:: GOBRD13 semantic presentation begin definition let E be non empty set ; let S be non empty FinSequenceSet of the carrier of (TOP-REAL 2); let F be Function of E,S; let e be Element of E; :: original: . redefine funcF . e -> FinSequence of (TOP-REAL 2); coherence F . e is FinSequence of (TOP-REAL 2) proof thus F . e is FinSequence of (TOP-REAL 2) by FINSEQ_2:def_3; ::_thesis: verum end; end; theorem :: GOBRD13:1 canceled; theorem :: GOBRD13:2 canceled; theorem :: GOBRD13:3 canceled; theorem :: GOBRD13:4 canceled; theorem :: GOBRD13:5 canceled; theorem :: GOBRD13:6 canceled; theorem :: GOBRD13:7 canceled; theorem :: GOBRD13:8 for f being FinSequence of (TOP-REAL 2) for G being Matrix of (TOP-REAL 2) st f is_sequence_on G holds rng f c= Values G proof let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Matrix of (TOP-REAL 2) st f is_sequence_on G holds rng f c= Values G let G be Matrix of (TOP-REAL 2); ::_thesis: ( f is_sequence_on G implies rng f c= Values G ) assume A1: f is_sequence_on G ; ::_thesis: rng f c= Values G let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng f or y in Values G ) assume y in rng f ; ::_thesis: y in Values G then consider n being Element of NAT such that A2: n in dom f and A3: f /. n = y by PARTFUN2:2; ex i, j being Element of NAT st ( [i,j] in Indices G & f /. n = G * (i,j) ) by A1, A2, GOBOARD1:def_9; then y in { (G * (i,j)) where i, j is Element of NAT : [i,j] in Indices G } by A3; hence y in Values G by MATRIX_1:45; ::_thesis: verum end; theorem Th9: :: GOBRD13:9 for i1, j1, j2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (1,j2) holds i1 = 1 proof let i1, j1, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (1,j2) holds i1 = 1 let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (1,j2) implies i1 = 1 ) assume that A1: Values G1 c= Values G2 and A2: [i1,j1] in Indices G1 and A3: ( 1 <= j2 & j2 <= width G2 ) and A4: G1 * (i1,j1) = G2 * (1,j2) ; ::_thesis: i1 = 1 set p = G1 * (1,j1); A5: ( 1 <= j1 & j1 <= width G1 ) by A2, MATRIX_1:38; assume A6: i1 <> 1 ; ::_thesis: contradiction 1 <= i1 by A2, MATRIX_1:38; then A7: 1 < i1 by A6, XXREAL_0:1; i1 <= len G1 by A2, MATRIX_1:38; then A8: (G1 * (1,j1)) `1 < (G1 * (i1,j1)) `1 by A5, A7, GOBOARD5:3; 0 <> len G1 by GOBOARD1:def_3; then 1 <= len G1 by NAT_1:14; then [1,j1] in Indices G1 by A5, MATRIX_1:36; then G1 * (1,j1) in { (G1 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G1 } ; then G1 * (1,j1) in Values G1 by MATRIX_1:45; then G1 * (1,j1) in Values G2 by A1; then G1 * (1,j1) in { (G2 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G2 } by MATRIX_1:45; then consider i, j being Element of NAT such that A9: G1 * (1,j1) = G2 * (i,j) and A10: [i,j] in Indices G2 ; A11: ( 1 <= j & j <= width G2 ) by A10, MATRIX_1:38; 0 <> len G2 by GOBOARD1:def_3; then A12: 1 <= len G2 by NAT_1:14; then A13: (G2 * (1,j)) `1 = (G2 * (1,1)) `1 by A11, GOBOARD5:2 .= (G2 * (1,j2)) `1 by A3, A12, GOBOARD5:2 ; A14: i <= len G2 by A10, MATRIX_1:38; 1 <= i by A10, MATRIX_1:38; then 1 < i by A4, A8, A9, A13, XXREAL_0:1; hence contradiction by A4, A8, A9, A14, A11, A13, GOBOARD5:3; ::_thesis: verum end; theorem Th10: :: GOBRD13:10 for i1, j1, j2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * ((len G2),j2) holds i1 = len G1 proof let i1, j1, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * ((len G2),j2) holds i1 = len G1 let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * ((len G2),j2) implies i1 = len G1 ) assume that A1: Values G1 c= Values G2 and A2: [i1,j1] in Indices G1 and A3: ( 1 <= j2 & j2 <= width G2 ) and A4: G1 * (i1,j1) = G2 * ((len G2),j2) ; ::_thesis: i1 = len G1 set p = G1 * ((len G1),j1); A5: ( 1 <= j1 & j1 <= width G1 ) by A2, MATRIX_1:38; assume A6: i1 <> len G1 ; ::_thesis: contradiction i1 <= len G1 by A2, MATRIX_1:38; then A7: i1 < len G1 by A6, XXREAL_0:1; 1 <= i1 by A2, MATRIX_1:38; then A8: (G1 * (i1,j1)) `1 < (G1 * ((len G1),j1)) `1 by A5, A7, GOBOARD5:3; 0 <> len G1 by GOBOARD1:def_3; then 1 <= len G1 by NAT_1:14; then [(len G1),j1] in Indices G1 by A5, MATRIX_1:36; then G1 * ((len G1),j1) in { (G1 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G1 } ; then G1 * ((len G1),j1) in Values G1 by MATRIX_1:45; then G1 * ((len G1),j1) in Values G2 by A1; then G1 * ((len G1),j1) in { (G2 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G2 } by MATRIX_1:45; then consider i, j being Element of NAT such that A9: G1 * ((len G1),j1) = G2 * (i,j) and A10: [i,j] in Indices G2 ; A11: ( 1 <= j & j <= width G2 ) by A10, MATRIX_1:38; 0 <> len G2 by GOBOARD1:def_3; then A12: 1 <= len G2 by NAT_1:14; then A13: (G2 * ((len G2),j)) `1 = (G2 * ((len G2),1)) `1 by A11, GOBOARD5:2 .= (G2 * ((len G2),j2)) `1 by A3, A12, GOBOARD5:2 ; A14: 1 <= i by A10, MATRIX_1:38; i <= len G2 by A10, MATRIX_1:38; then i < len G2 by A4, A8, A9, A13, XXREAL_0:1; hence contradiction by A4, A8, A9, A14, A11, A13, GOBOARD5:3; ::_thesis: verum end; theorem Th11: :: GOBRD13:11 for i1, j1, i2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= i2 & i2 <= len G2 & G1 * (i1,j1) = G2 * (i2,1) holds j1 = 1 proof let i1, j1, i2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= i2 & i2 <= len G2 & G1 * (i1,j1) = G2 * (i2,1) holds j1 = 1 let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= i2 & i2 <= len G2 & G1 * (i1,j1) = G2 * (i2,1) implies j1 = 1 ) assume that A1: Values G1 c= Values G2 and A2: [i1,j1] in Indices G1 and A3: ( 1 <= i2 & i2 <= len G2 ) and A4: G1 * (i1,j1) = G2 * (i2,1) ; ::_thesis: j1 = 1 set p = G1 * (i1,1); A5: ( 1 <= i1 & i1 <= len G1 ) by A2, MATRIX_1:38; assume A6: j1 <> 1 ; ::_thesis: contradiction 1 <= j1 by A2, MATRIX_1:38; then A7: 1 < j1 by A6, XXREAL_0:1; j1 <= width G1 by A2, MATRIX_1:38; then A8: (G1 * (i1,1)) `2 < (G1 * (i1,j1)) `2 by A5, A7, GOBOARD5:4; 0 <> width G1 by GOBOARD1:def_3; then 1 <= width G1 by NAT_1:14; then [i1,1] in Indices G1 by A5, MATRIX_1:36; then G1 * (i1,1) in { (G1 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G1 } ; then G1 * (i1,1) in Values G1 by MATRIX_1:45; then G1 * (i1,1) in Values G2 by A1; then G1 * (i1,1) in { (G2 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G2 } by MATRIX_1:45; then consider i, j being Element of NAT such that A9: G1 * (i1,1) = G2 * (i,j) and A10: [i,j] in Indices G2 ; A11: ( 1 <= i & i <= len G2 ) by A10, MATRIX_1:38; 0 <> width G2 by GOBOARD1:def_3; then A12: 1 <= width G2 by NAT_1:14; then A13: (G2 * (i,1)) `2 = (G2 * (1,1)) `2 by A11, GOBOARD5:1 .= (G2 * (i2,1)) `2 by A3, A12, GOBOARD5:1 ; A14: j <= width G2 by A10, MATRIX_1:38; 1 <= j by A10, MATRIX_1:38; then 1 < j by A4, A8, A9, A13, XXREAL_0:1; hence contradiction by A4, A8, A9, A11, A14, A13, GOBOARD5:4; ::_thesis: verum end; theorem Th12: :: GOBRD13:12 for i1, j1, i2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= i2 & i2 <= len G2 & G1 * (i1,j1) = G2 * (i2,(width G2)) holds j1 = width G1 proof let i1, j1, i2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= i2 & i2 <= len G2 & G1 * (i1,j1) = G2 * (i2,(width G2)) holds j1 = width G1 let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & [i1,j1] in Indices G1 & 1 <= i2 & i2 <= len G2 & G1 * (i1,j1) = G2 * (i2,(width G2)) implies j1 = width G1 ) assume that A1: Values G1 c= Values G2 and A2: [i1,j1] in Indices G1 and A3: ( 1 <= i2 & i2 <= len G2 ) and A4: G1 * (i1,j1) = G2 * (i2,(width G2)) ; ::_thesis: j1 = width G1 set p = G1 * (i1,(width G1)); A5: ( 1 <= i1 & i1 <= len G1 ) by A2, MATRIX_1:38; assume A6: j1 <> width G1 ; ::_thesis: contradiction j1 <= width G1 by A2, MATRIX_1:38; then A7: j1 < width G1 by A6, XXREAL_0:1; 1 <= j1 by A2, MATRIX_1:38; then A8: (G1 * (i1,j1)) `2 < (G1 * (i1,(width G1))) `2 by A5, A7, GOBOARD5:4; 0 <> width G1 by GOBOARD1:def_3; then 1 <= width G1 by NAT_1:14; then [i1,(width G1)] in Indices G1 by A5, MATRIX_1:36; then G1 * (i1,(width G1)) in { (G1 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G1 } ; then G1 * (i1,(width G1)) in Values G1 by MATRIX_1:45; then G1 * (i1,(width G1)) in Values G2 by A1; then G1 * (i1,(width G1)) in { (G2 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G2 } by MATRIX_1:45; then consider i, j being Element of NAT such that A9: G1 * (i1,(width G1)) = G2 * (i,j) and A10: [i,j] in Indices G2 ; A11: ( 1 <= i & i <= len G2 ) by A10, MATRIX_1:38; 0 <> width G2 by GOBOARD1:def_3; then A12: 1 <= width G2 by NAT_1:14; then A13: (G2 * (i,(width G2))) `2 = (G2 * (1,(width G2))) `2 by A11, GOBOARD5:1 .= (G2 * (i2,(width G2))) `2 by A3, A12, GOBOARD5:1 ; A14: 1 <= j by A10, MATRIX_1:38; j <= width G2 by A10, MATRIX_1:38; then j < width G2 by A4, A8, A9, A13, XXREAL_0:1; hence contradiction by A4, A8, A9, A11, A14, A13, GOBOARD5:4; ::_thesis: verum end; theorem Th13: :: GOBRD13:13 for i1, j1, i2, j2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & 1 <= i1 & i1 < len G1 & 1 <= j1 & j1 <= width G1 & 1 <= i2 & i2 < len G2 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) holds (G2 * ((i2 + 1),j2)) `1 <= (G1 * ((i1 + 1),j1)) `1 proof let i1, j1, i2, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & 1 <= i1 & i1 < len G1 & 1 <= j1 & j1 <= width G1 & 1 <= i2 & i2 < len G2 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) holds (G2 * ((i2 + 1),j2)) `1 <= (G1 * ((i1 + 1),j1)) `1 let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & 1 <= i1 & i1 < len G1 & 1 <= j1 & j1 <= width G1 & 1 <= i2 & i2 < len G2 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) implies (G2 * ((i2 + 1),j2)) `1 <= (G1 * ((i1 + 1),j1)) `1 ) assume that A1: Values G1 c= Values G2 and A2: 1 <= i1 and A3: i1 < len G1 and A4: ( 1 <= j1 & j1 <= width G1 ) and A5: 1 <= i2 and A6: i2 < len G2 and A7: ( 1 <= j2 & j2 <= width G2 ) and A8: G1 * (i1,j1) = G2 * (i2,j2) ; ::_thesis: (G2 * ((i2 + 1),j2)) `1 <= (G1 * ((i1 + 1),j1)) `1 set p = G1 * ((i1 + 1),j1); A9: i1 + 1 <= len G1 by A3, NAT_1:13; 1 <= i1 + 1 by A2, NAT_1:13; then [(i1 + 1),j1] in Indices G1 by A4, A9, MATRIX_1:36; then G1 * ((i1 + 1),j1) in { (G1 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G1 } ; then G1 * ((i1 + 1),j1) in Values G1 by MATRIX_1:45; then G1 * ((i1 + 1),j1) in Values G2 by A1; then G1 * ((i1 + 1),j1) in { (G2 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G2 } by MATRIX_1:45; then consider i, j being Element of NAT such that A10: G1 * ((i1 + 1),j1) = G2 * (i,j) and A11: [i,j] in Indices G2 ; A12: 1 <= i by A11, MATRIX_1:38; A13: i <= len G2 by A11, MATRIX_1:38; ( 1 <= j & j <= width G2 ) by A11, MATRIX_1:38; then A14: (G2 * (i,j)) `1 = (G2 * (i,1)) `1 by A12, A13, GOBOARD5:2 .= (G2 * (i,j2)) `1 by A7, A12, A13, GOBOARD5:2 ; i1 < i1 + 1 by NAT_1:13; then A15: (G2 * (i2,j2)) `1 < (G2 * (i,j2)) `1 by A2, A4, A8, A9, A10, A14, GOBOARD5:3; A16: now__::_thesis:_not_i_<=_i2 assume i <= i2 ; ::_thesis: contradiction then ( i = i2 or i < i2 ) by XXREAL_0:1; hence contradiction by A6, A7, A12, A15, GOBOARD5:3; ::_thesis: verum end; assume A17: (G1 * ((i1 + 1),j1)) `1 < (G2 * ((i2 + 1),j2)) `1 ; ::_thesis: contradiction A18: 1 <= i2 + 1 by A5, NAT_1:13; now__::_thesis:_not_i2_+_1_<=_i assume i2 + 1 <= i ; ::_thesis: contradiction then ( i2 + 1 = i or i2 + 1 < i ) by XXREAL_0:1; hence contradiction by A7, A17, A10, A13, A14, A18, GOBOARD5:3; ::_thesis: verum end; hence contradiction by A16, NAT_1:13; ::_thesis: verum end; theorem Th14: :: GOBRD13:14 for i1, j1, i2, j2 being Element of NAT for G1, G2 being Go-board st G1 * ((i1 -' 1),j1) in Values G2 & 1 < i1 & i1 <= len G1 & 1 <= j1 & j1 <= width G1 & 1 < i2 & i2 <= len G2 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) holds (G1 * ((i1 -' 1),j1)) `1 <= (G2 * ((i2 -' 1),j2)) `1 proof let i1, j1, i2, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st G1 * ((i1 -' 1),j1) in Values G2 & 1 < i1 & i1 <= len G1 & 1 <= j1 & j1 <= width G1 & 1 < i2 & i2 <= len G2 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) holds (G1 * ((i1 -' 1),j1)) `1 <= (G2 * ((i2 -' 1),j2)) `1 let G1, G2 be Go-board; ::_thesis: ( G1 * ((i1 -' 1),j1) in Values G2 & 1 < i1 & i1 <= len G1 & 1 <= j1 & j1 <= width G1 & 1 < i2 & i2 <= len G2 & 1 <= j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) implies (G1 * ((i1 -' 1),j1)) `1 <= (G2 * ((i2 -' 1),j2)) `1 ) assume that A1: G1 * ((i1 -' 1),j1) in Values G2 and A2: 1 < i1 and A3: ( i1 <= len G1 & 1 <= j1 & j1 <= width G1 ) and A4: 1 < i2 and A5: i2 <= len G2 and A6: ( 1 <= j2 & j2 <= width G2 ) and A7: G1 * (i1,j1) = G2 * (i2,j2) ; ::_thesis: (G1 * ((i1 -' 1),j1)) `1 <= (G2 * ((i2 -' 1),j2)) `1 set p = G1 * ((i1 -' 1),j1); A8: G1 * ((i1 -' 1),j1) in { (G2 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G2 } by A1, MATRIX_1:45; 1 <= i2 -' 1 by A4, NAT_D:49; then i2 -' 1 < i2 by NAT_D:51; then A9: i2 -' 1 < len G2 by A5, XXREAL_0:2; consider i, j being Element of NAT such that A10: G1 * ((i1 -' 1),j1) = G2 * (i,j) and A11: [i,j] in Indices G2 by A8; A12: 1 <= i by A11, MATRIX_1:38; A13: i <= len G2 by A11, MATRIX_1:38; ( 1 <= j & j <= width G2 ) by A11, MATRIX_1:38; then A14: (G2 * (i,j)) `1 = (G2 * (i,1)) `1 by A12, A13, GOBOARD5:2 .= (G2 * (i,j2)) `1 by A6, A12, A13, GOBOARD5:2 ; A15: 1 <= i1 -' 1 by A2, NAT_D:49; then i1 -' 1 < i1 by NAT_D:51; then A16: (G2 * (i,j2)) `1 < (G2 * (i2,j2)) `1 by A3, A7, A15, A10, A14, GOBOARD5:3; A17: now__::_thesis:_not_i2_<=_i assume i2 <= i ; ::_thesis: contradiction then ( i = i2 or i2 < i ) by XXREAL_0:1; hence contradiction by A4, A6, A13, A16, GOBOARD5:3; ::_thesis: verum end; assume A18: (G2 * ((i2 -' 1),j2)) `1 < (G1 * ((i1 -' 1),j1)) `1 ; ::_thesis: contradiction now__::_thesis:_not_i_<=_i2_-'_1 assume i <= i2 -' 1 ; ::_thesis: contradiction then ( i2 -' 1 = i or i < i2 -' 1 ) by XXREAL_0:1; hence contradiction by A6, A18, A10, A12, A14, A9, GOBOARD5:3; ::_thesis: verum end; hence contradiction by A17, NAT_D:49; ::_thesis: verum end; theorem Th15: :: GOBRD13:15 for i1, j1, i2, j2 being Element of NAT for G1, G2 being Go-board st G1 * (i1,(j1 + 1)) in Values G2 & 1 <= i1 & i1 <= len G1 & 1 <= j1 & j1 < width G1 & 1 <= i2 & i2 <= len G2 & 1 <= j2 & j2 < width G2 & G1 * (i1,j1) = G2 * (i2,j2) holds (G2 * (i2,(j2 + 1))) `2 <= (G1 * (i1,(j1 + 1))) `2 proof let i1, j1, i2, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st G1 * (i1,(j1 + 1)) in Values G2 & 1 <= i1 & i1 <= len G1 & 1 <= j1 & j1 < width G1 & 1 <= i2 & i2 <= len G2 & 1 <= j2 & j2 < width G2 & G1 * (i1,j1) = G2 * (i2,j2) holds (G2 * (i2,(j2 + 1))) `2 <= (G1 * (i1,(j1 + 1))) `2 let G1, G2 be Go-board; ::_thesis: ( G1 * (i1,(j1 + 1)) in Values G2 & 1 <= i1 & i1 <= len G1 & 1 <= j1 & j1 < width G1 & 1 <= i2 & i2 <= len G2 & 1 <= j2 & j2 < width G2 & G1 * (i1,j1) = G2 * (i2,j2) implies (G2 * (i2,(j2 + 1))) `2 <= (G1 * (i1,(j1 + 1))) `2 ) assume that A1: G1 * (i1,(j1 + 1)) in Values G2 and A2: ( 1 <= i1 & i1 <= len G1 & 1 <= j1 ) and A3: j1 < width G1 and A4: ( 1 <= i2 & i2 <= len G2 ) and A5: 1 <= j2 and A6: j2 < width G2 and A7: G1 * (i1,j1) = G2 * (i2,j2) ; ::_thesis: (G2 * (i2,(j2 + 1))) `2 <= (G1 * (i1,(j1 + 1))) `2 set p = G1 * (i1,(j1 + 1)); G1 * (i1,(j1 + 1)) in { (G2 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G2 } by A1, MATRIX_1:45; then consider i, j being Element of NAT such that A8: G1 * (i1,(j1 + 1)) = G2 * (i,j) and A9: [i,j] in Indices G2 ; A10: 1 <= j by A9, MATRIX_1:38; A11: j <= width G2 by A9, MATRIX_1:38; ( 1 <= i & i <= len G2 ) by A9, MATRIX_1:38; then A12: (G2 * (i,j)) `2 = (G2 * (1,j)) `2 by A10, A11, GOBOARD5:1 .= (G2 * (i2,j)) `2 by A4, A10, A11, GOBOARD5:1 ; ( j1 < j1 + 1 & j1 + 1 <= width G1 ) by A3, NAT_1:13; then A13: (G2 * (i2,j2)) `2 < (G2 * (i2,j)) `2 by A2, A7, A8, A12, GOBOARD5:4; A14: now__::_thesis:_not_j_<=_j2 assume j <= j2 ; ::_thesis: contradiction then ( j = j2 or j < j2 ) by XXREAL_0:1; hence contradiction by A4, A6, A10, A13, GOBOARD5:4; ::_thesis: verum end; assume A15: (G1 * (i1,(j1 + 1))) `2 < (G2 * (i2,(j2 + 1))) `2 ; ::_thesis: contradiction A16: 1 <= j2 + 1 by A5, NAT_1:13; now__::_thesis:_not_j2_+_1_<=_j assume j2 + 1 <= j ; ::_thesis: contradiction then ( j2 + 1 = j or j2 + 1 < j ) by XXREAL_0:1; hence contradiction by A4, A15, A8, A11, A12, A16, GOBOARD5:4; ::_thesis: verum end; hence contradiction by A14, NAT_1:13; ::_thesis: verum end; theorem Th16: :: GOBRD13:16 for i1, j1, i2, j2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & 1 <= i1 & i1 <= len G1 & 1 < j1 & j1 <= width G1 & 1 <= i2 & i2 <= len G2 & 1 < j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) holds (G1 * (i1,(j1 -' 1))) `2 <= (G2 * (i2,(j2 -' 1))) `2 proof let i1, j1, i2, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & 1 <= i1 & i1 <= len G1 & 1 < j1 & j1 <= width G1 & 1 <= i2 & i2 <= len G2 & 1 < j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) holds (G1 * (i1,(j1 -' 1))) `2 <= (G2 * (i2,(j2 -' 1))) `2 let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & 1 <= i1 & i1 <= len G1 & 1 < j1 & j1 <= width G1 & 1 <= i2 & i2 <= len G2 & 1 < j2 & j2 <= width G2 & G1 * (i1,j1) = G2 * (i2,j2) implies (G1 * (i1,(j1 -' 1))) `2 <= (G2 * (i2,(j2 -' 1))) `2 ) assume that A1: Values G1 c= Values G2 and A2: ( 1 <= i1 & i1 <= len G1 ) and A3: 1 < j1 and A4: j1 <= width G1 and A5: ( 1 <= i2 & i2 <= len G2 ) and A6: 1 < j2 and A7: j2 <= width G2 and A8: G1 * (i1,j1) = G2 * (i2,j2) ; ::_thesis: (G1 * (i1,(j1 -' 1))) `2 <= (G2 * (i2,(j2 -' 1))) `2 set p = G1 * (i1,(j1 -' 1)); A9: 1 <= j1 -' 1 by A3, NAT_D:49; then A10: j1 -' 1 < j1 by NAT_D:51; then j1 -' 1 < width G1 by A4, XXREAL_0:2; then [i1,(j1 -' 1)] in Indices G1 by A2, A9, MATRIX_1:36; then G1 * (i1,(j1 -' 1)) in { (G1 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G1 } ; then G1 * (i1,(j1 -' 1)) in Values G1 by MATRIX_1:45; then G1 * (i1,(j1 -' 1)) in Values G2 by A1; then G1 * (i1,(j1 -' 1)) in { (G2 * (i,j)) where i, j is Element of NAT : [i,j] in Indices G2 } by MATRIX_1:45; then consider i, j being Element of NAT such that A11: G1 * (i1,(j1 -' 1)) = G2 * (i,j) and A12: [i,j] in Indices G2 ; A13: 1 <= j by A12, MATRIX_1:38; A14: j <= width G2 by A12, MATRIX_1:38; ( 1 <= i & i <= len G2 ) by A12, MATRIX_1:38; then A15: (G2 * (i,j)) `2 = (G2 * (1,j)) `2 by A13, A14, GOBOARD5:1 .