:: INTEGR13 semantic presentation begin Lm1: for Z being open Subset of REAL st 0 in Z holds (id Z) " {0} = {0} proof let Z be open Subset of REAL; ::_thesis: ( 0 in Z implies (id Z) " {0} = {0} ) assume A1: 0 in Z ; ::_thesis: (id Z) " {0} = {0} thus (id Z) " {0} c= {0} :: according to XBOOLE_0:def_10 ::_thesis: {0} c= (id Z) " {0} proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in (id Z) " {0} or x in {0} ) assume A2: x in (id Z) " {0} ; ::_thesis: x in {0} then x in dom (id Z) by FUNCT_1:def_7; then A3: x in Z ; (id Z) . x in {0} by A2, FUNCT_1:def_7; hence x in {0} by A3, FUNCT_1:18; ::_thesis: verum end; let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in {0} or x in (id Z) " {0} ) assume x in {0} ; ::_thesis: x in (id Z) " {0} then A4: x = 0 by TARSKI:def_1; then (id Z) . x = 0 by A1, FUNCT_1:18; then A5: (id Z) . x in {0} by TARSKI:def_1; x in dom (id Z) by A1, A4; hence x in (id Z) " {0} by A5, FUNCT_1:def_7; ::_thesis: verum end; Lm2: right_open_halfline 0 = { g where g is Real : 0 < g } by XXREAL_1:230; Lm3: ( - 1 is Real & - (1 / 2) is Real & 1 / 2 is Real ) ; theorem :: INTEGR13:1 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (sin (#) cos) ^ & Z c= dom (ln * tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * tan) . (upper_bound A)) - ((ln * tan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (sin (#) cos) ^ & Z c= dom (ln * tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * tan) . (upper_bound A)) - ((ln * tan) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = (sin (#) cos) ^ & Z c= dom (ln * tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * tan) . (upper_bound A)) - ((ln * tan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = (sin (#) cos) ^ & Z c= dom (ln * tan) & Z = dom f & f | A is continuous implies integral (f,A) = ((ln * tan) . (upper_bound A)) - ((ln * tan) . (lower_bound A)) ) assume A1: ( A c= Z & f = (sin (#) cos) ^ & Z c= dom (ln * tan) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln * tan) . (upper_bound A)) - ((ln * tan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: ln * tan is_differentiable_on Z by A1, FDIFF_8:18; A4: for x being Real st x in Z holds f . x = 1 / ((sin . x) * (cos . x)) proof let x be Real; ::_thesis: ( x in Z implies f . x = 1 / ((sin . x) * (cos . x)) ) assume x in Z ; ::_thesis: f . x = 1 / ((sin . x) * (cos . x)) then ((sin (#) cos) ^) . x = 1 / ((sin (#) cos) . x) by A1, RFUNCT_1:def_2 .= 1 / ((sin . x) * (cos . x)) by VALUED_1:5 ; hence f . x = 1 / ((sin . x) * (cos . x)) by A1; ::_thesis: verum end; A5: for x being Real st x in dom ((ln * tan) `| Z) holds ((ln * tan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln * tan) `| Z) implies ((ln * tan) `| Z) . x = f . x ) assume x in dom ((ln * tan) `| Z) ; ::_thesis: ((ln * tan) `| Z) . x = f . x then A6: x in Z by A3, FDIFF_1:def_7; then ((ln * tan) `| Z) . x = 1 / ((sin . x) * (cos . x)) by A1, FDIFF_8:18 .= f . x by A4, A6 ; hence ((ln * tan) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln * tan) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (ln * tan) `| Z = f by A5, PARTFUN1:5; hence integral (f,A) = ((ln * tan) . (upper_bound A)) - ((ln * tan) . (lower_bound A)) by A1, A2, FDIFF_8:18, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:2 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = - ((sin (#) cos) ^) & Z c= dom (ln * cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * cot) . (upper_bound A)) - ((ln * cot) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = - ((sin (#) cos) ^) & Z c= dom (ln * cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * cot) . (upper_bound A)) - ((ln * cot) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = - ((sin (#) cos) ^) & Z c= dom (ln * cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * cot) . (upper_bound A)) - ((ln * cot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = - ((sin (#) cos) ^) & Z c= dom (ln * cot) & Z = dom f & f | A is continuous implies integral (f,A) = ((ln * cot) . (upper_bound A)) - ((ln * cot) . (lower_bound A)) ) assume A1: ( A c= Z & f = - ((sin (#) cos) ^) & Z c= dom (ln * cot) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln * cot) . (upper_bound A)) - ((ln * cot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: ln * cot is_differentiable_on Z by A1, FDIFF_8:19; A4: Z = dom ((sin (#) cos) ^) by A1, VALUED_1:8; A5: for x being Real st x in Z holds f . x = - (1 / ((sin . x) * (cos . x))) proof let x be Real; ::_thesis: ( x in Z implies f . x = - (1 / ((sin . x) * (cos . x))) ) assume A6: x in Z ; ::_thesis: f . x = - (1 / ((sin . x) * (cos . x))) (- ((sin (#) cos) ^)) . x = - (((sin (#) cos) ^) . x) by VALUED_1:8 .= - (1 / ((sin (#) cos) . x)) by A4, A6, RFUNCT_1:def_2 .= - (1 / ((sin . x) * (cos . x))) by VALUED_1:5 ; hence f . x = - (1 / ((sin . x) * (cos . x))) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((ln * cot) `| Z) holds ((ln * cot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln * cot) `| Z) implies ((ln * cot) `| Z) . x = f . x ) assume x in dom ((ln * cot) `| Z) ; ::_thesis: ((ln * cot) `| Z) . x = f . x then A8: x in Z by A3, FDIFF_1:def_7; then ((ln * cot) `| Z) . x = - (1 / ((sin . x) * (cos . x))) by A1, FDIFF_8:19 .= f . x by A5, A8 ; hence ((ln * cot) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln * cot) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (ln * cot) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((ln * cot) . (upper_bound A)) - ((ln * cot) . (lower_bound A)) by A1, A2, FDIFF_8:19, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:3 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = 2 (#) (exp_R (#) sin) & Z c= dom (exp_R (#) (sin - cos)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) (sin - cos)) . (upper_bound A)) - ((exp_R (#) (sin - cos)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = 2 (#) (exp_R (#) sin) & Z c= dom (exp_R (#) (sin - cos)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) (sin - cos)) . (upper_bound A)) - ((exp_R (#) (sin - cos)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = 2 (#) (exp_R (#) sin) & Z c= dom (exp_R (#) (sin - cos)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) (sin - cos)) . (upper_bound A)) - ((exp_R (#) (sin - cos)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = 2 (#) (exp_R (#) sin) & Z c= dom (exp_R (#) (sin - cos)) & Z = dom f & f | A is continuous implies integral (f,A) = ((exp_R (#) (sin - cos)) . (upper_bound A)) - ((exp_R (#) (sin - cos)) . (lower_bound A)) ) assume A1: ( A c= Z & f = 2 (#) (exp_R (#) sin) & Z c= dom (exp_R (#) (sin - cos)) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((exp_R (#) (sin - cos)) . (upper_bound A)) - ((exp_R (#) (sin - cos)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: exp_R (#) (sin - cos) is_differentiable_on Z by A1, FDIFF_7:40; A4: for x being Real st x in Z holds f . x = (2 * (exp_R . x)) * (sin . x) proof let x be Real; ::_thesis: ( x in Z implies f . x = (2 * (exp_R . x)) * (sin . x) ) assume x in Z ; ::_thesis: f . x = (2 * (exp_R . x)) * (sin . x) (2 (#) (exp_R (#) sin)) . x = 2 * ((exp_R (#) sin) . x) by VALUED_1:6 .= 2 * ((exp_R . x) * (sin . x)) by VALUED_1:5 ; hence f . x = (2 * (exp_R . x)) * (sin . x) by A1; ::_thesis: verum end; A5: for x being Real st x in dom ((exp_R (#) (sin - cos)) `| Z) holds ((exp_R (#) (sin - cos)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((exp_R (#) (sin - cos)) `| Z) implies ((exp_R (#) (sin - cos)) `| Z) . x = f . x ) assume x in dom ((exp_R (#) (sin - cos)) `| Z) ; ::_thesis: ((exp_R (#) (sin - cos)) `| Z) . x = f . x then A6: x in Z by A3, FDIFF_1:def_7; then ((exp_R (#) (sin - cos)) `| Z) . x = (2 * (exp_R . x)) * (sin . x) by A1, FDIFF_7:40 .= f . x by A4, A6 ; hence ((exp_R (#) (sin - cos)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((exp_R (#) (sin - cos)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (exp_R (#) (sin - cos)) `| Z = f by A5, PARTFUN1:5; hence integral (f,A) = ((exp_R (#) (sin - cos)) . (upper_bound A)) - ((exp_R (#) (sin - cos)) . (lower_bound A)) by A1, A2, FDIFF_7:40, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:4 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = 2 (#) (exp_R (#) cos) & Z c= dom (exp_R (#) (sin + cos)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) (sin + cos)) . (upper_bound A)) - ((exp_R (#) (sin + cos)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = 2 (#) (exp_R (#) cos) & Z c= dom (exp_R (#) (sin + cos)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) (sin + cos)) . (upper_bound A)) - ((exp_R (#) (sin + cos)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = 2 (#) (exp_R (#) cos) & Z c= dom (exp_R (#) (sin + cos)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) (sin + cos)) . (upper_bound A)) - ((exp_R (#) (sin + cos)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = 2 (#) (exp_R (#) cos) & Z c= dom (exp_R (#) (sin + cos)) & Z = dom f & f | A is continuous implies integral (f,A) = ((exp_R (#) (sin + cos)) . (upper_bound A)) - ((exp_R (#) (sin + cos)) . (lower_bound A)) ) assume A1: ( A c= Z & f = 2 (#) (exp_R (#) cos) & Z c= dom (exp_R (#) (sin + cos)) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((exp_R (#) (sin + cos)) . (upper_bound A)) - ((exp_R (#) (sin + cos)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: exp_R (#) (sin + cos) is_differentiable_on Z by A1, FDIFF_7:41; A4: for x being Real st x in Z holds f . x = (2 * (exp_R . x)) * (cos . x) proof let x be Real; ::_thesis: ( x in Z implies f . x = (2 * (exp_R . x)) * (cos . x) ) assume x in Z ; ::_thesis: f . x = (2 * (exp_R . x)) * (cos . x) (2 (#) (exp_R (#) cos)) . x = 2 * ((exp_R (#) cos) . x) by VALUED_1:6 .= 2 * ((exp_R . x) * (cos . x)) by VALUED_1:5 ; hence f . x = (2 * (exp_R . x)) * (cos . x) by A1; ::_thesis: verum end; A5: for x being Real st x in dom ((exp_R (#) (sin + cos)) `| Z) holds ((exp_R (#) (sin + cos)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((exp_R (#) (sin + cos)) `| Z) implies ((exp_R (#) (sin + cos)) `| Z) . x = f . x ) assume x in dom ((exp_R (#) (sin + cos)) `| Z) ; ::_thesis: ((exp_R (#) (sin + cos)) `| Z) . x = f . x then A6: x in Z by A3, FDIFF_1:def_7; then ((exp_R (#) (sin + cos)) `| Z) . x = (2 * (exp_R . x)) * (cos . x) by A1, FDIFF_7:41 .= f . x by A6, A4 ; hence ((exp_R (#) (sin + cos)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((exp_R (#) (sin + cos)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (exp_R (#) (sin + cos)) `| Z = f by A5, PARTFUN1:5; hence integral (f,A) = ((exp_R (#) (sin + cos)) . (upper_bound A)) - ((exp_R (#) (sin + cos)) . (lower_bound A)) by A1, A2, FDIFF_7:41, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:5 for A being non empty closed_interval Subset of REAL for Z being open Subset of REAL st A c= Z & Z = dom (cos - sin) & (cos - sin) | A is continuous holds integral ((cos - sin),A) = ((sin + cos) . (upper_bound A)) - ((sin + cos) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & Z = dom (cos - sin) & (cos - sin) | A is continuous holds integral ((cos - sin),A) = ((sin + cos) . (upper_bound A)) - ((sin + cos) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & Z = dom (cos - sin) & (cos - sin) | A is continuous implies integral ((cos - sin),A) = ((sin + cos) . (upper_bound A)) - ((sin + cos) . (lower_bound A)) ) assume A1: ( A c= Z & Z = dom (cos - sin) & (cos - sin) | A is continuous ) ; ::_thesis: integral ((cos - sin),A) = ((sin + cos) . (upper_bound A)) - ((sin + cos) . (lower_bound A)) then A2: ( cos - sin is_integrable_on A & (cos - sin) | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom cos) /\ (dom sin) by A1, VALUED_1:12; then A3: Z c= dom (sin + cos) by VALUED_1:def_1; then A4: sin + cos is_differentiable_on Z by FDIFF_7:38; A5: for x being Real st x in dom ((sin + cos) `| Z) holds ((sin + cos) `| Z) . x = (cos - sin) . x proof let x be Real; ::_thesis: ( x in dom ((sin + cos) `| Z) implies ((sin + cos) `| Z) . x = (cos - sin) . x ) assume x in dom ((sin + cos) `| Z) ; ::_thesis: ((sin + cos) `| Z) . x = (cos - sin) . x then A6: x in Z by A4, FDIFF_1:def_7; then ((sin + cos) `| Z) . x = (cos . x) - (sin . x) by A3, FDIFF_7:38 .= (cos - sin) . x by A1, A6, VALUED_1:13 ; hence ((sin + cos) `| Z) . x = (cos - sin) . x ; ::_thesis: verum end; dom ((sin + cos) `| Z) = dom (cos - sin) by A1, A4, FDIFF_1:def_7; then (sin + cos) `| Z = cos - sin by A5, PARTFUN1:5; hence integral ((cos - sin),A) = ((sin + cos) . (upper_bound A)) - ((sin + cos) . (lower_bound A)) by A1, A2, A3, FDIFF_7:38, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:6 for A being non empty closed_interval Subset of REAL for Z being open Subset of REAL st A c= Z & Z = dom (cos + sin) & (cos + sin) | A is continuous holds integral ((cos + sin),A) = ((sin - cos) . (upper_bound A)) - ((sin - cos) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & Z = dom (cos + sin) & (cos + sin) | A is continuous holds integral ((cos + sin),A) = ((sin - cos) . (upper_bound A)) - ((sin - cos) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & Z = dom (cos + sin) & (cos + sin) | A is continuous implies integral ((cos + sin),A) = ((sin - cos) . (upper_bound A)) - ((sin - cos) . (lower_bound A)) ) assume A1: ( A c= Z & Z = dom (cos + sin) & (cos + sin) | A is continuous ) ; ::_thesis: integral ((cos + sin),A) = ((sin - cos) . (upper_bound A)) - ((sin - cos) . (lower_bound A)) then A2: ( cos + sin is_integrable_on A & (cos + sin) | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom cos) /\ (dom sin) by A1, VALUED_1:def_1; then A3: Z c= dom (sin - cos) by VALUED_1:12; then A4: sin - cos is_differentiable_on Z by FDIFF_7:39; A5: for x being Real st x in dom ((sin - cos) `| Z) holds ((sin - cos) `| Z) . x = (cos + sin) . x proof let x be Real; ::_thesis: ( x in dom ((sin - cos) `| Z) implies ((sin - cos) `| Z) . x = (cos + sin) . x ) assume x in dom ((sin - cos) `| Z) ; ::_thesis: ((sin - cos) `| Z) . x = (cos + sin) . x then A6: x in Z by A4, FDIFF_1:def_7; then ((sin - cos) `| Z) . x = (cos . x) + (sin . x) by A3, FDIFF_7:39 .= (cos + sin) . x by A1, A6, VALUED_1:def_1 ; hence ((sin - cos) `| Z) . x = (cos + sin) . x ; ::_thesis: verum end; dom ((sin - cos) `| Z) = dom (cos + sin) by A1, A4, FDIFF_1:def_7; then (sin - cos) `| Z = cos + sin by A5, PARTFUN1:5; hence integral ((cos + sin),A) = ((sin - cos) . (upper_bound A)) - ((sin - cos) . (lower_bound A)) by A1, A2, A3, FDIFF_7:39, INTEGRA5:13; ::_thesis: verum end; theorem Th7: :: INTEGR13:7 for Z being open Subset of REAL st Z c= dom ((- (1 / 2)) (#) ((sin + cos) / exp_R)) holds ( (- (1 / 2)) (#) ((sin + cos) / exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom ((- (1 / 2)) (#) ((sin + cos) / exp_R)) implies ( (- (1 / 2)) (#) ((sin + cos) / exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) ) ) ) assume A1: Z c= dom ((- (1 / 2)) (#) ((sin + cos) / exp_R)) ; ::_thesis: ( (- (1 / 2)) (#) ((sin + cos) / exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) ) ) then A2: Z c= dom ((sin + cos) / exp_R) by VALUED_1:def_5; then Z c= (dom (sin + cos)) /\ ((dom exp_R) \ (exp_R " {0})) by RFUNCT_1:def_1; then A3: Z c= dom (sin + cos) by XBOOLE_1:18; then A4: ( sin + cos is_differentiable_on Z & ( for x being Real st x in Z holds ((sin + cos) `| Z) . x = (cos . x) - (sin . x) ) ) by FDIFF_7:38; A5: (sin + cos) / exp_R is_differentiable_on Z by A2, FDIFF_7:42; then A6: (- (1 / 2)) (#) ((sin + cos) / exp_R) is_differentiable_on Z by FDIFF_2:19; for x being Real st x in Z holds (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) proof let x be Real; ::_thesis: ( x in Z implies (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) ) assume A7: x in Z ; ::_thesis: (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) A8: exp_R is_differentiable_in x by SIN_COS:65; A9: sin + cos is_differentiable_in x by A4, A7, FDIFF_1:9; A10: (sin + cos) . x = (sin . x) + (cos . x) by VALUED_1:1; A11: exp_R . x <> 0 by SIN_COS:54; (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (- (1 / 2)) * (diff (((sin + cos) / exp_R),x)) by A1, A5, A7, FDIFF_1:20 .= (- (1 / 2)) * ((((diff ((sin + cos),x)) * (exp_R . x)) - ((diff (exp_R,x)) * ((sin + cos) . x))) / ((exp_R . x) ^2)) by A8, A9, A11, FDIFF_2:14 .= (- (1 / 2)) * ((((((sin + cos) `| Z) . x) * (exp_R . x)) - ((diff (exp_R,x)) * ((sin + cos) . x))) / ((exp_R . x) ^2)) by A4, A7, FDIFF_1:def_7 .= (- (1 / 2)) * (((((cos . x) - (sin . x)) * (exp_R . x)) - ((diff (exp_R,x)) * ((sin + cos) . x))) / ((exp_R . x) ^2)) by A3, A7, FDIFF_7:38 .= (- (1 / 2)) * (((((cos . x) - (sin . x)) * (exp_R . x)) - ((exp_R . x) * ((sin . x) + (cos . x)))) / ((exp_R . x) ^2)) by A10, SIN_COS:65 .= (- (1 / 2)) * ((- (2 * (sin . x))) * ((exp_R . x) / ((exp_R . x) * (exp_R . x)))) .= (- (1 / 2)) * ((- (2 * (sin . x))) * (((exp_R . x) / (exp_R . x)) / (exp_R . x))) by XCMPLX_1:78 .= (- (1 / 2)) * ((- (2 * (sin . x))) * (1 / (exp_R . x))) by A11, XCMPLX_1:60 .= (sin . x) / (exp_R . x) ; hence (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) ; ::_thesis: verum end; hence ( (- (1 / 2)) (#) ((sin + cos) / exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) ) ) by A6; ::_thesis: verum end; theorem :: INTEGR13:8 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = sin / exp_R & Z c= dom ((- (1 / 2)) (#) ((sin + cos) / exp_R)) & Z = dom f & f | A is continuous holds integral (f,A) = (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (upper_bound A)) - (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = sin / exp_R & Z c= dom ((- (1 / 2)) (#) ((sin + cos) / exp_R)) & Z = dom f & f | A is continuous holds integral (f,A) = (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (upper_bound A)) - (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = sin / exp_R & Z c= dom ((- (1 / 2)) (#) ((sin + cos) / exp_R)) & Z = dom f & f | A is continuous holds integral (f,A) = (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (upper_bound A)) - (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = sin / exp_R & Z c= dom ((- (1 / 2)) (#) ((sin + cos) / exp_R)) & Z = dom f & f | A is continuous implies integral (f,A) = (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (upper_bound A)) - (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (lower_bound A)) ) assume A1: ( A c= Z & f = sin / exp_R & Z c= dom ((- (1 / 2)) (#) ((sin + cos) / exp_R)) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (upper_bound A)) - (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: (- (1 / 2)) (#) ((sin + cos) / exp_R) is_differentiable_on Z by A1, Th7; A4: for x being Real st x in Z holds f . x = (sin . x) / (exp_R . x) by A1, RFUNCT_1:def_1; A5: for x being Real st x in dom (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) holds (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) implies (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = f . x ) assume x in dom (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) ; ::_thesis: (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = f . x then A6: x in Z by A3, FDIFF_1:def_7; then (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = (sin . x) / (exp_R . x) by A1, Th7 .