (((Flow M) | the carrier of M) * (id the carrier' of M))) \/ (((id the carrier' of M) * ((Flow M) | the carrier of M)) \/ ((id the carrier' of M) * (id the carrier' of M))) by RELAT_1:32 .= ({} \/ ((Flow M) | the carrier of M)) \/ ({} \/ (id the carrier' of M)) by A1, A2, A3, Th11 .= f_escape M ; A5: (f_escape M) * (f_entrance M) = f_escape M proof set T = ((Flow M) ~) | the carrier of M; A6: (id the carrier' of M) * (((Flow M) ~) | the carrier of M) = {} by Th12; A7: ((Flow M) | the carrier of M) * (id the carrier' of M) = (Flow M) | the carrier of M by Th12; A8: (id the carrier' of M) * (id the carrier' of M) = id the carrier' of M by SYSREL:12; (f_escape M) * (f_entrance M) = (((Flow M) | the carrier of M) * ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M))) \/ ((id the carrier' of M) * ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M))) by SYSREL:6 .= ((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ (((Flow M) | the carrier of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M))) by RELAT_1:32 .= ((((Flow M) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ (((Flow M) | the carrier of M) * (id the carrier' of M))) \/ (((id the carrier' of M) * (((Flow M) ~) | the carrier of M)) \/ ((id the carrier' of M) * (id the carrier' of M))) by RELAT_1:32 .= ({} \/ ((Flow M) | the carrier of M)) \/ ({} \/ (id the carrier' of M)) by A6, A7, A8, Th11 .= f_escape M ; hence (f_escape M) * (f_entrance M) = f_escape M ; ::_thesis: verum end; A9: (f_entrance M) * (f_entrance M) = f_entrance M proof set R = ((Flow M) ~) | the carrier of M; A10: (id the carrier' of M) * (((Flow M) ~) | the carrier of M) = {} by Th12; A11: (((Flow M) ~) | the carrier of M) * (id the carrier' of M) = ((Flow M) ~) | the carrier of M by Th12; A12: (id the carrier' of M) * (id the carrier' of M) = id the carrier' of M by SYSREL:12; (f_entrance M) * (f_entrance M) = ((((Flow M) ~) | the carrier of M) * ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M))) \/ ((id the carrier' of M) * ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M))) by SYSREL:6 .= (((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M))) by RELAT_1:32 .= (((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier' of M))) \/ (((id the carrier' of M) * (((Flow M) ~) | the carrier of M)) \/ ((id the carrier' of M) * (id the carrier' of M))) by RELAT_1:32 .= ({} \/ (((Flow M) ~) | the carrier of M)) \/ ({} \/ (id the carrier' of M)) by A10, A11, A12, Th11 .= f_entrance M ; hence (f_entrance M) * (f_entrance M) = f_entrance M ; ::_thesis: verum end; (f_entrance M) * (f_escape M) = f_entrance M proof set T = ((Flow M) ~) | the carrier of M; A13: (((Flow M) ~) | the carrier of M) * (id the carrier' of M) = ((Flow M) ~) | the carrier of M by Th12; A14: (id the carrier' of M) * ((Flow M) | the carrier of M) = {} by Th12; A15: (id the carrier' of M) * (id the carrier' of M) = id the carrier' of M by SYSREL:12; (f_entrance M) * (f_escape M) = ((((Flow M) ~) | the carrier of M) * (((Flow M) | the carrier of M) \/ (id the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) | the carrier of M) \/ (id the carrier' of M))) by SYSREL:6 .= (((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) | the carrier of M) \/ (id the carrier' of M))) by RELAT_1:32 .= (((((Flow M) ~) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((((Flow M) ~) | the carrier of M) * (id the carrier' of M))) \/ (((id the carrier' of M) * ((Flow M) | the carrier of M)) \/ ((id the carrier' of M) * (id the carrier' of M))) by RELAT_1:32 .= ({} \/ (((Flow M) ~) | the carrier of M)) \/ ({} \/ (id the carrier' of M)) by A13, A14, A15, Th11 .= f_entrance M ; hence (f_entrance M) * (f_escape M) = f_entrance M ; ::_thesis: verum end; hence ( (f_escape M) * (f_escape M) = f_escape M & (f_escape M) * (f_entrance M) = f_escape M & (f_entrance M) * (f_entrance M) = f_entrance M & (f_entrance M) * (f_escape M) = f_entrance M ) by A4, A5, A9; ::_thesis: verum end; theorem :: FF_SIEC:27 for M being Pnet holds ( (f_escape M) * ((f_escape M) \ (id (Elements M))) = {} & (f_entrance M) * ((f_entrance M) \ (id (Elements M))) = {} ) proof let M be Pnet; ::_thesis: ( (f_escape M) * ((f_escape M) \ (id (Elements M))) = {} & (f_entrance M) * ((f_entrance M) \ (id (Elements M))) = {} ) set R = (Flow M) | the carrier of M; set S = id the carrier' of M; A1: (id the carrier' of M) * ((Flow M) | the carrier of M) = {} by Th12; (f_escape M) * ((f_escape M) \ (id (Elements M))) = (((Flow M) | the carrier of M) \/ (id the carrier' of M)) * ((Flow M) | the carrier of M) by Th14 .= (((Flow M) | the carrier of M) * ((Flow M) | the carrier of M)) \/ ((id the carrier' of M) * ((Flow M) | the carrier of M)) by SYSREL:6 .