= (G2 * (i2,j)) `2 by A5, A13, A14, GOBOARD5:1 ; then A16: (G2 * (i2,j)) `2 < (G2 * (i2,j2)) `2 by A2, A4, A8, A9, A10, A11, GOBOARD5:4; A17: now__::_thesis:_not_j2_<=_j assume j2 <= j ; ::_thesis: contradiction then ( j = j2 or j2 < j ) by XXREAL_0:1; hence contradiction by A5, A6, A14, A16, GOBOARD5:4; ::_thesis: verum end; 1 <= j2 -' 1 by A6, NAT_D:49; then j2 -' 1 < j2 by NAT_D:51; then A18: j2 -' 1 < width G2 by A7, XXREAL_0:2; assume A19: (G2 * (i2,(j2 -' 1))) `2 < (G1 * (i1,(j1 -' 1))) `2 ; ::_thesis: contradiction now__::_thesis:_not_j_<=_j2_-'_1 assume j <= j2 -' 1 ; ::_thesis: contradiction then ( j2 -' 1 = j or j < j2 -' 1 ) by XXREAL_0:1; hence contradiction by A5, A19, A11, A13, A15, A18, GOBOARD5:4; ::_thesis: verum end; hence contradiction by A17, NAT_D:49; ::_thesis: verum end; theorem Th17: :: GOBRD13:17 for i1, j1, i2, j2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) holds cell (G2,i2,j2) c= cell (G1,i1,j1) proof let i1, j1, i2, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) holds cell (G2,i2,j2) c= cell (G1,i1,j1) let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) implies cell (G2,i2,j2) c= cell (G1,i1,j1) ) assume that A1: Values G1 c= Values G2 and A2: [i1,j1] in Indices G1 and A3: [i2,j2] in Indices G2 and A4: G1 * (i1,j1) = G2 * (i2,j2) ; ::_thesis: cell (G2,i2,j2) c= cell (G1,i1,j1) A5: 1 <= i1 by A2, MATRIX_1:38; A6: j1 <= width G1 by A2, MATRIX_1:38; let p be set ; :: according to TARSKI:def_3 ::_thesis: ( not p in cell (G2,i2,j2) or p in cell (G1,i1,j1) ) assume A7: p in cell (G2,i2,j2) ; ::_thesis: p in cell (G1,i1,j1) A8: 1 <= i2 by A3, MATRIX_1:38; A9: j2 <= width G2 by A3, MATRIX_1:38; A10: 1 <= j2 by A3, MATRIX_1:38; A11: i2 <= len G2 by A3, MATRIX_1:38; then A12: ( (G2 * (i2,j2)) `1 = (G2 * (i2,1)) `1 & (G2 * (i2,j2)) `2 = (G2 * (1,j2)) `2 ) by A8, A10, A9, GOBOARD5:1, GOBOARD5:2; A13: 1 <= j1 by A2, MATRIX_1:38; A14: i1 <= len G1 by A2, MATRIX_1:38; then A15: ( (G1 * (i1,j1)) `1 = (G1 * (i1,1)) `1 & (G1 * (i1,j1)) `2 = (G1 * (1,j1)) `2 ) by A5, A13, A6, GOBOARD5:1, GOBOARD5:2; percases ( ( i2 = len G2 & j2 = width G2 ) or ( i2 = len G2 & j2 < width G2 ) or ( i2 < len G2 & j2 = width G2 ) or ( i2 < len G2 & j2 < width G2 ) ) by A11, A9, XXREAL_0:1; supposeA16: ( i2 = len G2 & j2 = width G2 ) ; ::_thesis: p in cell (G1,i1,j1) then A17: p in { |[r,s]| where r, s is Real : ( (G2 * (i2,j2)) `1 <= r & (G2 * (i2,j2)) `2 <= s ) } by A7, A12, GOBRD11:28; ( i1 = len G1 & j1 = width G1 ) by A1, A2, A4, A8, A10, A16, Th10, Th12; hence p in cell (G1,i1,j1) by A4, A15, A17, GOBRD11:28; ::_thesis: verum end; supposeA18: ( i2 = len G2 & j2 < width G2 ) ; ::_thesis: p in cell (G1,i1,j1) then p in { |[r,s]| where r, s is Real : ( (G2 * (i2,j2)) `1 <= r & (G2 * (i2,j2)) `2 <= s & s <= (G2 * (1,(j2 + 1))) `2 ) } by A7, A10, A12, GOBRD11:29; then consider r9, s9 being Real such that A19: ( p = |[r9,s9]| & (G2 * (i2,j2)) `1 <= r9 & (G2 * (i2,j2)) `2 <= s9 ) and A20: s9 <= (G2 * (1,(j2 + 1))) `2 ; A21: i1 = len G1 by A1, A2, A4, A10, A18, Th10; now__::_thesis:_p_in_cell_(G1,i1,j1) percases ( j1 = width G1 or j1 < width G1 ) by A6, XXREAL_0:1; supposeA22: j1 = width G1 ; ::_thesis: p in cell (G1,i1,j1) p in { |[r,s]| where r, s is Real : ( (G1 * (i1,j1)) `1 <= r & (G1 * (i1,j1)) `2 <= s ) } by A4, A19; hence p in cell (G1,i1,j1) by A15, A21, A22, GOBRD11:28; ::_thesis: verum end; supposeA23: j1 < width G1 ; ::_thesis: p in cell (G1,i1,j1) ( 1 <= j2 + 1 & j2 + 1 <= width G2 ) by A18, NAT_1:12, NAT_1:13; then A24: (G2 * (i2,(j2 + 1))) `2 = (G2 * (1,(j2 + 1))) `2 by A8, A11, GOBOARD5:1; ( 1 <= j1 + 1 & j1 + 1 <= width G1 ) by A23, NAT_1:12, NAT_1:13; then ( G1 * (i1,(j1 + 1)) in Values G1 & (G1 * (i1,(j1 + 1))) `2 = (G1 * (1,(j1 + 1))) `2 ) by A5, A14, MATRIX_1:47, GOBOARD5:1; then (G2 * (1,(j2 + 1))) `2 <= (G1 * (1,(j1 + 1))) `2 by A1, A4, A5, A14, A13, A8, A10, A18, A23, A24, Th15; then s9 <= (G1 * (1,(j1 + 1))) `2 by A20, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * (i1,j1)) `1 <= r & (G1 * (i1,j1)) `2 <= s & s <= (G1 * (1,(j1 + 1))) `2 ) } by A4, A19; hence p in cell (G1,i1,j1) by A13, A15, A21, A23, GOBRD11:29; ::_thesis: verum end; end; end; hence p in cell (G1,i1,j1) ; ::_thesis: verum end; supposeA25: ( i2 < len G2 & j2 = width G2 ) ; ::_thesis: p in cell (G1,i1,j1) then p in { |[r,s]| where r, s is Real : ( (G2 * (i2,j2)) `1 <= r & r <= (G2 * ((i2 + 1),1)) `1 & (G2 * (i2,j2)) `2 <= s ) } by A7, A8, A12, GOBRD11:31; then consider r9, s9 being Real such that A26: ( p = |[r9,s9]| & (G2 * (i2,j2)) `1 <= r9 ) and A27: r9 <= (G2 * ((i2 + 1),1)) `1 and A28: (G2 * (i2,j2)) `2 <= s9 ; A29: j1 = width G1 by A1, A2, A4, A8, A25, Th12; now__::_thesis:_p_in_cell_(G1,i1,j1) percases ( i1 = len G1 or i1 < len G1 ) by A14, XXREAL_0:1; supposeA30: i1 = len G1 ; ::_thesis: p in cell (G1,i1,j1) p in { |[r,s]| where r, s is Real : ( (G1 * (i1,j1)) `1 <= r & (G1 * (i1,j1)) `2 <= s ) } by A4, A26, A28; hence p in cell (G1,i1,j1) by A15, A29, A30, GOBRD11:28; ::_thesis: verum end; supposeA31: i1 < len G1 ; ::_thesis: p in cell (G1,i1,j1) ( 1 <= i2 + 1 & i2 + 1 <= len G2 ) by A25, NAT_1:12, NAT_1:13; then A32: (G2 * ((i2 + 1),j2)) `1 = (G2 * ((i2 + 1),1)) `1 by A10, A9, GOBOARD5:2; ( 1 <= i1 + 1 & i1 + 1 <= len G1 ) by A31, NAT_1:12, NAT_1:13; then (G1 * ((i1 + 1),j1)) `1 = (G1 * ((i1 + 1),1)) `1 by A13, A6, GOBOARD5:2; then (G2 * ((i2 + 1),1)) `1 <= (G1 * ((i1 + 1),1)) `1 by A1, A4, A5, A13, A6, A8, A10, A25, A31, A32, Th13; then r9 <= (G1 * ((i1 + 1),1)) `1 by A27, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * (i1,j1)) `1 <= r & r <= (G1 * ((i1 + 1),1)) `1 & (G1 * (i1,j1)) `2 <= s ) } by A4, A26, A28; hence p in cell (G1,i1,j1) by A5, A15, A29, A31, GOBRD11:31; ::_thesis: verum end; end; end; hence p in cell (G1,i1,j1) ; ::_thesis: verum end; supposeA33: ( i2 < len G2 & j2 < width G2 ) ; ::_thesis: p in cell (G1,i1,j1) then ( 1 <= j2 + 1 & j2 + 1 <= width G2 ) by NAT_1:12, NAT_1:13; then A34: (G2 * (i2,(j2 + 1))) `2 = (G2 * (1,(j2 + 1))) `2 by A8, A11, GOBOARD5:1; ( 1 <= i2 + 1 & i2 + 1 <= len G2 ) by A33, NAT_1:12, NAT_1:13; then (G2 * ((i2 + 1),j2)) `1 = (G2 * ((i2 + 1),1)) `1 by A10, A9, GOBOARD5:2; then p in { |[r,s]| where r, s is Real : ( (G2 * (i2,j2)) `1 <= r & r <= (G2 * ((i2 + 1),j2)) `1 & (G2 * (i2,j2)) `2 <= s & s <= (G2 * (i2,(j2 + 1))) `2 ) } by A7, A8, A10, A12, A33, A34, GOBRD11:32; then consider r9, s9 being Real such that A35: ( p = |[r9,s9]| & (G2 * (i2,j2)) `1 <= r9 ) and A36: r9 <= (G2 * ((i2 + 1),j2)) `1 and A37: (G2 * (i2,j2)) `2 <= s9 and A38: s9 <= (G2 * (i2,(j2 + 1))) `2 ; now__::_thesis:_p_in_cell_(G1,i1,j1) percases ( ( i1 = len G1 & j1 = width G1 ) or ( i1 = len G1 & j1 < width G1 ) or ( i1 < len G1 & j1 = width G1 ) or ( i1 < len G1 & j1 < width G1 ) ) by A14, A6, XXREAL_0:1; supposeA39: ( i1 = len G1 & j1 = width G1 ) ; ::_thesis: p in cell (G1,i1,j1) p in { |[r,s]| where r, s is Real : ( (G1 * (i1,j1)) `1 <= r & (G1 * (i1,j1)) `2 <= s ) } by A4, A35, A37; hence p in cell (G1,i1,j1) by A15, A39, GOBRD11:28; ::_thesis: verum end; supposeA40: ( i1 = len G1 & j1 < width G1 ) ; ::_thesis: p in cell (G1,i1,j1) then ( 1 <= j1 + 1 & j1 + 1 <= width G1 ) by NAT_1:12, NAT_1:13; then ( G1 * (i1,(j1 + 1)) in Values G1 & (G1 * (i1,(j1 + 1))) `2 = (G1 * (1,(j1 + 1))) `2 ) by A5, A14, MATRIX_1:47, GOBOARD5:1; then (G2 * (i2,(j2 + 1))) `2 <= (G1 * (1,(j1 + 1))) `2 by A1, A4, A5, A13, A8, A10, A33, A40, Th15; then s9 <= (G1 * (1,(j1 + 1))) `2 by A38, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * (i1,j1)) `1 <= r & (G1 * (i1,j1)) `2 <= s & s <= (G1 * (1,(j1 + 1))) `2 ) } by A4, A35, A37; hence p in cell (G1,i1,j1) by A13, A15, A40, GOBRD11:29; ::_thesis: verum end; supposeA41: ( i1 < len G1 & j1 = width G1 ) ; ::_thesis: p in cell (G1,i1,j1) then ( 1 <= i1 + 1 & i1 + 1 <= len G1 ) by NAT_1:12, NAT_1:13; then (G1 * ((i1 + 1),j1)) `1 = (G1 * ((i1 + 1),1)) `1 by A13, A6, GOBOARD5:2; then (G2 * ((i2 + 1),j2)) `1 <= (G1 * ((i1 + 1),1)) `1 by A1, A4, A5, A13, A8, A10, A33, A41, Th13; then r9 <= (G1 * ((i1 + 1),1)) `1 by A36, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * (i1,j1)) `1 <= r & r <= (G1 * ((i1 + 1),1)) `1 & (G1 * (i1,j1)) `2 <= s ) } by A4, A35, A37; hence p in cell (G1,i1,j1) by A5, A15, A41, GOBRD11:31; ::_thesis: verum end; supposeA42: ( i1 < len G1 & j1 < width G1 ) ; ::_thesis: p in cell (G1,i1,j1) then ( 1 <= i1 + 1 & i1 + 1 <= len G1 ) by NAT_1:12, NAT_1:13; then (G1 * ((i1 + 1),j1)) `1 = (G1 * ((i1 + 1),1)) `1 by A13, A6, GOBOARD5:2; then (G2 * ((i2 + 1),j2)) `1 <= (G1 * ((i1 + 1),1)) `1 by A1, A4, A5, A13, A8, A10, A33, A42, Th13; then A43: r9 <= (G1 * ((i1 + 1),1)) `1 by A36, XXREAL_0:2; ( 1 <= j1 + 1 & j1 + 1 <= width G1 ) by A42, NAT_1:12, NAT_1:13; then ( G1 * (i1,(j1 + 1)) in Values G1 & (G1 * (i1,(j1 + 1))) `2 = (G1 * (1,(j1 + 1))) `2 ) by A5, A14, MATRIX_1:47, GOBOARD5:1; then (G2 * (i2,(j2 + 1))) `2 <= (G1 * (1,(j1 + 1))) `2 by A1, A4, A5, A13, A8, A10, A33, A42, Th15; then s9 <= (G1 * (1,(j1 + 1))) `2 by A38, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * (i1,1)) `1 <= r & r <= (G1 * ((i1 + 1),1)) `1 & (G1 * (1,j1)) `2 <= s & s <= (G1 * (1,(j1 + 1))) `2 ) } by A4, A15, A35, A37, A43; hence p in cell (G1,i1,j1) by A5, A13, A42, GOBRD11:32; ::_thesis: verum end; end; end; hence p in cell (G1,i1,j1) ; ::_thesis: verum end; end; end; theorem Th18: :: GOBRD13:18 for i1, j1, i2, j2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) holds cell (G2,(i2 -' 1),j2) c= cell (G1,(i1 -' 1),j1) proof let i1, j1, i2, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) holds cell (G2,(i2 -' 1),j2) c= cell (G1,(i1 -' 1),j1) let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) implies cell (G2,(i2 -' 1),j2) c= cell (G1,(i1 -' 1),j1) ) assume that A1: Values G1 c= Values G2 and A2: [i1,j1] in Indices G1 and A3: [i2,j2] in Indices G2 and A4: G1 * (i1,j1) = G2 * (i2,j2) ; ::_thesis: cell (G2,(i2 -' 1),j2) c= cell (G1,(i1 -' 1),j1) A5: i2 <= len G2 by A3, MATRIX_1:38; A6: j1 <= width G1 by A2, MATRIX_1:38; A7: 1 <= j1 by A2, MATRIX_1:38; A8: j2 <= width G2 by A3, MATRIX_1:38; A9: 1 <= j2 by A3, MATRIX_1:38; A10: 1 <= i2 by A3, MATRIX_1:38; then A11: (G2 * (i2,j2)) `1 = (G2 * (i2,1)) `1 by A5, A9, A8, GOBOARD5:2; A12: (G2 * (i2,j2)) `2 = (G2 * (1,j2)) `2 by A10, A5, A9, A8, GOBOARD5:1; let p be set ; :: according to TARSKI:def_3 ::_thesis: ( not p in cell (G2,(i2 -' 1),j2) or p in cell (G1,(i1 -' 1),j1) ) assume A13: p in cell (G2,(i2 -' 1),j2) ; ::_thesis: p in cell (G1,(i1 -' 1),j1) A14: 1 <= i1 by A2, MATRIX_1:38; A15: i1 <= len G1 by A2, MATRIX_1:38; percases ( ( i1 = 1 & i2 = 1 ) or ( i1 = 1 & 1 < i2 ) or ( 1 < i1 & i2 = 1 ) or ( 1 < i1 & 1 < i2 ) ) by A14, A10, XXREAL_0:1; supposeA16: ( i1 = 1 & i2 = 1 ) ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then A17: i1 -' 1 = 0 by XREAL_1:232; A18: i2 -' 1 = 0 by A16, XREAL_1:232; now__::_thesis:_p_in_cell_(G1,(i1_-'_1),j1) percases ( j2 = width G2 or j2 < width G2 ) by A8, XXREAL_0:1; supposeA19: j2 = width G2 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then A20: j1 = width G1 by A1, A2, A4, A10, A5, Th12; p in { |[r,s]| where r, s is Real : ( r <= (G2 * (1,1)) `1 & (G2 * (1,(width G2))) `2 <= s ) } by A13, A18, A19, GOBRD11:25; then consider r9, s9 being Real such that A21: p = |[r9,s9]| and A22: r9 <= (G2 * (1,1)) `1 and A23: (G2 * (1,(width G2))) `2 <= s9 ; (G2 * (1,1)) `1 = (G2 * (i1,j2)) `1 by A5, A9, A8, A16, GOBOARD5:2; then r9 <= (G1 * (1,1)) `1 by A4, A15, A7, A6, A16, A22, GOBOARD5:2; then p in { |[r,s]| where r, s is Real : ( r <= (G1 * (1,1)) `1 & (G1 * (1,(width G1))) `2 <= s ) } by A4, A16, A19, A21, A23, A20; hence p in cell (G1,(i1 -' 1),j1) by A17, A20, GOBRD11:25; ::_thesis: verum end; supposeA24: j2 < width G2 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then p in { |[r,s]| where r, s is Real : ( r <= (G2 * (1,1)) `1 & (G2 * (1,j2)) `2 <= s & s <= (G2 * (1,(j2 + 1))) `2 ) } by A13, A9, A18, GOBRD11:26; then consider r9, s9 being Real such that A25: p = |[r9,s9]| and A26: r9 <= (G2 * (1,1)) `1 and A27: (G2 * (1,j2)) `2 <= s9 and A28: s9 <= (G2 * (1,(j2 + 1))) `2 ; (G2 * (1,1)) `1 = (G2 * (i1,j2)) `1 by A5, A9, A8, A16, GOBOARD5:2; then A29: r9 <= (G1 * (1,1)) `1 by A4, A15, A7, A6, A16, A26, GOBOARD5:2; now__::_thesis:_p_in_cell_(G1,(i1_-'_1),j1) percases ( j1 = width G1 or j1 < width G1 ) by A6, XXREAL_0:1; supposeA30: j1 = width G1 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then p in { |[r,s]| where r, s is Real : ( r <= (G1 * (1,1)) `1 & (G1 * (1,(width G1))) `2 <= s ) } by A4, A16, A25, A27, A29; hence p in cell (G1,(i1 -' 1),j1) by A17, A30, GOBRD11:25; ::_thesis: verum end; supposeA31: j1 < width G1 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then ( 1 <= j1 + 1 & j1 + 1 <= width G1 ) by NAT_1:11, NAT_1:13; then G1 * (i1,(j1 + 1)) in Values G1 by A14, A15, MATRIX_1:47; then (G2 * (1,(j2 + 1))) `2 <= (G1 * (1,(j1 + 1))) `2 by A1, A4, A15, A7, A5, A9, A16, A24, A31, Th15; then s9 <= (G1 * (1,(j1 + 1))) `2 by A28, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( r <= (G1 * (1,1)) `1 & (G1 * (1,j1)) `2 <= s & s <= (G1 * (1,(j1 + 1))) `2 ) } by A4, A16, A25, A27, A29; hence p in cell (G1,(i1 -' 1),j1) by A7, A17, A31, GOBRD11:26; ::_thesis: verum end; end; end; hence p in cell (G1,(i1 -' 1),j1) ; ::_thesis: verum end; end; end; hence p in cell (G1,(i1 -' 1),j1) ; ::_thesis: verum end; supposethat A32: i1 = 1 and A33: 1 < i2 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) A34: i1 -' 1 = 0 by A32, XREAL_1:232; A35: 1 <= i2 -' 1 by A33, NAT_D:49; then i2 -' 1 < i2 by NAT_D:51; then A36: i2 -' 1 < len G2 by A5, XXREAL_0:2; A37: (i2 -' 1) + 1 = i2 by A33, XREAL_1:235; now__::_thesis:_p_in_cell_(G1,(i1_-'_1),j1) percases ( j2 = width G2 or j2 < width G2 ) by A8, XXREAL_0:1; supposeA38: j2 = width G2 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then p in { |[r,s]| where r, s is Real : ( (G2 * ((i2 -' 1),1)) `1 <= r & r <= (G2 * (i2,1)) `1 & (G2 * (1,j2)) `2 <= s ) } by A13, A35, A36, A37, GOBRD11:31; then consider r9, s9 being Real such that A39: p = |[r9,s9]| and (G2 * ((i2 -' 1),1)) `1 <= r9 and A40: ( r9 <= (G2 * (i2,1)) `1 & (G2 * (1,j2)) `2 <= s9 ) ; ( r9 <= (G1 * (1,1)) `1 & (G1 * (1,j1)) `2 <= s9 ) by A4, A15, A7, A6, A11, A12, A32, A40, GOBOARD5:2; then A41: p in { |[r,s]| where r, s is Real : ( r <= (G1 * (1,1)) `1 & (G1 * (1,j1)) `2 <= s ) } by A39; j1 = width G1 by A1, A2, A4, A10, A5, A38, Th12; hence p in cell (G1,(i1 -' 1),j1) by A34, A41, GOBRD11:25; ::_thesis: verum end; supposeA42: j2 < width G2 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then p in { |[r,s]| where r, s is Real : ( (G2 * ((i2 -' 1),1)) `1 <= r & r <= (G2 * (i2,1)) `1 & (G2 * (1,j2)) `2 <= s & s <= (G2 * (1,(j2 + 1))) `2 ) } by A13, A9, A35, A36, A37, GOBRD11:32; then consider r9, s9 being Real such that A43: p = |[r9,s9]| and (G2 * ((i2 -' 1),1)) `1 <= r9 and A44: ( r9 <= (G2 * (i2,1)) `1 & (G2 * (1,j2)) `2 <= s9 ) and A45: s9 <= (G2 * (1,(j2 + 1))) `2 ; A46: ( r9 <= (G1 * (1,1)) `1 & (G1 * (1,j1)) `2 <= s9 ) by A4, A15, A7, A6, A11, A12, A32, A44, GOBOARD5:2; now__::_thesis:_p_in_cell_(G1,(i1_-'_1),j1) percases ( j1 = width G1 or j1 < width G1 ) by A6, XXREAL_0:1; supposeA47: j1 = width G1 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then p in { |[r,s]| where r, s is Real : ( r <= (G1 * (1,1)) `1 & (G1 * (1,(width G1))) `2 <= s ) } by A43, A46; hence p in cell (G1,(i1 -' 1),j1) by A34, A47, GOBRD11:25; ::_thesis: verum end; supposeA48: j1 < width G1 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) ( 1 <= j2 + 1 & j2 + 1 <= width G2 ) by A42, NAT_1:12, NAT_1:13; then A49: (G2 * (i2,(j2 + 1))) `2 = (G2 * (1,(j2 + 1))) `2 by A10, A5, GOBOARD5:1; ( 1 <= j1 + 1 & j1 + 1 <= width G1 ) by A48, NAT_1:12, NAT_1:13; then ( G1 * (i1,(j1 + 1)) in Values G1 & (G1 * (i1,(j1 + 1))) `2 = (G1 * (1,(j1 + 1))) `2 ) by A14, A15, MATRIX_1:47, GOBOARD5:1; then (G2 * (1,(j2 + 1))) `2 <= (G1 * (1,(j1 + 1))) `2 by A1, A4, A14, A15, A7, A10, A5, A9, A42, A48, A49, Th15; then s9 <= (G1 * (1,(j1 + 1))) `2 by A45, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( r <= (G1 * (1,1)) `1 & (G1 * (1,j1)) `2 <= s & s <= (G1 * (1,(j1 + 1))) `2 ) } by A43, A46; hence p in cell (G1,(i1 -' 1),j1) by A7, A34, A48, GOBRD11:26; ::_thesis: verum end; end; end; hence p in cell (G1,(i1 -' 1),j1) ; ::_thesis: verum end; end; end; hence p in cell (G1,(i1 -' 1),j1) ; ::_thesis: verum end; suppose ( 1 < i1 & i2 = 1 ) ; ::_thesis: p in cell (G1,(i1 -' 1),j1) hence p in cell (G1,(i1 -' 1),j1) by A1, A2, A4, A9, A8, Th9; ::_thesis: verum end; supposeA50: ( 1 < i1 & 1 < i2 ) ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then A51: 1 <= i2 -' 1 by NAT_D:49; then A52: (i2 -' 1) + 1 = i2 by NAT_D:43; i2 -' 1 < i2 by A51, NAT_D:51; then A53: i2 -' 1 < len G2 by A5, XXREAL_0:2; then A54: (G2 * ((i2 -' 1),1)) `1 = (G2 * ((i2 -' 1),j2)) `1 by A9, A8, A51, GOBOARD5:2; A55: 1 <= i1 -' 1 by A50, NAT_D:49; then A56: (i1 -' 1) + 1 = i1 by NAT_D:43; i1 -' 1 < i1 by A55, NAT_D:51; then A57: i1 -' 1 < len G1 by A15, XXREAL_0:2; then ( G1 * ((i1 -' 1),j1) in Values G1 & (G1 * ((i1 -' 1),1)) `1 = (G1 * ((i1 -' 1),j1)) `1 ) by A7, A6, A55, MATRIX_1:47, GOBOARD5:2; then A58: (G1 * ((i1 -' 1),1)) `1 <= (G2 * ((i2 -' 1),1)) `1 by A1, A4, A15, A7, A6, A5, A9, A8, A50, A54, Th14; now__::_thesis:_p_in_cell_(G1,(i1_-'_1),j1) percases ( j2 = width G2 or j2 < width G2 ) by A8, XXREAL_0:1; supposeA59: j2 = width G2 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then p in { |[r,s]| where r, s is Real : ( (G2 * ((i2 -' 1),1)) `1 <= r & r <= (G2 * (i2,1)) `1 & (G2 * (1,j2)) `2 <= s ) } by A13, A51, A53, A52, GOBRD11:31; then consider r9, s9 being Real such that A60: p = |[r9,s9]| and A61: ( (G2 * ((i2 -' 1),1)) `1 <= r9 & r9 <= (G2 * (i2,1)) `1 ) and A62: (G2 * (1,j2)) `2 <= s9 ; A63: (G1 * (1,j1)) `2 <= s9 by A4, A14, A15, A7, A6, A12, A62, GOBOARD5:1; ( (G1 * ((i1 -' 1),1)) `1 <= r9 & r9 <= (G1 * (i1,1)) `1 ) by A4, A14, A15, A7, A6, A11, A58, A61, GOBOARD5:2, XXREAL_0:2; then A64: p in { |[r,s]| where r, s is Real : ( (G1 * ((i1 -' 1),1)) `1 <= r & r <= (G1 * (i1,1)) `1 & (G1 * (1,j1)) `2 <= s ) } by A60, A63; j1 = width G1 by A1, A2, A4, A10, A5, A59, Th12; hence p in cell (G1,(i1 -' 1),j1) by A55, A57, A56, A64, GOBRD11:31; ::_thesis: verum end; supposeA65: j2 < width G2 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) then p in { |[r,s]| where r, s is Real : ( (G2 * ((i2 -' 1),1)) `1 <= r & r <= (G2 * (i2,1)) `1 & (G2 * (1,j2)) `2 <= s & s <= (G2 * (1,(j2 + 1))) `2 ) } by A13, A9, A51, A53, A52, GOBRD11:32; then consider r9, s9 being Real such that A66: p = |[r9,s9]| and A67: ( (G2 * ((i2 -' 1),1)) `1 <= r9 & r9 <= (G2 * (i2,1)) `1 ) and A68: (G2 * (1,j2)) `2 <= s9 and A69: s9 <= (G2 * (1,(j2 + 1))) `2 ; A70: (G1 * (1,j1)) `2 <= s9 by A4, A14, A15, A7, A6, A12, A68, GOBOARD5:1; A71: ( (G1 * ((i1 -' 1),1)) `1 <= r9 & r9 <= (G1 * (i1,1)) `1 ) by A4, A14, A15, A7, A6, A11, A58, A67, GOBOARD5:2, XXREAL_0:2; now__::_thesis:_p_in_cell_(G1,(i1_-'_1),j1) percases ( j1 = width G1 or j1 < width G1 ) by A6, XXREAL_0:1; supposeA72: j1 = width G1 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) p in { |[r,s]| where r, s is Real : ( (G1 * ((i1 -' 1),1)) `1 <= r & r <= (G1 * (i1,1)) `1 & (G1 * (1,j1)) `2 <= s ) } by A66, A71, A70; hence p in cell (G1,(i1 -' 1),j1) by A55, A57, A56, A72, GOBRD11:31; ::_thesis: verum end; supposeA73: j1 < width G1 ; ::_thesis: p in cell (G1,(i1 -' 1),j1) ( 1 <= j2 + 1 & j2 + 1 <= width G2 ) by A65, NAT_1:12, NAT_1:13; then A74: (G2 * (i2,(j2 + 1))) `2 = (G2 * (1,(j2 + 1))) `2 by A10, A5, GOBOARD5:1; ( 1 <= j1 + 1 & j1 + 1 <= width G1 ) by A73, NAT_1:12, NAT_1:13; then ( G1 * (i1,(j1 + 1)) in Values G1 & (G1 * (i1,(j1 + 1))) `2 = (G1 * (1,(j1 + 1))) `2 ) by A14, A15, MATRIX_1:47, GOBOARD5:1; then (G2 * (1,(j2 + 1))) `2 <= (G1 * (1,(j1 + 1))) `2 by A1, A4, A14, A15, A7, A10, A5, A9, A65, A73, A74, Th15; then