= f . x by A6, A4 ; hence (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) . x = f . x ; ::_thesis: verum end; dom (((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then ((- (1 / 2)) (#) ((sin + cos) / exp_R)) `| Z = f by A5, PARTFUN1:5; hence integral (f,A) = (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (upper_bound A)) - (((- (1 / 2)) (#) ((sin + cos) / exp_R)) . (lower_bound A)) by A1, A2, Th7, INTEGRA5:13; ::_thesis: verum end; theorem Th9: :: INTEGR13:9 for Z being open Subset of REAL st Z c= dom ((1 / 2) (#) ((sin - cos) / exp_R)) holds ( (1 / 2) (#) ((sin - cos) / exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom ((1 / 2) (#) ((sin - cos) / exp_R)) implies ( (1 / 2) (#) ((sin - cos) / exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) ) ) ) assume A1: Z c= dom ((1 / 2) (#) ((sin - cos) / exp_R)) ; ::_thesis: ( (1 / 2) (#) ((sin - cos) / exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) ) ) then A2: Z c= dom ((sin - cos) / exp_R) by VALUED_1:def_5; then Z c= (dom (sin - cos)) /\ ((dom exp_R) \ (exp_R " {0})) by RFUNCT_1:def_1; then A3: Z c= dom (sin - cos) by XBOOLE_1:18; then A4: ( sin - cos is_differentiable_on Z & ( for x being Real st x in Z holds ((sin - cos) `| Z) . x = (cos . x) + (sin . x) ) ) by FDIFF_7:39; A5: (sin - cos) / exp_R is_differentiable_on Z by A2, FDIFF_7:43; then A6: (1 / 2) (#) ((sin - cos) / exp_R) is_differentiable_on Z by FDIFF_2:19; for x being Real st x in Z holds (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) proof let x be Real; ::_thesis: ( x in Z implies (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) ) assume A7: x in Z ; ::_thesis: (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) A8: exp_R is_differentiable_in x by SIN_COS:65; A9: sin - cos is_differentiable_in x by A4, A7, FDIFF_1:9; A10: (sin - cos) . x = (sin . x) - (cos . x) by A3, A7, VALUED_1:13; A11: exp_R . x <> 0 by SIN_COS:54; (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (1 / 2) * (diff (((sin - cos) / exp_R),x)) by A1, A5, A7, FDIFF_1:20 .= (1 / 2) * ((((diff ((sin - cos),x)) * (exp_R . x)) - ((diff (exp_R,x)) * ((sin - cos) . x))) / ((exp_R . x) ^2)) by A8, A9, A11, FDIFF_2:14 .= (1 / 2) * ((((((sin - cos) `| Z) . x) * (exp_R . x)) - ((diff (exp_R,x)) * ((sin - cos) . x))) / ((exp_R . x) ^2)) by A4, A7, FDIFF_1:def_7 .= (1 / 2) * (((((cos . x) + (sin . x)) * (exp_R . x)) - ((diff (exp_R,x)) * ((sin - cos) . x))) / ((exp_R . x) ^2)) by A3, A7, FDIFF_7:39 .= (1 / 2) * (((((cos . x) + (sin . x)) * (exp_R . x)) - ((exp_R . x) * ((sin . x) - (cos . x)))) / ((exp_R . x) ^2)) by A10, SIN_COS:65 .= (1 / 2) * ((2 * (cos . x)) * ((exp_R . x) / ((exp_R . x) * (exp_R . x)))) .= (1 / 2) * ((2 * (cos . x)) * (((exp_R . x) / (exp_R . x)) / (exp_R . x))) by XCMPLX_1:78 .= (1 / 2) * ((2 * (cos . x)) * (1 / (exp_R . x))) by A11, XCMPLX_1:60 .= (cos . x) / (exp_R . x) ; hence (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) ; ::_thesis: verum end; hence ( (1 / 2) (#) ((sin - cos) / exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) ) ) by A6; ::_thesis: verum end; theorem :: INTEGR13:10 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = cos / exp_R & Z c= dom ((1 / 2) (#) ((sin - cos) / exp_R)) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((sin - cos) / exp_R)) . (upper_bound A)) - (((1 / 2) (#) ((sin - cos) / exp_R)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = cos / exp_R & Z c= dom ((1 / 2) (#) ((sin - cos) / exp_R)) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((sin - cos) / exp_R)) . (upper_bound A)) - (((1 / 2) (#) ((sin - cos) / exp_R)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = cos / exp_R & Z c= dom ((1 / 2) (#) ((sin - cos) / exp_R)) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((sin - cos) / exp_R)) . (upper_bound A)) - (((1 / 2) (#) ((sin - cos) / exp_R)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = cos / exp_R & Z c= dom ((1 / 2) (#) ((sin - cos) / exp_R)) & Z = dom f & f | A is continuous implies integral (f,A) = (((1 / 2) (#) ((sin - cos) / exp_R)) . (upper_bound A)) - (((1 / 2) (#) ((sin - cos) / exp_R)) . (lower_bound A)) ) assume A1: ( A c= Z & f = cos / exp_R & Z c= dom ((1 / 2) (#) ((sin - cos) / exp_R)) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((1 / 2) (#) ((sin - cos) / exp_R)) . (upper_bound A)) - (((1 / 2) (#) ((sin - cos) / exp_R)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: (1 / 2) (#) ((sin - cos) / exp_R) is_differentiable_on Z by A1, Th9; A4: for x being Real st x in Z holds f . x = (cos . x) / (exp_R . x) by A1, RFUNCT_1:def_1; A5: for x being Real st x in dom (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) holds (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) implies (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = f . x ) assume x in dom (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) ; ::_thesis: (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = f . x then A6: x in Z by A3, FDIFF_1:def_7; then (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = (cos . x) / (exp_R . x) by A1, Th9 .= f . x by A4, A6 ; hence (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) . x = f . x ; ::_thesis: verum end; dom (((1 / 2) (#) ((sin - cos) / exp_R)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then ((1 / 2) (#) ((sin - cos) / exp_R)) `| Z = f by A5, PARTFUN1:5; hence integral (f,A) = (((1 / 2) (#) ((sin - cos) / exp_R)) . (upper_bound A)) - (((1 / 2) (#) ((sin - cos) / exp_R)) . (lower_bound A)) by A1, A2, Th9, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:11 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = exp_R (#) (sin + cos) & Z c= dom (exp_R (#) sin) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) sin) . (upper_bound A)) - ((exp_R (#) sin) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = exp_R (#) (sin + cos) & Z c= dom (exp_R (#) sin) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) sin) . (upper_bound A)) - ((exp_R (#) sin) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = exp_R (#) (sin + cos) & Z c= dom (exp_R (#) sin) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) sin) . (upper_bound A)) - ((exp_R (#) sin) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = exp_R (#) (sin + cos) & Z c= dom (exp_R (#) sin) & Z = dom f & f | A is continuous implies integral (f,A) = ((exp_R (#) sin) . (upper_bound A)) - ((exp_R (#) sin) . (lower_bound A)) ) assume A1: ( A c= Z & f = exp_R (#) (sin + cos) & Z c= dom (exp_R (#) sin) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((exp_R (#) sin) . (upper_bound A)) - ((exp_R (#) sin) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: exp_R (#) sin is_differentiable_on Z by A1, FDIFF_7:44; dom f = (dom exp_R) /\ (dom (sin + cos)) by A1, VALUED_1:def_4; then A4: Z c= dom (sin + cos) by A1, XBOOLE_1:18; A5: for x being Real st x in Z holds f . x = (exp_R . x) * ((sin . x) + (cos . x)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (exp_R . x) * ((sin . x) + (cos . x)) ) assume A6: x in Z ; ::_thesis: f . x = (exp_R . x) * ((sin . x) + (cos . x)) (exp_R (#) (sin + cos)) . x = (exp_R . x) * ((sin + cos) . x) by VALUED_1:5 .= (exp_R . x) * ((sin . x) + (cos . x)) by A4, A6, VALUED_1:def_1 ; hence f . x = (exp_R . x) * ((sin . x) + (cos . x)) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((exp_R (#) sin) `| Z) holds ((exp_R (#) sin) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((exp_R (#) sin) `| Z) implies ((exp_R (#) sin) `| Z) . x = f . x ) assume x in dom ((exp_R (#) sin) `| Z) ; ::_thesis: ((exp_R (#) sin) `| Z) . x = f . x then A8: x in Z by A3, FDIFF_1:def_7; then ((exp_R (#) sin) `| Z) . x = (exp_R . x) * ((sin . x) + (cos . x)) by A1, FDIFF_7:44 .= f . x by A5, A8 ; hence ((exp_R (#) sin) `| Z) . x = f . x ; ::_thesis: verum end; dom ((exp_R (#) sin) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (exp_R (#) sin) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((exp_R (#) sin) . (upper_bound A)) - ((exp_R (#) sin) . (lower_bound A)) by A1, A2, FDIFF_7:44, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:12 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = exp_R (#) (cos - sin) & Z c= dom (exp_R (#) cos) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) cos) . (upper_bound A)) - ((exp_R (#) cos) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = exp_R (#) (cos - sin) & Z c= dom (exp_R (#) cos) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) cos) . (upper_bound A)) - ((exp_R (#) cos) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = exp_R (#) (cos - sin) & Z c= dom (exp_R (#) cos) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R (#) cos) . (upper_bound A)) - ((exp_R (#) cos) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = exp_R (#) (cos - sin) & Z c= dom (exp_R (#) cos) & Z = dom f & f | A is continuous implies integral (f,A) = ((exp_R (#) cos) . (upper_bound A)) - ((exp_R (#) cos) . (lower_bound A)) ) assume A1: ( A c= Z & f = exp_R (#) (cos - sin) & Z c= dom (exp_R (#) cos) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((exp_R (#) cos) . (upper_bound A)) - ((exp_R (#) cos) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: exp_R (#) cos is_differentiable_on Z by A1, FDIFF_7:45; dom f = (dom exp_R) /\ (dom (cos - sin)) by A1, VALUED_1:def_4; then A4: Z c= dom (cos - sin) by A1, XBOOLE_1:18; A5: for x being Real st x in Z holds f . x = (exp_R . x) * ((cos . x) - (sin . x)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (exp_R . x) * ((cos . x) - (sin . x)) ) assume A6: x in Z ; ::_thesis: f . x = (exp_R . x) * ((cos . x) - (sin . x)) (exp_R (#) (cos - sin)) . x = (exp_R . x) * ((cos - sin) . x) by VALUED_1:5 .= (exp_R . x) * ((cos . x) - (sin . x)) by A4, A6, VALUED_1:13 ; hence f . x = (exp_R . x) * ((cos . x) - (sin . x)) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((exp_R (#) cos) `| Z) holds ((exp_R (#) cos) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((exp_R (#) cos) `| Z) implies ((exp_R (#) cos) `| Z) . x = f . x ) assume x in dom ((exp_R (#) cos) `| Z) ; ::_thesis: ((exp_R (#) cos) `| Z) . x = f . x then A8: x in Z by A3, FDIFF_1:def_7; then ((exp_R (#) cos) `| Z) . x = (exp_R . x) * ((cos . x) - (sin . x)) by A1, FDIFF_7:45 .= f . x by A5, A8 ; hence ((exp_R (#) cos) `| Z) . x = f . x ; ::_thesis: verum end; dom ((exp_R (#) cos) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (exp_R (#) cos) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((exp_R (#) cos) . (upper_bound A)) - ((exp_R (#) cos) . (lower_bound A)) by A1, A2, FDIFF_7:45, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:13 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f1 = #Z 2 & f = (- ((sin / cos) / f1)) + (((id Z) ^) / (cos ^2)) & Z c= dom (((id Z) ^) (#) tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((((id Z) ^) (#) tan) . (upper_bound A)) - ((((id Z) ^) (#) tan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f1 = #Z 2 & f = (- ((sin / cos) / f1)) + (((id Z) ^) / (cos ^2)) & Z c= dom (((id Z) ^) (#) tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((((id Z) ^) (#) tan) . (upper_bound A)) - ((((id Z) ^) (#) tan) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f1 = #Z 2 & f = (- ((sin / cos) / f1)) + (((id Z) ^) / (cos ^2)) & Z c= dom (((id Z) ^) (#) tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((((id Z) ^) (#) tan) . (upper_bound A)) - ((((id Z) ^) (#) tan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f1 = #Z 2 & f = (- ((sin / cos) / f1)) + (((id Z) ^) / (cos ^2)) & Z c= dom (((id Z) ^) (#) tan) & Z = dom f & f | A is continuous implies integral (f,A) = ((((id Z) ^) (#) tan) . (upper_bound A)) - ((((id Z) ^) (#) tan) . (lower_bound A)) ) assume A1: ( A c= Z & f1 = #Z 2 & f = (- ((sin / cos) / f1)) + (((id Z) ^) / (cos ^2)) & Z c= dom (((id Z) ^) (#) tan) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((((id Z) ^) (#) tan) . (upper_bound A)) - ((((id Z) ^) (#) tan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; set g = id Z; Z c= (dom ((id Z) ^)) /\ (dom tan) by A1, VALUED_1:def_4; then A3: Z c= dom ((id Z) ^) by XBOOLE_1:18; A4: not 0 in Z proof assume A5: 0 in Z ; ::_thesis: contradiction dom ((id Z) ^) = (dom (id Z)) \ ((id Z) " {0}) by RFUNCT_1:def_2 .= (dom (id Z)) \ {0} by Lm1, A5 ; then not 0 in {0} by A5, A3, XBOOLE_0:def_5; hence contradiction by TARSKI:def_1; ::_thesis: verum end; then A6: ((id Z) ^) (#) tan is_differentiable_on Z by A1, FDIFF_8:34; dom f = (dom (- ((sin / cos) / f1))) /\ (dom (((id Z) ^) / (cos ^2))) by A1, VALUED_1:def_1; then ( dom f c= dom (- ((sin / cos) / f1)) & dom f c= dom (((id Z) ^) / (cos ^2)) ) by XBOOLE_1:18; then A7: ( Z c= dom ((sin / cos) / f1) & Z c= dom (((id Z) ^) / (cos ^2)) ) by A1, VALUED_1:8; dom ((sin / cos) / f1) = (dom (sin / cos)) /\ ((dom f1) \ (f1 " {0})) by RFUNCT_1:def_1; then A8: Z c= dom (sin / cos) by A7, XBOOLE_1:18; dom (((id Z) ^) / (cos ^2)) c= (dom ((id Z) ^)) /\ ((dom (cos ^2)) \ ((cos ^2) " {0})) by RFUNCT_1:def_1; then ( dom (((id Z) ^) / (cos ^2)) c= dom ((id Z) ^) & dom (((id Z) ^) / (cos ^2)) c= (dom (cos ^2)) \ ((cos ^2) " {0}) ) by XBOOLE_1:18; then A9: ( Z c= dom ((id Z) ^) & Z c= (dom (cos ^2)) \ ((cos ^2) " {0}) ) by A7, XBOOLE_1:1; A10: for x being Real st x in Z holds f . x = (- (((sin . x) / (cos . x)) / (x ^2))) + ((1 / x) / ((cos . x) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (- (((sin . x) / (cos . x)) / (x ^2))) + ((1 / x) / ((cos . x) ^2)) ) assume A11: x in Z ; ::_thesis: f . x = (- (((sin . x) / (cos . x)) / (x ^2))) + ((1 / x) / ((cos . x) ^2)) then ((- ((sin / cos) / f1)) + (((id Z) ^) / (cos ^2))) . x = ((- ((sin / cos) / f1)) . x) + ((((id Z) ^) / (cos ^2)) . x) by A1, VALUED_1:def_1 .= (- (((sin / cos) / f1) . x)) + ((((id Z) ^) / (cos ^2)) . x) by VALUED_1:8 .= (- (((sin / cos) . x) / (f1 . x))) + ((((id Z) ^) / (cos ^2)) . x) by A11, A7, RFUNCT_1:def_1 .= (- (((sin . x) * ((cos . x) ")) / (f1 . x))) + ((((id Z) ^) / (cos ^2)) . x) by A8, A11, RFUNCT_1:def_1 .= (- (((sin . x) / (cos . x)) / (f1 . x))) + ((((id Z) ^) . x) / ((cos ^2) . x)) by A7, A11, RFUNCT_1:def_1 .= (- (((sin . x) / (cos . x)) / (f1 . x))) + ((((id Z) . x) ") / ((cos ^2) . x)) by A9, A11, RFUNCT_1:def_2 .= (- (((sin . x) / (cos . x)) / (f1 . x))) + ((1 / x) / ((cos ^2) . x)) by A11, FUNCT_1:18 .= (- (((sin . x) / (cos . x)) / (f1 . x))) + ((1 / x) / ((cos . x) ^2)) by VALUED_1:11 .= (- (((sin . x) / (cos . x)) / (x #Z 2))) + ((1 / x) / ((cos . x) ^2)) by A1, TAYLOR_1:def_1 .= (- (((sin . x) / (cos . x)) / (x ^2))) + ((1 / x) / ((cos . x) ^2)) by FDIFF_7:1 ; hence f . x = (- (((sin . x) / (cos . x)) / (x ^2))) + ((1 / x) / ((cos . x) ^2)) by A1; ::_thesis: verum end; A12: for x being Real st x in dom ((((id Z) ^) (#) tan) `| Z) holds ((((id Z) ^) (#) tan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((((id Z) ^) (#) tan) `| Z) implies ((((id Z) ^) (#) tan) `| Z) . x = f . x ) assume x in dom ((((id Z) ^) (#) tan) `| Z) ; ::_thesis: ((((id Z) ^) (#) tan) `| Z) . x = f . x then A13: x in Z by A6, FDIFF_1:def_7; then ((((id Z) ^) (#) tan) `| Z) . x = (- (((sin . x) / (cos . x)) / (x ^2))) + ((1 / x) / ((cos . x) ^2)) by A4, A1, FDIFF_8:34 .= f . x by A13, A10 ; hence ((((id Z) ^) (#) tan) `| Z) . x = f . x ; ::_thesis: verum end; dom ((((id Z) ^) (#) tan) `| Z) = dom f by A1, A6, FDIFF_1:def_7; then (((id Z) ^) (#) tan) `| Z = f by A12, PARTFUN1:5; hence integral (f,A) = ((((id Z) ^) (#) tan) . (upper_bound A)) - ((((id Z) ^) (#) tan) . (lower_bound A)) by A1, A2, A6, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:14 for A being non empty closed_interval Subset of REAL for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (- ((cos / sin) / f1)) - (((id Z) ^) / (sin ^2)) & f1 = #Z 2 & Z c= dom (((id Z) ^) (#) cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((((id Z) ^) (#) cot) . (upper_bound A)) - ((((id Z) ^) (#) cot) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (- ((cos / sin) / f1)) - (((id Z) ^) / (sin ^2)) & f1 = #Z 2 & Z c= dom (((id Z) ^) (#) cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((((id Z) ^) (#) cot) . (upper_bound A)) - ((((id Z) ^) (#) cot) . (lower_bound A)) let f, f1 be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = (- ((cos / sin) / f1)) - (((id Z) ^) / (sin ^2)) & f1 = #Z 2 & Z c= dom (((id Z) ^) (#) cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((((id Z) ^) (#) cot) . (upper_bound A)) - ((((id Z) ^) (#) cot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = (- ((cos / sin) / f1)) - (((id Z) ^) / (sin ^2)) & f1 = #Z 2 & Z c= dom (((id Z) ^) (#) cot) & Z = dom f & f | A is continuous implies integral (f,A) = ((((id Z) ^) (#) cot) . (upper_bound A)) - ((((id Z) ^) (#) cot) . (lower_bound A)) ) assume A1: ( A c= Z & f = (- ((cos / sin) / f1)) - (((id Z) ^) / (sin ^2)) & f1 = #Z 2 & Z c= dom (((id Z) ^) (#) cot) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((((id Z) ^) (#) cot) . (upper_bound A)) - ((((id Z) ^) (#) cot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; set g = id Z; Z c= dom (((id Z) ^) (#) cot) by A1; then Z c= (dom ((id Z) ^)) /\ (dom cot) by VALUED_1:def_4; then A3: Z c= dom ((id Z) ^) by XBOOLE_1:18; A4: not 0 in Z proof assume A5: 0 in Z ; ::_thesis: contradiction dom ((id Z) ^) = (dom (id Z)) \ ((id Z) " {0}) by RFUNCT_1:def_2 .= (dom (id Z)) \ {0} by Lm1, A5 ; then not 0 in {0} by A5, A3, XBOOLE_0:def_5; hence contradiction by TARSKI:def_1; ::_thesis: verum end; then A6: ((id Z) ^) (#) cot is_differentiable_on Z by A1, FDIFF_8:35; dom f = (dom (- ((cos / sin) / f1))) /\ (dom (((id Z) ^) / (sin ^2))) by A1, VALUED_1:12; then A7: ( dom f c= dom (- ((cos / sin) / f1)) & dom f c= dom (((id Z) ^) / (sin ^2)) ) by XBOOLE_1:18; then dom f c= dom ((cos / sin) / f1) by VALUED_1:8; then A8: ( Z c= dom ((cos / sin) / f1) & Z c= dom (((id Z) ^) / (sin ^2)) ) by A1, A7; dom ((cos / sin) / f1) = (dom (cos / sin)) /\ ((dom f1) \ (f1 " {0})) by RFUNCT_1:def_1; then A9: Z c= dom (cos / sin) by A8, XBOOLE_1:18; dom (((id Z) ^) / (sin ^2)) c= (dom ((id Z) ^)) /\ ((dom (sin ^2)) \ ((sin ^2) " {0})) by RFUNCT_1:def_1; then ( dom (((id Z) ^) / (sin ^2)) c= dom ((id Z) ^) & dom (((id Z) ^) / (sin ^2)) c= (dom (sin ^2)) \ ((sin ^2) " {0}) ) by XBOOLE_1:18; then A10: ( Z c= dom ((id Z) ^) & Z c= (dom (sin ^2)) \ ((sin ^2) " {0}) ) by A8, XBOOLE_1:1; A11: for x being Real st x in Z holds f . x = (- (((cos . x) / (sin . x)) / (x ^2))) - ((1 / x) / ((sin . x) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (- (((cos . x) / (sin . x)) / (x ^2))) - ((1 / x) / ((sin . x) ^2)) ) assume A12: x in Z ; ::_thesis: f . x = (- (((cos . x) / (sin . x)) / (x ^2))) - ((1 / x) / ((sin . x) ^2)) then ((- ((cos / sin) / f1)) - (((id Z) ^) / (sin ^2))) . x = ((- ((cos / sin) / f1)) . x) - ((((id Z) ^) / (sin ^2)) . x) by A1, VALUED_1:13 .= (- (((cos / sin) / f1) . x)) - ((((id Z) ^) / (sin ^2)) . x) by VALUED_1:8 .= (- (((cos / sin) . x) / (f1 . x))) - ((((id Z) ^) / (sin ^2)) . x) by A12, A8, RFUNCT_1:def_1 .= (- (((cos . x) / (sin . x)) / (f1 . x))) - ((((id Z) ^) / (sin ^2)) . x) by A9, A12, RFUNCT_1:def_1 .