= {} by A1, Th11 ; hence (f_escape M) * ((f_escape M) \ (id (Elements M))) = {} ; ::_thesis: (f_entrance M) * ((f_entrance M) \ (id (Elements M))) = {} set R = ((Flow M) ~) | the carrier of M; A2: (id the carrier' of M) * (((Flow M) ~) | the carrier of M) = {} by Th12; (f_entrance M) * ((f_entrance M) \ (id (Elements M))) = ((((Flow M) ~) | the carrier of M) \/ (id the carrier' of M)) * (((Flow M) ~) | the carrier of M) by Th14 .= ((((Flow M) ~) | the carrier of M) * (((Flow M) ~) | the carrier of M)) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier of M)) by SYSREL:6 .= {} by A2, Th11 ; hence (f_entrance M) * ((f_entrance M) \ (id (Elements M))) = {} ; ::_thesis: verum end; notation let M be Pnet; synonym f_circulation M for f_flow M; end; definition let M be Pnet; func f_adjac M -> Relation equals :: FF_SIEC:def 17 (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M); correctness coherence (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M) is Relation; ; end; :: deftheorem defines f_adjac FF_SIEC:def_17_:_ for M being Pnet holds f_adjac M = (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M); theorem :: FF_SIEC:28 for M being Pnet holds ( (f_adjac M) * (f_adjac M) = f_adjac M & ((f_adjac M) \ (id (Elements M))) * (f_adjac M) = {} & ((f_adjac M) \/ ((f_adjac M) ~)) \/ (id (Elements M)) = (f_circulation M) \/ ((f_circulation M) ~) ) proof let M be Pnet; ::_thesis: ( (f_adjac M) * (f_adjac M) = f_adjac M & ((f_adjac M) \ (id (Elements M))) * (f_adjac M) = {} & ((f_adjac M) \/ ((f_adjac M) ~)) \/ (id (Elements M)) = (f_circulation M) \/ ((f_circulation M) ~) ) set R = (Flow M) | the carrier' of M; set S = ((Flow M) ~) | the carrier' of M; set T = id the carrier' of M; set Q = id (Elements M); A1: ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) \ (id (Elements M)) = ((((Flow M) | the carrier' of M) \/ (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M))) \ (id (Elements M)) by XBOOLE_1:5 .= ((((Flow M) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M))) \/ (((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M))) by XBOOLE_1:42 .= ((Flow M) | the carrier' of M) \/ (((((Flow M) ~) | the carrier' of M) \/ (id the carrier' of M)) \ (id (Elements M))) by Th14 .= ((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M) by Th14 ; A2: (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) * (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) = ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) * (((Flow M) ~) | the carrier' of M)) by RELAT_1:32 .= ((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) * (((Flow M) ~) | the carrier' of M)) by SYSREL:6 .= ((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) by SYSREL:6 .= ({} \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) by Th11 .= ({} \/ {}) \/ ((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) by Th11 .= ({} \/ {}) \/ ({} \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) by Th11 .= {} by Th11 ; A3: ((Flow M) | the carrier' of M) \/ ((((Flow M) ~) | the carrier' of M) ~) = ((Flow M) | the carrier' of M) \/ ((((Flow M) | the carrier of M) ~) ~) by Th15 .= Flow M by Th16 ; A4: (((Flow M) | the carrier' of M) ~) \/ (((Flow M) ~) | the carrier' of M) = (((Flow M) | the carrier' of M) ~) \/ (((Flow M) | the carrier of M) ~) by Th15 .= (Flow M) ~ by Th16 ; A5: ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) ~) \/ (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) = ((((Flow M) | the carrier' of M) ~) \/ ((((Flow M) ~) | the carrier' of M) ~)) \/ (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) by RELAT_1:23 .= ((((Flow M) | the carrier' of M) ~) \/ ((((Flow M) ~) | the carrier' of M) \/ ((Flow M) | the carrier' of M))) \/ ((((Flow M) ~) | the carrier' of M) ~) by XBOOLE_1:4 .= (((((Flow M) | the carrier' of M) ~) \/ (((Flow M) ~) | the carrier' of M)) \/ ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) ~) by XBOOLE_1:4 .= (Flow M) \/ ((Flow M) ~) by A3, A4, XBOOLE_1:4 ; A6: (f_adjac M) \/ ((f_adjac M) ~) = ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) ~) \/ ((id the carrier' of M) ~)) by RELAT_1:23 .= (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) \/ ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) ~)) \/ ((id the carrier' of M) ~) by XBOOLE_1:4 .= (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) ~)) \/ (id the carrier' of M)) \/ ((id the carrier' of M) ~) by XBOOLE_1:4 .= ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) ~)) \/ ((id the carrier' of M) \/ ((id the carrier' of M) ~)) by XBOOLE_1:4 .= ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) ~)) \/ ((id the carrier' of M) \/ (id the carrier' of M)) .