s9 <= (G1 * (1,(j1 + 1))) `2 by A69, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * ((i1 -' 1),1)) `1 <= r & r <= (G1 * (i1,1)) `1 & (G1 * (1,j1)) `2 <= s & s <= (G1 * (1,(j1 + 1))) `2 ) } by A66, A71, A70; hence p in cell (G1,(i1 -' 1),j1) by A7, A55, A57, A56, A73, GOBRD11:32; ::_thesis: verum end; end; end; hence p in cell (G1,(i1 -' 1),j1) ; ::_thesis: verum end; end; end; hence p in cell (G1,(i1 -' 1),j1) ; ::_thesis: verum end; end; end; theorem Th19: :: GOBRD13:19 for i1, j1, i2, j2 being Element of NAT for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) holds cell (G2,i2,(j2 -' 1)) c= cell (G1,i1,(j1 -' 1)) proof let i1, j1, i2, j2 be Element of NAT ; ::_thesis: for G1, G2 being Go-board st Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) holds cell (G2,i2,(j2 -' 1)) c= cell (G1,i1,(j1 -' 1)) let G1, G2 be Go-board; ::_thesis: ( Values G1 c= Values G2 & [i1,j1] in Indices G1 & [i2,j2] in Indices G2 & G1 * (i1,j1) = G2 * (i2,j2) implies cell (G2,i2,(j2 -' 1)) c= cell (G1,i1,(j1 -' 1)) ) assume that A1: Values G1 c= Values G2 and A2: [i1,j1] in Indices G1 and A3: [i2,j2] in Indices G2 and A4: G1 * (i1,j1) = G2 * (i2,j2) ; ::_thesis: cell (G2,i2,(j2 -' 1)) c= cell (G1,i1,(j1 -' 1)) A5: 1 <= i1 by A2, MATRIX_1:38; A6: 1 <= j2 by A3, MATRIX_1:38; A7: 1 <= i2 by A3, MATRIX_1:38; A8: j1 <= width G1 by A2, MATRIX_1:38; A9: j2 <= width G2 by A3, MATRIX_1:38; A10: i2 <= len G2 by A3, MATRIX_1:38; then A11: (G2 * (i2,j2)) `1 = (G2 * (i2,1)) `1 by A7, A6, A9, GOBOARD5:2; A12: i1 <= len G1 by A2, MATRIX_1:38; A13: 1 <= j1 by A2, MATRIX_1:38; then A14: (G1 * (i1,j1)) `2 = (G1 * (1,j1)) `2 by A5, A12, A8, GOBOARD5:1; let p be set ; :: according to TARSKI:def_3 ::_thesis: ( not p in cell (G2,i2,(j2 -' 1)) or p in cell (G1,i1,(j1 -' 1)) ) assume A15: p in cell (G2,i2,(j2 -' 1)) ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) A16: (G2 * (i2,j2)) `2 = (G2 * (1,j2)) `2 by A7, A10, A6, A9, GOBOARD5:1; percases ( ( j1 = 1 & j2 = 1 ) or ( j1 = 1 & 1 < j2 ) or ( 1 < j1 & j2 = 1 ) or ( 1 < j1 & 1 < j2 ) ) by A13, A6, XXREAL_0:1; supposeA17: ( j1 = 1 & j2 = 1 ) ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then A18: j1 -' 1 = 0 by XREAL_1:232; A19: j2 -' 1 = 0 by A17, XREAL_1:232; now__::_thesis:_p_in_cell_(G1,i1,(j1_-'_1)) percases ( i2 = len G2 or i2 < len G2 ) by A10, XXREAL_0:1; supposeA20: i2 = len G2 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then p in { |[r,s]| where r, s is Real : ( (G2 * ((len G2),1)) `1 <= r & s <= (G2 * (1,1)) `2 ) } by A15, A19, GOBRD11:27; then consider r9, s9 being Real such that A21: ( p = |[r9,s9]| & (G2 * ((len G2),1)) `1 <= r9 ) and A22: s9 <= (G2 * (1,1)) `2 ; A23: i1 = len G1 by A1, A2, A4, A6, A9, A20, Th10; (G2 * (1,1)) `2 = (G2 * (i2,j2)) `2 by A7, A10, A9, A17, GOBOARD5:1; then s9 <= (G1 * (1,1)) `2 by A4, A5, A12, A8, A17, A22, GOBOARD5:1; then p in { |[r,s]| where r, s is Real : ( (G1 * ((len G1),1)) `1 <= r & s <= (G1 * (1,1)) `2 ) } by A4, A17, A20, A21, A23; hence p in cell (G1,i1,(j1 -' 1)) by A18, A23, GOBRD11:27; ::_thesis: verum end; supposeA24: i2 < len G2 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then p in { |[r,s]| where r, s is Real : ( (G2 * (i2,1)) `1 <= r & r <= (G2 * ((i2 + 1),1)) `1 & s <= (G2 * (1,1)) `2 ) } by A15, A7, A19, GOBRD11:30; then consider r9, s9 being Real such that A25: ( p = |[r9,s9]| & (G2 * (i2,1)) `1 <= r9 ) and A26: r9 <= (G2 * ((i2 + 1),1)) `1 and A27: s9 <= (G2 * (1,1)) `2 ; (G2 * (1,1)) `2 = (G2 * (i2,j1)) `2 by A7, A10, A9, A17, GOBOARD5:1; then A28: s9 <= (G1 * (1,1)) `2 by A4, A5, A12, A8, A17, A27, GOBOARD5:1; now__::_thesis:_p_in_cell_(G1,i1,(j1_-'_1)) percases ( i1 = len G1 or i1 < len G1 ) by A12, XXREAL_0:1; supposeA29: i1 = len G1 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then p in { |[r,s]| where r, s is Real : ( (G1 * ((len G1),1)) `1 <= r & s <= (G1 * (1,1)) `2 ) } by A4, A17, A25, A28; hence p in cell (G1,i1,(j1 -' 1)) by A18, A29, GOBRD11:27; ::_thesis: verum end; supposeA30: i1 < len G1 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then (G2 * ((i2 + 1),1)) `1 <= (G1 * ((i1 + 1),1)) `1 by A1, A4, A5, A8, A7, A9, A17, A24, Th13; then r9 <= (G1 * ((i1 + 1),1)) `1 by A26, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * (i1,1)) `1 <= r & r <= (G1 * ((i1 + 1),1)) `1 & s <= (G1 * (1,1)) `2 ) } by A4, A17, A25, A28; hence p in cell (G1,i1,(j1 -' 1)) by A5, A18, A30, GOBRD11:30; ::_thesis: verum end; end; end; hence p in cell (G1,i1,(j1 -' 1)) ; ::_thesis: verum end; end; end; hence p in cell (G1,i1,(j1 -' 1)) ; ::_thesis: verum end; supposethat A31: j1 = 1 and A32: 1 < j2 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) A33: j1 -' 1 = 0 by A31, XREAL_1:232; A34: 1 <= j2 -' 1 by A32, NAT_D:49; then j2 -' 1 < j2 by NAT_D:51; then A35: j2 -' 1 < width G2 by A9, XXREAL_0:2; A36: (j2 -' 1) + 1 = j2 by A32, XREAL_1:235; now__::_thesis:_p_in_cell_(G1,i1,(j1_-'_1)) percases ( i2 = len G2 or i2 < len G2 ) by A10, XXREAL_0:1; supposeA37: i2 = len G2 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then p in { |[r,s]| where r, s is Real : ( (G2 * (i2,1)) `1 <= r & (G2 * (1,(j2 -' 1))) `2 <= s & s <= (G2 * (1,j2)) `2 ) } by A15, A34, A35, A36, GOBRD11:29; then ex r9, s9 being Real st ( p = |[r9,s9]| & (G2 * (i2,1)) `1 <= r9 & (G2 * (1,(j2 -' 1))) `2 <= s9 & s9 <= (G2 * (1,j2)) `2 ) ; then A38: p in { |[r,s]| where r, s is Real : ( (G1 * (i1,1)) `1 <= r & s <= (G1 * (1,1)) `2 ) } by A4, A14, A11, A16, A31; i1 = len G1 by A1, A2, A4, A6, A9, A37, Th10; hence p in cell (G1,i1,(j1 -' 1)) by A33, A38, GOBRD11:27; ::_thesis: verum end; supposeA39: i2 < len G2 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then p in { |[r,s]| where r, s is Real : ( (G2 * (i2,1)) `1 <= r & r <= (G2 * ((i2 + 1),1)) `1 & (G2 * (1,(j2 -' 1))) `2 <= s & s <= (G2 * (1,j2)) `2 ) } by A15, A7, A34, A35, A36, GOBRD11:32; then consider r9, s9 being Real such that A40: p = |[r9,s9]| and A41: (G2 * (i2,1)) `1 <= r9 and A42: r9 <= (G2 * ((i2 + 1),1)) `1 and (G2 * (1,(j2 -' 1))) `2 <= s9 and A43: s9 <= (G2 * (1,j2)) `2 ; A44: ( s9 <= (G1 * (1,1)) `2 & (G1 * (i1,1)) `1 <= r9 ) by A4, A7, A10, A6, A9, A14, A31, A41, A43, GOBOARD5:1, GOBOARD5:2; now__::_thesis:_p_in_cell_(G1,i1,(j1_-'_1)) percases ( i1 = len G1 or i1 < len G1 ) by A12, XXREAL_0:1; supposeA45: i1 = len G1 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then p in { |[r,s]| where r, s is Real : ( (G1 * ((len G1),1)) `1 <= r & s <= (G1 * (1,1)) `2 ) } by A40, A44; hence p in cell (G1,i1,(j1 -' 1)) by A33, A45, GOBRD11:27; ::_thesis: verum end; supposeA46: i1 < len G1 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) ( 1 <= i2 + 1 & i2 + 1 <= len G2 ) by A39, NAT_1:12, NAT_1:13; then A47: (G2 * ((i2 + 1),j2)) `1 = (G2 * ((i2 + 1),1)) `1 by A6, A9, GOBOARD5:2; ( 1 <= i1 + 1 & i1 + 1 <= len G1 ) by A46, NAT_1:12, NAT_1:13; then (G1 * ((i1 + 1),j1)) `1 = (G1 * ((i1 + 1),1)) `1 by A13, A8, GOBOARD5:2; then (G2 * ((i2 + 1),1)) `1 <= (G1 * ((i1 + 1),1)) `1 by A1, A4, A5, A13, A8, A7, A6, A9, A39, A46, A47, Th13; then r9 <= (G1 * ((i1 + 1),1)) `1 by A42, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * (i1,1)) `1 <= r & r <= (G1 * ((i1 + 1),1)) `1 & s <= (G1 * (1,1)) `2 ) } by A40, A44; hence p in cell (G1,i1,(j1 -' 1)) by A5, A33, A46, GOBRD11:30; ::_thesis: verum end; end; end; hence p in cell (G1,i1,(j1 -' 1)) ; ::_thesis: verum end; end; end; hence p in cell (G1,i1,(j1 -' 1)) ; ::_thesis: verum end; suppose ( 1 < j1 & j2 = 1 ) ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) hence p in cell (G1,i1,(j1 -' 1)) by A1, A2, A4, A7, A10, Th11; ::_thesis: verum end; supposeA48: ( 1 < j1 & 1 < j2 ) ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then A49: 1 <= j2 -' 1 by NAT_D:49; then A50: (j2 -' 1) + 1 = j2 by NAT_D:43; j2 -' 1 < j2 by A49, NAT_D:51; then A51: j2 -' 1 < width G2 by A9, XXREAL_0:2; then A52: (G2 * (1,(j2 -' 1))) `2 = (G2 * (i2,(j2 -' 1))) `2 by A7, A10, A49, GOBOARD5:1; A53: 1 <= j1 -' 1 by A48, NAT_D:49; then A54: (j1 -' 1) + 1 = j1 by NAT_D:43; j1 -' 1 < j1 by A53, NAT_D:51; then A55: j1 -' 1 < width G1 by A8, XXREAL_0:2; then (G1 * (1,(j1 -' 1))) `2 = (G1 * (i1,(j1 -' 1))) `2 by A5, A12, A53, GOBOARD5:1; then A56: (G1 * (1,(j1 -' 1))) `2 <= (G2 * (1,(j2 -' 1))) `2 by A1, A4, A5, A12, A8, A7, A10, A9, A48, A52, Th16; now__::_thesis:_p_in_cell_(G1,i1,(j1_-'_1)) percases ( i2 = len G2 or i2 < len G2 ) by A10, XXREAL_0:1; supposeA57: i2 = len G2 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then p in { |[r,s]| where r, s is Real : ( (G2 * (i2,1)) `1 <= r & (G2 * (1,(j2 -' 1))) `2 <= s & s <= (G2 * (1,j2)) `2 ) } by A15, A49, A51, A50, GOBRD11:29; then consider r9, s9 being Real such that A58: p = |[r9,s9]| and A59: (G2 * (i2,1)) `1 <= r9 and A60: ( (G2 * (1,(j2 -' 1))) `2 <= s9 & s9 <= (G2 * (1,j2)) `2 ) ; A61: (G1 * (i1,1)) `1 <= r9 by A4, A5, A12, A13, A8, A11, A59, GOBOARD5:2; ( (G1 * (1,(j1 -' 1))) `2 <= s9 & s9 <= (G1 * (1,j1)) `2 ) by A4, A5, A12, A13, A8, A16, A56, A60, GOBOARD5:1, XXREAL_0:2; then A62: p in { |[r,s]| where r, s is Real : ( (G1 * (i1,1)) `1 <= r & (G1 * (1,(j1 -' 1))) `2 <= s & s <= (G1 * (1,j1)) `2 ) } by A58, A61; i1 = len G1 by A1, A2, A4, A6, A9, A57, Th10; hence p in cell (G1,i1,(j1 -' 1)) by A53, A55, A54, A62, GOBRD11:29; ::_thesis: verum end; supposeA63: i2 < len G2 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) then p in { |[r,s]| where r, s is Real : ( (G2 * (i2,1)) `1 <= r & r <= (G2 * ((i2 + 1),1)) `1 & (G2 * (1,(j2 -' 1))) `2 <= s & s <= (G2 * (1,j2)) `2 ) } by A15, A7, A49, A51, A50, GOBRD11:32; then consider r9, s9 being Real such that A64: p = |[r9,s9]| and A65: (G2 * (i2,1)) `1 <= r9 and A66: r9 <= (G2 * ((i2 + 1),1)) `1 and A67: ( (G2 * (1,(j2 -' 1))) `2 <= s9 & s9 <= (G2 * (1,j2)) `2 ) ; A68: (G1 * (i1,1)) `1 <= r9 by A4, A5, A12, A13, A8, A11, A65, GOBOARD5:2; A69: ( (G1 * (1,(j1 -' 1))) `2 <= s9 & s9 <= (G1 * (1,j1)) `2 ) by A4, A5, A12, A13, A8, A16, A56, A67, GOBOARD5:1, XXREAL_0:2; now__::_thesis:_p_in_cell_(G1,i1,(j1_-'_1)) percases ( i1 = len G1 or i1 < len G1 ) by A12, XXREAL_0:1; supposeA70: i1 = len G1 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) p in { |[r,s]| where r, s is Real : ( (G1 * (i1,1)) `1 <= r & (G1 * (1,(j1 -' 1))) `2 <= s & s <= (G1 * (1,j1)) `2 ) } by A64, A69, A68; hence p in cell (G1,i1,(j1 -' 1)) by A53, A55, A54, A70, GOBRD11:29; ::_thesis: verum end; supposeA71: i1 < len G1 ; ::_thesis: p in cell (G1,i1,(j1 -' 1)) ( 1 <= i2 + 1 & i2 + 1 <= len G2 ) by A63, NAT_1:12, NAT_1:13; then A72: (G2 * ((i2 + 1),j2)) `1 = (G2 * ((i2 + 1),1)) `1 by A6, A9, GOBOARD5:2; ( 1 <= i1 + 1 & i1 + 1 <= len G1 ) by A71, NAT_1:12, NAT_1:13; then (G1 * ((i1 + 1),j1)) `1 = (G1 * ((i1 + 1),1)) `1 by A13, A8, GOBOARD5:2; then (G2 * ((i2 + 1),1)) `1 <= (G1 * ((i1 + 1),1)) `1 by A1, A4, A5, A13, A8, A7, A6, A9, A63, A71, A72, Th13; then r9 <= (G1 * ((i1 + 1),1)) `1 by A66, XXREAL_0:2; then p in { |[r,s]| where r, s is Real : ( (G1 * (i1,1)) `1 <= r & r <= (G1 * ((i1 + 1),1)) `1 & (G1 * (1,(j1 -' 1))) `2 <= s & s <= (G1 * (1,j1)) `2 ) } by A64, A69, A68; hence p in cell (G1,i1,(j1 -' 1)) by A5, A53, A55, A54, A71, GOBRD11:32; ::_thesis: verum end; end; end; hence p in cell (G1,i1,(j1 -' 1)) ; ::_thesis: verum end; end; end; hence p in cell (G1,i1,(j1 -' 1)) ; ::_thesis: verum end; end; end; Lm1: for i, j being Element of NAT for f being non empty FinSequence of (TOP-REAL 2) st 1 <= i & i <= len (GoB f) & 1 <= j & j <= width (GoB f) holds ex k being Element of NAT st ( k in dom f & (f /. k) `1 = ((GoB f) * (i,j)) `1 ) proof let i, j be Element of NAT ; ::_thesis: for f being non empty FinSequence of (TOP-REAL 2) st 1 <= i & i <= len (GoB f) & 1 <= j & j <= width (GoB f) holds ex k being Element of NAT st ( k in dom f & (f /. k) `1 = ((GoB f) * (i,j)) `1 ) let f be non empty FinSequence of (TOP-REAL 2); ::_thesis: ( 1 <= i & i <= len (GoB f) & 1 <= j & j <= width (GoB f) implies ex k being Element of NAT st ( k in dom f & (f /. k) `1 = ((GoB f) * (i,j)) `1 ) ) assume that A1: ( 1 <= i & i <= len (GoB f) ) and A2: ( 1 <= j & j <= width (GoB f) ) ; ::_thesis: ex k being Element of NAT st ( k in dom f & (f /. k) `1 = ((GoB f) * (i,j)) `1 ) A3: GoB f = GoB ((Incr (X_axis f)),(Incr (Y_axis f))) by GOBOARD2:def_2; then len (Incr (X_axis f)) = len (GoB f) by GOBOARD2:def_1; then i in dom (Incr (X_axis f)) by A1, FINSEQ_3:25; then (Incr (X_axis f)) . i in rng (Incr (X_axis f)) by FUNCT_1:def_3; then (Incr (X_axis f)) . i in rng (X_axis f) by SEQ_4:def_21; then consider k being Nat such that A4: k in dom (X_axis f) and A5: (X_axis f) . k = (Incr (X_axis f)) . i by FINSEQ_2:10; [i,j] in Indices (GoB f) by A1, A2, MATRIX_1:36; then A6: (GoB f) * (i,j) = |[((Incr (X_axis f)) . i),((Incr (Y_axis f)) . j)]| by A3, GOBOARD2:def_1; reconsider k = k as Element of NAT by ORDINAL1:def_12; take k ; ::_thesis: ( k in dom f & (f /. k) `1 = ((GoB f) * (i,j)) `1 ) len (X_axis f) = len f by GOBOARD1:def_1; hence k in dom f by A4, FINSEQ_3:29; ::_thesis: (f /. k) `1 = ((GoB f) * (i,j)) `1 thus (f /. k) `1 = (Incr (X_axis f)) . i by A4, A5, GOBOARD1:def_1 .= ((GoB f) * (i,j)) `1 by A6, EUCLID:52 ; ::_thesis: verum end; Lm2: for i, j being Element of NAT for f being non empty FinSequence of (TOP-REAL 2) st 1 <= i & i <= len (GoB f) & 1 <= j & j <= width (GoB f) holds ex k being Element of NAT st ( k in dom f & (f /. k) `2 = ((GoB f) * (i,j)) `2 ) proof let i, j be Element of NAT ; ::_thesis: for f being non empty FinSequence of (TOP-REAL 2) st 1 <= i & i <= len (GoB f) & 1 <= j & j <= width (GoB f) holds ex k being Element of NAT st ( k in dom f & (f /. k) `2 = ((GoB f) * (i,j)) `2 ) let f be non empty FinSequence of (TOP-REAL 2); ::_thesis: ( 1 <= i & i <= len (GoB f) & 1 <= j & j <= width (GoB f) implies ex k being Element of NAT st ( k in dom f & (f /. k) `2 = ((GoB f) * (i,j)) `2 ) ) assume that A1: ( 1 <= i & i <= len (GoB f) ) and A2: ( 1 <= j & j <= width (GoB f) ) ; ::_thesis: ex k being Element of NAT st ( k in dom f & (f /. k) `2 = ((GoB f) * (i,j)) `2 ) A3: GoB f = GoB ((Incr (X_axis f)),(Incr (Y_axis f))) by GOBOARD2:def_2; then len (Incr (Y_axis f)) = width (GoB f) by GOBOARD2:def_1; then j in dom (Incr (Y_axis f)) by A2, FINSEQ_3:25; then (Incr (Y_axis f)) . j in rng (Incr (Y_axis f)) by FUNCT_1:def_3; then (Incr (Y_axis f)) . j in rng (Y_axis f) by SEQ_4:def_21; then consider k being Nat such that A4: k in dom (Y_axis f) and A5: (Y_axis f) . k = (Incr (Y_axis f)) . j by FINSEQ_2:10; [i,j] in Indices (GoB f) by A1, A2, MATRIX_1:36; then A6: (GoB f) * (i,j) = |[((Incr (X_axis f)) . i),((Incr (Y_axis f)) . j)]| by A3, GOBOARD2:def_1; reconsider k = k as Element of NAT by ORDINAL1:def_12; take k ; ::_thesis: ( k in dom f & (f /. k) `2 = ((GoB f) * (i,j)) `2 ) len (Y_axis f) = len f by GOBOARD1:def_2; hence k in dom f by A4, FINSEQ_3:29; ::_thesis: (f /. k) `2 = ((GoB f) * (i,j)) `2 thus (f /. k) `2 = (Incr (Y_axis f)) . j by A4, A5, GOBOARD1:def_2 .= ((GoB f) * (i,j)) `2 by A6, EUCLID:52 ; ::_thesis: verum end; theorem Th20: :: GOBRD13:20 for G being Go-board for f being standard special_circular_sequence st f is_sequence_on G holds Values (GoB f) c= Values G proof let G be Go-board; ::_thesis: for f being standard special_circular_sequence st f is_sequence_on G holds Values (GoB f) c= Values G let f be standard special_circular_sequence; ::_thesis: ( f is_sequence_on G implies Values (GoB f) c= Values G ) assume A1: f is_sequence_on G ; ::_thesis: Values (GoB f) c= Values G let p be set ; :: according to TARSKI:def_3 ::_thesis: ( not p in Values (GoB f) or p in Values G ) set F = GoB f; assume p in Values (GoB f) ; ::_thesis: p in Values G then p in { ((GoB f) * (i,j)) where i, j is Element of NAT : [i,j] in Indices (GoB f) } by MATRIX_1:45; then consider i, j being Element of NAT such that A2: p = (GoB f) * (i,j) and A3: [i,j] in Indices (GoB f) ; reconsider p = p as Point of (TOP-REAL 2) by A2; A4: ( 1 <= j & j <= width (GoB f) ) by A3, MATRIX_1:38; A5: ( 1 <= i & i <= len (GoB f) ) by A3, MATRIX_1:38; then consider k1 being Element of NAT such that A6: k1 in dom f and A7: p `1 = (f /. k1) `1 by A2, A4, Lm1; consider k2 being Element of NAT such that A8: k2 in dom f and A9: p `2 = (f /. k2) `2 by A2, A5, A4, Lm2; consider i2, j2 being Element of NAT such that A10: [i2,j2] in Indices G and A11: f /. k2 = G * (i2,j2) by A1, A8, GOBOARD1:def_9; A12: ( 1 <= i2 & i2 <= len G ) by A10, MATRIX_1:38; consider i1, j1 being Element of NAT such that A13: [i1,j1] in Indices G and A14: f /. k1 = G * (i1,j1) by A1, A6, GOBOARD1:def_9; A15: ( 1 <= j1 & j1 <= width G ) by A13, MATRIX_1:38; A16: p = |[(p `1),(p `2)]| by EUCLID:53; A17: ( 1 <= j2 & j2 <= width G ) by A10, MATRIX_1:38; A18: ( 1 <= i1 & i1 <= len G ) by A13, MATRIX_1:38; then A19: [i1,j2] in Indices G by A17, MATRIX_1:36; A20: (G * (i1,j2)) `2 = (G * (1,j2)) `2 by A18, A17, GOBOARD5:1 .= (G * (i2,j2)) `2 by A12, A17, GOBOARD5:1 ; (G * (i1,j2)) `1 = (G * (i1,1)) `1 by A18, A17, GOBOARD5:2 .