= (- (((cos . x) / (sin . x)) / (f1 . x))) - ((((id Z) ^) . x) / ((sin ^2) . x)) by A8, A12, RFUNCT_1:def_1 .= (- (((cos . x) / (sin . x)) / (f1 . x))) - ((((id Z) . x) ") / ((sin ^2) . x)) by A10, A12, RFUNCT_1:def_2 .= (- (((cos . x) / (sin . x)) / (f1 . x))) - ((1 / x) / ((sin ^2) . x)) by A12, FUNCT_1:18 .= (- (((cos . x) / (sin . x)) / (f1 . x))) - ((1 / x) / ((sin . x) ^2)) by VALUED_1:11 .= (- (((cos . x) / (sin . x)) / (x #Z 2))) - ((1 / x) / ((sin . x) ^2)) by A1, TAYLOR_1:def_1 .= (- (((cos . x) / (sin . x)) / (x ^2))) - ((1 / x) / ((sin . x) ^2)) by FDIFF_7:1 ; hence f . x = (- (((cos . x) / (sin . x)) / (x ^2))) - ((1 / x) / ((sin . x) ^2)) by A1; ::_thesis: verum end; A13: for x being Real st x in dom ((((id Z) ^) (#) cot) `| Z) holds ((((id Z) ^) (#) cot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((((id Z) ^) (#) cot) `| Z) implies ((((id Z) ^) (#) cot) `| Z) . x = f . x ) assume x in dom ((((id Z) ^) (#) cot) `| Z) ; ::_thesis: ((((id Z) ^) (#) cot) `| Z) . x = f . x then A14: x in Z by A6, FDIFF_1:def_7; then ((((id Z) ^) (#) cot) `| Z) . x = (- (((cos . x) / (sin . x)) / (x ^2))) - ((1 / x) / ((sin . x) ^2)) by A1, A4, FDIFF_8:35 .= f . x by A11, A14 ; hence ((((id Z) ^) (#) cot) `| Z) . x = f . x ; ::_thesis: verum end; dom ((((id Z) ^) (#) cot) `| Z) = dom f by A1, A6, FDIFF_1:def_7; then (((id Z) ^) (#) cot) `| Z = f by A13, PARTFUN1:5; hence integral (f,A) = ((((id Z) ^) (#) cot) . (upper_bound A)) - ((((id Z) ^) (#) cot) . (lower_bound A)) by A1, A2, A6, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:15 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = ((sin / cos) / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = ((sin / cos) / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = ((sin / cos) / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = ((sin / cos) / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z = dom f & f | A is continuous implies integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) ) assume A1: ( A c= Z & f = ((sin / cos) / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: ln (#) tan is_differentiable_on Z by A1, FDIFF_8:32; Z = (dom ((sin / cos) / (id Z))) /\ (dom (ln / (cos ^2))) by A1, VALUED_1:def_1; then A4: ( Z c= dom ((sin / cos) / (id Z)) & Z c= dom (ln / (cos ^2)) ) by XBOOLE_1:18; dom ((sin / cos) / (id Z)) c= (dom (sin / cos)) /\ ((dom (id Z)) \ ((id Z) " {0})) by RFUNCT_1:def_1; then dom ((sin / cos) / (id Z)) c= dom (sin / cos) by XBOOLE_1:18; then A5: Z c= dom (sin / cos) by A4, XBOOLE_1:1; A6: for x being Real st x in Z holds f . x = (((sin . x) / (cos . x)) / x) + ((ln . x) / ((cos . x) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (((sin . x) / (cos . x)) / x) + ((ln . x) / ((cos . x) ^2)) ) assume A7: x in Z ; ::_thesis: f . x = (((sin . x) / (cos . x)) / x) + ((ln . x) / ((cos . x) ^2)) then (((sin / cos) / (id Z)) + (ln / (cos ^2))) . x = (((sin / cos) / (id Z)) . x) + ((ln / (cos ^2)) . x) by A1, VALUED_1:def_1 .= (((sin / cos) . x) / ((id Z) . x)) + ((ln / (cos ^2)) . x) by A7, A4, RFUNCT_1:def_1 .= (((sin . x) / (cos . x)) / ((id Z) . x)) + ((ln / (cos ^2)) . x) by A5, A7, RFUNCT_1:def_1 .= (((sin . x) / (cos . x)) / x) + ((ln / (cos ^2)) . x) by A7, FUNCT_1:18 .= (((sin . x) / (cos . x)) / x) + ((ln . x) / ((cos ^2) . x)) by A7, A4, RFUNCT_1:def_1 .= (((sin . x) / (cos . x)) / x) + ((ln . x) / ((cos . x) ^2)) by VALUED_1:11 ; hence f . x = (((sin . x) / (cos . x)) / x) + ((ln . x) / ((cos . x) ^2)) by A1; ::_thesis: verum end; A8: for x being Real st x in dom ((ln (#) tan) `| Z) holds ((ln (#) tan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln (#) tan) `| Z) implies ((ln (#) tan) `| Z) . x = f . x ) assume x in dom ((ln (#) tan) `| Z) ; ::_thesis: ((ln (#) tan) `| Z) . x = f . x then A9: x in Z by A3, FDIFF_1:def_7; then ((ln (#) tan) `| Z) . x = (((sin . x) / (cos . x)) / x) + ((ln . x) / ((cos . x) ^2)) by A1, FDIFF_8:32 .= f . x by A9, A6 ; hence ((ln (#) tan) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln (#) tan) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (ln (#) tan) `| Z = f by A8, PARTFUN1:5; hence integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) by A1, A2, FDIFF_8:32, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:16 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = ((cos / sin) / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = ((cos / sin) / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = ((cos / sin) / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = ((cos / sin) / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z = dom f & f | A is continuous implies integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) ) assume A1: ( A c= Z & f = ((cos / sin) / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: ln (#) cot is_differentiable_on Z by A1, FDIFF_8:33; Z = (dom ((cos / sin) / (id Z))) /\ (dom (ln / (sin ^2))) by A1, VALUED_1:12; then A4: ( Z c= dom ((cos / sin) / (id Z)) & Z c= dom (ln / (sin ^2)) ) by XBOOLE_1:18; dom ((cos / sin) / (id Z)) c= (dom (cos / sin)) /\ ((dom (id Z)) \ ((id Z) " {0})) by RFUNCT_1:def_1; then dom ((cos / sin) / (id Z)) c= dom (cos / sin) by XBOOLE_1:18; then A5: Z c= dom (cos / sin) by A4, XBOOLE_1:1; A6: for x being Real st x in Z holds f . x = (((cos . x) / (sin . x)) / x) - ((ln . x) / ((sin . x) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (((cos . x) / (sin . x)) / x) - ((ln . x) / ((sin . x) ^2)) ) assume A7: x in Z ; ::_thesis: f . x = (((cos . x) / (sin . x)) / x) - ((ln . x) / ((sin . x) ^2)) then (((cos / sin) / (id Z)) - (ln / (sin ^2))) . x = (((cos / sin) / (id Z)) . x) - ((ln / (sin ^2)) . x) by A1, VALUED_1:13 .= (((cos / sin) . x) / ((id Z) . x)) - ((ln / (sin ^2)) . x) by A7, A4, RFUNCT_1:def_1 .= (((cos . x) / (sin . x)) / ((id Z) . x)) - ((ln / (sin ^2)) . x) by A5, A7, RFUNCT_1:def_1 .= (((cos . x) / (sin . x)) / x) - ((ln / (sin ^2)) . x) by A7, FUNCT_1:18 .= (((cos . x) / (sin . x)) / x) - ((ln . x) / ((sin ^2) . x)) by A7, A4, RFUNCT_1:def_1 .= (((cos . x) / (sin . x)) / x) - ((ln . x) / ((sin . x) ^2)) by VALUED_1:11 ; hence f . x = (((cos . x) / (sin . x)) / x) - ((ln . x) / ((sin . x) ^2)) by A1; ::_thesis: verum end; A8: for x being Real st x in dom ((ln (#) cot) `| Z) holds ((ln (#) cot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln (#) cot) `| Z) implies ((ln (#) cot) `| Z) . x = f . x ) assume x in dom ((ln (#) cot) `| Z) ; ::_thesis: ((ln (#) cot) `| Z) . x = f . x then A9: x in Z by A3, FDIFF_1:def_7; then ((ln (#) cot) `| Z) . x = (((cos . x) / (sin . x)) / x) - ((ln . x) / ((sin . x) ^2)) by A1, FDIFF_8:33 .= f . x by A9, A6 ; hence ((ln (#) cot) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln (#) cot) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (ln (#) cot) `| Z = f by A8, PARTFUN1:5; hence integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) by A1, A2, FDIFF_8:33, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:17 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (tan / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z c= dom tan & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (tan / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z c= dom tan & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = (tan / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z c= dom tan & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = (tan / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z c= dom tan & Z = dom f & f | A is continuous implies integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) ) assume A1: ( A c= Z & f = (tan / (id Z)) + (ln / (cos ^2)) & Z c= dom (ln (#) tan) & Z c= dom tan & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: ln (#) tan is_differentiable_on Z by A1, FDIFF_8:32; Z = (dom (tan / (id Z))) /\ (dom (ln / (cos ^2))) by A1, VALUED_1:def_1; then A4: ( Z c= dom (tan / (id Z)) & Z c= dom (ln / (cos ^2)) ) by XBOOLE_1:18; A5: for x being Real st x in Z holds f . x = ((tan . x) / x) + ((ln . x) / ((cos . x) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = ((tan . x) / x) + ((ln . x) / ((cos . x) ^2)) ) assume A6: x in Z ; ::_thesis: f . x = ((tan . x) / x) + ((ln . x) / ((cos . x) ^2)) then ((tan / (id Z)) + (ln / (cos ^2))) . x = ((tan / (id Z)) . x) + ((ln / (cos ^2)) . x) by A1, VALUED_1:def_1 .= ((tan . x) / ((id Z) . x)) + ((ln / (cos ^2)) . x) by A6, A4, RFUNCT_1:def_1 .= ((tan . x) / x) + ((ln / (cos ^2)) . x) by A6, FUNCT_1:18 .= ((tan . x) / x) + ((ln . x) / ((cos ^2) . x)) by A6, A4, RFUNCT_1:def_1 .= ((tan . x) / x) + ((ln . x) / ((cos . x) ^2)) by VALUED_1:11 ; hence f . x = ((tan . x) / x) + ((ln . x) / ((cos . x) ^2)) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((ln (#) tan) `| Z) holds ((ln (#) tan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln (#) tan) `| Z) implies ((ln (#) tan) `| Z) . x = f . x ) assume x in dom ((ln (#) tan) `| Z) ; ::_thesis: ((ln (#) tan) `| Z) . x = f . x then A8: x in Z by A3, FDIFF_1:def_7; then ((ln (#) tan) `| Z) . x = ((tan x) / x) + ((ln . x) / ((cos . x) ^2)) by A1, FDIFF_8:32 .= ((tan . x) / x) + ((ln . x) / ((cos . x) ^2)) by A1, A8, FDIFF_8:1, SIN_COS9:15 .= f . x by A8, A5 ; hence ((ln (#) tan) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln (#) tan) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (ln (#) tan) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((ln (#) tan) . (upper_bound A)) - ((ln (#) tan) . (lower_bound A)) by A1, A2, FDIFF_8:32, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:18 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (cot / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z c= dom cot & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (cot / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z c= dom cot & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = (cot / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z c= dom cot & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = (cot / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z c= dom cot & Z = dom f & f | A is continuous implies integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) ) assume A1: ( A c= Z & f = (cot / (id Z)) - (ln / (sin ^2)) & Z c= dom (ln (#) cot) & Z c= dom cot & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: ln (#) cot is_differentiable_on Z by A1, FDIFF_8:33; Z = (dom (cot / (id Z))) /\ (dom (ln / (sin ^2))) by A1, VALUED_1:12; then A4: ( Z c= dom (cot / (id Z)) & Z c= dom (ln / (sin ^2)) ) by XBOOLE_1:18; A5: for x being Real st x in Z holds f . x = ((cot . x) / x) - ((ln . x) / ((sin . x) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = ((cot . x) / x) - ((ln . x) / ((sin . x) ^2)) ) assume A6: x in Z ; ::_thesis: f . x = ((cot . x) / x) - ((ln . x) / ((sin . x) ^2)) then ((cot / (id Z)) - (ln / (sin ^2))) . x = ((cot / (id Z)) . x) - ((ln / (sin ^2)) . x) by A1, VALUED_1:13 .= ((cot . x) / ((id Z) . x)) - ((ln / (sin ^2)) . x) by A6, A4, RFUNCT_1:def_1 .= ((cot . x) / x) - ((ln / (sin ^2)) . x) by A6, FUNCT_1:18 .= ((cot . x) / x) - ((ln . x) / ((sin ^2) . x)) by A6, A4, RFUNCT_1:def_1 .= ((cot . x) / x) - ((ln . x) / ((sin . x) ^2)) by VALUED_1:11 ; hence f . x = ((cot . x) / x) - ((ln . x) / ((sin . x) ^2)) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((ln (#) cot) `| Z) holds ((ln (#) cot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln (#) cot) `| Z) implies ((ln (#) cot) `| Z) . x = f . x ) assume x in dom ((ln (#) cot) `| Z) ; ::_thesis: ((ln (#) cot) `| Z) . x = f . x then A8: x in Z by A3, FDIFF_1:def_7; then ((ln (#) cot) `| Z) . x = ((cot x) / x) - ((ln . x) / ((sin . x) ^2)) by A1, FDIFF_8:33 .= ((cot . x) / x) - ((ln . x) / ((sin . x) ^2)) by A1, A8, FDIFF_8:2, SIN_COS9:16 .= f . x by A5, A8 ; hence ((ln (#) cot) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln (#) cot) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (ln (#) cot) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((ln (#) cot) . (upper_bound A)) - ((ln (#) cot) . (lower_bound A)) by A1, A2, FDIFF_8:33, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:19 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (id Z)) + (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) arctan) . (upper_bound A)) - ((ln (#) arctan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (id Z)) + (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) arctan) . (upper_bound A)) - ((ln (#) arctan) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (id Z)) + (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) arctan) . (upper_bound A)) - ((ln (#) arctan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (id Z)) + (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous implies integral (f,A) = ((ln (#) arctan) . (upper_bound A)) - ((ln (#) arctan) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (id Z)) + (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln (#) arctan) . (upper_bound A)) - ((ln (#) arctan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom (arctan / (id Z))) /\ (dom (ln / (f1 + (#Z 2)))) by A1, VALUED_1:def_1; then A3: ( Z c= dom (arctan / (id Z)) & Z c= dom (ln / (f1 + (#Z 2))) ) by XBOOLE_1:18; then Z c= (dom arctan) /\ ((dom (id Z)) \ ((id Z) " {0})) by RFUNCT_1:def_1; then A4: Z c= dom arctan by XBOOLE_1:18; Z c= (dom ln) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by A3, RFUNCT_1:def_1; then A5: ( Z c= dom ln & Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) ) by XBOOLE_1:18; then Z c= (dom arctan) /\ (dom ln) by A4, XBOOLE_1:19; then A6: Z c= dom (ln (#) arctan) by VALUED_1:def_4; then A7: ln (#) arctan is_differentiable_on Z by A1, SIN_COS9:127; A8: Z c= dom ((f1 + (#Z 2)) ^) by A5, RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A9: Z c= dom (f1 + (#Z 2)) by A8, XBOOLE_1:1; A10: for x being Real st x in Z holds f . x = ((arctan . x) / x) + ((ln . x) / (1 + (x ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = ((arctan . x) / x) + ((ln . x) / (1 + (x ^2))) ) assume A11: x in Z ; ::_thesis: f . x = ((arctan . x) / x) + ((ln . x) / (1 + (x ^2))) then ((arctan / (id Z)) + (ln / (f1 + (#Z 2)))) . x = ((arctan / (id Z)) . x) + ((ln / (f1 + (#Z 2))) . x) by A1, VALUED_1:def_1 .= ((arctan . x) * (((id Z) . x) ")) + ((ln / (f1 + (#Z 2))) . x) by A3, A11, RFUNCT_1:def_1 .= ((arctan . x) * (((id Z) . x) ")) + ((ln . x) * (((f1 + (#Z 2)) . x) ")) by A3, A11, RFUNCT_1:def_1 .= ((arctan . x) / x) + ((ln . x) / ((f1 + (#Z 2)) . x)) by A11, FUNCT_1:18 .= ((arctan . x) / x) + ((ln . x) / ((f1 . x) + ((#Z 2) . x))) by A9, A11, VALUED_1:def_1 .= ((arctan . x) / x) + ((ln . x) / (1 + ((#Z 2) . x))) by A1, A11 .= ((arctan . x) / x) + ((ln . x) / (1 + (x #Z 2))) by TAYLOR_1:def_1 .= ((arctan . x) / x) + ((ln . x) / (1 + (x ^2))) by FDIFF_7:1 ; hence f . x = ((arctan . x) / x) + ((ln . x) / (1 + (x ^2))) by A1; ::_thesis: verum end; A12: for x being Real st x in dom ((ln (#) arctan) `| Z) holds ((ln (#) arctan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln (#) arctan) `| Z) implies ((ln (#) arctan) `| Z) . x = f . x ) assume x in dom ((ln (#) arctan) `| Z) ; ::_thesis: ((ln (#) arctan) `| Z) . x = f . x then A13: x in Z by A7, FDIFF_1:def_7; then ((ln (#) arctan) `| Z) . x = ((arctan . x) / x) + ((ln . x) / (1 + (x ^2))) by A1, A6, SIN_COS9:127 .= f . x by A13, A10 ; hence ((ln (#) arctan) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln (#) arctan) `| Z) = dom f by A1, A7, FDIFF_1:def_7; then (ln (#) arctan) `| Z = f by A12, PARTFUN1:5; hence integral (f,A) = ((ln (#) arctan) . (upper_bound A)) - ((ln (#) arctan) . (lower_bound A)) by A1, A2, A6, INTEGRA5:13, SIN_COS9:127; ::_thesis: verum end; theorem :: INTEGR13:20 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (id Z)) - (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) arccot) . (upper_bound A)) - ((ln (#) arccot) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (id Z)) - (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) arccot) . (upper_bound A)) - ((ln (#) arccot) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (id Z)) - (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((ln (#) arccot) . (upper_bound A)) - ((ln (#) arccot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (id Z)) - (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous implies integral (f,A) = ((ln (#) arccot) . (upper_bound A)) - ((ln (#) arccot) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (id Z)) - (ln / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln (#) arccot) . (upper_bound A)) - ((ln (#) arccot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom (arccot / (id Z))) /\ (dom (ln / (f1 + (#Z 2)))) by A1, VALUED_1:12; then A3: ( Z c= dom (arccot / (id Z)) & Z c= dom (ln / (f1 + (#Z 2))) ) by XBOOLE_1:18; then Z c= (dom arccot) /\ ((dom (id Z)) \ ((id Z) " {0})) by RFUNCT_1:def_1; then A4: Z c= dom arccot by XBOOLE_1:18; Z c= (dom ln) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by A3, RFUNCT_1:def_1; then A5: ( Z c= dom ln & Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) ) by XBOOLE_1:18; then Z c= (dom arccot) /\ (dom ln) by A4, XBOOLE_1:19; then A6: Z c= dom (ln (#) arccot) by VALUED_1:def_4; then A7: ln (#) arccot is_differentiable_on Z by A1, SIN_COS9:128; A8: Z c= dom ((f1 + (#Z 2)) ^) by A5, RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A9: Z c= dom (f1 + (#Z 2)) by A8, XBOOLE_1:1; A10: for x being Real st x in Z holds f . x = ((arccot . x) / x) - ((ln . x) / (1 + (x ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = ((arccot . x) / x) - ((ln . x) / (1 + (x ^2))) ) assume A11: x in Z ; ::_thesis: f . x = ((arccot . x) / x) - ((ln . x) / (1 + (x ^2))) then ((arccot / (id Z)) - (ln / (f1 + (#Z 2)))) . x = ((arccot / (id Z)) . x) - ((ln / (f1 + (#Z 2))) . x) by A1, VALUED_1:13 .= ((arccot . x) * (((id Z) . x) ")) - ((ln / (f1 + (#Z 2))) . x) by A3, A11, RFUNCT_1:def_1 .= ((arccot . x) * (((id Z) . x) ")) - ((ln . x) * (((f1 + (#Z 2)) . x) ")) by A3, A11, RFUNCT_1:def_1 .= ((arccot . x) / x) - ((ln . x) / ((f1 + (#Z 2)) . x)) by A11, FUNCT_1:18 .= ((arccot . x) / x) - ((ln . x) / ((f1 . x) + ((#Z 2) . x))) by A9, A11, VALUED_1:def_1 .= ((arccot . x) / x) - ((ln . x) / (1 + ((#Z 2) . x))) by A1, A11 .= ((arccot . x) / x) - ((ln . x) / (1 + (x #Z 2))) by TAYLOR_1:def_1 .= ((arccot . x) / x) - ((ln . x) / (1 + (x ^2))) by FDIFF_7:1 ; hence f . x = ((arccot . x) / x) - ((ln . x) / (1 + (x ^2))) by A1; ::_thesis: verum end; A12: for x being Real st x in dom ((ln (#) arccot) `| Z) holds ((ln (#) arccot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln (#) arccot) `| Z) implies ((ln (#) arccot) `| Z) . x = f . x ) assume x in dom ((ln (#) arccot) `| Z) ; ::_thesis: ((ln (#) arccot) `| Z) . x = f . x then A13: x in Z by A7, FDIFF_1:def_7; then ((ln (#) arccot) `| Z) . x = ((arccot . x) / x) - ((ln . x) / (1 + (x ^2))) by A1, A6, SIN_COS9:128 .