= ((Flow M) \/ ((Flow M) ~)) \/ (id the carrier' of M) by A5 ; A7: id the carrier' of M c= id (Elements M) by SYSREL:15, XBOOLE_1:7; A8: (f_adjac M) * (f_adjac M) = (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (id the carrier' of M)) by RELAT_1:32 .= ((((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * ((Flow M) | the carrier' of M)) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (((Flow M) ~) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (id the carrier' of M)) by RELAT_1:32 .= ((((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) * ((Flow M) | the carrier' of M)) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (((Flow M) ~) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (id the carrier' of M)) by SYSREL:6 .= ((((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (((Flow M) ~) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (id the carrier' of M)) by SYSREL:6 .= ((((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) * (((Flow M) ~) | the carrier' of M)) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M)))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (id the carrier' of M)) by SYSREL:6 .= ((((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M)))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (id the carrier' of M)) * (id the carrier' of M)) by SYSREL:6 .= ((((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M)))) \/ (((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) * (id the carrier' of M)) \/ ((id the carrier' of M) * (id the carrier' of M))) by SYSREL:6 .= ((((((Flow M) | the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M)))) \/ (((((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (id the carrier' of M))) by SYSREL:6 .= ((({} \/ ((((Flow M) ~) | the carrier' of M) * ((Flow M) | the carrier' of M))) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M)))) \/ (((((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (id the carrier' of M))) by Th11 .= ((({} \/ {}) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) * (((Flow M) ~) | the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M)))) \/ (((((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (id the carrier' of M))) by Th11 .= ((({} \/ {}) \/ ((id the carrier' of M) * ((Flow M) | the carrier' of M))) \/ (({} \/ ((((Flow M) ~) | the carrier' of M) * (((Flow M) ~) | the carrier' of M))) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M)))) \/ (((((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (id the carrier' of M))) by Th11 .= (((id the carrier' of M) * ((Flow M) | the carrier' of M)) \/ ({} \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M)))) \/ (((((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (id the carrier' of M))) by Th11 .= (((Flow M) | the carrier' of M) \/ ((id the carrier' of M) * (((Flow M) ~) | the carrier' of M))) \/ (((((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (id the carrier' of M))) by Th12 .= (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (((((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ ((id the carrier' of M) * (id the carrier' of M))) by Th12 .= (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (((((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ (id the carrier' of M)) by SYSREL:12 .= (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ (({} \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M))) \/ (id the carrier' of M)) by Th12 .= (((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) \/ ({} \/ (id the carrier' of M)) by Th12 .= f_adjac M ; A9: ((f_adjac M) \ (id (Elements M))) * (f_adjac M) = {} \/ ((((Flow M) | the carrier' of M) \/ (((Flow M) ~) | the carrier' of M)) * (id the carrier' of M)) by A1, A2, RELAT_1:32 .= (((Flow M) | the carrier' of M) * (id the carrier' of M)) \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M)) by SYSREL:6 .= {} \/ ((((Flow M) ~) | the carrier' of M) * (id the carrier' of M)) by Th12 .= {} by Th12 ; ((f_adjac M) \/ ((f_adjac M) ~)) \/ (id (Elements M)) = ((Flow M) \/ ((Flow M) ~)) \/ ((id the carrier' of M) \/ (id (Elements M))) by A6, XBOOLE_1:4 .= ((Flow M) \/ ((Flow M) ~)) \/ (id (Elements M)) by A7, XBOOLE_1:12 .= ((Flow M) \/ (id (Elements M))) \/ (((Flow M) ~) \/ (id (Elements M))) by XBOOLE_1:5 .= ((Flow M) \/ (id (Elements M))) \/ (((Flow M) ~) \/ ((id (Elements M)) ~)) .= (f_circulation M) \/ ((f_circulation M) ~) by RELAT_1:23 ; hence ( (f_adjac M) * (f_adjac M) = f_adjac M & ((f_adjac M) \ (id (Elements M))) * (f_adjac M) = {} & ((f_adjac M) \/ ((f_adjac M) ~)) \/ (id (Elements M)) = (f_circulation M) \/ ((f_circulation M) ~) ) by A8, A9; ::_thesis: verum end;