= (G * (i1,j1)) `1 by A18, A15, GOBOARD5:2 ; then p = G * (i1,j2) by A7, A9, A14, A11, A20, A16, EUCLID:53; then p in { (G * (k,l)) where k, l is Element of NAT : [k,l] in Indices G } by A19; hence p in Values G by MATRIX_1:45; ::_thesis: verum end; definition canceled; let f be FinSequence of (TOP-REAL 2); let G be Go-board; let k be Element of NAT ; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G ) ; then consider i1, j1, i2, j2 being Element of NAT such that A1: ( [i1,j1] in Indices G & f /. k = G * (i1,j1) ) and A2: ( [i2,j2] in Indices G & f /. (k + 1) = G * (i2,j2) ) and A3: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by JORDAN8:3; func right_cell (f,k,G) -> Subset of (TOP-REAL 2) means :Def2: :: GOBRD13:def 2 for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & it = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & it = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & it = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & it = cell (G,(i1 -' 1),j2) ); existence ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i1 -' 1),j2) ) proof percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A3; supposeA4: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i1 -' 1),j2) ) take cell (G,i1,j1) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i1,j1) = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i1,j1) = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i1,j1) = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i1,j1) = cell (G,(i1 -' 1),j2) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j1) = cell (G,i19,j19) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j1) = cell (G,i19,(j19 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j1) = cell (G,i29,j29) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j1) = cell (G,(i19 -' 1),j29) ) ) assume that A5: [i19,j19] in Indices G and A6: [i29,j29] in Indices G and A7: f /. k = G * (i19,j19) and A8: f /. (k + 1) = G * (i29,j29) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j1) = cell (G,i19,j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j1) = cell (G,i19,(j19 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j1) = cell (G,i29,j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j1) = cell (G,(i19 -' 1),j29) ) ) ( i1 = i19 & j1 = j19 ) by A1, A5, A7, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j1) = cell (G,i19,j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j1) = cell (G,i19,(j19 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j1) = cell (G,i29,j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j1) = cell (G,(i19 -' 1),j29) ) ) by A2, A4, A6, A8, GOBOARD1:5; ::_thesis: verum end; supposeA9: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i1 -' 1),j2) ) take cell (G,i1,(j1 -' 1)) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i1,(j1 -' 1)) = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i1,(j1 -' 1)) = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i1,(j1 -' 1)) = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i1,(j1 -' 1)) = cell (G,(i1 -' 1),j2) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i19,j19) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i19,(j19 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i29,j29) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,(j1 -' 1)) = cell (G,(i19 -' 1),j29) ) ) assume that A10: [i19,j19] in Indices G and A11: [i29,j29] in Indices G and A12: f /. k = G * (i19,j19) and A13: f /. (k + 1) = G * (i29,j29) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i19,j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i19,(j19 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i29,j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,(j1 -' 1)) = cell (G,(i19 -' 1),j29) ) ) ( i1 = i19 & j1 = j19 ) by A1, A10, A12, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i19,j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i19,(j19 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,(j1 -' 1)) = cell (G,i29,j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,(j1 -' 1)) = cell (G,(i19 -' 1),j29) ) ) by A2, A9, A11, A13, GOBOARD1:5; ::_thesis: verum end; supposeA14: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i1 -' 1),j2) ) take cell (G,i2,j2) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i2,j2) = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i2,j2) = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i2,j2) = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i2,j2) = cell (G,(i1 -' 1),j2) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,i19,j19) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i19,(j19 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,(i19 -' 1),j29) ) ) assume A15: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,i19,j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i19,(j19 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,(i19 -' 1),j29) ) ) then ( i2 = i29 & j1 = j19 ) by A1, A2, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,i19,j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i19,(j19 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,(i19 -' 1),j29) ) ) by A1, A2, A14, A15, GOBOARD1:5; ::_thesis: verum end; supposeA16: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i1 -' 1),j2) ) take cell (G,(i1 -' 1),j2) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,(i1 -' 1),j2) = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,(i1 -' 1),j2) = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,(i1 -' 1),j2) = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,(i1 -' 1),j2) = cell (G,(i1 -' 1),j2) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i19,j19) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i19,(j19 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i29,j29) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,(i1 -' 1),j2) = cell (G,(i19 -' 1),j29) ) ) assume that A17: [i19,j19] in Indices G and A18: [i29,j29] in Indices G and A19: f /. k = G * (i19,j19) and A20: f /. (k + 1) = G * (i29,j29) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i19,j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i19,(j19 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i29,j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i1 -' 1),j2) = cell (G,(i19 -' 1),j29) ) ) ( i1 = i19 & j1 = j19 ) by A1, A17, A19, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i19,j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i19,(j19 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i1 -' 1),j2) = cell (G,i29,j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i1 -' 1),j2) = cell (G,(i19 -' 1),j29) ) ) by A2, A16, A18, A20, GOBOARD1:5; ::_thesis: verum end; end; end; uniqueness for b1, b2 being Subset of (TOP-REAL 2) st ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i1 -' 1),j2) ) ) & ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b2 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b2 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b2 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b2 = cell (G,(i1 -' 1),j2) ) ) holds b1 = b2 proof let P1, P2 be Subset of (TOP-REAL 2); ::_thesis: ( ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P1 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & P1 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & P1 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & P1 = cell (G,(i1 -' 1),j2) ) ) & ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P2 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & P2 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & P2 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & P2 = cell (G,(i1 -' 1),j2) ) ) implies P1 = P2 ) assume that A21: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P1 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & P1 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & P1 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & P1 = cell (G,(i1 -' 1),j2) ) and A22: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P2 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & P2 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & P2 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & P2 = cell (G,(i1 -' 1),j2) ) ; ::_thesis: P1 = P2 percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A3; supposeA23: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: P1 = P2 A24: j2 <= j2 + 1 by NAT_1:11; A25: j1 < j2 by A23, XREAL_1:29; hence P1 = cell (G,i1,j1) by A1, A2, A21, A24 .= P2 by A1, A2, A22, A25, A24 ; ::_thesis: verum end; supposeA26: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: P1 = P2 A27: i2 <= i2 + 1 by NAT_1:11; A28: i1 < i2 by A26, XREAL_1:29; hence P1 = cell (G,i1,(j1 -' 1)) by A1, A2, A21, A27 .= P2 by A1, A2, A22, A28, A27 ; ::_thesis: verum end; supposeA29: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: P1 = P2 A30: i1 <= i1 + 1 by NAT_1:11; A31: i2 < i1 by A29, XREAL_1:29; hence P1 = cell (G,i2,j2) by A1, A2, A21, A30 .= P2 by A1, A2, A22, A31, A30 ; ::_thesis: verum end; supposeA32: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: P1 = P2 A33: j1 <= j1 + 1 by NAT_1:11; A34: j2 < j1 by A32, XREAL_1:29; hence P1 = cell (G,(i1 -' 1),j2) by A1, A2, A21, A33 .= P2 by A1, A2, A22, A34, A33 ; ::_thesis: verum end; end; end; func left_cell (f,k,G) -> Subset of (TOP-REAL 2) means :Def3: :: GOBRD13:def 3 for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & it = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & it = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & it = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & it = cell (G,i1,j2) ); existence ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i1,j2) ) proof percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A3; supposeA35: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i1,j2) ) take cell (G,(i1 -' 1),j1) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,(i1 -' 1),j1) = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,(i1 -' 1),j1) = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,(i1 -' 1),j1) = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,(i1 -' 1),j1) = cell (G,i1,j2) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,(i1 -' 1),j1) = cell (G,(i19 -' 1),j19) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,(i1 -' 1),j1) = cell (G,i19,j19) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,(i1 -' 1),j1) = cell (G,i29,(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,(i1 -' 1),j1) = cell (G,i19,j29) ) ) assume that A36: [i19,j19] in Indices G and A37: [i29,j29] in Indices G and A38: f /. k = G * (i19,j19) and A39: f /. (k + 1) = G * (i29,j29) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i1 -' 1),j1) = cell (G,(i19 -' 1),j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i1 -' 1),j1) = cell (G,i19,j19) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i1 -' 1),j1) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i1 -' 1),j1) = cell (G,i19,j29) ) ) ( i1 = i19 & j1 = j19 ) by A1, A36, A38, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i1 -' 1),j1) = cell (G,(i19 -' 1),j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i1 -' 1),j1) = cell (G,i19,j19) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i1 -' 1),j1) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i1 -' 1),j1) = cell (G,i19,j29) ) ) by A2, A35, A37, A39, GOBOARD1:5; ::_thesis: verum end; supposeA40: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i1,j2) ) take cell (G,i1,j1) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i1,j1) = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i1,j1) = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i1,j1) = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i1,j1) = cell (G,i1,j2) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j1) = cell (G,(i19 -' 1),j19) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j1) = cell (G,i19,j19) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j1) = cell (G,i29,(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j1) = cell (G,i19,j29) ) ) assume that A41: [i19,j19] in Indices G and A42: [i29,j29] in Indices G and A43: f /. k = G * (i19,j19) and A44: f /. (k + 1) = G * (i29,j29) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j1) = cell (G,(i19 -' 1),j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j1) = cell (G,i19,j19) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j1) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j1) = cell (G,i19,j29) ) ) ( i1 = i19 & j1 = j19 ) by A1, A41, A43, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j1) = cell (G,(i19 -' 1),j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j1) = cell (G,i19,j19) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j1) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j1) = cell (G,i19,j29) ) ) by A2, A40, A42, A44, GOBOARD1:5; ::_thesis: verum end; supposeA45: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i1,j2) ) take cell (G,i2,(j2 -' 1)) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,i1,j2) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i19 -' 1),j19) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i19,j19) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,i19,j29) ) ) assume A46: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i19 -' 1),j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i19,j19) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,i19,j29) ) ) then ( i2 = i29 & j1 = j19 ) by A1, A2, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i19 -' 1),j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i19,j19) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,i19,j29) ) ) by A1, A2, A45, A46, GOBOARD1:5; ::_thesis: verum end; supposeA47: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i1,j2) ) take cell (G,i1,j2) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i1,j2) = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i1,j2) = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i1,j2) = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i1,j2) = cell (G,i1,j2) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j2) = cell (G,(i19 -' 1),j19) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j2) = cell (G,i19,j19) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j2) = cell (G,i29,(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j2) = cell (G,i19,j29) ) ) assume that A48: [i19,j19] in Indices G and A49: [i29,j29] in Indices G and A50: f /. k = G * (i19,j19) and A51: f /. (k + 1) = G * (i29,j29) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j2) = cell (G,(i19 -' 1),j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j2) = cell (G,i19,j19) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j2) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j2) = cell (G,i19,j29) ) ) ( i1 = i19 & j1 = j19 ) by A1, A48, A50, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i1,j2) = cell (G,(i19 -' 1),j19) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i1,j2) = cell (G,i19,j19) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i1,j2) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i1,j2) = cell (G,i19,j29) ) ) by A2, A47, A49, A51, GOBOARD1:5; ::_thesis: verum end; end; end; uniqueness for b1, b2 being Subset of (TOP-REAL 2) st ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i1,j2) ) ) & ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b2 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b2 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & b2 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b2 = cell (G,i1,j2) ) ) holds b1 = b2 proof let P1, P2 be Subset of (TOP-REAL 2); ::_thesis: ( ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P1 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & P1 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & P1 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & P1 = cell (G,i1,j2) ) ) & ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P2 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & P2 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & P2 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & P2 = cell (G,i1,j2) ) ) implies P1 = P2 ) assume that A52: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P1 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & P1 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & P1 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & P1 = cell (G,i1,j2) ) and A53: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P2 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & P2 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & P2 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & P2 = cell (G,i1,j2) ) ; ::_thesis: P1 = P2 percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A3; supposeA54: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: P1 = P2 A55: j2 <= j2 + 1 by NAT_1:11; A56: j1 < j2 by A54, XREAL_1:29; hence P1 = cell (G,(i1 -' 1),j1) by A1, A2, A52, A55 .= P2 by A1, A2, A53, A56, A55 ; ::_thesis: verum end; supposeA57: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: P1 = P2 A58: i2 <= i2 + 1 by NAT_1:11; A59: i1 < i2 by A57, XREAL_1:29; hence P1 = cell (G,i1,j1) by A1, A2, A52, A58 .= P2 by A1, A2, A53, A59, A58 ; ::_thesis: verum end; supposeA60: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: P1 = P2 A61: i1 <= i1 + 1 by NAT_1:11; A62: i2 < i1 by A60, XREAL_1:29; hence P1 = cell (G,i2,(j2 -' 1)) by A1, A2, A52, A61 .= P2 by A1, A2, A53, A62, A61 ; ::_thesis: verum end; supposeA63: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: P1 = P2 A64: j1 <= j1 + 1 by NAT_1:11; A65: j2 < j1 by A63, XREAL_1:29; hence P1 = cell (G,i1,j2) by A1, A2, A52, A64 .= P2 by A1, A2, A53, A65, A64 ; ::_thesis: verum end; end; end; end; :: deftheorem GOBRD13:def_1_:_ canceled; :: deftheorem Def2 defines right_cell GOBRD13:def_2_:_ for f being FinSequence of (TOP-REAL 2) for G being Go-board for k being Element of NAT st 1 <= k & k + 1 <= len f & f is_sequence_on G holds for b4 being Subset of (TOP-REAL 2) holds ( b4 = right_cell (f,k,G) iff for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b4 = cell (G,i1,j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b4 = cell (G,i1,(j1 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b4 = cell (G,i2,j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b4 = cell (G,(i1 -' 1),j2) ) ); :: deftheorem Def3 defines left_cell GOBRD13:def_3_:_ for f being FinSequence of (TOP-REAL 2) for G being Go-board for k being Element of NAT st 1 <= k & k + 1 <= len f & f is_sequence_on G holds for b4 being Subset of (TOP-REAL 2) holds ( b4 = left_cell (f,k,G) iff for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b4 = cell (G,(i1 -' 1),j1) ) & not ( i1 + 1 = i2 & j1 = j2 & b4 = cell (G,i1,j1) ) & not ( i1 = i2 + 1 & j1 = j2 & b4 = cell (G,i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b4 = cell (G,i1,j2) ) ); theorem Th21: :: GOBRD13:21 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds left_cell (f,k,G) = cell (G,(i -' 1),j) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds left_cell (f,k,G) = cell (G,(i -' 1),j) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds left_cell (f,k,G) = cell (G,(i -' 1),j) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) implies left_cell (f,k,G) = cell (G,(i -' 1),j) ) A1: ( j < j + 1 & j + 1 <= (j + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) ) ; ::_thesis: left_cell (f,k,G) = cell (G,(i -' 1),j) hence left_cell (f,k,G) = cell (G,(i -' 1),j) by A1, Def3; ::_thesis: verum end; theorem Th22: :: GOBRD13:22 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds right_cell (f,k,G) = cell (G,i,j) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds right_cell (f,k,G) = cell (G,i,j) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds right_cell (f,k,G) = cell (G,i,j) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) implies right_cell (f,k,G) = cell (G,i,j) ) A1: ( j < j + 1 & j + 1 <= (j + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) ) ; ::_thesis: right_cell (f,k,G) = cell (G,i,j) hence right_cell (f,k,G) = cell (G,i,j) by A1, Def2; ::_thesis: verum end; theorem Th23: :: GOBRD13:23 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds left_cell (f,k,G) = cell (G,i,j) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds left_cell (f,k,G) = cell (G,i,j) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds left_cell (f,k,G) = cell (G,i,j) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) implies left_cell (f,k,G) = cell (G,i,j) ) A1: ( i < i + 1 & i + 1 <= (i + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) ) ; ::_thesis: left_cell (f,k,G) = cell (G,i,j) hence left_cell (f,k,G) = cell (G,i,j) by A1, Def3; ::_thesis: verum end; theorem Th24: :: GOBRD13:24 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds right_cell (f,k,G) = cell (G,i,(j -' 1)) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds right_cell (f,k,G) = cell (G,i,(j -' 