= f . x by A10, A13 ; hence ((ln (#) arccot) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln (#) arccot) `| Z) = dom f by A1, A7, FDIFF_1:def_7; then (ln (#) arccot) `| Z = f by A12, PARTFUN1:5; hence integral (f,A) = ((ln (#) arccot) . (upper_bound A)) - ((ln (#) arccot) . (lower_bound A)) by A1, A2, A6, INTEGRA5:13, SIN_COS9:128; ::_thesis: verum end; theorem :: INTEGR13:21 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (exp_R * tan) / (cos ^2) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * tan) . (upper_bound A)) - ((exp_R * tan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (exp_R * tan) / (cos ^2) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * tan) . (upper_bound A)) - ((exp_R * tan) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = (exp_R * tan) / (cos ^2) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * tan) . (upper_bound A)) - ((exp_R * tan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = (exp_R * tan) / (cos ^2) & Z = dom f & f | A is continuous implies integral (f,A) = ((exp_R * tan) . (upper_bound A)) - ((exp_R * tan) . (lower_bound A)) ) assume A1: ( A c= Z & f = (exp_R * tan) / (cos ^2) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((exp_R * tan) . (upper_bound A)) - ((exp_R * tan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom (exp_R * tan)) /\ ((dom (cos ^2)) \ ((cos ^2) " {0})) by A1, RFUNCT_1:def_1; then A3: Z c= dom (exp_R * tan) by XBOOLE_1:18; then A4: exp_R * tan is_differentiable_on Z by FDIFF_8:16; A5: for x being Real st x in Z holds f . x = (exp_R . (tan . x)) / ((cos . x) ^2) proof let x be Real; ::_thesis: ( x in Z implies f . x = (exp_R . (tan . x)) / ((cos . x) ^2) ) assume A6: x in Z ; ::_thesis: f . x = (exp_R . (tan . x)) / ((cos . x) ^2) then ((exp_R * tan) / (cos ^2)) . x = ((exp_R * tan) . x) / ((cos ^2) . x) by A1, RFUNCT_1:def_1 .= (exp_R . (tan . x)) / ((cos ^2) . x) by A3, A6, FUNCT_1:12 .= (exp_R . (tan . x)) / ((cos . x) ^2) by VALUED_1:11 ; hence f . x = (exp_R . (tan . x)) / ((cos . x) ^2) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((exp_R * tan) `| Z) holds ((exp_R * tan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((exp_R * tan) `| Z) implies ((exp_R * tan) `| Z) . x = f . x ) assume x in dom ((exp_R * tan) `| Z) ; ::_thesis: ((exp_R * tan) `| Z) . x = f . x then A8: x in Z by A4, FDIFF_1:def_7; then ((exp_R * tan) `| Z) . x = (exp_R . (tan . x)) / ((cos . x) ^2) by A3, FDIFF_8:16 .= f . x by A5, A8 ; hence ((exp_R * tan) `| Z) . x = f . x ; ::_thesis: verum end; dom ((exp_R * tan) `| Z) = dom f by A1, A4, FDIFF_1:def_7; then (exp_R * tan) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((exp_R * tan) . (upper_bound A)) - ((exp_R * tan) . (lower_bound A)) by A1, A2, A3, FDIFF_8:16, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:22 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = - ((exp_R * cot) / (sin ^2)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * cot) . (upper_bound A)) - ((exp_R * cot) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = - ((exp_R * cot) / (sin ^2)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * cot) . (upper_bound A)) - ((exp_R * cot) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = - ((exp_R * cot) / (sin ^2)) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * cot) . (upper_bound A)) - ((exp_R * cot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = - ((exp_R * cot) / (sin ^2)) & Z = dom f & f | A is continuous implies integral (f,A) = ((exp_R * cot) . (upper_bound A)) - ((exp_R * cot) . (lower_bound A)) ) assume A1: ( A c= Z & f = - ((exp_R * cot) / (sin ^2)) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((exp_R * cot) . (upper_bound A)) - ((exp_R * cot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: Z = dom ((exp_R * cot) / (sin ^2)) by A1, VALUED_1:8; then Z c= (dom (exp_R * cot)) /\ ((dom (sin ^2)) \ ((sin ^2) " {0})) by RFUNCT_1:def_1; then A4: Z c= dom (exp_R * cot) by XBOOLE_1:18; then A5: exp_R * cot is_differentiable_on Z by FDIFF_8:17; A6: for x being Real st x in Z holds f . x = - ((exp_R . (cot . x)) / ((sin . x) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = - ((exp_R . (cot . x)) / ((sin . x) ^2)) ) assume A7: x in Z ; ::_thesis: f . x = - ((exp_R . (cot . x)) / ((sin . x) ^2)) (- ((exp_R * cot) / (sin ^2))) . x = - (((exp_R * cot) / (sin ^2)) . x) by VALUED_1:8 .= - (((exp_R * cot) . x) / ((sin ^2) . x)) by A7, A3, RFUNCT_1:def_1 .= - ((exp_R . (cot . x)) / ((sin ^2) . x)) by A4, A7, FUNCT_1:12 .= - ((exp_R . (cot . x)) / ((sin . x) ^2)) by VALUED_1:11 ; hence f . x = - ((exp_R . (cot . x)) / ((sin . x) ^2)) by A1; ::_thesis: verum end; A8: for x being Real st x in dom ((exp_R * cot) `| Z) holds ((exp_R * cot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((exp_R * cot) `| Z) implies ((exp_R * cot) `| Z) . x = f . x ) assume x in dom ((exp_R * cot) `| Z) ; ::_thesis: ((exp_R * cot) `| Z) . x = f . x then A9: x in Z by A5, FDIFF_1:def_7; then ((exp_R * cot) `| Z) . x = - ((exp_R . (cot . x)) / ((sin . x) ^2)) by A4, FDIFF_8:17 .= f . x by A6, A9 ; hence ((exp_R * cot) `| Z) . x = f . x ; ::_thesis: verum end; dom ((exp_R * cot) `| Z) = dom f by A1, A5, FDIFF_1:def_7; then (exp_R * cot) `| Z = f by A8, PARTFUN1:5; hence integral (f,A) = ((exp_R * cot) . (upper_bound A)) - ((exp_R * cot) . (lower_bound A)) by A1, A2, A4, FDIFF_8:17, INTEGRA5:13; ::_thesis: verum end; theorem Th23: :: INTEGR13:23 for Z being open Subset of REAL st Z c= dom (exp_R * cot) holds ( - (exp_R * cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom (exp_R * cot) implies ( - (exp_R * cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) ) ) ) assume A1: Z c= dom (exp_R * cot) ; ::_thesis: ( - (exp_R * cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) ) ) then A2: Z c= dom (- (exp_R * cot)) by VALUED_1:8; A3: for x being Real st x in Z holds sin . x <> 0 proof let x be Real; ::_thesis: ( x in Z implies sin . x <> 0 ) assume x in Z ; ::_thesis: sin . x <> 0 then x in dom (cos / sin) by A1, FUNCT_1:11; hence sin . x <> 0 by FDIFF_8:2; ::_thesis: verum end; A4: exp_R * cot is_differentiable_on Z by A1, FDIFF_8:17; then A5: (- 1) (#) (exp_R * cot) is_differentiable_on Z by A2, FDIFF_1:20; for x being Real st x in Z holds ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) proof let x be Real; ::_thesis: ( x in Z implies ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) ) assume A6: x in Z ; ::_thesis: ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) then A7: sin . x <> 0 by A3; then A8: cot is_differentiable_in x by FDIFF_7:47; A9: exp_R is_differentiable_in cot . x by SIN_COS:65; A10: exp_R * cot is_differentiable_in x by A4, A6, FDIFF_1:9; ((- (exp_R * cot)) `| Z) . x = diff ((- (exp_R * cot)),x) by A5, A6, FDIFF_1:def_7 .= (- 1) * (diff ((exp_R * cot),x)) by A10, FDIFF_1:15 .= (- 1) * ((diff (exp_R,(cot . x))) * (diff (cot,x))) by A8, A9, FDIFF_2:13 .= (- 1) * ((diff (exp_R,(cot . x))) * (- (1 / ((sin . x) ^2)))) by A7, FDIFF_7:47 .= (- 1) * ((exp_R . (cot . x)) * (- (1 / ((sin . x) ^2)))) by SIN_COS:65 .= (exp_R . (cot . x)) / ((sin . x) ^2) ; hence ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) ; ::_thesis: verum end; hence ( - (exp_R * cot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) ) ) by A2, A4, Lm3, FDIFF_1:20; ::_thesis: verum end; theorem :: INTEGR13:24 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (exp_R * cot) / (sin ^2) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (exp_R * cot)) . (upper_bound A)) - ((- (exp_R * cot)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = (exp_R * cot) / (sin ^2) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (exp_R * cot)) . (upper_bound A)) - ((- (exp_R * cot)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = (exp_R * cot) / (sin ^2) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (exp_R * cot)) . (upper_bound A)) - ((- (exp_R * cot)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = (exp_R * cot) / (sin ^2) & Z = dom f & f | A is continuous implies integral (f,A) = ((- (exp_R * cot)) . (upper_bound A)) - ((- (exp_R * cot)) . (lower_bound A)) ) assume A1: ( A c= Z & f = (exp_R * cot) / (sin ^2) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- (exp_R * cot)) . (upper_bound A)) - ((- (exp_R * cot)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom (exp_R * cot)) /\ ((dom (sin ^2)) \ ((sin ^2) " {0})) by A1, RFUNCT_1:def_1; then A3: Z c= dom (exp_R * cot) by XBOOLE_1:18; then A4: - (exp_R * cot) is_differentiable_on Z by Th23; A5: for x being Real st x in Z holds f . x = (exp_R . (cot . x)) / ((sin . x) ^2) proof let x be Real; ::_thesis: ( x in Z implies f . x = (exp_R . (cot . x)) / ((sin . x) ^2) ) assume A6: x in Z ; ::_thesis: f . x = (exp_R . (cot . x)) / ((sin . x) ^2) then ((exp_R * cot) / (sin ^2)) . x = ((exp_R * cot) . x) / ((sin ^2) . x) by A1, RFUNCT_1:def_1 .= (exp_R . (cot . x)) / ((sin ^2) . x) by A3, A6, FUNCT_1:12 .= (exp_R . (cot . x)) / ((sin . x) ^2) by VALUED_1:11 ; hence f . x = (exp_R . (cot . x)) / ((sin . x) ^2) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((- (exp_R * cot)) `| Z) holds ((- (exp_R * cot)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- (exp_R * cot)) `| Z) implies ((- (exp_R * cot)) `| Z) . x = f . x ) assume x in dom ((- (exp_R * cot)) `| Z) ; ::_thesis: ((- (exp_R * cot)) `| Z) . x = f . x then A8: x in Z by A4, FDIFF_1:def_7; then ((- (exp_R * cot)) `| Z) . x = (exp_R . (cot . x)) / ((sin . x) ^2) by Th23, A3 .= f . x by A5, A8 ; hence ((- (exp_R * cot)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- (exp_R * cot)) `| Z) = dom f by A1, A4, FDIFF_1:def_7; then (- (exp_R * cot)) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((- (exp_R * cot)) . (upper_bound A)) - ((- (exp_R * cot)) . (lower_bound A)) by A1, A2, Th23, A3, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:25 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = ((id Z) (#) ((cos * ln) ^2)) ^ & Z c= dom (tan * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * ln) . (upper_bound A)) - ((tan * ln) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = ((id Z) (#) ((cos * ln) ^2)) ^ & Z c= dom (tan * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * ln) . (upper_bound A)) - ((tan * ln) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = ((id Z) (#) ((cos * ln) ^2)) ^ & Z c= dom (tan * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * ln) . (upper_bound A)) - ((tan * ln) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = ((id Z) (#) ((cos * ln) ^2)) ^ & Z c= dom (tan * ln) & Z = dom f & f | A is continuous implies integral (f,A) = ((tan * ln) . (upper_bound A)) - ((tan * ln) . (lower_bound A)) ) assume A1: ( A c= Z & f = ((id Z) (#) ((cos * ln) ^2)) ^ & Z c= dom (tan * ln) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((tan * ln) . (upper_bound A)) - ((tan * ln) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: tan * ln is_differentiable_on Z by A1, FDIFF_8:14; Z c= dom ((id Z) (#) ((cos * ln) ^2)) by A1, RFUNCT_1:1; then Z c= (dom (id Z)) /\ (dom ((cos * ln) ^2)) by VALUED_1:def_4; then Z c= dom ((cos * ln) ^2) by XBOOLE_1:18; then A4: Z c= dom (cos * ln) by VALUED_1:11; A5: for x being Real st x in Z holds f . x = 1 / (x * ((cos . (ln . x)) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = 1 / (x * ((cos . (ln . x)) ^2)) ) assume A6: x in Z ; ::_thesis: f . x = 1 / (x * ((cos . (ln . x)) ^2)) then (((id Z) (#) ((cos * ln) ^2)) ^) . x = 1 / (((id Z) (#) ((cos * ln) ^2)) . x) by A1, RFUNCT_1:def_2 .= 1 / (((id Z) . x) * (((cos * ln) ^2) . x)) by VALUED_1:5 .= 1 / (x * (((cos * ln) ^2) . x)) by A6, FUNCT_1:18 .= 1 / (x * (((cos * ln) . x) ^2)) by VALUED_1:11 .= 1 / (x * ((cos . (ln . x)) ^2)) by A4, A6, FUNCT_1:12 ; hence f . x = 1 / (x * ((cos . (ln . x)) ^2)) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((tan * ln) `| Z) holds ((tan * ln) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((tan * ln) `| Z) implies ((tan * ln) `| Z) . x = f . x ) assume x in dom ((tan * ln) `| Z) ; ::_thesis: ((tan * ln) `| Z) . x = f . x then A8: x in Z by A3, FDIFF_1:def_7; then ((tan * ln) `| Z) . x = 1 / (x * ((cos . (ln . x)) ^2)) by A1, FDIFF_8:14 .= f . x by A5, A8 ; hence ((tan * ln) `| Z) . x = f . x ; ::_thesis: verum end; dom ((tan * ln) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (tan * ln) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((tan * ln) . (upper_bound A)) - ((tan * ln) . (lower_bound A)) by A1, A2, FDIFF_8:14, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:26 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = - (((id Z) (#) ((sin * ln) ^2)) ^) & Z c= dom (cot * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * ln) . (upper_bound A)) - ((cot * ln) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = - (((id Z) (#) ((sin * ln) ^2)) ^) & Z c= dom (cot * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * ln) . (upper_bound A)) - ((cot * ln) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = - (((id Z) (#) ((sin * ln) ^2)) ^) & Z c= dom (cot * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * ln) . (upper_bound A)) - ((cot * ln) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = - (((id Z) (#) ((sin * ln) ^2)) ^) & Z c= dom (cot * ln) & Z = dom f & f | A is continuous implies integral (f,A) = ((cot * ln) . (upper_bound A)) - ((cot * ln) . (lower_bound A)) ) assume A1: ( A c= Z & f = - (((id Z) (#) ((sin * ln) ^2)) ^) & Z c= dom (cot * ln) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((cot * ln) . (upper_bound A)) - ((cot * ln) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: cot * ln is_differentiable_on Z by A1, FDIFF_8:15; A4: Z = dom (((id Z) (#) ((sin * ln) ^2)) ^) by A1, VALUED_1:8; then Z c= dom ((id Z) (#) ((sin * ln) ^2)) by RFUNCT_1:1; then Z c= (dom (id Z)) /\ (dom ((sin * ln) ^2)) by VALUED_1:def_4; then Z c= dom ((sin * ln) ^2) by XBOOLE_1:18; then A5: Z c= dom (sin * ln) by VALUED_1:11; A6: for x being Real st x in Z holds f . x = - (1 / (x * ((sin . (ln . x)) ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = - (1 / (x * ((sin . (ln . x)) ^2))) ) assume A7: x in Z ; ::_thesis: f . x = - (1 / (x * ((sin . (ln . x)) ^2))) (- (((id Z) (#) ((sin * ln) ^2)) ^)) . x = - ((((id Z) (#) ((sin * ln) ^2)) ^) . x) by VALUED_1:8 .= - (1 / (((id Z) (#) ((sin * ln) ^2)) . x)) by A4, A7, RFUNCT_1:def_2 .= - (1 / (((id Z) . x) * (((sin * ln) ^2) . x))) by VALUED_1:5 .= - (1 / (x * (((sin * ln) ^2) . x))) by A7, FUNCT_1:18 .= - (1 / (x * (((sin * ln) . x) ^2))) by VALUED_1:11 .= - (1 / (x * ((sin . (ln . x)) ^2))) by A5, A7, FUNCT_1:12 ; hence f . x = - (1 / (x * ((sin . (ln . x)) ^2))) by A1; ::_thesis: verum end; A8: for x being Real st x in dom ((cot * ln) `| Z) holds ((cot * ln) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((cot * ln) `| Z) implies ((cot * ln) `| Z) . x = f . x ) assume x in dom ((cot * ln) `| Z) ; ::_thesis: ((cot * ln) `| Z) . x = f . x then A9: x in Z by A3, FDIFF_1:def_7; then ((cot * ln) `| Z) . x = - (1 / (x * ((sin . (ln . x)) ^2))) by A1, FDIFF_8:15 .= f . x by A6, A9 ; hence ((cot * ln) `| Z) . x = f . x ; ::_thesis: verum end; dom ((cot * ln) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (cot * ln) `| Z = f by A8, PARTFUN1:5; hence integral (f,A) = ((cot * ln) . (upper_bound A)) - ((cot * ln) . (lower_bound A)) by A1, A2, FDIFF_8:15, INTEGRA5:13; ::_thesis: verum end; theorem Th27: :: INTEGR13:27 for Z being open Subset of REAL st Z c= dom (cot * ln) holds ( - (cot * ln) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom (cot * ln) implies ( - (cot * ln) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) ) ) ) assume A1: Z c= dom (cot * ln) ; ::_thesis: ( - (cot * ln) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) ) ) then A2: Z c= dom (- (cot * ln)) by VALUED_1:8; dom (cot * ln) c= dom ln by RELAT_1:25; then A3: Z c= dom ln by A1, XBOOLE_1:1; A4: for x being Real st x in Z holds x > 0 proof let x be Real; ::_thesis: ( x in Z implies x > 0 ) assume x in Z ; ::_thesis: x > 0 then x in right_open_halfline 0 by A3, TAYLOR_1:18; then ex g being Real st ( x = g & 0 < g ) by Lm2; hence x > 0 ; ::_thesis: verum end; A5: for x being Real st x in Z holds sin . (ln . x) <> 0 proof let x be Real; ::_thesis: ( x in Z implies sin . (ln . x) <> 0 ) assume x in Z ; ::_thesis: sin . (ln . x) <> 0 then ln . x in dom (cos / sin) by A1, FUNCT_1:11; hence sin . (ln . x) <> 0 by FDIFF_8:2; ::_thesis: verum end; A6: for x being Real st x in Z holds diff (ln,x) = 1 / x proof let x be Real; ::_thesis: ( x in Z implies diff (ln,x) = 1 / x ) assume x in Z ; ::_thesis: diff (ln,x) = 1 / x then x > 0 by A4; then x in right_open_halfline 0 by Lm2; hence diff (ln,x) = 1 / x by TAYLOR_1:18; ::_thesis: verum end; A7: cot * ln is_differentiable_on Z by A1, FDIFF_8:15; then A8: (- 1) (#) (cot * ln) is_differentiable_on Z by A2, FDIFF_1:20; for x being Real st x in Z holds ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) proof let x be Real; ::_thesis: ( x in Z implies ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) ) assume A9: x in Z ; ::_thesis: ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) then A10: ln is_differentiable_in x by A4, TAYLOR_1:18; A11: ( x > 0 & sin . (ln . x) <> 0 ) by A4, A5, A9; then A12: cot is_differentiable_in ln . x by FDIFF_7:47; A13: cot * ln is_differentiable_in x by A7, A9, FDIFF_1:9; ((- (cot * ln)) `| Z) . x = diff ((- (cot * ln)),x) by A8, A9, FDIFF_1:def_7 .= (- 1) * (diff ((cot * ln),x)) by A13, FDIFF_1:15 .= (- 1) * ((diff (cot,(ln . x))) * (diff (ln,x))) by A10, A12, FDIFF_2:13 .= (- 1) * ((- (1 / ((sin . (ln . x)) ^2))) * (diff (ln,x))) by A11, FDIFF_7:47 .= (- 1) * (- ((diff (ln,x)) / ((sin . (ln . x)) ^2))) .= (- 1) * (- ((1 / x) / ((sin . (ln . x)) ^2))) by A6, A9 .= 1 / (x * ((sin . (ln . x)) ^2)) by XCMPLX_1:78 ; hence ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) ; ::_thesis: verum end; hence ( - (cot * ln) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) ) ) by A2, A7, Lm3, FDIFF_1:20; ::_thesis: verum end; theorem :: INTEGR13:28 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = ((id Z) (#) ((sin * ln) ^2)) ^ & Z c= dom (cot * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (cot * ln)) . (upper_bound A)) - ((- (cot * ln)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = ((id Z) (#) ((sin * ln) ^2)) ^ & Z c= dom (cot * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (cot * ln)) . (upper_bound A)) - ((- (cot * ln)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = ((id Z) (#) ((sin * ln) ^2)) ^ & Z c= dom (cot * ln) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (cot * ln)) . (upper_bound A)) - ((- (cot * ln)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = ((id Z) (#) ((sin * ln) ^2)) ^ & Z c= dom (cot * ln) & Z = dom f & f | A is continuous implies integral (f,A) = ((- (cot * ln)) . (upper_bound A)) - ((- (cot * ln)) . (lower_bound A)) ) assume A1: ( A c= Z & f = ((id Z) (#) ((sin * ln) ^2)) ^ & Z c= dom (cot * ln) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- (cot * ln)) . (upper_bound A)) - ((- (cot * ln)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: - (cot * ln) is_differentiable_on Z by A1, Th27; Z c= dom ((id Z) (#) ((sin * ln) ^2)) by A1, RFUNCT_1:1; then Z c= (dom (id Z)) /\ (dom ((sin * ln) ^2)) by VALUED_1:def_4; then Z c= dom ((sin * ln) ^2) by XBOOLE_1:18; then A4: Z c= dom (sin * ln) by VALUED_1:11; A5: for x being Real st x in Z holds f . x = 1 / (x * ((sin . (ln . x)) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = 1 / (x * ((sin . (ln . x)) ^2)) ) assume A6: x in Z ; ::_thesis: f . x = 1 / (x * ((sin . (ln . x)) ^2)) then (((id Z) (#) ((sin * ln) ^2)) ^) . x = 1 / (((id Z) (#) ((sin * ln) ^2)) . x) by A1, RFUNCT_1:def_2 .