1)) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds right_cell (f,k,G) = cell (G,i,(j -' 1)) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) implies right_cell (f,k,G) = cell (G,i,(j -' 1)) ) A1: ( i < i + 1 & i + 1 <= (i + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) ) ; ::_thesis: right_cell (f,k,G) = cell (G,i,(j -' 1)) hence right_cell (f,k,G) = cell (G,i,(j -' 1)) by A1, Def2; ::_thesis: verum end; theorem Th25: :: GOBRD13:25 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds left_cell (f,k,G) = cell (G,i,(j -' 1)) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds left_cell (f,k,G) = cell (G,i,(j -' 1)) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds left_cell (f,k,G) = cell (G,i,(j -' 1)) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) implies left_cell (f,k,G) = cell (G,i,(j -' 1)) ) A1: ( i < i + 1 & i + 1 <= (i + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) ) ; ::_thesis: left_cell (f,k,G) = cell (G,i,(j -' 1)) hence left_cell (f,k,G) = cell (G,i,(j -' 1)) by A1, Def3; ::_thesis: verum end; theorem Th26: :: GOBRD13:26 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds right_cell (f,k,G) = cell (G,i,j) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds right_cell (f,k,G) = cell (G,i,j) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds right_cell (f,k,G) = cell (G,i,j) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) implies right_cell (f,k,G) = cell (G,i,j) ) A1: ( i < i + 1 & i + 1 <= (i + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) ) ; ::_thesis: right_cell (f,k,G) = cell (G,i,j) hence right_cell (f,k,G) = cell (G,i,j) by A1, Def2; ::_thesis: verum end; theorem Th27: :: GOBRD13:27 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds left_cell (f,k,G) = cell (G,i,j) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds left_cell (f,k,G) = cell (G,i,j) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds left_cell (f,k,G) = cell (G,i,j) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) implies left_cell (f,k,G) = cell (G,i,j) ) A1: ( j < j + 1 & j + 1 <= (j + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) ) ; ::_thesis: left_cell (f,k,G) = cell (G,i,j) hence left_cell (f,k,G) = cell (G,i,j) by A1, Def3; ::_thesis: verum end; theorem Th28: :: GOBRD13:28 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds right_cell (f,k,G) = cell (G,(i -' 1),j) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds right_cell (f,k,G) = cell (G,(i -' 1),j) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds right_cell (f,k,G) = cell (G,(i -' 1),j) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) implies right_cell (f,k,G) = cell (G,(i -' 1),j) ) A1: ( j < j + 1 & j + 1 <= (j + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) ) ; ::_thesis: right_cell (f,k,G) = cell (G,(i -' 1),j) hence right_cell (f,k,G) = cell (G,(i -' 1),j) by A1, Def2; ::_thesis: verum end; theorem :: GOBRD13:29 for k being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G holds (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) proof let k be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G holds (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G holds (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G implies (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) ) assume that A1: 1 <= k and A2: k + 1 <= len f and A3: f is_sequence_on G ; ::_thesis: (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) k + 1 >= 1 by NAT_1:11; then A4: k + 1 in dom f by A2, FINSEQ_3:25; then consider i2, j2 being Element of NAT such that A5: [i2,j2] in Indices G and A6: f /. (k + 1) = G * (i2,j2) by A3, GOBOARD1:def_9; A7: 1 <= j2 by A5, MATRIX_1:38; A8: i2 <= len G by A5, MATRIX_1:38; A9: 1 <= i2 by A5, MATRIX_1:38; A10: j2 <= width G by A5, MATRIX_1:38; k <= k + 1 by NAT_1:11; then k <= len f by A2, XXREAL_0:2; then A11: k in dom f by A1, FINSEQ_3:25; then consider i1, j1 being Element of NAT such that A12: [i1,j1] in Indices G and A13: f /. k = G * (i1,j1) by A3, GOBOARD1:def_9; A14: 0 + 1 <= j1 by A12, MATRIX_1:38; then j1 > 0 by NAT_1:13; then consider j being Nat such that A15: j + 1 = j1 by NAT_1:6; A16: (abs (i1 - i2)) + (abs (j1 - j2)) = 1 by A3, A11, A12, A13, A4, A5, A6, GOBOARD1:def_9; A17: now__::_thesis:_(_(_abs_(i1_-_i2)_=_1_&_j1_=_j2_&_(_i1_=_i2_+_1_or_i1_+_1_=_i2_)_&_j1_=_j2_)_or_(_i1_=_i2_&_abs_(j1_-_j2)_=_1_&_(_j1_=_j2_+_1_or_j1_+_1_=_j2_)_&_i1_=_i2_)_) percases ( ( abs (i1 - i2) = 1 & j1 = j2 ) or ( i1 = i2 & abs (j1 - j2) = 1 ) ) by A16, SEQM_3:42; casethat A18: abs (i1 - i2) = 1 and A19: j1 = j2 ; ::_thesis: ( ( i1 = i2 + 1 or i1 + 1 = i2 ) & j1 = j2 ) ( i1 - i2 = 1 or - (i1 - i2) = 1 ) by A18, ABSVALUE:def_1; hence ( i1 = i2 + 1 or i1 + 1 = i2 ) ; ::_thesis: j1 = j2 thus j1 = j2 by A19; ::_thesis: verum end; casethat A20: i1 = i2 and A21: abs (j1 - j2) = 1 ; ::_thesis: ( ( j1 = j2 + 1 or j1 + 1 = j2 ) & i1 = i2 ) ( j1 - j2 = 1 or - (j1 - j2) = 1 ) by A21, ABSVALUE:def_1; hence ( j1 = j2 + 1 or j1 + 1 = j2 ) ; ::_thesis: i1 = i2 thus i1 = i2 by A20; ::_thesis: verum end; end; end; A22: j1 -' 1 = j by A15, NAT_D:34; A23: j1 <= width G by A12, MATRIX_1:38; then A24: j < width G by A15, NAT_1:13; A25: 0 + 1 <= i1 by A12, MATRIX_1:38; then i1 > 0 by NAT_1:13; then consider i being Nat such that A26: i + 1 = i1 by NAT_1:6; A27: i1 <= len G by A12, MATRIX_1:38; then A28: i < len G by A26, NAT_1:13; A29: i1 -' 1 = i by A26, NAT_D:34; reconsider i = i, j = j as Element of NAT by ORDINAL1:def_12; percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A17; supposeA30: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) then A31: right_cell (f,k,G) = cell (G,i1,j1) by A1, A2, A3, A12, A13, A5, A6, Th22; ( j1 < width G & left_cell (f,k,G) = cell (G,i,j1) ) by A1, A2, A3, A12, A13, A5, A6, A10, A29, A30, Th21, NAT_1:13; hence (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg ((G * (i1,j1)),(G * (i1,(j1 + 1)))) by A14, A26, A28, A31, GOBOARD5:25 .= LSeg (f,k) by A1, A2, A13, A6, A30, TOPREAL1:def_3 ; ::_thesis: verum end; supposeA32: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) then A33: right_cell (f,k,G) = cell (G,i1,j) by A1, A2, A3, A12, A13, A5, A6, A22, Th24; ( i1 < len G & left_cell (f,k,G) = cell (G,i1,j1) ) by A1, A2, A3, A12, A13, A5, A6, A8, A32, Th23, NAT_1:13; hence (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg ((G * (i1,j1)),(G * ((i1 + 1),j1))) by A25, A15, A24, A33, GOBOARD5:26 .= LSeg (f,k) by A1, A2, A13, A6, A32, TOPREAL1:def_3 ; ::_thesis: verum end; supposeA34: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) then A35: right_cell (f,k,G) = cell (G,i2,j1) by A1, A2, A3, A12, A13, A5, A6, Th26; ( i2 < len G & left_cell (f,k,G) = cell (G,i2,j) ) by A1, A2, A3, A12, A13, A5, A6, A27, A22, A34, Th25, NAT_1:13; hence (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg ((G * ((i2 + 1),j1)),(G * (i2,j1))) by A9, A15, A24, A35, GOBOARD5:26 .= LSeg (f,k) by A1, A2, A13, A6, A34, TOPREAL1:def_3 ; ::_thesis: verum end; supposeA36: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg (f,k) then A37: right_cell (f,k,G) = cell (G,i,j2) by A1, A2, A3, A12, A13, A5, A6, A29, Th28; ( j2 < width G & left_cell (f,k,G) = cell (G,i1,j2) ) by A1, A2, A3, A12, A13, A5, A6, A23, A36, Th27, NAT_1:13; hence (left_cell (f,k,G)) /\ (right_cell (f,k,G)) = LSeg ((G * (i1,(j2 + 1))),(G * (i1,j2))) by A7, A26, A28, A37, GOBOARD5:25 .= LSeg (f,k) by A1, A2, A13, A6, A36, TOPREAL1:def_3 ; ::_thesis: verum end; end; end; theorem :: GOBRD13:30 for k being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G holds right_cell (f,k,G) is closed proof let k be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G holds right_cell (f,k,G) is closed let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G holds right_cell (f,k,G) is closed let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G implies right_cell (f,k,G) is closed ) assume A1: ( 1 <= k & k + 1 <= len f & f is_sequence_on G ) ; ::_thesis: right_cell (f,k,G) is closed then consider i1, j1, i2, j2 being Element of NAT such that A2: ( [i1,j1] in Indices G & f /. k = G * (i1,j1) & [i2,j2] in Indices G & f /. (k + 1) = G * (i2,j2) & ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) ) by JORDAN8:3; ( ( i1 = i2 & j1 + 1 = j2 & right_cell (f,k,G) = cell (G,i1,j1) ) or ( i1 + 1 = i2 & j1 = j2 & right_cell (f,k,G) = cell (G,i1,(j1 -' 1)) ) or ( i1 = i2 + 1 & j1 = j2 & right_cell (f,k,G) = cell (G,i2,j2) ) or ( i1 = i2 & j1 = j2 + 1 & right_cell (f,k,G) = cell (G,(i1 -' 1),j2) ) ) by A1, A2, Def2; hence right_cell (f,k,G) is closed by GOBRD11:33; ::_thesis: verum end; theorem :: GOBRD13:31 for k, n being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & k + 1 <= n holds ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) proof let k, n be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & k + 1 <= n holds ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & k + 1 <= n holds ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & k + 1 <= n implies ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) ) assume that A1: 1 <= k and A2: k + 1 <= len f and A3: f is_sequence_on G and A4: k + 1 <= n ; ::_thesis: ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) percases ( len f <= n or n < len f ) ; suppose len f <= n ; ::_thesis: ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) hence ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) by FINSEQ_1:58; ::_thesis: verum end; suppose n < len f ; ::_thesis: ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) then A5: len (f | n) = n by FINSEQ_1:59; then k in dom (f | n) by A1, A4, SEQ_4:134; then A6: (f | n) /. k = f /. k by FINSEQ_4:70; k + 1 in dom (f | n) by A1, A4, A5, SEQ_4:134; then A7: (f | n) /. (k + 1) = f /. (k + 1) by FINSEQ_4:70; set lf = left_cell (f,k,G); set lfn = left_cell ((f | n),k,G); set rf = right_cell (f,k,G); set rfn = right_cell ((f | n),k,G); A8: f | n is_sequence_on G by A3, GOBOARD1:22; consider i1, j1, i2, j2 being Element of NAT such that A9: ( [i1,j1] in Indices G & f /. k = G * (i1,j1) & [i2,j2] in Indices G & f /. (k + 1) = G * (i2,j2) ) and A10: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A1, A2, A3, JORDAN8:3; A11: ( j1 + 1 > j1 & j2 + 1 > j2 ) by NAT_1:13; A12: ( i1 + 1 > i1 & i2 + 1 > i2 ) by NAT_1:13; now__::_thesis:_(_left_cell_(f,k,G)_=_left_cell_((f_|_n),k,G)_&_right_cell_(f,k,G)_=_right_cell_((f_|_n),k,G)_) percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A10; supposeA13: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) hence left_cell (f,k,G) = cell (G,(i1 -' 1),j1) by A1, A2, A3, A9, A11, Def3 .= left_cell ((f | n),k,G) by A1, A4, A9, A11, A8, A5, A6, A7, A13, Def3 ; ::_thesis: right_cell (f,k,G) = right_cell ((f | n),k,G) thus right_cell (f,k,G) = cell (G,i1,j1) by A1, A2, A3, A9, A11, A13, Def2 .= right_cell ((f | n),k,G) by A1, A4, A9, A11, A8, A5, A6, A7, A13, Def2 ; ::_thesis: verum end; supposeA14: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) hence left_cell (f,k,G) = cell (G,i1,j1) by A1, A2, A3, A9, A12, Def3 .= left_cell ((f | n),k,G) by A1, A4, A9, A12, A8, A5, A6, A7, A14, Def3 ; ::_thesis: right_cell (f,k,G) = right_cell ((f | n),k,G) thus right_cell (f,k,G) = cell (G,i1,(j1 -' 1)) by A1, A2, A3, A9, A12, A14, Def2 .= right_cell ((f | n),k,G) by A1, A4, A9, A12, A8, A5, A6, A7, A14, Def2 ; ::_thesis: verum end; supposeA15: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) hence left_cell (f,k,G) = cell (G,i2,(j2 -' 1)) by A1, A2, A3, A9, A12, Def3 .= left_cell ((f | n),k,G) by A1, A4, A9, A12, A8, A5, A6, A7, A15, Def3 ; ::_thesis: right_cell (f,k,G) = right_cell ((f | n),k,G) thus right_cell (f,k,G) = cell (G,i2,j2) by A1, A2, A3, A9, A12, A15, Def2 .= right_cell ((f | n),k,G) by A1, A4, A9, A12, A8, A5, A6, A7, A15, Def2 ; ::_thesis: verum end; supposeA16: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) hence left_cell (f,k,G) = cell (G,i1,j2) by A1, A2, A3, A9, A11, Def3 .= left_cell ((f | n),k,G) by A1, A4, A9, A11, A8, A5, A6, A7, A16, Def3 ; ::_thesis: right_cell (f,k,G) = right_cell ((f | n),k,G) thus right_cell (f,k,G) = cell (G,(i1 -' 1),j2) by A1, A2, A3, A9, A11, A16, Def2 .= right_cell ((f | n),k,G) by A1, A4, A9, A11, A8, A5, A6, A7, A16, Def2 ; ::_thesis: verum end; end; end; hence ( left_cell (f,k,G) = left_cell ((f | n),k,G) & right_cell (f,k,G) = right_cell ((f | n),k,G) ) ; ::_thesis: verum end; end; end; theorem :: GOBRD13:32 for k, n being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len (f /^ n) & n <= len f & f is_sequence_on G holds ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) proof let k, n be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len (f /^ n) & n <= len f & f is_sequence_on G holds ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len (f /^ n) & n <= len f & f is_sequence_on G holds ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len (f /^ n) & n <= len f & f is_sequence_on G implies ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) ) set g = f /^ n; assume that A1: 1 <= k and A2: k + 1 <= len (f /^ n) and A3: n <= len f and A4: f is_sequence_on G ; ::_thesis: ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) A5: ( len (f /^ n) = (len f) - n & (k + 1) + n <= (len (f /^ n)) + n ) by A2, A3, RFINSEQ:def_1, XREAL_1:6; k in dom (f /^ n) by A1, A2, SEQ_4:134; then A6: (f /^ n) /. k = f /. (k + n) by FINSEQ_5:27; set lf = left_cell (f,(k + n),G); set lfn = left_cell ((f /^ n),k,G); set rf = right_cell (f,(k + n),G); set rfn = right_cell ((f /^ n),k,G); A7: ( (k + 1) + n = (k + n) + 1 & 1 <= k + n ) by A1, NAT_1:12; k + 1 in dom (f /^ n) by A1, A2, SEQ_4:134; then A8: (f /^ n) /. (k + 1) = f /. ((k + 1) + n) by FINSEQ_5:27; A9: f /^ n is_sequence_on G by A4, JORDAN8:2; then consider i1, j1, i2, j2 being Element of NAT such that A10: ( [i1,j1] in Indices G & (f /^ n) /. k = G * (i1,j1) & [i2,j2] in Indices G & (f /^ n) /. (k + 1) = G * (i2,j2) ) and A11: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A1, A2, JORDAN8:3; A12: ( j1 + 1 > j1 & j2 + 1 > j2 ) by NAT_1:13; A13: ( i1 + 1 > i1 & i2 + 1 > i2 ) by NAT_1:13; now__::_thesis:_(_left_cell_(f,(k_+_n),G)_=_left_cell_((f_/^_n),k,G)_&_right_cell_(f,(k_+_n),G)_=_right_cell_((f_/^_n),k,G)_) percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A11; supposeA14: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) hence left_cell (f,(k + n),G) = cell (G,(i1 -' 1),j1) by A4, A10, A12, A6, A8, A5, A7, Def3 .= left_cell ((f /^ n),k,G) by A1, A2, A9, A10, A12, A14, Def3 ; ::_thesis: right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) thus right_cell (f,(k + n),G) = cell (G,i1,j1) by A4, A10, A12, A6, A8, A5, A7, A14, Def2 .= right_cell ((f /^ n),k,G) by A1, A2, A9, A10, A12, A14, Def2 ; ::_thesis: verum end; supposeA15: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) hence left_cell (f,(k + n),G) = cell (G,i1,j1) by A4, A10, A13, A6, A8, A5, A7, Def3 .= left_cell ((f /^ n),k,G) by A1, A2, A9, A10, A13, A15, Def3 ; ::_thesis: right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) thus right_cell (f,(k + n),G) = cell (G,i1,(j1 -' 1)) by A4, A10, A13, A6, A8, A5, A7, A15, Def2 .= right_cell ((f /^ n),k,G) by A1, A2, A9, A10, A13, A15, Def2 ; ::_thesis: verum end; supposeA16: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) hence left_cell (f,(k + n),G) = cell (G,i2,(j2 -' 1)) by A4, A10, A13, A6, A8, A5, A7, Def3 .= left_cell ((f /^ n),k,G) by A1, A2, A9, A10, A13, A16, Def3 ; ::_thesis: right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) thus right_cell (f,(k + n),G) = cell (G,i2,j2) by A4, A10, A13, A6, A8, A5, A7, A16, Def2 .= right_cell ((f /^ n),k,G) by A1, A2, A9, A10, A13, A16, Def2 ; ::_thesis: verum end; supposeA17: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) hence left_cell (f,(k + n),G) = cell (G,i1,j2) by A4, A10, A12, A6, A8, A5, A7, Def3 .= left_cell ((f /^ n),k,G) by A1, A2, A9, A10, A12, A17, Def3 ; ::_thesis: right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) thus right_cell (f,(k + n),G) = cell (G,(i1 -' 1),j2) by A4, A10, A12, A6, A8, A5, A7, A17, Def2 .= right_cell ((f /^ n),k,G) by A1, A2, A9, A10, A12, A17, Def2 ; ::_thesis: verum end; end; end; hence ( left_cell (f,(k + n),G) = left_cell ((f /^ n),k,G) & right_cell (f,(k + n),G) = right_cell ((f /^ n),k,G) ) ; ::_thesis: verum end; theorem :: GOBRD13:33 for n being Element of NAT for G being Go-board for f being standard special_circular_sequence st 1 <= n & n + 1 <= len f & f is_sequence_on G holds ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) proof let n be Element of NAT ; ::_thesis: for G being Go-board for f being standard special_circular_sequence st 1 <= n & n + 1 <= len f & f is_sequence_on G holds ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) let G be Go-board; ::_thesis: for f being standard special_circular_sequence st 1 <= n & n + 1 <= len f & f is_sequence_on G holds ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) let f be standard special_circular_sequence; ::_thesis: ( 1 <= n & n + 1 <= len f & f is_sequence_on G implies ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) ) assume that A1: ( 1 <= n & n + 1 <= len f ) and A2: f is_sequence_on G ; ::_thesis: ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) consider i1, j1, i2, j2 being Element of NAT such that A3: [i1,j1] in Indices G and A4: f /. n = G * (i1,j1) and A5: [i2,j2] in Indices G and A6: f /. (n + 1) = G * (i2,j2) and A7: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A1, A2, JORDAN8:3; A8: 1 <= j1 by A3, MATRIX_1:38; A9: ( j1 + 1 > j1 & j2 + 1 > j2 ) by NAT_1:13; A10: ( i1 + 1 > i1 & i2 + 1 > i2 ) by NAT_1:13; A11: j2 <= width G by A5, MATRIX_1:38; A12: j1 <= width G by A3, MATRIX_1:38; A13: i2 <= len G by A5, MATRIX_1:38; A14: 1 <= i2 by A5, MATRIX_1:38; then A15: (G * (i2,j1)) `2 = (G * (1,j1)) `2 by A8, A12, A13, GOBOARD5:1; A16: 1 <= j2 by A5, MATRIX_1:38; then A17: (G * (i2,j2)) `1 = (G * (i2,1)) `1 by A14, A13, A11, GOBOARD5:2; A18: i1 <= len G by A3, MATRIX_1:38; set F = GoB f; A19: Values (GoB f) c= Values G by A2, Th20; f is_sequence_on GoB f by GOBOARD5:def_5; then consider m, k, i, j being Element of NAT such that A20: [m,k] in Indices (GoB f) and A21: f /. n = (GoB f) * (m,k) and A22: [i,j] in Indices (GoB f) and A23: f /. (n + 1) = (GoB f) * (i,j) and ( ( m = i & k + 1 = j ) or ( m + 1 = i & k = j ) or ( m = i + 1 & k = j ) or ( m = i & k = j + 1 ) ) by A1, JORDAN8:3; A24: 1 <= m by A20, MATRIX_1:38; A25: 1 <= i1 by A3, MATRIX_1:38; then A26: (G * (i1,j1)) `1 = (G * (i1,1)) `1 by A18, A8, A12, GOBOARD5:2; A27: (G * (i1,j1)) `2 = (G * (1,j1)) `2 by A25, A18, A8, A12, GOBOARD5:1; A28: m <= len (GoB f) by A20, MATRIX_1:38; A29: j + 1 > j by NAT_1:13; A30: k + 1 > k by NAT_1:13; A31: k + 1 >= 1 by NAT_1:12; A32: j + 1 >= 1 by NAT_1:12; A33: j <= width (GoB f) by A22, MATRIX_1:38; A34: i + 1 > i by NAT_1:13; A35: m + 1 > m by NAT_1:13; A36: i <= len (GoB f) by A22, MATRIX_1:38; A37: i + 1 >= 1 by NAT_1:12; A38: m + 1 >= 1 by NAT_1:12; A39: k <= width (GoB f) by A20, MATRIX_1:38; A40: 1 <= j by A22, MATRIX_1:38; then A41: ((GoB f) * (m,j)) `2 = ((GoB f) * (1,j)) `2 by A24, A28, A33, GOBOARD5:1; A42: 1 <= i by A22, MATRIX_1:38; then A43: ((GoB f) * (i,j)) `1 = ((GoB f) * (i,1)) `1 by A36, A40, A33, GOBOARD5:2; A44: ((GoB f) * (i,j)) `2 = ((GoB f) * (1,j)) `2 by A42, A36, A40, A33, GOBOARD5:1; A45: 1 <= k by A20, MATRIX_1:38; then A46: ((GoB f) * (i,k)) `1 = ((GoB f) * (i,1)) `1 by A39, A42, A36, GOBOARD5:2; percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A7; supposeA47: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) A48: now__::_thesis:_not_k_+_1_<_j A49: (G * (i2,j2)) `2 = (G * (1,j2)) `2 by A14, A13, A16, A11, GOBOARD5:1; assume A50: k + 1 < j ; ::_thesis: contradiction then A51: k + 1 < width (GoB f) by A33, XXREAL_0:2; then consider l, i9 being Element of NAT such that A52: l in dom f and A53: [i9,(k + 1)] in Indices (GoB f) and A54: f /. l = (GoB f) * (i9,(k + 1)) by JORDAN5D:8, NAT_1:12; A55: ((GoB f) * (m,(k + 1))) `2 = ((GoB f) * (1,(k + 1))) `2 by A24, A28, A31, A51, GOBOARD5:1; ( 1 <= i9 & i9 <= len (GoB f) ) by A53, MATRIX_1:38; then A56: ((GoB f) * (i9,(k + 1))) `2 = ((GoB f) * (1,(k + 1))) `2 by A31, A51, GOBOARD5:1; consider i19, j19 being Element of NAT such that A57: [i19,j19] in Indices G and A58: f /. l = G * (i19,j19) by A2, A52, GOBOARD1:def_9; A59: 1 <= j19 by A57, MATRIX_1:38; A60: ( 1 <= i19 & i19 <= len G ) by A57, MATRIX_1:38; then A61: (G * (i19,j1)) `2 = (G * (1,j1)) `2 by A8, A12, GOBOARD5:1; A62: now__::_thesis:_not_j1_>=_j19 assume j1 >= j19 ; ::_thesis: contradiction then (G * (i19,j19)) `2 <= (G * (i1,j1)) `2 by A12, A27, A60, A59, A61, SPRECT_3:12; hence contradiction by A21, A24, A28, A45, A4, A30, A51, A54, A56, A55, A58, GOBOARD5:4; ::_thesis: verum end; A63: j19 <= width G by A57, MATRIX_1:38; A64: (G * (i19,j2)) `2 = (G * (1,j2)) `2 by A16, A11, A60, GOBOARD5:1; now__::_thesis:_not_j2_<=_j19 assume j2 <= j19 ; ::_thesis: contradiction then (G * (i2,j2)) `2 <= (G * (i19,j19)) `2 by A16, A60, A63, A49, A64, SPRECT_3:12; hence contradiction by A23, A24, A28, A33, A44, A41, A6, A31, A50, A54, A56, A55, A58, GOBOARD5:4; ::_thesis: verum end; hence contradiction by A47, A62, NAT_1:13; ::_thesis: verum end; now__::_thesis:_not_j_<=_k assume j <= k ; ::_thesis: contradiction then A65: ((GoB f) * (i,j)) `2 <= ((GoB f) * (m,k)) `2 by A24, A28, A39, A40, A44, A41, SPRECT_3:12; j1 < j2 by A47, NAT_1:13; hence contradiction by A21, A23, A4, A6, A8, A14, A13, A11, A27, A15, A65, GOBOARD5:4; ::_thesis: verum end; then k + 1 <= j by NAT_1:13; then k + 1 = j by A48, XXREAL_0:1; then A66: ( right_cell (f,n) = cell ((GoB f),m,k) & left_cell (f,n) = cell ((GoB f),(m -' 1),k) ) by A1, A20, A21, A22, A23, A30, A29, GOBOARD5:def_6, GOBOARD5:def_7; ( right_cell (f,n,G) = cell (G,i1,j1) & left_cell (f,n,G) = cell (G,(i1 -' 1),j1) ) by A1, A2, A3, A4, A5, A6, A9, A47, Def2, Def3; hence ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) by A19, A20, A21, A3, A4, A66, Th17, Th18; ::_thesis: verum end; supposeA67: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) A68: now__::_thesis:_not_m_+_1_<_i assume A69: m + 1 < i ; ::_thesis: contradiction then A70: m + 1 < len (GoB f) by A36, XXREAL_0:2; then consider l, j9 being Element of NAT such that A71: l in dom f and A72: [(m + 1),j9] in Indices (GoB f) and A73: f /. l = (GoB f) * ((m + 1),j9) by JORDAN5D:7, NAT_1:12; A74: ((GoB f) * ((m + 1),k)) `1 = ((GoB f) * ((m + 1),1)) `1 by A45, A39, A38, A70, GOBOARD5:2; ( 1 <= j9 & j9 <= width (GoB f) ) by A72, MATRIX_1:38; then A75: ((GoB f) * ((m + 1),j9)) `1 = ((GoB f) * ((m + 1),1)) `1 by A38, A70, GOBOARD5:2; A76: ( 1 <= m + 1 & ((GoB f) * ((m + 1),j)) `1 = ((GoB f) * ((m + 1),1)) `1 ) by A40, A33, A38, A70, GOBOARD5:2; A77: (G * (i2,j2)) `1 = (G * (i2,1)) `1 by A14, A13, A16, A11, GOBOARD5:2; consider i19, j19 being Element of NAT such that A78: [i19,j19] in Indices G and A79: f /. l = G * (i19,j19) by A2, A71, GOBOARD1:def_9; A80: i19 <= len G by A78, MATRIX_1:38; A81: ( 1 <= j19 & j19 <= width G ) by A78, MATRIX_1:38; A82: 1 <= i19 by A78, MATRIX_1:38; then A83: (G * (i19,j19)) `1 = (G * (i19,1)) `1 by A80, A81, GOBOARD5:2; A84: (G * (i19,j1)) `1 = (G * (i19,1)) `1 by A8, A12, A82, A80, GOBOARD5:2; A85: now__::_thesis:_not_i1_>=_i19 assume i1 >= i19 ; ::_thesis: contradiction then (G * (i19,j19)) `1 <= (G * (i1,j1)) `1 by A18, A8, A12, A82, A83, A84, SPRECT_3:13; hence contradiction by A21, A24, A45, A39, A4, A35, A70, A73, A75, A74, A79, GOBOARD5:3; ::_thesis: verum end; A86: (G * (i2,j19)) `1 = (G * (i2,1)) `1 by A14, A13, A81, GOBOARD5:2; now__::_thesis:_not_i2_<=_i19 assume i2 <= i19 ; ::_thesis: contradiction then (G * (i2,j2)) `1 <= (G * (i19,j19)) `1 by A14, A80, A81, A77, A86, SPRECT_3:13; hence contradiction by A23, A36, A40, A33, A6, A69, A73, A75, A76, A79, GOBOARD5:3; ::_thesis: verum end; hence contradiction by A67, A85, NAT_1:13; ::_thesis: verum end; now__::_thesis:_not_i_<=_m assume i <= m ; ::_thesis: contradiction then A87: ((GoB f) * (i,j)) `1 <= ((GoB f) * (m,k)) `1 by A28, A45, A39, A42, A43, A46, SPRECT_3:13; i1 < i2 by A67, NAT_1:13; hence contradiction by A21, A23, A4, A6, A25, A8, A12, A13, A67, A87, GOBOARD5:3; ::_thesis: verum end; then m + 1 <= i by NAT_1:13; then m + 1 = i by A68, XXREAL_0:1; then A88: ( right_cell (f,n) = cell ((GoB f),m,(k -' 1)) & left_cell (f,n) = cell ((GoB f),m,k) ) by A1, A20, A21, A22, A23, A35, A34, GOBOARD5:def_6, GOBOARD5:def_7; ( right_cell (f,n,G) = cell (G,i1,(j1 -' 1)) & left_cell (f,n,G) = cell (G,i1,j1) ) by A1, A2, A3, A4, A5, A6, A10, A67, Def2, Def3; hence ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) by A19, A20, A21, A3, A4, A88, Th17, Th19; ::_thesis: verum end; supposeA89: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) A90: now__::_thesis:_not_m_>_i_+_1 assume A91: m > i + 1 ; ::_thesis: contradiction then A92: i + 1 < len (GoB f) by A28, XXREAL_0:2; then consider l, j9 being Element of NAT such that A93: l in dom f and A94: [(i + 1),j9] in Indices (GoB f) and A95: f /. l = (GoB f) * ((i + 1),j9) by JORDAN5D:7, NAT_1:12; A96: ( 1 <= i + 1 & ((GoB f) * ((i + 1),k)) `1 = ((GoB f) * ((i + 1),1)) `1 ) by A45, A39, A37, A92, GOBOARD5:2; ( 1 <= j9 & j9 <= width (GoB f) ) by A94, MATRIX_1:38; then A97: ((GoB f) * ((i + 1),j9)) `1 = ((GoB f) * ((i + 1),1)) `1 by A37, A92, GOBOARD5:2; A98: ((GoB f) * ((i + 1),j)) `1 = ((GoB f) * ((i + 1),1)) `1 by A40, A33, A37, A92, GOBOARD5:2; A99: (G * (i2,j2)) `1 = (G * (i2,1)) `1 by A14, A13, A16, A11, GOBOARD5:2; consider i19, j19 being Element of NAT such that A100: [i19,j19] in Indices G and A101: f /. l = G * (i19,j19) by A2, A93, GOBOARD1:def_9; A102: 1 <= i19 by A100, MATRIX_1:38; A103: ( 1 <= j19 & j19 <= width G ) by A100, MATRIX_1:38; A104: i19 <= len G by A100, MATRIX_1:38; then A105: (G * (i19,j19)) `1 = (G * (i19,1)) `1 by A102, A103, GOBOARD5:2; A106: (G * (i19,j1)) `1 = (G * (i19,1)) `1 by A8, A12, A102, A104, GOBOARD5:2; A107: now__::_thesis:_not_i1_<=_i19 assume i1 <= i19 ; ::_thesis: contradiction then (G * (i19,j19)) `1 >= (G * (i1,j1)) `1 by A25, A8, A12, A104, A105, A106, SPRECT_3:13; hence contradiction by A21, A28, A45, A39, A4, A91, A95, A97, A96, A101, GOBOARD5:3; ::_thesis: verum end; A108: (G * (i2,j19)) `1 = (G * (i2,1)) `1 by A14, A13, A103, GOBOARD5:2; now__::_thesis:_not_i2_>=_i19 assume i2 >= i19 ; ::_thesis: contradiction then (G * (i2,j2)) `1 >= (G * (i19,j19)) `1 by A13, A102, A103, A99, A108, SPRECT_3:13; hence contradiction by A23, A42, A40, A33, A6, A34, A92, A95, A97, A98, A101, GOBOARD5:3; ::_thesis: verum end; hence contradiction by A89, A107, NAT_1:13; ::_thesis: verum end; now__::_thesis:_not_m_<=_i assume m <= i ; ::_thesis: contradiction then A109: ((GoB f) * (i,j)) `1 >= ((GoB f) * (m,k)) `1 by A24, A45, A39, A36, A43, A46, SPRECT_3:13; i1 > i2 by A89, NAT_1:13; hence contradiction by A21, A23, A4, A6, A18, A8, A12, A14, A89, A109, GOBOARD5:3; ::_thesis: verum end; then i + 1 <= m by NAT_1:13; then i + 1 = m by A90, XXREAL_0:1; then A110: ( right_cell (f,n) = cell ((GoB f),i,j) & left_cell (f,n) = cell ((GoB f),i,(j -' 1)) ) by A1, A20, A21, A22, A23, A35, A34, GOBOARD5:def_6, GOBOARD5:def_7; ( right_cell (f,n,G) = cell (G,i2,j2) & left_cell (f,n,G) = cell (G,i2,(j2 -' 1)) ) by A1, A2, A3, A4, A5, A6, A10, A89, Def2, Def3; hence ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) by A19, A22, A23, A5, A6, A110, Th17, Th19; ::_thesis: verum end; supposeA111: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) A112: now__::_thesis:_not_j_+_1_<_k A113: (G * (i2,j2)) `2 = (G * (1,j2)) `2 by A14, A13, A16, A11, GOBOARD5:1; assume A114: j + 1 < k ; ::_thesis: contradiction then A115: j + 1 < width (GoB f) by A39, XXREAL_0:2; then consider l, i9 being Element of NAT such that A116: l in dom f and A117: [i9,(j + 1)] in Indices (GoB f) and A118: f /. l = (GoB f) * (i9,(j + 1)) by JORDAN5D:8, NAT_1:12; A119: ((GoB f) * (m,(j + 1))) `2 = ((GoB f) * (1,(j + 1))) `2 by A24, A28, A32, A115, GOBOARD5:1; ( 1 <= i9 & i9 <= len (GoB f) ) by A117, MATRIX_1:38; then A120: ((GoB f) * (i9,(j + 1))) `2 = ((GoB f) * (1,(j + 1))) `2 by A32, A115, GOBOARD5:1; consider i19, j19 being Element of NAT such that A121: [i19,j19] in Indices G and A122: f /. l = G * (i19,j19) by A2, A116, GOBOARD1:def_9; A123: j19 <= width G by A121, MATRIX_1:38; A124: ( 1 <= i19 & i19 <= len G ) by A121, MATRIX_1:38; then A125: (G * (i19,j1)) `2 = (G * (1,j1)) `2 by A8, A12, GOBOARD5:1; A126: now__::_thesis:_not_j1_<=_j19 assume j1 <= j19 ; ::_thesis: contradiction then (G * (i19,j19)) `2 >= (G * (i1,j1)) `2 by A8, A27, A124, A123, A125, SPRECT_3:12; hence contradiction by A21, A24, A28, A39, A4, A32, A114, A118, A120, A119, A122, GOBOARD5:4; ::_thesis: verum end; A127: ((GoB f) * (i,(j + 1))) `2 = ((GoB f) * (1,(j + 1))) `2 by A42, A36, A32, A115, GOBOARD5:1; A128: 1 <= j19 by A121, MATRIX_1:38; A129: (G * (i19,j2)) `2 = (G * (1,j2)) `2 by A16, A11, A124, GOBOARD5:1; now__::_thesis:_not_j2_>=_j19 assume j2 >= j19 ; ::_thesis: contradiction then (G * (i2,j2)) `2 >= (G * (i19,j19)) `2 by A11, A124, A128, A113, A129, SPRECT_3:12; hence contradiction by A23, A42, A36, A40, A6, A29, A115, A118, A120, A127, A122, GOBOARD5:4; ::_thesis: verum end; hence contradiction by A111, A126, NAT_1:13; ::_thesis: verum end; now__::_thesis:_not_j_>=_k assume j >= k ; ::_thesis: contradiction then A130: ((GoB f) * (i,j)) `2 >= ((GoB f) * (m,k)) `2 by A24, A28, A45, A33, A44, A41, SPRECT_3:12; j1 > j2 by A111, NAT_1:13; hence contradiction by A21, A23, A4, A6, A12, A14, A13, A16, A27, A15, A130, GOBOARD5:4; ::_thesis: verum end; then j + 1 <= k by NAT_1:13; then j + 1 = k by A112, XXREAL_0:1; then A131: ( right_cell (f,n) = cell ((GoB f),(m -' 1),j) & left_cell (f,n) = cell ((GoB f),m,j) ) by A1, A20, A21, A22, A23, A30, A29, GOBOARD5:def_6, GOBOARD5:def_7; A132: now__::_thesis:_not_m_<>_i assume A133: m <> i ; ::_thesis: contradiction percases ( m < i or m > i ) by A133, XXREAL_0:1; suppose m < i ; ::_thesis: contradiction hence contradiction by A21, A23, A24, A45, A39, A36, A43, A46, A4, A6, A26, A17, A111, GOBOARD5:3; ::_thesis: verum end; suppose m > i ; ::_thesis: contradiction hence contradiction by A21, A23, A28, A45, A39, A42, A43, A46, A4, A6, A26, A17, A111, GOBOARD5:3; ::_thesis: verum end; end; end; ( right_cell (f,n,G) = cell (G,(i1 -' 1),j2) & left_cell (f,n,G) = cell (G,i1,j2) ) by A1, A2, A3, A4, A5, A6, A9, A111, Def2, Def3; hence ( left_cell (f,n,G) c= left_cell (f,n) & right_cell (f,n,G) c= right_cell (f,n) ) by A19, A22, A23, A5, A6, A111, A132, A131, Th17, Th18; ::_thesis: verum end; end; end; definition let f be FinSequence of (TOP-REAL 2); let G be Go-board; let k be Element of NAT ; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G ) ; then consider i1, j1, i2, j2 being Element of NAT such that A1: ( [i1,j1] in Indices G & f /. k = G * (i1,j1) & [i2,j2] in Indices G & f /. (k + 1) = G * (i2,j2) ) and A2: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by JORDAN8:3; func front_right_cell (f,k,G) -> Subset of (TOP-REAL 2) means :Def4: :: GOBRD13:def 4 for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & it = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & it = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & it = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & it = cell (G,(i2 -' 1),(j2 -' 1)) ); existence ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) proof percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A2; supposeA3: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) take cell (G,i2,j2) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i2,j2) = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i2,j2) = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i2,j2) = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i2,j2) = cell (G,(i2 -' 1),(j2 -' 1)) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,(j29 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),j29) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) assume A4: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) then ( i2 = i29 & j1 = j19 ) by A1, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) by A1, A3, A4, GOBOARD1:5; ::_thesis: verum end; supposeA5: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) take cell (G,i2,(j2 -' 1)) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,(i2 -' 1),(j2 -' 1)) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,j29) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) assume A6: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) then ( i2 = i29 & j1 = j19 ) by A1, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) by A1, A5, A6, GOBOARD1:5; ::_thesis: verum end; supposeA7: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) take cell (G,(i2 -' 1),j2) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,(i2 -' 1),j2) = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,(i2 -' 1),j2) = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,(i2 -' 1),j2) = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,(i2 -' 1),j2) = cell (G,(i2 -' 1),(j2 -' 1)) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,j29) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,(j29 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),j29) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) assume A8: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) then ( i2 = i29 & j1 = j19 ) by A1, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) by A1, A7, A8, GOBOARD1:5; ::_thesis: verum end; supposeA9: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) take cell (G,(i2 -' 1),(j2 -' 1)) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i2 -' 1),(j2 -' 1)) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,j29) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) assume A10: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) then ( i2 = i29 & j1 = j19 ) by A1, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) ) by A1, A9, A10, GOBOARD1:5; ::_thesis: verum end; end; end; uniqueness for b1, b2 being Subset of (TOP-REAL 2) st ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) ) & ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b2 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b2 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b2 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b2 = cell (G,(i2 -' 1),(j2 -' 1)) ) ) holds b1 = b2 proof let P1, P2 be Subset of (TOP-REAL 2); ::_thesis: ( ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P1 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & P1 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & P1 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & P1 = cell (G,(i2 -' 1),(j2 -' 1)) ) ) & ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P2 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & P2 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & P2 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & P2 = cell (G,(i2 -' 1),(j2 -' 1)) ) ) implies P1 = P2 ) assume that A11: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P1 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & P1 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & P1 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & P1 = cell (G,(i2 -' 1),(j2 -' 1)) ) and A12: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P2 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & P2 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & P2 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & P2 = cell (G,(i2 -' 1),(j2 -' 1)) ) ; ::_thesis: P1 = P2 percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A2; supposeA13: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: P1 = P2 A14: j2 <= j2 + 1 by NAT_1:11; A15: j1 < j2 by A13, XREAL_1:29; hence P1 = cell (G,i2,j2) by A1, A11, A14 .= P2 by A1, A12, A15, A14 ; ::_thesis: verum end; supposeA16: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: P1 = P2 A17: i2 <= i2 + 1 by NAT_1:11; A18: i1 < i2 by A16, XREAL_1:29; hence P1 = cell (G,i2,(j2 -' 1)) by A1, A11, A17 .= P2 by A1, A12, A18, A17 ; ::_thesis: verum end; supposeA19: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: P1 = P2 A20: i1 <= i1 + 1 by NAT_1:11; A21: i2 < i1 by A19, XREAL_1:29; hence P1 = cell (G,(i2 -' 1),j2) by A1, A11, A20 .= P2 by A1, A12, A21, A20 ; ::_thesis: verum end; supposeA22: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: P1 = P2 A23: j1 <= j1 + 1 by NAT_1:11; A24: j2 < j1 by A22, XREAL_1:29; hence P1 = cell (G,(i2 -' 1),(j2 -' 1)) by A1, A11, A23 .