= 1 / (((id Z) . x) * (((sin * ln) ^2) . x)) by VALUED_1:5 .= 1 / (x * (((sin * ln) ^2) . x)) by A6, FUNCT_1:18 .= 1 / (x * (((sin * ln) . x) ^2)) by VALUED_1:11 .= 1 / (x * ((sin . (ln . x)) ^2)) by A4, A6, FUNCT_1:12 ; hence f . x = 1 / (x * ((sin . (ln . x)) ^2)) by A1; ::_thesis: verum end; A7: for x being Real st x in dom ((- (cot * ln)) `| Z) holds ((- (cot * ln)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- (cot * ln)) `| Z) implies ((- (cot * ln)) `| Z) . x = f . x ) assume x in dom ((- (cot * ln)) `| Z) ; ::_thesis: ((- (cot * ln)) `| Z) . x = f . x then A8: x in Z by A3, FDIFF_1:def_7; then ((- (cot * ln)) `| Z) . x = 1 / (x * ((sin . (ln . x)) ^2)) by A1, Th27 .= f . x by A5, A8 ; hence ((- (cot * ln)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- (cot * ln)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (- (cot * ln)) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((- (cot * ln)) . (upper_bound A)) - ((- (cot * ln)) . (lower_bound A)) by A1, A2, Th27, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:29 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = exp_R / ((cos * exp_R) ^2) & Z c= dom (tan * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * exp_R) . (upper_bound A)) - ((tan * exp_R) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = exp_R / ((cos * exp_R) ^2) & Z c= dom (tan * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * exp_R) . (upper_bound A)) - ((tan * exp_R) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = exp_R / ((cos * exp_R) ^2) & Z c= dom (tan * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * exp_R) . (upper_bound A)) - ((tan * exp_R) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = exp_R / ((cos * exp_R) ^2) & Z c= dom (tan * exp_R) & Z = dom f & f | A is continuous implies integral (f,A) = ((tan * exp_R) . (upper_bound A)) - ((tan * exp_R) . (lower_bound A)) ) assume A1: ( A c= Z & f = exp_R / ((cos * exp_R) ^2) & Z c= dom (tan * exp_R) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((tan * exp_R) . (upper_bound A)) - ((tan * exp_R) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: tan * exp_R is_differentiable_on Z by A1, FDIFF_8:12; Z = (dom exp_R) /\ ((dom ((cos * exp_R) ^2)) \ (((cos * exp_R) ^2) " {0})) by A1, RFUNCT_1:def_1; then Z c= (dom ((cos * exp_R) ^2)) \ (((cos * exp_R) ^2) " {0}) by XBOOLE_1:18; then A4: Z c= dom (((cos * exp_R) ^2) ^) by RFUNCT_1:def_2; dom (((cos * exp_R) ^2) ^) c= dom ((cos * exp_R) ^2) by RFUNCT_1:1; then Z c= dom ((cos * exp_R) ^2) by A4, XBOOLE_1:1; then A5: Z c= dom (cos * exp_R) by VALUED_1:11; A6: for x being Real st x in Z holds f . x = (exp_R . x) / ((cos . (exp_R . x)) ^2) proof let x be Real; ::_thesis: ( x in Z implies f . x = (exp_R . x) / ((cos . (exp_R . x)) ^2) ) assume A7: x in Z ; ::_thesis: f . x = (exp_R . x) / ((cos . (exp_R . x)) ^2) then (exp_R / ((cos * exp_R) ^2)) . x = (exp_R . x) / (((cos * exp_R) ^2) . x) by A1, RFUNCT_1:def_1 .= (exp_R . x) / (((cos * exp_R) . x) ^2) by VALUED_1:11 .= (exp_R . x) / ((cos . (exp_R . x)) ^2) by A5, A7, FUNCT_1:12 ; hence f . x = (exp_R . x) / ((cos . (exp_R . x)) ^2) by A1; ::_thesis: verum end; A8: for x being Real st x in dom ((tan * exp_R) `| Z) holds ((tan * exp_R) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((tan * exp_R) `| Z) implies ((tan * exp_R) `| Z) . x = f . x ) assume x in dom ((tan * exp_R) `| Z) ; ::_thesis: ((tan * exp_R) `| Z) . x = f . x then A9: x in Z by A3, FDIFF_1:def_7; then ((tan * exp_R) `| Z) . x = (exp_R . x) / ((cos . (exp_R . x)) ^2) by A1, FDIFF_8:12 .= f . x by A6, A9 ; hence ((tan * exp_R) `| Z) . x = f . x ; ::_thesis: verum end; dom ((tan * exp_R) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (tan * exp_R) `| Z = f by A8, PARTFUN1:5; hence integral (f,A) = ((tan * exp_R) . (upper_bound A)) - ((tan * exp_R) . (lower_bound A)) by A1, A2, FDIFF_8:12, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:30 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = - (exp_R / ((sin * exp_R) ^2)) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * exp_R) . (upper_bound A)) - ((cot * exp_R) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = - (exp_R / ((sin * exp_R) ^2)) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * exp_R) . (upper_bound A)) - ((cot * exp_R) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = - (exp_R / ((sin * exp_R) ^2)) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * exp_R) . (upper_bound A)) - ((cot * exp_R) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = - (exp_R / ((sin * exp_R) ^2)) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous implies integral (f,A) = ((cot * exp_R) . (upper_bound A)) - ((cot * exp_R) . (lower_bound A)) ) assume A1: ( A c= Z & f = - (exp_R / ((sin * exp_R) ^2)) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((cot * exp_R) . (upper_bound A)) - ((cot * exp_R) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: cot * exp_R is_differentiable_on Z by A1, FDIFF_8:13; A4: Z = dom (exp_R / ((sin * exp_R) ^2)) by A1, VALUED_1:8; then Z c= (dom exp_R) /\ ((dom ((sin * exp_R) ^2)) \ (((sin * exp_R) ^2) " {0})) by RFUNCT_1:def_1; then Z c= (dom ((sin * exp_R) ^2)) \ (((sin * exp_R) ^2) " {0}) by XBOOLE_1:18; then A5: Z c= dom (((sin * exp_R) ^2) ^) by RFUNCT_1:def_2; dom (((sin * exp_R) ^2) ^) c= dom ((sin * exp_R) ^2) by RFUNCT_1:1; then Z c= dom ((sin * exp_R) ^2) by A5, XBOOLE_1:1; then A6: Z c= dom (sin * exp_R) by VALUED_1:11; A7: for x being Real st x in Z holds f . x = - ((exp_R . x) / ((sin . (exp_R . x)) ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = - ((exp_R . x) / ((sin . (exp_R . x)) ^2)) ) assume A8: x in Z ; ::_thesis: f . x = - ((exp_R . x) / ((sin . (exp_R . x)) ^2)) (- (exp_R / ((sin * exp_R) ^2))) . x = - ((exp_R / ((sin * exp_R) ^2)) . x) by VALUED_1:8 .= - ((exp_R . x) / (((sin * exp_R) ^2) . x)) by A4, A8, RFUNCT_1:def_1 .= - ((exp_R . x) / (((sin * exp_R) . x) ^2)) by VALUED_1:11 .= - ((exp_R . x) / ((sin . (exp_R . x)) ^2)) by A6, A8, FUNCT_1:12 ; hence f . x = - ((exp_R . x) / ((sin . (exp_R . x)) ^2)) by A1; ::_thesis: verum end; A9: for x being Real st x in dom ((cot * exp_R) `| Z) holds ((cot * exp_R) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((cot * exp_R) `| Z) implies ((cot * exp_R) `| Z) . x = f . x ) assume x in dom ((cot * exp_R) `| Z) ; ::_thesis: ((cot * exp_R) `| Z) . x = f . x then A10: x in Z by A3, FDIFF_1:def_7; then ((cot * exp_R) `| Z) . x = - ((exp_R . x) / ((sin . (exp_R . x)) ^2)) by A1, FDIFF_8:13 .= f . x by A7, A10 ; hence ((cot * exp_R) `| Z) . x = f . x ; ::_thesis: verum end; dom ((cot * exp_R) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (cot * exp_R) `| Z = f by A9, PARTFUN1:5; hence integral (f,A) = ((cot * exp_R) . (upper_bound A)) - ((cot * exp_R) . (lower_bound A)) by A1, A2, FDIFF_8:13, INTEGRA5:13; ::_thesis: verum end; theorem Th31: :: INTEGR13:31 for Z being open Subset of REAL st Z c= dom (cot * exp_R) holds ( - (cot * exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom (cot * exp_R) implies ( - (cot * exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) ) ) ) assume A1: Z c= dom (cot * exp_R) ; ::_thesis: ( - (cot * exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) ) ) then A2: Z c= dom (- (cot * exp_R)) by VALUED_1:8; A3: cot * exp_R is_differentiable_on Z by A1, FDIFF_8:13; then A4: (- 1) (#) (cot * exp_R) is_differentiable_on Z by A2, FDIFF_1:20; A5: for x being Real st x in Z holds sin . (exp_R . x) <> 0 proof let x be Real; ::_thesis: ( x in Z implies sin . (exp_R . x) <> 0 ) assume x in Z ; ::_thesis: sin . (exp_R . x) <> 0 then exp_R . x in dom (cos / sin) by A1, FUNCT_1:11; hence sin . (exp_R . x) <> 0 by FDIFF_8:2; ::_thesis: verum end; for x being Real st x in Z holds ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) proof let x be Real; ::_thesis: ( x in Z implies ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) ) assume A6: x in Z ; ::_thesis: ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) A7: exp_R is_differentiable_in x by SIN_COS:65; A8: sin . (exp_R . x) <> 0 by A5, A6; then A9: cot is_differentiable_in exp_R . x by FDIFF_7:47; A10: cot * exp_R is_differentiable_in x by A3, A6, FDIFF_1:9; ((- (cot * exp_R)) `| Z) . x = diff ((- (cot * exp_R)),x) by A4, A6, FDIFF_1:def_7 .= (- 1) * (diff ((cot * exp_R),x)) by A10, FDIFF_1:15 .= (- 1) * ((diff (cot,(exp_R . x))) * (diff (exp_R,x))) by A7, A9, FDIFF_2:13 .= (- 1) * ((- (1 / ((sin . (exp_R . x)) ^2))) * (diff (exp_R,x))) by A8, FDIFF_7:47 .= (- 1) * (- ((diff (exp_R,x)) / ((sin . (exp_R . x)) ^2))) .= (exp_R . x) / ((sin . (exp_R . x)) ^2) by SIN_COS:65 ; hence ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) ; ::_thesis: verum end; hence ( - (cot * exp_R) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) ) ) by A4; ::_thesis: verum end; theorem :: INTEGR13:32 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = exp_R / ((sin * exp_R) ^2) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (cot * exp_R)) . (upper_bound A)) - ((- (cot * exp_R)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = exp_R / ((sin * exp_R) ^2) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (cot * exp_R)) . (upper_bound A)) - ((- (cot * exp_R)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = exp_R / ((sin * exp_R) ^2) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (cot * exp_R)) . (upper_bound A)) - ((- (cot * exp_R)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = exp_R / ((sin * exp_R) ^2) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous implies integral (f,A) = ((- (cot * exp_R)) . (upper_bound A)) - ((- (cot * exp_R)) . (lower_bound A)) ) assume A1: ( A c= Z & f = exp_R / ((sin * exp_R) ^2) & Z c= dom (cot * exp_R) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- (cot * exp_R)) . (upper_bound A)) - ((- (cot * exp_R)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: - (cot * exp_R) is_differentiable_on Z by A1, Th31; Z c= (dom exp_R) /\ ((dom ((sin * exp_R) ^2)) \ (((sin * exp_R) ^2) " {0})) by A1, RFUNCT_1:def_1; then Z c= (dom ((sin * exp_R) ^2)) \ (((sin * exp_R) ^2) " {0}) by XBOOLE_1:18; then A4: Z c= dom (((sin * exp_R) ^2) ^) by RFUNCT_1:def_2; dom (((sin * exp_R) ^2) ^) c= dom ((sin * exp_R) ^2) by RFUNCT_1:1; then Z c= dom ((sin * exp_R) ^2) by A4, XBOOLE_1:1; then A5: Z c= dom (sin * exp_R) by VALUED_1:11; A6: for x being Real st x in Z holds f . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) proof let x be Real; ::_thesis: ( x in Z implies f . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) ) assume A7: x in Z ; ::_thesis: f . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) then (exp_R / ((sin * exp_R) ^2)) . x = (exp_R . x) / (((sin * exp_R) ^2) . x) by A1, RFUNCT_1:def_1 .= (exp_R . x) / (((sin * exp_R) . x) ^2) by VALUED_1:11 .= (exp_R . x) / ((sin . (exp_R . x)) ^2) by A5, A7, FUNCT_1:12 ; hence f . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) by A1; ::_thesis: verum end; A8: for x being Real st x in dom ((- (cot * exp_R)) `| Z) holds ((- (cot * exp_R)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- (cot * exp_R)) `| Z) implies ((- (cot * exp_R)) `| Z) . x = f . x ) assume x in dom ((- (cot * exp_R)) `| Z) ; ::_thesis: ((- (cot * exp_R)) `| Z) . x = f . x then A9: x in Z by A3, FDIFF_1:def_7; then ((- (cot * exp_R)) `| Z) . x = (exp_R . x) / ((sin . (exp_R . x)) ^2) by A1, Th31 .= f . x by A6, A9 ; hence ((- (cot * exp_R)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- (cot * exp_R)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (- (cot * exp_R)) `| Z = f by A8, PARTFUN1:5; hence integral (f,A) = ((- (cot * exp_R)) . (upper_bound A)) - ((- (cot * exp_R)) . (lower_bound A)) by A1, A2, Th31, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:33 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = - (1 / ((x ^2) * ((cos . (1 / x)) ^2))) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * ((id Z) ^)) . (upper_bound A)) - ((tan * ((id Z) ^)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = - (1 / ((x ^2) * ((cos . (1 / x)) ^2))) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * ((id Z) ^)) . (upper_bound A)) - ((tan * ((id Z) ^)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = - (1 / ((x ^2) * ((cos . (1 / x)) ^2))) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((tan * ((id Z) ^)) . (upper_bound A)) - ((tan * ((id Z) ^)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f . x = - (1 / ((x ^2) * ((cos . (1 / x)) ^2))) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous implies integral (f,A) = ((tan * ((id Z) ^)) . (upper_bound A)) - ((tan * ((id Z) ^)) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f . x = - (1 / ((x ^2) * ((cos . (1 / x)) ^2))) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((tan * ((id Z) ^)) . (upper_bound A)) - ((tan * ((id Z) ^)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: Z c= dom ((id Z) ^) by A1, FUNCT_1:101; A4: not 0 in Z proof assume A5: 0 in Z ; ::_thesis: contradiction dom ((id Z) ^) = (dom (id Z)) \ ((id Z) " {0}) by RFUNCT_1:def_2 .= (dom (id Z)) \ {0} by Lm1, A5 ; then not 0 in {0} by A5, A3, XBOOLE_0:def_5; hence contradiction by TARSKI:def_1; ::_thesis: verum end; then A6: tan * ((id Z) ^) is_differentiable_on Z by A1, FDIFF_8:8; A7: for x being Real st x in dom ((tan * ((id Z) ^)) `| Z) holds ((tan * ((id Z) ^)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((tan * ((id Z) ^)) `| Z) implies ((tan * ((id Z) ^)) `| Z) . x = f . x ) assume x in dom ((tan * ((id Z) ^)) `| Z) ; ::_thesis: ((tan * ((id Z) ^)) `| Z) . x = f . x then A8: x in Z by A6, FDIFF_1:def_7; then ((tan * ((id Z) ^)) `| Z) . x = - (1 / ((x ^2) * ((cos . (1 / x)) ^2))) by A1, A4, FDIFF_8:8 .= f . x by A1, A8 ; hence ((tan * ((id Z) ^)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((tan * ((id Z) ^)) `| Z) = dom f by A1, A6, FDIFF_1:def_7; then (tan * ((id Z) ^)) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((tan * ((id Z) ^)) . (upper_bound A)) - ((tan * ((id Z) ^)) . (lower_bound A)) by A1, A2, A6, INTEGRA5:13; ::_thesis: verum end; theorem Th34: :: INTEGR13:34 for Z being open Subset of REAL st Z c= dom (tan * ((id Z) ^)) holds ( - (tan * ((id Z) ^)) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom (tan * ((id Z) ^)) implies ( - (tan * ((id Z) ^)) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) ) ) set f = id Z; assume A1: Z c= dom (tan * ((id Z) ^)) ; ::_thesis: ( - (tan * ((id Z) ^)) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) ) dom (tan * ((id Z) ^)) c= dom ((id Z) ^) by RELAT_1:25; then A2: Z c= dom ((id Z) ^) by A1, XBOOLE_1:1; A3: not 0 in Z proof assume A4: 0 in Z ; ::_thesis: contradiction dom ((id Z) ^) = (dom (id Z)) \ ((id Z) " {0}) by RFUNCT_1:def_2 .= (dom (id Z)) \ {0} by Lm1, A4 ; then not 0 in {0} by A4, A2, XBOOLE_0:def_5; hence contradiction by TARSKI:def_1; ::_thesis: verum end; A5: Z c= dom (- (tan * ((id Z) ^))) by A1, VALUED_1:8; A6: tan * ((id Z) ^) is_differentiable_on Z by A1, A3, FDIFF_8:8; then A7: (- 1) (#) (tan * ((id Z) ^)) is_differentiable_on Z by A5, FDIFF_1:20; A8: ( (id Z) ^ is_differentiable_on Z & ( for x being Real st x in Z holds (((id Z) ^) `| Z) . x = - (1 / (x ^2)) ) ) by A3, FDIFF_5:4; A9: for x being Real st x in Z holds cos . (((id Z) ^) . x) <> 0 proof let x be Real; ::_thesis: ( x in Z implies cos . (((id Z) ^) . x) <> 0 ) assume x in Z ; ::_thesis: cos . (((id Z) ^) . x) <> 0 then ((id Z) ^) . x in dom (sin / cos) by A1, FUNCT_1:11; hence cos . (((id Z) ^) . x) <> 0 by FDIFF_8:1; ::_thesis: verum end; for x being Real st x in Z holds ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) proof let x be Real; ::_thesis: ( x in Z implies ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) assume A10: x in Z ; ::_thesis: ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) then A11: (id Z) ^ is_differentiable_in x by A8, FDIFF_1:9; A12: cos . (((id Z) ^) . x) <> 0 by A9, A10; then A13: tan is_differentiable_in ((id Z) ^) . x by FDIFF_7:46; A14: tan * ((id Z) ^) is_differentiable_in x by A6, A10, FDIFF_1:9; ((- (tan * ((id Z) ^))) `| Z) . x = diff ((- (tan * ((id Z) ^))),x) by A7, A10, FDIFF_1:def_7 .= (- 1) * (diff ((tan * ((id Z) ^)),x)) by A14, FDIFF_1:15 .= (- 1) * ((diff (tan,(((id Z) ^) . x))) * (diff (((id Z) ^),x))) by A11, A13, FDIFF_2:13 .= (- 1) * ((1 / ((cos . (((id Z) ^) . x)) ^2)) * (diff (((id Z) ^),x))) by A12, FDIFF_7:46 .= (- 1) * ((diff (((id Z) ^),x)) / ((cos . (((id Z) . x) ")) ^2)) by A2, A10, RFUNCT_1:def_2 .= (- 1) * ((diff (((id Z) ^),x)) / ((cos . (1 * (x "))) ^2)) by A10, FUNCT_1:18 .= (- 1) * (((((id Z) ^) `| Z) . x) / ((cos . (1 * (x "))) ^2)) by A8, A10, FDIFF_1:def_7 .= (- 1) * ((- (1 / (x ^2))) / ((cos . (1 * (x "))) ^2)) by A10, A3, FDIFF_5:4 .= (- 1) * (((- 1) / (x ^2)) / ((cos . (1 / x)) ^2)) .= (- 1) * ((- 1) / ((x ^2) * ((cos . (1 / x)) ^2))) by XCMPLX_1:78 .= 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ; hence ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ; ::_thesis: verum end; hence ( - (tan * ((id Z) ^)) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) ) by A7; ::_thesis: verum end; theorem :: INTEGR13:35 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (tan * ((id Z) ^))) . (upper_bound A)) - ((- (tan * ((id Z) ^))) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (tan * ((id Z) ^))) . (upper_bound A)) - ((- (tan * ((id Z) ^))) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (tan * ((id Z) ^))) . (upper_bound A)) - ((- (tan * ((id Z) ^))) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous implies integral (f,A) = ((- (tan * ((id Z) ^))) . (upper_bound A)) - ((- (tan * ((id Z) ^))) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) ) & Z c= dom (tan * ((id Z) ^)) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- (tan * ((id Z) ^))) . (upper_bound A)) - ((- (tan * ((id Z) ^))) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: - (tan * ((id Z) ^)) is_differentiable_on Z by A1, Th34; A4: for x being Real st x in dom ((- (tan * ((id Z) ^))) `| Z) holds ((- (tan * ((id Z) ^))) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- (tan * ((id Z) ^))) `| Z) implies ((- (tan * ((id Z) ^))) `| Z) . x = f . x ) assume x in dom ((- (tan * ((id Z) ^))) `| Z) ; ::_thesis: ((- (tan * ((id Z) ^))) `| Z) . x = f . x then A5: x in Z by A3, FDIFF_1:def_7; then ((- (tan * ((id Z) ^))) `| Z) . x = 1 / ((x ^2) * ((cos . (1 / x)) ^2)) by A1, Th34 .= f . x by A1, A5 ; hence ((- (tan * ((id Z) ^))) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- (tan * ((id Z) ^))) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (- (tan * ((id Z) ^))) `| Z = f by A4, PARTFUN1:5; hence integral (f,A) = ((- (tan * ((id Z) ^))) . (upper_bound A)) - ((- (tan * ((id Z) ^))) . (lower_bound A)) by A1, A2, A3, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:36 for A being non empty closed_interval Subset of REAL for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((sin . (1 / x)) ^2)) ) & Z c= dom (cot * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * ((id Z) ^)) . (upper_bound A)) - ((cot * ((id Z) ^)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((sin . (1 / x)) ^2)) ) & Z c= dom (cot * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * ((id Z) ^)) . (upper_bound A)) - ((cot * ((id Z) ^)) . (lower_bound A)) let f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((sin . (1 / x)) ^2)) ) & Z c= dom (cot * ((id Z) ^)) & Z = dom f & f | A is continuous holds integral (f,A) = ((cot * ((id Z) ^)) . (upper_bound A)) - ((cot * ((id Z) ^)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((sin . (1 / x)) ^2)) ) & Z c= dom (cot * ((id Z) ^)) & Z = dom f & f | A is continuous implies integral (f,A) = ((cot * ((id Z) ^)) . (upper_bound A)) - ((cot * ((id Z) ^)) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f . x = 1 / ((x ^2) * ((sin . (1 / x)) ^2)) ) & Z c= dom (cot * ((id Z) ^)) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((cot * ((id Z) ^)) . (upper_bound A)) - ((cot * ((id Z) ^)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: Z c= dom ((id Z) ^) by A1, FUNCT_1:101; A4: not 0 in Z proof assume A5: 0 in Z ; ::_thesis: contradiction dom ((id Z) ^) = (dom (id Z)) \ ((id Z) " {0}) by RFUNCT_1:def_2 .= (dom (id Z)) \ {0} by Lm1, A5 ; then not 0 in {0} by A5, A3, XBOOLE_0:def_5; hence contradiction by TARSKI:def_1; ::_thesis: verum end; then A6: cot * ((id Z) ^) is_differentiable_on Z by A1, FDIFF_8:9; A7: for x being Real st x in dom ((cot * ((id Z) ^)) `| Z) holds ((cot * ((id Z) ^)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((cot * ((id Z) ^)) `| Z) implies ((cot * ((id Z) ^)) `| Z) . x = f . x ) assume x in dom ((cot * ((id Z) ^)) `| Z) ; ::_thesis: ((cot * ((id Z) ^)) `| Z) . x = f . x then A8: x in Z by A6, FDIFF_1:def_7; then ((cot * ((id Z) ^)) `| Z) . x = 1 / ((x ^2) * ((sin . (1 / x)) ^2)) by A1, A4, FDIFF_8:9 .= f . x by A1, A8 ; hence ((cot * ((id Z) ^)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((cot * ((id Z) ^)) `| Z) = dom f by A1, A6, FDIFF_1:def_7; then (cot * ((id Z) ^)) `| Z = f by A7, PARTFUN1:5; hence integral (f,A) = ((cot * ((id Z) ^)) . (upper_bound A)) - ((cot * ((id Z) ^)) . (lower_bound A)) by A1, A2, A6, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:37 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds ( f1 . x = 1 & arctan . x > 0 ) ) & f = ((f1 + (#Z 2)) (#) arctan) ^ & Z c= ].(- 1),1.[ & Z c= dom (ln * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * arctan) . (upper_bound A)) - ((ln * arctan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds ( f1 . x = 1 & arctan . x > 0 ) ) & f = ((f1 + (#Z 2)) (#) arctan) ^ & Z c= ].(- 1),1.[ & Z c= dom (ln * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * arctan) . (upper_bound A)) - ((ln * arctan) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds ( f1 . x = 1 & arctan . x > 0 ) ) & f = ((f1 + (#Z 2)) (#) arctan) ^ & Z c= ].(- 1),1.[ & Z c= dom (ln * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = ((ln * arctan) . (upper_bound A)) - ((ln * arctan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds ( f1 . x = 1 & arctan . x > 0 ) ) & f = ((f1 + (#Z 2)) (#) arctan) ^ & Z c= ].(- 1),1.[ & Z c= dom (ln * arctan) & Z = dom f & f | A is continuous implies integral (f,A) = ((ln * arctan) . (upper_bound A)) - ((ln * arctan) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds ( f1 . x = 1 & arctan . x > 0 ) ) & f = ((f1 + (#Z 2)) (#) arctan) ^ & Z c= ].(- 1),1.[ & Z c= dom (ln * arctan) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((ln * arctan) . (upper_bound A)) - ((ln * arctan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: for x being Real st x in Z holds arctan . x > 0 by A1; then A4: ln * arctan is_differentiable_on Z by A1, SIN_COS9:89; Z c= dom ((f1 + (#Z 2)) (#) arctan) by A1, RFUNCT_1:1; then Z c= (dom (f1 + (#Z 2))) /\ (dom arctan) by VALUED_1:def_4; then A5: Z c= dom (f1 + (#Z 2)) by XBOOLE_1:18; A6: for x being Real st x in Z holds f . x = 1 / ((1 + (x ^2)) * (arctan . x)) proof let x be Real; ::_thesis: ( x in Z implies f . x = 1 / ((1 + (x ^2)) * (arctan . x)) ) assume A7: x in Z ; ::_thesis: f . x = 1 / ((1 + (x ^2)) * (arctan . x)) then (((f1 + (#Z 2)) (#) arctan) ^) . x = 1 / (((f1 + (#Z 2)) (#) arctan) . x) by A1, RFUNCT_1:def_2 .= 1 / (((f1 + (#Z 2)) . x) * (arctan . x)) by VALUED_1:5 .= 1 / (((f1 . x) + ((#Z 2) . x)) * (arctan . x)) by A5, A7, VALUED_1:def_1 .= 1 / (((f1 . x) + (x #Z 2)) * (arctan . x)) by TAYLOR_1:def_1 .= 1 / ((1 + (x #Z 2)) * (arctan . x)) by A1, A7 .= 1 / ((1 + (x ^2)) * (arctan . x)) by FDIFF_7:1 ; hence f . x = 1 / ((1 + (x ^2)) * (arctan . x)) by A1; ::_thesis: verum end; A8: for x being Real st x in dom ((ln * arctan) `| Z) holds ((ln * arctan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((ln * arctan) `| Z) implies ((ln * arctan) `| Z) . x = f . x ) assume x in dom ((ln * arctan) `| Z) ; ::_thesis: ((ln * arctan) `| Z) . x = f . x then A9: x in Z by A4, FDIFF_1:def_7; then ((ln * arctan) `| Z) . x = 1 / ((1 + (x ^2)) * (arctan . x)) by A1, A3, SIN_COS9:89 .= f . x by A6, A9 ; hence ((ln * arctan) `| Z) . x = f . x ; ::_thesis: verum end; dom ((ln * arctan) `| Z) = dom f by A1, A4, FDIFF_1:def_7; then (ln * arctan) `| Z = f by A8, PARTFUN1:5; hence integral (f,A) = ((ln * arctan) . (upper_bound A)) - ((ln * arctan) . (lower_bound A)) by A1, A2, A4, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:38 for n being Element of NAT for A being non empty closed_interval Subset of REAL for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = n (#) (((#Z (n - 1)) * arctan) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = (((#Z n) * arctan) . (upper_bound A)) - (((#Z n) * arctan) . (lower_bound A)) proof let n be Element of NAT ; ::_thesis: for A being non empty closed_interval Subset of REAL for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = n (#) (((#Z (n - 1)) * arctan) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = (((#Z n) * arctan) . (upper_bound A)) - (((#Z n) * arctan) . (lower_bound A)) let A be non empty closed_interval Subset of REAL; ::_thesis: for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & f = n (#) (((#Z (n - 1)) * arctan) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = (((#Z n) * arctan) . (upper_bound A)) - (((#Z n) * arctan) . (lower_bound A)) let f, f1 be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & f = n (#) (((#Z (n - 1)) * arctan) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = (((#Z n) * arctan) . (upper_bound A)) - (((#Z n) * arctan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & f = n (#) (((#Z (n - 1)) * arctan) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arctan) & Z = dom f & f | A is continuous implies integral (f,A) = (((#Z n) * arctan) . (upper_bound A)) - (((#Z n) * arctan) . (lower_bound A)) ) assume A1: ( A c= Z & f = n (#) (((#Z (n - 1)) * arctan) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arctan) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((#Z n) * arctan) . (upper_bound A)) - (((#Z n) * arctan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: (#Z n) * arctan is_differentiable_on Z by A1, SIN_COS9:91; A4: Z = dom (((#Z (n - 1)) * arctan) / (f1 + (#Z 2))) by A1, VALUED_1:def_5; then Z c= (dom ((#Z (n - 1)) * arctan)) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by RFUNCT_1:def_1; then A5: ( Z c= dom ((#Z (n - 1)) * arctan) & Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) ) by XBOOLE_1:18; then A6: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A7: Z c= dom (f1 + (#Z 2)) by A6, XBOOLE_1:1; A8: for x being Real st x in Z holds f . x = (n * ((arctan . x) #Z (n - 1))) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (n * ((arctan . x) #Z (n - 1))) / (1 + (x ^2)) ) assume A9: x in Z ; ::_thesis: f . x = (n * ((arctan . x) #Z (n - 1))) / (1 + (x ^2)) (n (#) (((#Z (n - 1)) * arctan) / (f1 + (#Z 2)))) . x = n * ((((#Z (n - 1)) * arctan) / (f1 + (#Z 2))) . x) by VALUED_1:6 .= n * ((((#Z (n - 1)) * arctan) . x) * (((f1 + (#Z 2)) . x) ")) by A4, A9, RFUNCT_1:def_1 .= (n * (((#Z (n - 1)) * arctan) . x)) / ((f1 + (#Z 2)) . x) .= (n * ((#Z (n - 1)) . (arctan . x))) / ((f1 + (#Z 2)) . x) by A5, A9, FUNCT_1:12 .= (n * ((arctan . x) #Z (n - 1))) / ((f1 + (#Z 2)) . x) by TAYLOR_1:def_1 .= (n * ((arctan . x) #Z (n - 1))) / ((f1 . x) + ((#Z 2) . x)) by A7, A9, VALUED_1:def_1 .= (n * ((arctan . x) #Z (n - 1))) / (1 + ((#Z 2) . x)) by A1, A9 .= (n * ((arctan . x) #Z (n - 1))) / (1 + (x #Z 2)) by TAYLOR_1:def_1 .= (n * ((arctan . x) #Z (n - 1))) / (1 + (x ^2)) by FDIFF_7:1 ; hence f . x = (n * ((arctan . x) #Z (n - 1))) / (1 + (x ^2)) by A1; ::_thesis: verum end; A10: for x being Real st x in dom (((#Z n) * arctan) `| Z) holds (((#Z n) * arctan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((#Z n) * arctan) `| Z) implies (((#Z n) * arctan) `| Z) . x = f . x ) assume x in dom (((#Z n) * arctan) `| Z) ; ::_thesis: (((#Z n) * arctan) `| Z) . x = f . x then A11: x in Z by A3, FDIFF_1:def_7; then (((#Z n) * arctan) `| Z) . x = (n * ((arctan . x) #Z (n - 1))) / (1 + (x ^2)) by A1, SIN_COS9:91 .= f . x by A8, A11 ; hence (((#Z n) * arctan) `| Z) . x = f . x ; ::_thesis: verum end; dom (((#Z n) * arctan) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then ((#Z n) * arctan) `| Z = f by A10, PARTFUN1:5; hence integral (f,A) = (((#Z n) * arctan) . (upper_bound A)) - (((#Z n) * arctan) . (lower_bound A)) by A1, A2, INTEGRA5:13, SIN_COS9:91; ::_thesis: verum end; theorem :: INTEGR13:39 for n being Element of NAT for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = (((#Z n) * arccot) . (upper_bound A)) - (((#Z n) * arccot) . (lower_bound A)) proof let n be Element of NAT ; ::_thesis: for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = (((#Z n) * arccot) . (upper_bound A)) - (((#Z n) * arccot) . (lower_bound A)) let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = (((#Z n) * arccot) . (upper_bound A)) - (((#Z n) * arccot) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = (((#Z n) * arccot) . (upper_bound A)) - (((#Z n) * arccot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous implies integral (f,A) = (((#Z n) * arccot) . (upper_bound A)) - (((#Z n) * arccot) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((#Z n) * arccot) . (upper_bound A)) - (((#Z n) * arccot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: (#Z n) * arccot is_differentiable_on Z by A1, SIN_COS9:92; Z = dom (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) by A1, VALUED_1:8; then A4: Z = dom (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) by VALUED_1:def_5; then Z c= (dom ((#Z (n - 1)) * arccot)) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by RFUNCT_1:def_1; then A5: ( Z c= dom ((#Z (n - 1)) * arccot) & Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) ) by XBOOLE_1:18; then A6: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A7: Z c= dom (f1 + (#Z 2)) by A6, XBOOLE_1:1; A8: for x being Real st x in Z holds f . x = - ((n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = - ((n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2))) ) assume A9: x in Z ; ::_thesis: f . x = - ((n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2))) (- (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))))) . x = - ((n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) . x) by VALUED_1:8 .= - (n * ((((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) . x)) by VALUED_1:6 .= - (n * ((((#Z (n - 1)) * arccot) . x) * (((f1 + (#Z 2)) . x) "))) by A4, A9, RFUNCT_1:def_1 .= - ((n * (((#Z (n - 1)) * arccot) . x)) / ((f1 + (#Z 2)) . x)) .= - ((n * ((#Z (n - 1)) . (arccot . x))) / ((f1 + (#Z 2)) . x)) by A5, A9, FUNCT_1:12 .= - ((n * ((arccot . x) #Z (n - 1))) / ((f1 + (#Z 2)) . x)) by TAYLOR_1:def_1 .= - ((n * ((arccot . x) #Z (n - 1))) / ((f1 . x) + ((#Z 2) . x))) by A7, A9, VALUED_1:def_1 .= - ((n * ((arccot . x) #Z (n - 1))) / (1 + ((#Z 2) . x))) by A1, A9 .= - ((n * ((arccot . x) #Z (n - 1))) / (1 + (x #Z 2))) by TAYLOR_1:def_1 .= - ((n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2))) by FDIFF_7:1 ; hence f . x = - ((n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2))) by A1; ::_thesis: verum end; A10: for x being Real st x in dom (((#Z n) * arccot) `| Z) holds (((#Z n) * arccot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((#Z n) * arccot) `| Z) implies (((#Z n) * arccot) `| Z) . x = f . x ) assume x in dom (((#Z n) * arccot) `| Z) ; ::_thesis: (((#Z n) * arccot) `| Z) . x = f . x then A11: x in Z by A3, FDIFF_1:def_7; then (((#Z n) * arccot) `| Z) . x = - ((n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2))) by A1, SIN_COS9:92 .= f . x by A11, A8 ; hence (((#Z n) * arccot) `| Z) . x = f . x ; ::_thesis: verum end; dom (((#Z n) * arccot) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then ((#Z n) * arccot) `| Z = f by A10, PARTFUN1:5; hence integral (f,A) = (((#Z n) * arccot) . (upper_bound A)) - (((#Z n) * arccot) . (lower_bound A)) by A1, A2, INTEGRA5:13, SIN_COS9:92; ::_thesis: verum end; theorem Th40: :: INTEGR13:40 for n being Element of NAT for Z being open Subset of REAL st Z c= dom ((#Z n) * arccot) & Z c= ].(- 1),1.[ holds ( - ((#Z n) * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ) ) proof let n be Element of NAT ; ::_thesis: for Z being open Subset of REAL st Z c= dom ((#Z n) * arccot) & Z c= ].(- 1),1.[ holds ( - ((#Z n) * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ) ) let Z be open Subset of REAL; ::_thesis: ( Z c= dom ((#Z n) * arccot) & Z c= ].(- 1),1.[ implies ( - ((#Z n) * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ) ) ) assume A1: ( Z c= dom ((#Z n) * arccot) & Z c= ].(- 1),1.[ ) ; ::_thesis: ( - ((#Z n) * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ) ) then A2: Z c= dom (- ((#Z n) * arccot)) by VALUED_1:8; A3: (#Z n) * arccot is_differentiable_on Z by A1, SIN_COS9:92; then A4: (- 1) (#) ((#Z n) * arccot) is_differentiable_on Z by A2, FDIFF_1:20; for x being Real st x in Z holds ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ) assume A5: x in Z ; ::_thesis: ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) then A6: ( - 1 < x & x < 1 ) by A1, XXREAL_1:4; arccot is_differentiable_on Z by A1, SIN_COS9:82; then A7: arccot is_differentiable_in x by A5, FDIFF_1:9; A8: (#Z n) * arccot is_differentiable_in x by A3, A5, FDIFF_1:9; ((- ((#Z n) * arccot)) `| Z) . x = diff ((- ((#Z n) * arccot)),x) by A4, A5, FDIFF_1:def_7 .= (- 1) * (diff (((#Z n) * arccot),x)) by A8, FDIFF_1:15 .= (- 1) * ((n * ((arccot . x) #Z (n - 1))) * (diff (arccot,x))) by A7, TAYLOR_1:3 .= (- 1) * ((n * ((arccot . x) #Z (n - 1))) * (- (1 / (1 + (x ^2))))) by A6, SIN_COS9:76 .= (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ; hence ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ; ::_thesis: verum end; hence ( - ((#Z n) * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ) ) by A2, A3, Lm3, FDIFF_1:20; ::_thesis: verum end; theorem :: INTEGR13:41 for n being Element of NAT for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = ((- ((#Z n) * arccot)) . (upper_bound A)) - ((- ((#Z n) * arccot)) . (lower_bound A)) proof let n be Element of NAT ; ::_thesis: for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = ((- ((#Z n) * arccot)) . (upper_bound A)) - ((- ((#Z n) * arccot)) . (lower_bound A)) let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = ((- ((#Z n) * arccot)) . (upper_bound A)) - ((- ((#Z n) * arccot)) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = ((- ((#Z n) * arccot)) . (upper_bound A)) - ((- ((#Z n) * arccot)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous implies integral (f,A) = ((- ((#Z n) * arccot)) . (upper_bound A)) - ((- ((#Z n) * arccot)) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z n) * arccot) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- ((#Z n) * arccot)) . (upper_bound A)) - ((- ((#Z n) * arccot)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: - ((#Z n) * arccot) is_differentiable_on Z by A1, Th40; A4: Z = dom (((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) by A1, VALUED_1:def_5; then Z c= (dom ((#Z (n - 1)) * arccot)) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by RFUNCT_1:def_1; then A5: ( Z c= dom ((#Z (n - 1)) * arccot) & Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) ) by XBOOLE_1:18; then A6: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A7: Z c= dom (f1 + (#Z 2)) by A6, XBOOLE_1:1; A8: for x being Real st x in Z holds f . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) ) assume A9: x in Z ; ::_thesis: f . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) (n (#) (((#Z (n - 1)) * arccot) / (f1 + (#Z 2)))) . x = n * ((((#Z (n - 1)) * arccot) / (f1 + (#Z 2))) . x) by VALUED_1:6 .= n * ((((#Z (n - 1)) * arccot) . x) * (((f1 + (#Z 2)) . x) ")) by A4, A9, RFUNCT_1:def_1 .= (n * (((#Z (n - 1)) * arccot) . x)) / ((f1 + (#Z 2)) . x) .= (n * ((#Z (n - 1)) . (arccot . x))) / ((f1 + (#Z 2)) . x) by A5, A9, FUNCT_1:12 .= (n * ((arccot . x) #Z (n - 1))) / ((f1 + (#Z 2)) . x) by TAYLOR_1:def_1 .= (n * ((arccot . x) #Z (n - 1))) / ((f1 . x) + ((#Z 2) . x)) by A7, A9, VALUED_1:def_1 .= (n * ((arccot . x) #Z (n - 1))) / (1 + ((#Z 2) . x)) by A1, A9 .= (n * ((arccot . x) #Z (n - 1))) / (1 + (x #Z 2)) by TAYLOR_1:def_1 .= (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) by FDIFF_7:1 ; hence f . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) by A1; ::_thesis: verum end; A10: for x being Real st x in dom ((- ((#Z n) * arccot)) `| Z) holds ((- ((#Z n) * arccot)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- ((#Z n) * arccot)) `| Z) implies ((- ((#Z n) * arccot)) `| Z) . x = f . x ) assume x in dom ((- ((#Z n) * arccot)) `| Z) ; ::_thesis: ((- ((#Z n) * arccot)) `| Z) . x = f . x then A11: x in Z by A3, FDIFF_1:def_7; then ((- ((#Z n) * arccot)) `| Z) . x = (n * ((arccot . x) #Z (n - 1))) / (1 + (x ^2)) by A1, Th40 .= f . x by A11, A8 ; hence ((- ((#Z n) * arccot)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- ((#Z n) * arccot)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (- ((#Z n) * arccot)) `| Z = f by A10, PARTFUN1:5; hence integral (f,A) = ((- ((#Z n) * arccot)) . (upper_bound A)) - ((- ((#Z n) * arccot)) . (lower_bound A)) by A1, A2, Th40, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:42 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((#Z 2) * arctan)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arctan)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((#Z 2) * arctan)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arctan)) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arctan) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((#Z 2) * arctan)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arctan)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arctan) & Z = dom f & f | A is continuous implies integral (f,A) = (((1 / 2) (#) ((#Z 2) * arctan)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arctan)) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arctan) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((1 / 2) (#) ((#Z 2) * arctan)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arctan)) . (lower_bound A)) then A2: Z c= dom ((1 / 2) (#) ((#Z 2) * arctan)) by VALUED_1:def_5; A3: ( f is_integrable_on A & f | A is bounded ) by A1, INTEGRA5:10, INTEGRA5:11; A4: (1 / 2) (#) ((#Z 2) * arctan) is_differentiable_on Z by A1, A2, SIN_COS9:93; Z c= (dom arctan) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by A1, RFUNCT_1:def_1; then Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) by XBOOLE_1:18; then A5: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A6: Z c= dom (f1 + (#Z 2)) by A5, XBOOLE_1:1; A7: for x being Real st x in Z holds f . x = (arctan . x) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (arctan . x) / (1 + (x ^2)) ) assume A8: x in Z ; ::_thesis: f . x = (arctan . x) / (1 + (x ^2)) then (arctan / (f1 + (#Z 2))) . x = (arctan . x) / ((f1 + (#Z 2)) . x) by A1, RFUNCT_1:def_1 .