= P2 by A1, A12, A24, A23 ; ::_thesis: verum end; end; end; func front_left_cell (f,k,G) -> Subset of (TOP-REAL 2) means :Def5: :: GOBRD13:def 5 for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & it = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & it = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & it = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & it = cell (G,i2,(j2 -' 1)) ); existence ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i2,(j2 -' 1)) ) proof percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A2; supposeA25: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i2,(j2 -' 1)) ) take cell (G,(i2 -' 1),j2) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,(i2 -' 1),j2) = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,(i2 -' 1),j2) = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,(i2 -' 1),j2) = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,(i2 -' 1),j2) = cell (G,i2,(j2 -' 1)) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),j29) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,j29) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),j2) = cell (G,i29,(j29 -' 1)) ) ) assume A26: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,j29) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),j2) = cell (G,i29,(j29 -' 1)) ) ) then ( i2 = i29 & j1 = j19 ) by A1, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,i29,j29) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),j2) = cell (G,i29,(j29 -' 1)) ) ) by A1, A25, A26, GOBOARD1:5; ::_thesis: verum end; supposeA27: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i2,(j2 -' 1)) ) take cell (G,i2,j2) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i2,j2) = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i2,j2) = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i2,j2) = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i2,j2) = cell (G,i2,(j2 -' 1)) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),j29) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,i29,(j29 -' 1)) ) ) assume A28: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,i29,(j29 -' 1)) ) ) then ( i2 = i29 & j1 = j19 ) by A1, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,j2) = cell (G,i29,j29) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,j2) = cell (G,(i29 -' 1),(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,j2) = cell (G,i29,(j29 -' 1)) ) ) by A1, A27, A28, GOBOARD1:5; ::_thesis: verum end; supposeA29: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i2,(j2 -' 1)) ) take cell (G,(i2 -' 1),(j2 -' 1)) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i2,(j2 -' 1)) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,j29) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) ) assume A30: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,j29) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) ) then ( i2 = i29 & j1 = j19 ) by A1, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,j29) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,(i2 -' 1),(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) ) by A1, A29, A30, GOBOARD1:5; ::_thesis: verum end; supposeA31: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: ex b1 being Subset of (TOP-REAL 2) st for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i2,(j2 -' 1)) ) take cell (G,i2,(j2 -' 1)) ; ::_thesis: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & cell (G,i2,(j2 -' 1)) = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,i2,(j2 -' 1)) ) let i19, j19, i29, j29 be Element of NAT ; ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) & not ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,j29) ) & not ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) ) assume A32: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) ) ; ::_thesis: ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,j29) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) ) then ( i2 = i29 & j1 = j19 ) by A1, GOBOARD1:5; hence ( ( i19 = i29 & j19 + 1 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),j29) ) or ( i19 + 1 = i29 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,i29,j29) ) or ( i19 = i29 + 1 & j19 = j29 & cell (G,i2,(j2 -' 1)) = cell (G,(i29 -' 1),(j29 -' 1)) ) or ( i19 = i29 & j19 = j29 + 1 & cell (G,i2,(j2 -' 1)) = cell (G,i29,(j29 -' 1)) ) ) by A1, A31, A32, GOBOARD1:5; ::_thesis: verum end; end; end; uniqueness for b1, b2 being Subset of (TOP-REAL 2) st ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b1 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b1 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & b1 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b1 = cell (G,i2,(j2 -' 1)) ) ) & ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b2 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b2 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & b2 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b2 = cell (G,i2,(j2 -' 1)) ) ) holds b1 = b2 proof let P1, P2 be Subset of (TOP-REAL 2); ::_thesis: ( ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P1 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & P1 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & P1 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & P1 = cell (G,i2,(j2 -' 1)) ) ) & ( for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P2 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & P2 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & P2 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & P2 = cell (G,i2,(j2 -' 1)) ) ) implies P1 = P2 ) assume that A33: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P1 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & P1 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & P1 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & P1 = cell (G,i2,(j2 -' 1)) ) and A34: for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & P2 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & P2 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & P2 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & P2 = cell (G,i2,(j2 -' 1)) ) ; ::_thesis: P1 = P2 percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A2; supposeA35: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: P1 = P2 A36: j2 <= j2 + 1 by NAT_1:11; A37: j1 < j2 by A35, XREAL_1:29; hence P1 = cell (G,(i2 -' 1),j2) by A1, A33, A36 .= P2 by A1, A34, A37, A36 ; ::_thesis: verum end; supposeA38: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: P1 = P2 A39: i2 <= i2 + 1 by NAT_1:11; A40: i1 < i2 by A38, XREAL_1:29; hence P1 = cell (G,i2,j2) by A1, A33, A39 .= P2 by A1, A34, A40, A39 ; ::_thesis: verum end; supposeA41: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: P1 = P2 A42: i1 <= i1 + 1 by NAT_1:11; A43: i2 < i1 by A41, XREAL_1:29; hence P1 = cell (G,(i2 -' 1),(j2 -' 1)) by A1, A33, A42 .= P2 by A1, A34, A43, A42 ; ::_thesis: verum end; supposeA44: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: P1 = P2 A45: j1 <= j1 + 1 by NAT_1:11; A46: j2 < j1 by A44, XREAL_1:29; hence P1 = cell (G,i2,(j2 -' 1)) by A1, A33, A45 .= P2 by A1, A34, A46, A45 ; ::_thesis: verum end; end; end; end; :: deftheorem Def4 defines front_right_cell GOBRD13:def_4_:_ for f being FinSequence of (TOP-REAL 2) for G being Go-board for k being Element of NAT st 1 <= k & k + 1 <= len f & f is_sequence_on G holds for b4 being Subset of (TOP-REAL 2) holds ( b4 = front_right_cell (f,k,G) iff for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b4 = cell (G,i2,j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b4 = cell (G,i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & b4 = cell (G,(i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & b4 = cell (G,(i2 -' 1),(j2 -' 1)) ) ); :: deftheorem Def5 defines front_left_cell GOBRD13:def_5_:_ for f being FinSequence of (TOP-REAL 2) for G being Go-board for k being Element of NAT st 1 <= k & k + 1 <= len f & f is_sequence_on G holds for b4 being Subset of (TOP-REAL 2) holds ( b4 = front_left_cell (f,k,G) iff for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & b4 = cell (G,(i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & b4 = cell (G,i2,j2) ) & not ( i1 = i2 + 1 & j1 = j2 & b4 = cell (G,(i2 -' 1),(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & b4 = cell (G,i2,(j2 -' 1)) ) ); theorem :: GOBRD13:34 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds front_left_cell (f,k,G) = cell (G,(i -' 1),(j + 1)) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds front_left_cell (f,k,G) = cell (G,(i -' 1),(j + 1)) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds front_left_cell (f,k,G) = cell (G,(i -' 1),(j + 1)) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) implies front_left_cell (f,k,G) = cell (G,(i -' 1),(j + 1)) ) A1: ( j < j + 1 & j + 1 <= (j + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) ) ; ::_thesis: front_left_cell (f,k,G) = cell (G,(i -' 1),(j + 1)) hence front_left_cell (f,k,G) = cell (G,(i -' 1),(j + 1)) by A1, Def5; ::_thesis: verum end; theorem :: GOBRD13:35 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds front_right_cell (f,k,G) = cell (G,i,(j + 1)) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds front_right_cell (f,k,G) = cell (G,i,(j + 1)) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) holds front_right_cell (f,k,G) = cell (G,i,(j + 1)) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) implies front_right_cell (f,k,G) = cell (G,i,(j + 1)) ) A1: ( j < j + 1 & j + 1 <= (j + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [i,(j + 1)] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * (i,(j + 1)) ) ; ::_thesis: front_right_cell (f,k,G) = cell (G,i,(j + 1)) hence front_right_cell (f,k,G) = cell (G,i,(j + 1)) by A1, Def4; ::_thesis: verum end; theorem :: GOBRD13:36 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds front_left_cell (f,k,G) = cell (G,(i + 1),j) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds front_left_cell (f,k,G) = cell (G,(i + 1),j) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds front_left_cell (f,k,G) = cell (G,(i + 1),j) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) implies front_left_cell (f,k,G) = cell (G,(i + 1),j) ) A1: ( i < i + 1 & i + 1 <= (i + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) ) ; ::_thesis: front_left_cell (f,k,G) = cell (G,(i + 1),j) hence front_left_cell (f,k,G) = cell (G,(i + 1),j) by A1, Def5; ::_thesis: verum end; theorem :: GOBRD13:37 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds front_right_cell (f,k,G) = cell (G,(i + 1),(j -' 1)) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds front_right_cell (f,k,G) = cell (G,(i + 1),(j -' 1)) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) holds front_right_cell (f,k,G) = cell (G,(i + 1),(j -' 1)) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) implies front_right_cell (f,k,G) = cell (G,(i + 1),(j -' 1)) ) A1: ( i < i + 1 & i + 1 <= (i + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * (i,j) & f /. (k + 1) = G * ((i + 1),j) ) ; ::_thesis: front_right_cell (f,k,G) = cell (G,(i + 1),(j -' 1)) hence front_right_cell (f,k,G) = cell (G,(i + 1),(j -' 1)) by A1, Def4; ::_thesis: verum end; theorem :: GOBRD13:38 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds front_left_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds front_left_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds front_left_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) implies front_left_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) ) A1: ( i < i + 1 & i + 1 <= (i + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) ) ; ::_thesis: front_left_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) hence front_left_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) by A1, Def5; ::_thesis: verum end; theorem :: GOBRD13:39 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds front_right_cell (f,k,G) = cell (G,(i -' 1),j) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds front_right_cell (f,k,G) = cell (G,(i -' 1),j) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) holds front_right_cell (f,k,G) = cell (G,(i -' 1),j) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) implies front_right_cell (f,k,G) = cell (G,(i -' 1),j) ) A1: ( i < i + 1 & i + 1 <= (i + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,j] in Indices G & [(i + 1),j] in Indices G & f /. k = G * ((i + 1),j) & f /. (k + 1) = G * (i,j) ) ; ::_thesis: front_right_cell (f,k,G) = cell (G,(i -' 1),j) hence front_right_cell (f,k,G) = cell (G,(i -' 1),j) by A1, Def4; ::_thesis: verum end; theorem :: GOBRD13:40 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds front_left_cell (f,k,G) = cell (G,i,(j -' 1)) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds front_left_cell (f,k,G) = cell (G,i,(j -' 1)) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds front_left_cell (f,k,G) = cell (G,i,(j -' 1)) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) implies front_left_cell (f,k,G) = cell (G,i,(j -' 1)) ) A1: ( j < j + 1 & j + 1 <= (j + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) ) ; ::_thesis: front_left_cell (f,k,G) = cell (G,i,(j -' 1)) hence front_left_cell (f,k,G) = cell (G,i,(j -' 1)) by A1, Def5; ::_thesis: verum end; theorem :: GOBRD13:41 for k, i, j being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds front_right_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) proof let k, i, j be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds front_right_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) holds front_right_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) implies front_right_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) ) A1: ( j < j + 1 & j + 1 <= (j + 1) + 1 ) by XREAL_1:29; assume ( 1 <= k & k + 1 <= len f & f is_sequence_on G & [i,(j + 1)] in Indices G & [i,j] in Indices G & f /. k = G * (i,(j + 1)) & f /. (k + 1) = G * (i,j) ) ; ::_thesis: front_right_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) hence front_right_cell (f,k,G) = cell (G,(i -' 1),(j -' 1)) by A1, Def4; ::_thesis: verum end; theorem :: GOBRD13:42 for k, n being Element of NAT for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & k + 1 <= n holds ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) proof let k, n be Element of NAT ; ::_thesis: for f being FinSequence of (TOP-REAL 2) for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & k + 1 <= n holds ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) let f be FinSequence of (TOP-REAL 2); ::_thesis: for G being Go-board st 1 <= k & k + 1 <= len f & f is_sequence_on G & k + 1 <= n holds ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) let G be Go-board; ::_thesis: ( 1 <= k & k + 1 <= len f & f is_sequence_on G & k + 1 <= n implies ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) ) assume that A1: 1 <= k and A2: k + 1 <= len f and A3: f is_sequence_on G and A4: k + 1 <= n ; ::_thesis: ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) percases ( len f <= n or n < len f ) ; suppose len f <= n ; ::_thesis: ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) hence ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) by FINSEQ_1:58; ::_thesis: verum end; suppose n < len f ; ::_thesis: ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) then A5: len (f | n) = n by FINSEQ_1:59; then k in dom (f | n) by A1, A4, SEQ_4:134; then A6: (f | n) /. k = f /. k by FINSEQ_4:70; k + 1 in dom (f | n) by A1, A4, A5, SEQ_4:134; then A7: (f | n) /. (k + 1) = f /. (k + 1) by FINSEQ_4:70; set lf = front_left_cell (f,k,G); set lfn = front_left_cell ((f | n),k,G); set rf = front_right_cell (f,k,G); set rfn = front_right_cell ((f | n),k,G); A8: f | n is_sequence_on G by A3, GOBOARD1:22; consider i1, j1, i2, j2 being Element of NAT such that A9: ( [i1,j1] in Indices G & f /. k = G * (i1,j1) & [i2,j2] in Indices G & f /. (k + 1) = G * (i2,j2) ) and A10: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A1, A2, A3, JORDAN8:3; A11: ( j1 + 1 > j1 & j2 + 1 > j2 ) by NAT_1:13; A12: ( i1 + 1 > i1 & i2 + 1 > i2 ) by NAT_1:13; now__::_thesis:_(_front_left_cell_(f,k,G)_=_front_left_cell_((f_|_n),k,G)_&_front_right_cell_(f,k,G)_=_front_right_cell_((f_|_n),k,G)_) percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A10; supposeA13: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) hence front_left_cell (f,k,G) = cell (G,(i2 -' 1),j2) by A1, A2, A3, A9, A11, Def5 .= front_left_cell ((f | n),k,G) by A1, A4, A9, A11, A8, A5, A6, A7, A13, Def5 ; ::_thesis: front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) thus front_right_cell (f,k,G) = cell (G,i2,j2) by A1, A2, A3, A9, A11, A13, Def4 .= front_right_cell ((f | n),k,G) by A1, A4, A9, A11, A8, A5, A6, A7, A13, Def4 ; ::_thesis: verum end; supposeA14: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) hence front_left_cell (f,k,G) = cell (G,i2,j2) by A1, A2, A3, A9, A12, Def5 .= front_left_cell ((f | n),k,G) by A1, A4, A9, A12, A8, A5, A6, A7, A14, Def5 ; ::_thesis: front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) thus front_right_cell (f,k,G) = cell (G,i2,(j2 -' 1)) by A1, A2, A3, A9, A12, A14, Def4 .= front_right_cell ((f | n),k,G) by A1, A4, A9, A12, A8, A5, A6, A7, A14, Def4 ; ::_thesis: verum end; supposeA15: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) hence front_left_cell (f,k,G) = cell (G,(i2 -' 1),(j2 -' 1)) by A1, A2, A3, A9, A12, Def5 .= front_left_cell ((f | n),k,G) by A1, A4, A9, A12, A8, A5, A6, A7, A15, Def5 ; ::_thesis: front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) thus front_right_cell (f,k,G) = cell (G,(i2 -' 1),j2) by A1, A2, A3, A9, A12, A15, Def4 .= front_right_cell ((f | n),k,G) by A1, A4, A9, A12, A8, A5, A6, A7, A15, Def4 ; ::_thesis: verum end; supposeA16: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) hence front_left_cell (f,k,G) = cell (G,i2,(j2 -' 1)) by A1, A2, A3, A9, A11, Def5 .= front_left_cell ((f | n),k,G) by A1, A4, A9, A11, A8, A5, A6, A7, A16, Def5 ; ::_thesis: front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) thus front_right_cell (f,k,G) = cell (G,(i2 -' 1),(j2 -' 1)) by A1, A2, A3, A9, A11, A16, Def4 .