= (arctan . x) / ((f1 . x) + ((#Z 2) . x)) by A6, A8, VALUED_1:def_1 .= (arctan . x) / ((f1 . x) + (x #Z 2)) by TAYLOR_1:def_1 .= (arctan . x) / (1 + (x #Z 2)) by A1, A8 .= (arctan . x) / (1 + (x ^2)) by FDIFF_7:1 ; hence f . x = (arctan . x) / (1 + (x ^2)) by A1; ::_thesis: verum end; A9: for x being Real st x in dom (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) holds (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) implies (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) . x = f . x ) assume x in dom (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) ; ::_thesis: (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) . x = f . x then A10: x in Z by A4, FDIFF_1:def_7; then (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) . x = (arctan . x) / (1 + (x ^2)) by A1, A2, SIN_COS9:93 .= f . x by A7, A10 ; hence (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) . x = f . x ; ::_thesis: verum end; dom (((1 / 2) (#) ((#Z 2) * arctan)) `| Z) = dom f by A1, A4, FDIFF_1:def_7; then ((1 / 2) (#) ((#Z 2) * arctan)) `| Z = f by A9, PARTFUN1:5; hence integral (f,A) = (((1 / 2) (#) ((#Z 2) * arctan)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arctan)) . (lower_bound A)) by A1, A2, A3, INTEGRA5:13, SIN_COS9:93; ::_thesis: verum end; theorem :: INTEGR13:43 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (arccot / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((#Z 2) * arccot)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arccot)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (arccot / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((#Z 2) * arccot)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arccot)) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (arccot / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) ((#Z 2) * arccot)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arccot)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (arccot / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous implies integral (f,A) = (((1 / 2) (#) ((#Z 2) * arccot)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arccot)) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = - (arccot / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((1 / 2) (#) ((#Z 2) * arccot)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arccot)) . (lower_bound A)) then A2: Z c= dom ((1 / 2) (#) ((#Z 2) * arccot)) by VALUED_1:def_5; A3: ( f is_integrable_on A & f | A is bounded ) by A1, INTEGRA5:10, INTEGRA5:11; A4: (1 / 2) (#) ((#Z 2) * arccot) is_differentiable_on Z by A1, A2, SIN_COS9:94; A5: Z = dom (arccot / (f1 + (#Z 2))) by A1, VALUED_1:8; then Z c= (dom arccot) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by RFUNCT_1:def_1; then Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) by XBOOLE_1:18; then A6: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A7: Z c= dom (f1 + (#Z 2)) by A6, XBOOLE_1:1; A8: for x being Real st x in Z holds f . x = - ((arccot . x) / (1 + (x ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = - ((arccot . x) / (1 + (x ^2))) ) assume A9: x in Z ; ::_thesis: f . x = - ((arccot . x) / (1 + (x ^2))) (- (arccot / (f1 + (#Z 2)))) . x = - ((arccot / (f1 + (#Z 2))) . x) by VALUED_1:8 .= - ((arccot . x) / ((f1 + (#Z 2)) . x)) by A5, A9, RFUNCT_1:def_1 .= - ((arccot . x) / ((f1 . x) + ((#Z 2) . x))) by A7, A9, VALUED_1:def_1 .= - ((arccot . x) / ((f1 . x) + (x #Z 2))) by TAYLOR_1:def_1 .= - ((arccot . x) / (1 + (x #Z 2))) by A1, A9 .= - ((arccot . x) / (1 + (x ^2))) by FDIFF_7:1 ; hence f . x = - ((arccot . x) / (1 + (x ^2))) by A1; ::_thesis: verum end; A10: for x being Real st x in dom (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) holds (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) implies (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) . x = f . x ) assume x in dom (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) ; ::_thesis: (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) . x = f . x then A11: x in Z by A4, FDIFF_1:def_7; then (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) . x = - ((arccot . x) / (1 + (x ^2))) by A1, A2, SIN_COS9:94 .= f . x by A8, A11 ; hence (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) . x = f . x ; ::_thesis: verum end; dom (((1 / 2) (#) ((#Z 2) * arccot)) `| Z) = dom f by A1, A4, FDIFF_1:def_7; then ((1 / 2) (#) ((#Z 2) * arccot)) `| Z = f by A10, PARTFUN1:5; hence integral (f,A) = (((1 / 2) (#) ((#Z 2) * arccot)) . (upper_bound A)) - (((1 / 2) (#) ((#Z 2) * arccot)) . (lower_bound A)) by A1, A2, A3, INTEGRA5:13, SIN_COS9:94; ::_thesis: verum end; theorem Th44: :: INTEGR13:44 for Z being open Subset of REAL st Z c= dom ((#Z 2) * arccot) & Z c= ].(- 1),1.[ holds ( - ((1 / 2) (#) ((#Z 2) * arccot)) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom ((#Z 2) * arccot) & Z c= ].(- 1),1.[ implies ( - ((1 / 2) (#) ((#Z 2) * arccot)) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) ) ) ) assume A1: ( Z c= dom ((#Z 2) * arccot) & Z c= ].(- 1),1.[ ) ; ::_thesis: ( - ((1 / 2) (#) ((#Z 2) * arccot)) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) ) ) then A2: Z c= dom ((1 / 2) (#) ((#Z 2) * arccot)) by VALUED_1:def_5; then A3: Z c= dom (- ((1 / 2) (#) ((#Z 2) * arccot))) by VALUED_1:8; A4: (1 / 2) (#) ((#Z 2) * arccot) is_differentiable_on Z by A2, A1, SIN_COS9:94; then A5: (- 1) (#) ((1 / 2) (#) ((#Z 2) * arccot)) is_differentiable_on Z by A3, FDIFF_1:20; A6: ( (#Z 2) * arccot is_differentiable_on Z & ( for x being Real st x in Z holds (((#Z 2) * arccot) `| Z) . x = - ((2 * ((arccot . x) #Z (2 - 1))) / (1 + (x ^2))) ) ) by A1, SIN_COS9:92; for x being Real st x in Z holds ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) ) assume A7: x in Z ; ::_thesis: ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) then A8: (1 / 2) (#) ((#Z 2) * arccot) is_differentiable_in x by A4, FDIFF_1:9; A9: (#Z 2) * arccot is_differentiable_in x by A6, A7, FDIFF_1:9; ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = diff ((- ((1 / 2) (#) ((#Z 2) * arccot))),x) by A5, A7, FDIFF_1:def_7 .= (- 1) * (diff (((1 / 2) (#) ((#Z 2) * arccot)),x)) by A8, FDIFF_1:15 .= (- 1) * ((1 / 2) * (diff (((#Z 2) * arccot),x))) by A9, FDIFF_1:15 .= (- 1) * ((1 / 2) * ((((#Z 2) * arccot) `| Z) . x)) by A6, A7, FDIFF_1:def_7 .= (- 1) * ((1 / 2) * (- ((2 * ((arccot . x) #Z (2 - 1))) / (1 + (x ^2))))) by A1, A7, SIN_COS9:92 .= (- 1) * (- ((1 / 2) * ((2 * ((arccot . x) #Z 1)) / (1 + (x ^2))))) .= (- 1) * (- ((1 / 2) * ((2 * (arccot . x)) / (1 + (x ^2))))) by PREPOWER:35 .= (arccot . x) / (1 + (x ^2)) ; hence ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) ; ::_thesis: verum end; hence ( - ((1 / 2) (#) ((#Z 2) * arccot)) is_differentiable_on Z & ( for x being Real st x in Z holds ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) ) ) by A3, A4, Lm3, FDIFF_1:20; ::_thesis: verum end; theorem :: INTEGR13:45 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (upper_bound A)) - ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (upper_bound A)) - ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous holds integral (f,A) = ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (upper_bound A)) - ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous implies integral (f,A) = ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (upper_bound A)) - ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot / (f1 + (#Z 2)) & Z c= ].(- 1),1.[ & Z c= dom ((#Z 2) * arccot) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (upper_bound A)) - ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: - ((1 / 2) (#) ((#Z 2) * arccot)) is_differentiable_on Z by A1, Th44; Z c= (dom arccot) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by A1, RFUNCT_1:def_1; then Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) by XBOOLE_1:18; then A4: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A5: Z c= dom (f1 + (#Z 2)) by A4, XBOOLE_1:1; A6: for x being Real st x in Z holds f . x = (arccot . x) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (arccot . x) / (1 + (x ^2)) ) assume A7: x in Z ; ::_thesis: f . x = (arccot . x) / (1 + (x ^2)) then (arccot / (f1 + (#Z 2))) . x = (arccot . x) / ((f1 + (#Z 2)) . x) by A1, RFUNCT_1:def_1 .= (arccot . x) / ((f1 . x) + ((#Z 2) . x)) by A5, A7, VALUED_1:def_1 .= (arccot . x) / ((f1 . x) + (x #Z 2)) by TAYLOR_1:def_1 .= (arccot . x) / (1 + (x #Z 2)) by A1, A7 .= (arccot . x) / (1 + (x ^2)) by FDIFF_7:1 ; hence f . x = (arccot . x) / (1 + (x ^2)) by A1; ::_thesis: verum end; A8: for x being Real st x in dom ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) holds ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) implies ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = f . x ) assume x in dom ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) ; ::_thesis: ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = f . x then A9: x in Z by A3, FDIFF_1:def_7; then ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = (arccot . x) / (1 + (x ^2)) by A1, Th44 .= f . x by A6, A9 ; hence ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (- ((1 / 2) (#) ((#Z 2) * arccot))) `| Z = f by A8, PARTFUN1:5; hence integral (f,A) = ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (upper_bound A)) - ((- ((1 / 2) (#) ((#Z 2) * arccot))) . (lower_bound A)) by A1, A2, Th44, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:46 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan + ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = (((id Z) (#) arctan) . (upper_bound A)) - (((id Z) (#) arctan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan + ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = (((id Z) (#) arctan) . (upper_bound A)) - (((id Z) (#) arctan) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan + ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = (((id Z) (#) arctan) . (upper_bound A)) - (((id Z) (#) arctan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan + ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous implies integral (f,A) = (((id Z) (#) arctan) . (upper_bound A)) - (((id Z) (#) arctan) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arctan + ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((id Z) (#) arctan) . (upper_bound A)) - (((id Z) (#) arctan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom arctan) /\ (dom ((id Z) / (f1 + (#Z 2)))) by A1, VALUED_1:def_1; then A3: ( Z c= dom arctan & Z c= dom ((id Z) / (f1 + (#Z 2))) ) by XBOOLE_1:18; then Z c= (dom (id Z)) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by RFUNCT_1:def_1; then A4: Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) by XBOOLE_1:18; A5: (id Z) (#) arctan is_differentiable_on Z by A1, SIN_COS9:95; A6: Z c= dom ((f1 + (#Z 2)) ^) by A4, RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A7: Z c= dom (f1 + (#Z 2)) by A6, XBOOLE_1:1; A8: for x being Real st x in Z holds f . x = (arctan . x) + (x / (1 + (x ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = (arctan . x) + (x / (1 + (x ^2))) ) assume A9: x in Z ; ::_thesis: f . x = (arctan . x) + (x / (1 + (x ^2))) then (arctan + ((id Z) / (f1 + (#Z 2)))) . x = (arctan . x) + (((id Z) / (f1 + (#Z 2))) . x) by A1, VALUED_1:def_1 .= (arctan . x) + (((id Z) . x) / ((f1 + (#Z 2)) . x)) by A3, A9, RFUNCT_1:def_1 .= (arctan . x) + (x / ((f1 + (#Z 2)) . x)) by A9, FUNCT_1:18 .= (arctan . x) + (x / ((f1 . x) + ((#Z 2) . x))) by A7, A9, VALUED_1:def_1 .= (arctan . x) + (x / (1 + ((#Z 2) . x))) by A1, A9 .= (arctan . x) + (x / (1 + (x #Z 2))) by TAYLOR_1:def_1 .= (arctan . x) + (x / (1 + (x ^2))) by FDIFF_7:1 ; hence f . x = (arctan . x) + (x / (1 + (x ^2))) by A1; ::_thesis: verum end; A10: for x being Real st x in dom (((id Z) (#) arctan) `| Z) holds (((id Z) (#) arctan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((id Z) (#) arctan) `| Z) implies (((id Z) (#) arctan) `| Z) . x = f . x ) assume x in dom (((id Z) (#) arctan) `| Z) ; ::_thesis: (((id Z) (#) arctan) `| Z) . x = f . x then A11: x in Z by A5, FDIFF_1:def_7; then (((id Z) (#) arctan) `| Z) . x = (arctan . x) + (x / (1 + (x ^2))) by A1, SIN_COS9:95 .= f . x by A8, A11 ; hence (((id Z) (#) arctan) `| Z) . x = f . x ; ::_thesis: verum end; dom (((id Z) (#) arctan) `| Z) = dom f by A1, A5, FDIFF_1:def_7; then ((id Z) (#) arctan) `| Z = f by A10, PARTFUN1:5; hence integral (f,A) = (((id Z) (#) arctan) . (upper_bound A)) - (((id Z) (#) arctan) . (lower_bound A)) by A1, A2, INTEGRA5:13, SIN_COS9:95; ::_thesis: verum end; theorem :: INTEGR13:47 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot - ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = (((id Z) (#) arccot) . (upper_bound A)) - (((id Z) (#) arccot) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot - ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = (((id Z) (#) arccot) . (upper_bound A)) - (((id Z) (#) arccot) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot - ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = (((id Z) (#) arccot) . (upper_bound A)) - (((id Z) (#) arccot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot - ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous implies integral (f,A) = (((id Z) (#) arccot) . (upper_bound A)) - (((id Z) (#) arccot) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = arccot - ((id Z) / (f1 + (#Z 2))) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((id Z) (#) arccot) . (upper_bound A)) - (((id Z) (#) arccot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom arccot) /\ (dom ((id Z) / (f1 + (#Z 2)))) by A1, VALUED_1:12; then A3: ( Z c= dom arccot & Z c= dom ((id Z) / (f1 + (#Z 2))) ) by XBOOLE_1:18; then Z c= (dom (id Z)) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by RFUNCT_1:def_1; then A4: Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) by XBOOLE_1:18; A5: (id Z) (#) arccot is_differentiable_on Z by A1, SIN_COS9:96; A6: Z c= dom ((f1 + (#Z 2)) ^) by A4, RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A7: Z c= dom (f1 + (#Z 2)) by A6, XBOOLE_1:1; A8: for x being Real st x in Z holds f . x = (arccot . x) - (x / (1 + (x ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = (arccot . x) - (x / (1 + (x ^2))) ) assume A9: x in Z ; ::_thesis: f . x = (arccot . x) - (x / (1 + (x ^2))) then (arccot - ((id Z) / (f1 + (#Z 2)))) . x = (arccot . x) - (((id Z) / (f1 + (#Z 2))) . x) by A1, VALUED_1:13 .= (arccot . x) - (((id Z) . x) / ((f1 + (#Z 2)) . x)) by A3, A9, RFUNCT_1:def_1 .= (arccot . x) - (x / ((f1 + (#Z 2)) . x)) by A9, FUNCT_1:18 .= (arccot . x) - (x / ((f1 . x) + ((#Z 2) . x))) by A7, A9, VALUED_1:def_1 .= (arccot . x) - (x / (1 + ((#Z 2) . x))) by A1, A9 .= (arccot . x) - (x / (1 + (x #Z 2))) by TAYLOR_1:def_1 .= (arccot . x) - (x / (1 + (x ^2))) by FDIFF_7:1 ; hence f . x = (arccot . x) - (x / (1 + (x ^2))) by A1; ::_thesis: verum end; A10: for x being Real st x in dom (((id Z) (#) arccot) `| Z) holds (((id Z) (#) arccot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((id Z) (#) arccot) `| Z) implies (((id Z) (#) arccot) `| Z) . x = f . x ) assume x in dom (((id Z) (#) arccot) `| Z) ; ::_thesis: (((id Z) (#) arccot) `| Z) . x = f . x then A11: x in Z by A5, FDIFF_1:def_7; then (((id Z) (#) arccot) `| Z) . x = (arccot . x) - (x / (1 + (x ^2))) by A1, SIN_COS9:96 .= f . x by A11, A8 ; hence (((id Z) (#) arccot) `| Z) . x = f . x ; ::_thesis: verum end; dom (((id Z) (#) arccot) `| Z) = dom f by A1, A5, FDIFF_1:def_7; then ((id Z) (#) arccot) `| Z = f by A10, PARTFUN1:5; hence integral (f,A) = (((id Z) (#) arccot) . (upper_bound A)) - (((id Z) (#) arccot) . (lower_bound A)) by A1, A2, INTEGRA5:13, SIN_COS9:96; ::_thesis: verum end; theorem :: INTEGR13:48 for A being non empty closed_interval Subset of REAL for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arctan) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * arctan) . (upper_bound A)) - ((exp_R * arctan) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arctan) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * arctan) . (upper_bound A)) - ((exp_R * arctan) . (lower_bound A)) let f, f1 be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arctan) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * arctan) . (upper_bound A)) - ((exp_R * arctan) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arctan) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous implies integral (f,A) = ((exp_R * arctan) . (upper_bound A)) - ((exp_R * arctan) . (lower_bound A)) ) assume A1: ( A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arctan) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((exp_R * arctan) . (upper_bound A)) - ((exp_R * arctan) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom (exp_R * arctan)) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by A1, RFUNCT_1:def_1; then A3: ( Z c= dom (exp_R * arctan) & Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) ) by XBOOLE_1:18; then A4: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A5: Z c= dom (f1 + (#Z 2)) by A4, XBOOLE_1:1; A6: exp_R * arctan is_differentiable_on Z by A1, A3, SIN_COS9:119; A7: for x being Real st x in Z holds f . x = (exp_R . (arctan . x)) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (exp_R . (arctan . x)) / (1 + (x ^2)) ) assume A8: x in Z ; ::_thesis: f . x = (exp_R . (arctan . x)) / (1 + (x ^2)) then ((exp_R * arctan) / (f1 + (#Z 2))) . x = ((exp_R * arctan) . x) / ((f1 + (#Z 2)) . x) by A1, RFUNCT_1:def_1 .= (exp_R . (arctan . x)) / ((f1 + (#Z 2)) . x) by A3, A8, FUNCT_1:12 .= (exp_R . (arctan . x)) / ((f1 . x) + ((#Z 2) . x)) by A5, A8, VALUED_1:def_1 .= (exp_R . (arctan . x)) / (1 + ((#Z 2) . x)) by A1, A8 .= (exp_R . (arctan . x)) / (1 + (x #Z 2)) by TAYLOR_1:def_1 .= (exp_R . (arctan . x)) / (1 + (x ^2)) by FDIFF_7:1 ; hence f . x = (exp_R . (arctan . x)) / (1 + (x ^2)) by A1; ::_thesis: verum end; A9: for x being Real st x in dom ((exp_R * arctan) `| Z) holds ((exp_R * arctan) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((exp_R * arctan) `| Z) implies ((exp_R * arctan) `| Z) . x = f . x ) assume x in dom ((exp_R * arctan) `| Z) ; ::_thesis: ((exp_R * arctan) `| Z) . x = f . x then A10: x in Z by A6, FDIFF_1:def_7; then ((exp_R * arctan) `| Z) . x = (exp_R . (arctan . x)) / (1 + (x ^2)) by A1, A3, SIN_COS9:119 .