= front_right_cell ((f | n),k,G) by A1, A4, A9, A11, A8, A5, A6, A7, A16, Def4 ; ::_thesis: verum end; end; end; hence ( front_left_cell (f,k,G) = front_left_cell ((f | n),k,G) & front_right_cell (f,k,G) = front_right_cell ((f | n),k,G) ) ; ::_thesis: verum end; end; end; definition let D be set ; let f be FinSequence of D; let G be Matrix of D; let k be Element of NAT ; predf turns_right k,G means :Def6: :: GOBRD13:def 6 for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & [(i2 + 1),j2] in Indices G & f /. (k + 2) = G * ((i2 + 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & [i2,(j2 -' 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & [i2,(j2 + 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 + 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & [(i2 -' 1),j2] in Indices G & f /. (k + 2) = G * ((i2 -' 1),j2) ); predf turns_left k,G means :Def7: :: GOBRD13:def 7 for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & [(i2 -' 1),j2] in Indices G & f /. (k + 2) = G * ((i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & [i2,(j2 + 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 + 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & [i2,(j2 -' 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & [(i2 + 1),j2] in Indices G & f /. (k + 2) = G * ((i2 + 1),j2) ); predf goes_straight k,G means :Def8: :: GOBRD13:def 8 for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & [i2,(j2 + 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 + 1)) ) & not ( i1 + 1 = i2 & j1 = j2 & [(i2 + 1),j2] in Indices G & f /. (k + 2) = G * ((i2 + 1),j2) ) & not ( i1 = i2 + 1 & j1 = j2 & [(i2 -' 1),j2] in Indices G & f /. (k + 2) = G * ((i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & [i2,(j2 -' 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 -' 1)) ); end; :: deftheorem Def6 defines turns_right GOBRD13:def_6_:_ for D being set for f being FinSequence of D for G being Matrix of D for k being Element of NAT holds ( f turns_right k,G iff for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & [(i2 + 1),j2] in Indices G & f /. (k + 2) = G * ((i2 + 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & [i2,(j2 -' 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 -' 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & [i2,(j2 + 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 + 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & [(i2 -' 1),j2] in Indices G & f /. (k + 2) = G * ((i2 -' 1),j2) ) ); :: deftheorem Def7 defines turns_left GOBRD13:def_7_:_ for D being set for f being FinSequence of D for G being Matrix of D for k being Element of NAT holds ( f turns_left k,G iff for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & [(i2 -' 1),j2] in Indices G & f /. (k + 2) = G * ((i2 -' 1),j2) ) & not ( i1 + 1 = i2 & j1 = j2 & [i2,(j2 + 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 + 1)) ) & not ( i1 = i2 + 1 & j1 = j2 & [i2,(j2 -' 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 -' 1)) ) holds ( i1 = i2 & j1 = j2 + 1 & [(i2 + 1),j2] in Indices G & f /. (k + 2) = G * ((i2 + 1),j2) ) ); :: deftheorem Def8 defines goes_straight GOBRD13:def_8_:_ for D being set for f being FinSequence of D for G being Matrix of D for k being Element of NAT holds ( f goes_straight k,G iff for i1, j1, i2, j2 being Element of NAT st [i1,j1] in Indices G & [i2,j2] in Indices G & f /. k = G * (i1,j1) & f /. (k + 1) = G * (i2,j2) & not ( i1 = i2 & j1 + 1 = j2 & [i2,(j2 + 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 + 1)) ) & not ( i1 + 1 = i2 & j1 = j2 & [(i2 + 1),j2] in Indices G & f /. (k + 2) = G * ((i2 + 1),j2) ) & not ( i1 = i2 + 1 & j1 = j2 & [(i2 -' 1),j2] in Indices G & f /. (k + 2) = G * ((i2 -' 1),j2) ) holds ( i1 = i2 & j1 = j2 + 1 & [i2,(j2 -' 1)] in Indices G & f /. (k + 2) = G * (i2,(j2 -' 1)) ) ); theorem :: GOBRD13:43 for k, n being Element of NAT for D being set for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n turns_right k,G holds f turns_right k,G proof let k, n be Element of NAT ; ::_thesis: for D being set for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n turns_right k,G holds f turns_right k,G let D be set ; ::_thesis: for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n turns_right k,G holds f turns_right k,G let f be FinSequence of D; ::_thesis: for G being Matrix of D st 1 <= k & k + 2 <= n & f | n turns_right k,G holds f turns_right k,G let G be Matrix of D; ::_thesis: ( 1 <= k & k + 2 <= n & f | n turns_right k,G implies f turns_right k,G ) assume that A1: ( 1 <= k & k + 2 <= n ) and A2: f | n turns_right k,G ; ::_thesis: f turns_right k,G percases ( len f <= n or n < len f ) ; suppose len f <= n ; ::_thesis: f turns_right k,G hence f turns_right k,G by A2, FINSEQ_1:58; ::_thesis: verum end; supposeA3: n < len f ; ::_thesis: f turns_right k,G let i19, j19, i29, j29 be Element of NAT ; :: according to GOBRD13:def_6 ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & [(i29 + 1),j29] in Indices G & f /. (k + 2) = G * ((i29 + 1),j29) ) & not ( i19 + 1 = i29 & j19 = j29 & [i29,(j29 -' 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & [i29,(j29 + 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 + 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & [(i29 -' 1),j29] in Indices G & f /. (k + 2) = G * ((i29 -' 1),j29) ) ) A4: len (f | n) = n by A3, FINSEQ_1:59; then k + 1 in dom (f | n) by A1, SEQ_4:135; then A5: (f | n) /. (k + 1) = f /. (k + 1) by FINSEQ_4:70; k + 2 in dom (f | n) by A1, A4, SEQ_4:135; then A6: (f | n) /. (k + 2) = f /. (k + 2) by FINSEQ_4:70; k in dom (f | n) by A1, A4, SEQ_4:135; then (f | n) /. k = f /. k by FINSEQ_4:70; hence ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & [(i29 + 1),j29] in Indices G & f /. (k + 2) = G * ((i29 + 1),j29) ) & not ( i19 + 1 = i29 & j19 = j29 & [i29,(j29 -' 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 -' 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & [i29,(j29 + 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 + 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & [(i29 -' 1),j29] in Indices G & f /. (k + 2) = G * ((i29 -' 1),j29) ) ) by A2, A5, A6, Def6; ::_thesis: verum end; end; end; theorem :: GOBRD13:44 for k, n being Element of NAT for D being set for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n turns_left k,G holds f turns_left k,G proof let k, n be Element of NAT ; ::_thesis: for D being set for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n turns_left k,G holds f turns_left k,G let D be set ; ::_thesis: for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n turns_left k,G holds f turns_left k,G let f be FinSequence of D; ::_thesis: for G being Matrix of D st 1 <= k & k + 2 <= n & f | n turns_left k,G holds f turns_left k,G let G be Matrix of D; ::_thesis: ( 1 <= k & k + 2 <= n & f | n turns_left k,G implies f turns_left k,G ) assume that A1: ( 1 <= k & k + 2 <= n ) and A2: f | n turns_left k,G ; ::_thesis: f turns_left k,G percases ( len f <= n or n < len f ) ; suppose len f <= n ; ::_thesis: f turns_left k,G hence f turns_left k,G by A2, FINSEQ_1:58; ::_thesis: verum end; supposeA3: n < len f ; ::_thesis: f turns_left k,G let i19, j19, i29, j29 be Element of NAT ; :: according to GOBRD13:def_7 ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & [(i29 -' 1),j29] in Indices G & f /. (k + 2) = G * ((i29 -' 1),j29) ) & not ( i19 + 1 = i29 & j19 = j29 & [i29,(j29 + 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 + 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & [i29,(j29 -' 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & [(i29 + 1),j29] in Indices G & f /. (k + 2) = G * ((i29 + 1),j29) ) ) A4: len (f | n) = n by A3, FINSEQ_1:59; then k + 1 in dom (f | n) by A1, SEQ_4:135; then A5: (f | n) /. (k + 1) = f /. (k + 1) by FINSEQ_4:70; k + 2 in dom (f | n) by A1, A4, SEQ_4:135; then A6: (f | n) /. (k + 2) = f /. (k + 2) by FINSEQ_4:70; k in dom (f | n) by A1, A4, SEQ_4:135; then (f | n) /. k = f /. k by FINSEQ_4:70; hence ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & [(i29 -' 1),j29] in Indices G & f /. (k + 2) = G * ((i29 -' 1),j29) ) & not ( i19 + 1 = i29 & j19 = j29 & [i29,(j29 + 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 + 1)) ) & not ( i19 = i29 + 1 & j19 = j29 & [i29,(j29 -' 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 -' 1)) ) implies ( i19 = i29 & j19 = j29 + 1 & [(i29 + 1),j29] in Indices G & f /. (k + 2) = G * ((i29 + 1),j29) ) ) by A2, A5, A6, Def7; ::_thesis: verum end; end; end; theorem :: GOBRD13:45 for k, n being Element of NAT for D being set for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n goes_straight k,G holds f goes_straight k,G proof let k, n be Element of NAT ; ::_thesis: for D being set for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n goes_straight k,G holds f goes_straight k,G let D be set ; ::_thesis: for f being FinSequence of D for G being Matrix of D st 1 <= k & k + 2 <= n & f | n goes_straight k,G holds f goes_straight k,G let f be FinSequence of D; ::_thesis: for G being Matrix of D st 1 <= k & k + 2 <= n & f | n goes_straight k,G holds f goes_straight k,G let G be Matrix of D; ::_thesis: ( 1 <= k & k + 2 <= n & f | n goes_straight k,G implies f goes_straight k,G ) assume that A1: ( 1 <= k & k + 2 <= n ) and A2: f | n goes_straight k,G ; ::_thesis: f goes_straight k,G percases ( len f <= n or n < len f ) ; suppose len f <= n ; ::_thesis: f goes_straight k,G hence f goes_straight k,G by A2, FINSEQ_1:58; ::_thesis: verum end; supposeA3: n < len f ; ::_thesis: f goes_straight k,G let i19, j19, i29, j29 be Element of NAT ; :: according to GOBRD13:def_8 ::_thesis: ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & [i29,(j29 + 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 + 1)) ) & not ( i19 + 1 = i29 & j19 = j29 & [(i29 + 1),j29] in Indices G & f /. (k + 2) = G * ((i29 + 1),j29) ) & not ( i19 = i29 + 1 & j19 = j29 & [(i29 -' 1),j29] in Indices G & f /. (k + 2) = G * ((i29 -' 1),j29) ) implies ( i19 = i29 & j19 = j29 + 1 & [i29,(j29 -' 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 -' 1)) ) ) A4: len (f | n) = n by A3, FINSEQ_1:59; then k + 1 in dom (f | n) by A1, SEQ_4:135; then A5: (f | n) /. (k + 1) = f /. (k + 1) by FINSEQ_4:70; k + 2 in dom (f | n) by A1, A4, SEQ_4:135; then A6: (f | n) /. (k + 2) = f /. (k + 2) by FINSEQ_4:70; k in dom (f | n) by A1, A4, SEQ_4:135; then (f | n) /. k = f /. k by FINSEQ_4:70; hence ( [i19,j19] in Indices G & [i29,j29] in Indices G & f /. k = G * (i19,j19) & f /. (k + 1) = G * (i29,j29) & not ( i19 = i29 & j19 + 1 = j29 & [i29,(j29 + 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 + 1)) ) & not ( i19 + 1 = i29 & j19 = j29 & [(i29 + 1),j29] in Indices G & f /. (k + 2) = G * ((i29 + 1),j29) ) & not ( i19 = i29 + 1 & j19 = j29 & [(i29 -' 1),j29] in Indices G & f /. (k + 2) = G * ((i29 -' 1),j29) ) implies ( i19 = i29 & j19 = j29 + 1 & [i29,(j29 -' 1)] in Indices G & f /. (k + 2) = G * (i29,(j29 -' 1)) ) ) by A2, A5, A6, Def8; ::_thesis: verum end; end; end; theorem :: GOBRD13:46 for k being Element of NAT for D being set for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_right k -' 1,G & f2 turns_right k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) proof let k be Element of NAT ; ::_thesis: for D being set for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_right k -' 1,G & f2 turns_right k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let D be set ; ::_thesis: for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_right k -' 1,G & f2 turns_right k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let f1, f2 be FinSequence of D; ::_thesis: for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_right k -' 1,G & f2 turns_right k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let G be Matrix of D; ::_thesis: ( 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_right k -' 1,G & f2 turns_right k -' 1,G implies f1 | (k + 1) = f2 | (k + 1) ) assume that A1: 1 < k and A2: k + 1 <= len f1 and A3: k + 1 <= len f2 and A4: f1 is_sequence_on G and A5: f1 | k = f2 | k and A6: f1 turns_right k -' 1,G and A7: f2 turns_right k -' 1,G ; ::_thesis: f1 | (k + 1) = f2 | (k + 1) A8: 1 <= k -' 1 by A1, NAT_D:49; A9: k <= k + 1 by NAT_1:12; then k <= len (f1 | k) by A2, FINSEQ_1:59, XXREAL_0:2; then A10: k in dom (f1 | k) by A1, FINSEQ_3:25; then A11: f2 /. k = (f2 | k) /. k by A5, FINSEQ_4:70; k -' 1 <= k by NAT_D:35; then k -' 1 <= len (f1 | k) by A2, A9, FINSEQ_1:59, XXREAL_0:2; then A12: k -' 1 in dom (f1 | k) by A8, FINSEQ_3:25; then A13: f2 /. (k -' 1) = (f2 | k) /. (k -' 1) by A5, FINSEQ_4:70; A14: f1 /. k = (f1 | k) /. k by A10, FINSEQ_4:70; A15: f1 /. (k -' 1) = (f1 | k) /. (k -' 1) by A12, FINSEQ_4:70; A16: k = (k -' 1) + 1 by A1, XREAL_1:235; then A17: k + 1 = (k -' 1) + (1 + 1) ; k <= len f1 by A2, A9, XXREAL_0:2; then consider i1, j1, i2, j2 being Element of NAT such that A18: ( [i1,j1] in Indices G & f1 /. (k -' 1) = G * (i1,j1) & [i2,j2] in Indices G & f1 /. k = G * (i2,j2) ) and A19: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A4, A8, A16, JORDAN8:3; A20: ( j1 + 1 > j1 & j2 + 1 > j2 ) by NAT_1:13; A21: ( i1 + 1 > i1 & i2 + 1 > i2 ) by NAT_1:13; now__::_thesis:_f1_/._(k_+_1)_=_f2_/._(k_+_1) percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A19; supposeA22: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * ((i2 + 1),j2) by A6, A16, A17, A18, A20, Def6 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A20, A22, Def6 ; ::_thesis: verum end; supposeA23: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * (i2,(j2 -' 1)) by A6, A16, A17, A18, A21, Def6 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A21, A23, Def6 ; ::_thesis: verum end; supposeA24: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * (i2,(j2 + 1)) by A6, A16, A17, A18, A21, Def6 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A21, A24, Def6 ; ::_thesis: verum end; supposeA25: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * ((i2 -' 1),j2) by A6, A16, A17, A18, A20, Def6 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A20, A25, Def6 ; ::_thesis: verum end; end; end; hence f1 | (k + 1) = (f2 | k) ^ <*(f2 /. (k + 1))*> by A2, A5, FINSEQ_5:82 .= f2 | (k + 1) by A3, FINSEQ_5:82 ; ::_thesis: verum end; theorem :: GOBRD13:47 for k being Element of NAT for D being set for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_left k -' 1,G & f2 turns_left k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) proof let k be Element of NAT ; ::_thesis: for D being set for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_left k -' 1,G & f2 turns_left k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let D be set ; ::_thesis: for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_left k -' 1,G & f2 turns_left k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let f1, f2 be FinSequence of D; ::_thesis: for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_left k -' 1,G & f2 turns_left k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let G be Matrix of D; ::_thesis: ( 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 turns_left k -' 1,G & f2 turns_left k -' 1,G implies f1 | (k + 1) = f2 | (k + 1) ) assume that A1: 1 < k and A2: k + 1 <= len f1 and A3: k + 1 <= len f2 and A4: f1 is_sequence_on G and A5: f1 | k = f2 | k and A6: f1 turns_left k -' 1,G and A7: f2 turns_left k -' 1,G ; ::_thesis: f1 | (k + 1) = f2 | (k + 1) A8: 1 <= k -' 1 by A1, NAT_D:49; A9: k <= k + 1 by NAT_1:12; then k <= len (f1 | k) by A2, FINSEQ_1:59, XXREAL_0:2; then A10: k in dom (f1 | k) by A1, FINSEQ_3:25; then A11: f2 /. k = (f2 | k) /. k by A5, FINSEQ_4:70; k -' 1 <= k by NAT_D:35; then k -' 1 <= len (f1 | k) by A2, A9, FINSEQ_1:59, XXREAL_0:2; then A12: k -' 1 in dom (f1 | k) by A8, FINSEQ_3:25; then A13: f2 /. (k -' 1) = (f2 | k) /. (k -' 1) by A5, FINSEQ_4:70; A14: f1 /. k = (f1 | k) /. k by A10, FINSEQ_4:70; A15: f1 /. (k -' 1) = (f1 | k) /. (k -' 1) by A12, FINSEQ_4:70; A16: k = (k -' 1) + 1 by A1, XREAL_1:235; then A17: k + 1 = (k -' 1) + (1 + 1) ; k <= len f1 by A2, A9, XXREAL_0:2; then consider i1, j1, i2, j2 being Element of NAT such that A18: ( [i1,j1] in Indices G & f1 /. (k -' 1) = G * (i1,j1) & [i2,j2] in Indices G & f1 /. k = G * (i2,j2) ) and A19: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A4, A8, A16, JORDAN8:3; A20: ( j1 + 1 > j1 & j2 + 1 > j2 ) by NAT_1:13; A21: ( i1 + 1 > i1 & i2 + 1 > i2 ) by NAT_1:13; now__::_thesis:_f1_/._(k_+_1)_=_f2_/._(k_+_1) percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A19; supposeA22: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * ((i2 -' 1),j2) by A6, A16, A17, A18, A20, Def7 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A20, A22, Def7 ; ::_thesis: verum end; supposeA23: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * (i2,(j2 + 1)) by A6, A16, A17, A18, A21, Def7 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A21, A23, Def7 ; ::_thesis: verum end; supposeA24: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * (i2,(j2 -' 1)) by A6, A16, A17, A18, A21, Def7 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A21, A24, Def7 ; ::_thesis: verum end; supposeA25: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * ((i2 + 1),j2) by A6, A16, A17, A18, A20, Def7 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A20, A25, Def7 ; ::_thesis: verum end; end; end; hence f1 | (k + 1) = (f2 | k) ^ <*(f2 /. (k + 1))*> by A2, A5, FINSEQ_5:82 .= f2 | (k + 1) by A3, FINSEQ_5:82 ; ::_thesis: verum end; theorem :: GOBRD13:48 for k being Element of NAT for D being set for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 goes_straight k -' 1,G & f2 goes_straight k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) proof let k be Element of NAT ; ::_thesis: for D being set for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 goes_straight k -' 1,G & f2 goes_straight k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let D be set ; ::_thesis: for f1, f2 being FinSequence of D for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 goes_straight k -' 1,G & f2 goes_straight k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let f1, f2 be FinSequence of D; ::_thesis: for G being Matrix of D st 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 goes_straight k -' 1,G & f2 goes_straight k -' 1,G holds f1 | (k + 1) = f2 | (k + 1) let G be Matrix of D; ::_thesis: ( 1 < k & k + 1 <= len f1 & k + 1 <= len f2 & f1 is_sequence_on G & f1 | k = f2 | k & f1 goes_straight k -' 1,G & f2 goes_straight k -' 1,G implies f1 | (k + 1) = f2 | (k + 1) ) assume that A1: 1 < k and A2: k + 1 <= len f1 and A3: k + 1 <= len f2 and A4: f1 is_sequence_on G and A5: f1 | k = f2 | k and A6: f1 goes_straight k -' 1,G and A7: f2 goes_straight k -' 1,G ; ::_thesis: f1 | (k + 1) = f2 | (k + 1) A8: 1 <= k -' 1 by A1, NAT_D:49; A9: k <= k + 1 by NAT_1:12; then k <= len (f1 | k) by A2, FINSEQ_1:59, XXREAL_0:2; then A10: k in dom (f1 | k) by A1, FINSEQ_3:25; then A11: f2 /. k = (f2 | k) /. k by A5, FINSEQ_4:70; k -' 1 <= k by NAT_D:35; then k -' 1 <= len (f1 | k) by A2, A9, FINSEQ_1:59, XXREAL_0:2; then A12: k -' 1 in dom (f1 | k) by A8, FINSEQ_3:25; then A13: f2 /. (k -' 1) = (f2 | k) /. (k -' 1) by A5, FINSEQ_4:70; A14: f1 /. k = (f1 | k) /. k by A10, FINSEQ_4:70; A15: f1 /. (k -' 1) = (f1 | k) /. (k -' 1) by A12, FINSEQ_4:70; A16: k = (k -' 1) + 1 by A1, XREAL_1:235; then A17: k + 1 = (k -' 1) + (1 + 1) ; k <= len f1 by A2, A9, XXREAL_0:2; then consider i1, j1, i2, j2 being Element of NAT such that A18: ( [i1,j1] in Indices G & f1 /. (k -' 1) = G * (i1,j1) & [i2,j2] in Indices G & f1 /. k = G * (i2,j2) ) and A19: ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A4, A8, A16, JORDAN8:3; A20: ( j1 + 1 > j1 & j2 + 1 > j2 ) by NAT_1:13; A21: ( i1 + 1 > i1 & i2 + 1 > i2 ) by NAT_1:13; now__::_thesis:_f1_/._(k_+_1)_=_f2_/._(k_+_1) percases ( ( i1 = i2 & j1 + 1 = j2 ) or ( i1 + 1 = i2 & j1 = j2 ) or ( i1 = i2 + 1 & j1 = j2 ) or ( i1 = i2 & j1 = j2 + 1 ) ) by A19; supposeA22: ( i1 = i2 & j1 + 1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * (i2,(j2 + 1)) by A6, A16, A17, A18, A20, Def8 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A20, A22, Def8 ; ::_thesis: verum end; supposeA23: ( i1 + 1 = i2 & j1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * ((i2 + 1),j2) by A6, A16, A17, A18, A21, Def8 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A21, A23, Def8 ; ::_thesis: verum end; supposeA24: ( i1 = i2 + 1 & j1 = j2 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * ((i2 -' 1),j2) by A6, A16, A17, A18, A21, Def8 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A21, A24, Def8 ; ::_thesis: verum end; supposeA25: ( i1 = i2 & j1 = j2 + 1 ) ; ::_thesis: f1 /. (k + 1) = f2 /. (k + 1) hence f1 /. (k + 1) = G * (i2,(j2 -' 1)) by A6, A16, A17, A18, A20, Def8 .= f2 /. (k + 1) by A5, A7, A16, A15, A14, A13, A11, A17, A18, A20, A25, Def8 ; ::_thesis: verum end; end; end; hence f1 | (k + 1) = (f2 | k) ^ <*(f2 /. (k + 1))*> by A2, A5, FINSEQ_5:82 .= f2 | (k + 1) by A3, FINSEQ_5:82 ; ::_thesis: verum end;