= f . x by A10, A7 ; hence ((exp_R * arctan) `| Z) . x = f . x ; ::_thesis: verum end; dom ((exp_R * arctan) `| Z) = dom f by A1, A6, FDIFF_1:def_7; then (exp_R * arctan) `| Z = f by A9, PARTFUN1:5; hence integral (f,A) = ((exp_R * arctan) . (upper_bound A)) - ((exp_R * arctan) . (lower_bound A)) by A1, A2, A3, INTEGRA5:13, SIN_COS9:119; ::_thesis: verum end; theorem :: INTEGR13:49 for A being non empty closed_interval Subset of REAL for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = - ((exp_R * arccot) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * arccot) . (upper_bound A)) - ((exp_R * arccot) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = - ((exp_R * arccot) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * arccot) . (upper_bound A)) - ((exp_R * arccot) . (lower_bound A)) let f, f1 be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = - ((exp_R * arccot) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((exp_R * arccot) . (upper_bound A)) - ((exp_R * arccot) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & Z c= ].(- 1),1.[ & f = - ((exp_R * arccot) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous implies integral (f,A) = ((exp_R * arccot) . (upper_bound A)) - ((exp_R * arccot) . (lower_bound A)) ) assume A1: ( A c= Z & Z c= ].(- 1),1.[ & f = - ((exp_R * arccot) / (f1 + (#Z 2))) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((exp_R * arccot) . (upper_bound A)) - ((exp_R * arccot) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: Z = dom ((exp_R * arccot) / (f1 + (#Z 2))) by A1, VALUED_1:8; then Z = (dom (exp_R * arccot)) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by RFUNCT_1:def_1; then A4: ( Z c= dom (exp_R * arccot) & Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) ) by XBOOLE_1:18; then A5: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A6: Z c= dom (f1 + (#Z 2)) by A5, XBOOLE_1:1; A7: exp_R * arccot is_differentiable_on Z by A1, A4, SIN_COS9:120; A8: for x being Real st x in Z holds f . x = - ((exp_R . (arccot . x)) / (1 + (x ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = - ((exp_R . (arccot . x)) / (1 + (x ^2))) ) assume A9: x in Z ; ::_thesis: f . x = - ((exp_R . (arccot . x)) / (1 + (x ^2))) (- ((exp_R * arccot) / (f1 + (#Z 2)))) . x = - (((exp_R * arccot) / (f1 + (#Z 2))) . x) by VALUED_1:8 .= - (((exp_R * arccot) . x) / ((f1 + (#Z 2)) . x)) by A9, A3, RFUNCT_1:def_1 .= - ((exp_R . (arccot . x)) / ((f1 + (#Z 2)) . x)) by A4, A9, FUNCT_1:12 .= - ((exp_R . (arccot . x)) / ((f1 . x) + ((#Z 2) . x))) by A6, A9, VALUED_1:def_1 .= - ((exp_R . (arccot . x)) / (1 + ((#Z 2) . x))) by A1, A9 .= - ((exp_R . (arccot . x)) / (1 + (x #Z 2))) by TAYLOR_1:def_1 .= - ((exp_R . (arccot . x)) / (1 + (x ^2))) by FDIFF_7:1 ; hence f . x = - ((exp_R . (arccot . x)) / (1 + (x ^2))) by A1; ::_thesis: verum end; A10: for x being Real st x in dom ((exp_R * arccot) `| Z) holds ((exp_R * arccot) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((exp_R * arccot) `| Z) implies ((exp_R * arccot) `| Z) . x = f . x ) assume x in dom ((exp_R * arccot) `| Z) ; ::_thesis: ((exp_R * arccot) `| Z) . x = f . x then A11: x in Z by A7, FDIFF_1:def_7; then ((exp_R * arccot) `| Z) . x = - ((exp_R . (arccot . x)) / (1 + (x ^2))) by A1, A4, SIN_COS9:120 .= f . x by A11, A8 ; hence ((exp_R * arccot) `| Z) . x = f . x ; ::_thesis: verum end; dom ((exp_R * arccot) `| Z) = dom f by A1, A7, FDIFF_1:def_7; then (exp_R * arccot) `| Z = f by A10, PARTFUN1:5; hence integral (f,A) = ((exp_R * arccot) . (upper_bound A)) - ((exp_R * arccot) . (lower_bound A)) by A1, A2, A4, INTEGRA5:13, SIN_COS9:120; ::_thesis: verum end; theorem Th50: :: INTEGR13:50 for Z being open Subset of REAL st Z c= dom (exp_R * arccot) & Z c= ].(- 1),1.[ holds ( - (exp_R * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom (exp_R * arccot) & Z c= ].(- 1),1.[ implies ( - (exp_R * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) ) ) ) assume A1: ( Z c= dom (exp_R * arccot) & Z c= ].(- 1),1.[ ) ; ::_thesis: ( - (exp_R * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) ) ) then A2: Z c= dom (- (exp_R * arccot)) by VALUED_1:8; A3: exp_R * arccot is_differentiable_on Z by A1, SIN_COS9:120; then A4: (- 1) (#) (exp_R * arccot) is_differentiable_on Z by A2, FDIFF_1:20; for x being Real st x in Z holds ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) ) assume A5: x in Z ; ::_thesis: ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) A6: arccot is_differentiable_on Z by A1, SIN_COS9:82; then A7: arccot is_differentiable_in x by A5, FDIFF_1:9; A8: exp_R is_differentiable_in arccot . x by SIN_COS:65; A9: exp_R * arccot is_differentiable_in x by A3, A5, FDIFF_1:9; ((- (exp_R * arccot)) `| Z) . x = diff ((- (exp_R * arccot)),x) by A4, A5, FDIFF_1:def_7 .= (- 1) * (diff ((exp_R * arccot),x)) by A9, FDIFF_1:15 .= (- 1) * ((diff (exp_R,(arccot . x))) * (diff (arccot,x))) by A7, A8, FDIFF_2:13 .= (- 1) * ((diff (exp_R,(arccot . x))) * ((arccot `| Z) . x)) by A5, A6, FDIFF_1:def_7 .= (- 1) * ((diff (exp_R,(arccot . x))) * (- (1 / (1 + (x ^2))))) by A5, A1, SIN_COS9:82 .= (- 1) * (- ((diff (exp_R,(arccot . x))) * (1 / (1 + (x ^2))))) .= (exp_R . (arccot . x)) / (1 + (x ^2)) by SIN_COS:65 ; hence ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) ; ::_thesis: verum end; hence ( - (exp_R * arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) ) ) by A2, A3, Lm3, FDIFF_1:20; ::_thesis: verum end; theorem :: INTEGR13:51 for A being non empty closed_interval Subset of REAL for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arccot) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (exp_R * arccot)) . (upper_bound A)) - ((- (exp_R * arccot)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f, f1 being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arccot) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (exp_R * arccot)) . (upper_bound A)) - ((- (exp_R * arccot)) . (lower_bound A)) let f, f1 be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arccot) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = ((- (exp_R * arccot)) . (upper_bound A)) - ((- (exp_R * arccot)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arccot) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous implies integral (f,A) = ((- (exp_R * arccot)) . (upper_bound A)) - ((- (exp_R * arccot)) . (lower_bound A)) ) assume A1: ( A c= Z & Z c= ].(- 1),1.[ & f = (exp_R * arccot) / (f1 + (#Z 2)) & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- (exp_R * arccot)) . (upper_bound A)) - ((- (exp_R * arccot)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; Z = (dom (exp_R * arccot)) /\ ((dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0})) by A1, RFUNCT_1:def_1; then A3: ( Z c= dom (exp_R * arccot) & Z c= (dom (f1 + (#Z 2))) \ ((f1 + (#Z 2)) " {0}) ) by XBOOLE_1:18; then A4: Z c= dom ((f1 + (#Z 2)) ^) by RFUNCT_1:def_2; dom ((f1 + (#Z 2)) ^) c= dom (f1 + (#Z 2)) by RFUNCT_1:1; then A5: Z c= dom (f1 + (#Z 2)) by A4, XBOOLE_1:1; A6: - (exp_R * arccot) is_differentiable_on Z by A1, A3, Th50; A7: for x being Real st x in Z holds f . x = (exp_R . (arccot . x)) / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = (exp_R . (arccot . x)) / (1 + (x ^2)) ) assume A8: x in Z ; ::_thesis: f . x = (exp_R . (arccot . x)) / (1 + (x ^2)) then ((exp_R * arccot) / (f1 + (#Z 2))) . x = ((exp_R * arccot) . x) / ((f1 + (#Z 2)) . x) by A1, RFUNCT_1:def_1 .= (exp_R . (arccot . x)) / ((f1 + (#Z 2)) . x) by A3, A8, FUNCT_1:12 .= (exp_R . (arccot . x)) / ((f1 . x) + ((#Z 2) . x)) by A5, A8, VALUED_1:def_1 .= (exp_R . (arccot . x)) / (1 + ((#Z 2) . x)) by A1, A8 .= (exp_R . (arccot . x)) / (1 + (x #Z 2)) by TAYLOR_1:def_1 .= (exp_R . (arccot . x)) / (1 + (x ^2)) by FDIFF_7:1 ; hence f . x = (exp_R . (arccot . x)) / (1 + (x ^2)) by A1; ::_thesis: verum end; A9: for x being Real st x in dom ((- (exp_R * arccot)) `| Z) holds ((- (exp_R * arccot)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- (exp_R * arccot)) `| Z) implies ((- (exp_R * arccot)) `| Z) . x = f . x ) assume x in dom ((- (exp_R * arccot)) `| Z) ; ::_thesis: ((- (exp_R * arccot)) `| Z) . x = f . x then A10: x in Z by A6, FDIFF_1:def_7; then ((- (exp_R * arccot)) `| Z) . x = (exp_R . (arccot . x)) / (1 + (x ^2)) by A1, A3, Th50 .= f . x by A7, A10 ; hence ((- (exp_R * arccot)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- (exp_R * arccot)) `| Z) = dom f by A1, A6, FDIFF_1:def_7; then (- (exp_R * arccot)) `| Z = f by A9, PARTFUN1:5; hence integral (f,A) = ((- (exp_R * arccot)) . (upper_bound A)) - ((- (exp_R * arccot)) . (lower_bound A)) by A1, A2, A3, Th50, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:52 for A being non empty closed_interval Subset of REAL for f1, f2, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (f1 + f2) & f2 = #Z 2 & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((1 / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f2, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (f1 + f2) & f2 = #Z 2 & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((1 / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) let f1, f2, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (f1 + f2) & f2 = #Z 2 & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous holds integral (f,A) = (((1 / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((1 / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (f1 + f2) & f2 = #Z 2 & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous implies integral (f,A) = (((1 / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((1 / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) ) assume A1: ( A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (f1 + f2) & f2 = #Z 2 & ( for x being Real st x in Z holds f1 . x = 1 ) & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((1 / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((1 / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: Z c= dom ((1 / 2) (#) (ln * (f1 + f2))) by A1, VALUED_1:def_5; Z c= (dom (id Z)) /\ ((dom (f1 + f2)) \ ((f1 + f2) " {0})) by A1, RFUNCT_1:def_1; then Z c= (dom (f1 + f2)) \ ((f1 + f2) " {0}) by XBOOLE_1:18; then A4: Z c= dom ((f1 + f2) ^) by RFUNCT_1:def_2; dom ((f1 + f2) ^) c= dom (f1 + f2) by RFUNCT_1:1; then A5: Z c= dom (f1 + f2) by A4, XBOOLE_1:1; A6: (1 / 2) (#) (ln * (f1 + f2)) is_differentiable_on Z by A1, A3, SIN_COS9:102; A7: for x being Real st x in Z holds f . x = x / (1 + (x ^2)) proof let x be Real; ::_thesis: ( x in Z implies f . x = x / (1 + (x ^2)) ) assume A8: x in Z ; ::_thesis: f . x = x / (1 + (x ^2)) then ((id Z) / (f1 + f2)) . x = ((id Z) . x) / ((f1 + f2) . x) by A1, RFUNCT_1:def_1 .= x / ((f1 + f2) . x) by A8, FUNCT_1:18 .= x / ((f1 . x) + (f2 . x)) by A5, A8, VALUED_1:def_1 .= x / (1 + ((#Z 2) . x)) by A1, A8 .= x / (1 + (x #Z 2)) by TAYLOR_1:def_1 .= x / (1 + (x ^2)) by FDIFF_7:1 ; hence f . x = x / (1 + (x ^2)) by A1; ::_thesis: verum end; A9: for x being Real st x in dom (((1 / 2) (#) (ln * (f1 + f2))) `| Z) holds (((1 / 2) (#) (ln * (f1 + f2))) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((1 / 2) (#) (ln * (f1 + f2))) `| Z) implies (((1 / 2) (#) (ln * (f1 + f2))) `| Z) . x = f . x ) assume x in dom (((1 / 2) (#) (ln * (f1 + f2))) `| Z) ; ::_thesis: (((1 / 2) (#) (ln * (f1 + f2))) `| Z) . x = f . x then A10: x in Z by A6, FDIFF_1:def_7; then (((1 / 2) (#) (ln * (f1 + f2))) `| Z) . x = x / (1 + (x ^2)) by A1, A3, SIN_COS9:102 .= f . x by A10, A7 ; hence (((1 / 2) (#) (ln * (f1 + f2))) `| Z) . x = f . x ; ::_thesis: verum end; dom (((1 / 2) (#) (ln * (f1 + f2))) `| Z) = dom f by A1, A6, FDIFF_1:def_7; then ((1 / 2) (#) (ln * (f1 + f2))) `| Z = f by A9, PARTFUN1:5; hence integral (f,A) = (((1 / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((1 / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) by A1, A2, A6, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:53 for a being Real for A being non empty closed_interval Subset of REAL for f1, f2, f, h being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (a (#) (f1 + f2)) & ( for x being Real st x in Z holds ( h . x = x / a & f1 . x = 1 ) ) & a <> 0 & f2 = (#Z 2) * h & Z = dom f & f | A is continuous holds integral (f,A) = (((a / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((a / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) proof let a be Real; ::_thesis: for A being non empty closed_interval Subset of REAL for f1, f2, f, h being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (a (#) (f1 + f2)) & ( for x being Real st x in Z holds ( h . x = x / a & f1 . x = 1 ) ) & a <> 0 & f2 = (#Z 2) * h & Z = dom f & f | A is continuous holds integral (f,A) = (((a / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((a / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f2, f, h being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (a (#) (f1 + f2)) & ( for x being Real st x in Z holds ( h . x = x / a & f1 . x = 1 ) ) & a <> 0 & f2 = (#Z 2) * h & Z = dom f & f | A is continuous holds integral (f,A) = (((a / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((a / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) let f1, f2, f, h be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (a (#) (f1 + f2)) & ( for x being Real st x in Z holds ( h . x = x / a & f1 . x = 1 ) ) & a <> 0 & f2 = (#Z 2) * h & Z = dom f & f | A is continuous holds integral (f,A) = (((a / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((a / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (a (#) (f1 + f2)) & ( for x being Real st x in Z holds ( h . x = x / a & f1 . x = 1 ) ) & a <> 0 & f2 = (#Z 2) * h & Z = dom f & f | A is continuous implies integral (f,A) = (((a / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((a / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) ) assume A1: ( A c= Z & Z c= dom (ln * (f1 + f2)) & f = (id Z) / (a (#) (f1 + f2)) & ( for x being Real st x in Z holds ( h . x = x / a & f1 . x = 1 ) ) & a <> 0 & f2 = (#Z 2) * h & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = (((a / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((a / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: Z c= dom ((a / 2) (#) (ln * (f1 + f2))) by A1, VALUED_1:def_5; A4: for x being Real st x in Z holds f1 . x = 1 by A1; A5: for x being Real st x in Z holds h . x = x / a by A1; then A6: (a / 2) (#) (ln * (f1 + f2)) is_differentiable_on Z by A1, A3, A4, SIN_COS9:108; A7: for x being Real st x in Z holds f . x = x / (a * (1 + ((x / a) ^2))) proof let x be Real; ::_thesis: ( x in Z implies f . x = x / (a * (1 + ((x / a) ^2))) ) assume A8: x in Z ; ::_thesis: f . x = x / (a * (1 + ((x / a) ^2))) then A9: x in dom (f1 + f2) by A1, FUNCT_1:11; dom (f1 + f2) = (dom f1) /\ (dom f2) by VALUED_1:def_1; then dom (f1 + f2) c= dom f2 by XBOOLE_1:18; then A10: x in dom f2 by A9; ((id Z) / (a (#) (f1 + f2))) . x = ((id Z) . x) / ((a (#) (f1 + f2)) . x) by A1, A8, RFUNCT_1:def_1 .= x / ((a (#) (f1 + f2)) . x) by A8, FUNCT_1:18 .= x / (a * ((f1 + f2) . x)) by VALUED_1:6 .= x / (a * ((f1 . x) + (f2 . x))) by A9, VALUED_1:def_1 .= x / (a * (1 + (f2 . x))) by A4, A8 .= x / (a * (1 + ((#Z 2) . (h . x)))) by A1, A10, FUNCT_1:12 .= x / (a * (1 + ((h . x) #Z 2))) by TAYLOR_1:def_1 .= x / (a * (1 + ((h . x) ^2))) by FDIFF_7:1 .= x / (a * (1 + ((x / a) ^2))) by A5, A8 ; hence f . x = x / (a * (1 + ((x / a) ^2))) by A1; ::_thesis: verum end; A11: for x being Real st x in dom (((a / 2) (#) (ln * (f1 + f2))) `| Z) holds (((a / 2) (#) (ln * (f1 + f2))) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom (((a / 2) (#) (ln * (f1 + f2))) `| Z) implies (((a / 2) (#) (ln * (f1 + f2))) `| Z) . x = f . x ) assume x in dom (((a / 2) (#) (ln * (f1 + f2))) `| Z) ; ::_thesis: (((a / 2) (#) (ln * (f1 + f2))) `| Z) . x = f . x then A12: x in Z by A6, FDIFF_1:def_7; then (((a / 2) (#) (ln * (f1 + f2))) `| Z) . x = x / (a * (1 + ((x / a) ^2))) by A1, A3, A4, A5, SIN_COS9:108 .= f . x by A7, A12 ; hence (((a / 2) (#) (ln * (f1 + f2))) `| Z) . x = f . x ; ::_thesis: verum end; dom (((a / 2) (#) (ln * (f1 + f2))) `| Z) = dom f by A1, A6, FDIFF_1:def_7; then ((a / 2) (#) (ln * (f1 + f2))) `| Z = f by A11, PARTFUN1:5; hence integral (f,A) = (((a / 2) (#) (ln * (f1 + f2))) . (upper_bound A)) - (((a / 2) (#) (ln * (f1 + f2))) . (lower_bound A)) by A1, A2, A6, INTEGRA5:13; ::_thesis: verum end; theorem Th54: :: INTEGR13:54 for Z being open Subset of REAL st Z c= dom (((id Z) ^) (#) arctan) & Z c= ].(- 1),1.[ holds ( - (((id Z) ^) (#) arctan) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom (((id Z) ^) (#) arctan) & Z c= ].(- 1),1.[ implies ( - (((id Z) ^) (#) arctan) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) ) ) ) set f = id Z; assume that A1: Z c= dom (((id Z) ^) (#) arctan) and A2: Z c= ].(- 1),1.[ ; ::_thesis: ( - (((id Z) ^) (#) arctan) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) ) ) A3: Z c= dom (- (((id Z) ^) (#) arctan)) by A1, VALUED_1:8; A4: for x being Real st x in Z holds (id Z) . x = x by FUNCT_1:18; Z c= (dom ((id Z) ^)) /\ (dom arctan) by A1, VALUED_1:def_4; then A5: Z c= dom ((id Z) ^) by XBOOLE_1:18; A6: not 0 in Z proof assume A7: 0 in Z ; ::_thesis: contradiction dom ((id Z) ^) = (dom (id Z)) \ ((id Z) " {0}) by RFUNCT_1:def_2 .= (dom (id Z)) \ {0} by Lm1, A7 ; then not 0 in {0} by A7, A5, XBOOLE_0:def_5; hence contradiction by TARSKI:def_1; ::_thesis: verum end; then A8: ( (id Z) ^ is_differentiable_on Z & ( for x being Real st x in Z holds (((id Z) ^) `| Z) . x = - (1 / (x ^2)) ) ) by FDIFF_5:4; A9: arctan is_differentiable_on Z by A2, SIN_COS9:81; A10: ((id Z) ^) (#) arctan is_differentiable_on Z by A1, A2, A6, SIN_COS9:129; then A11: (- 1) (#) (((id Z) ^) (#) arctan) is_differentiable_on Z by A3, FDIFF_1:20; for x being Real st x in Z holds ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) proof let x be Real; ::_thesis: ( x in Z implies ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) ) assume A12: x in Z ; ::_thesis: ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) then A13: ((id Z) ^) (#) arctan is_differentiable_in x by A10, FDIFF_1:9; A14: (id Z) ^ is_differentiable_in x by A8, A12, FDIFF_1:9; A15: arctan is_differentiable_in x by A9, A12, FDIFF_1:9; ((- (((id Z) ^) (#) arctan)) `| Z) . x = diff ((- (((id Z) ^) (#) arctan)),x) by A11, A12, FDIFF_1:def_7 .= (- 1) * (diff ((((id Z) ^) (#) arctan),x)) by A13, FDIFF_1:15 .= (- 1) * (((arctan . x) * (diff (((id Z) ^),x))) + ((((id Z) ^) . x) * (diff (arctan,x)))) by A14, A15, FDIFF_1:16 .= (- 1) * (((arctan . x) * ((((id Z) ^) `| Z) . x)) + ((((id Z) ^) . x) * (diff (arctan,x)))) by A8, A12, FDIFF_1:def_7 .= (- 1) * (((arctan . x) * (- (1 / (x ^2)))) + ((((id Z) ^) . x) * (diff (arctan,x)))) by A6, A12, FDIFF_5:4 .= (- 1) * ((- ((arctan . x) * (1 / (x ^2)))) + ((((id Z) ^) . x) * ((arctan `| Z) . x))) by A9, A12, FDIFF_1:def_7 .= (- 1) * ((- (((arctan . x) * 1) / (x ^2))) + ((((id Z) ^) . x) * (1 / (1 + (x ^2))))) by A2, A12, SIN_COS9:81 .= (- 1) * ((- ((arctan . x) / (x ^2))) + ((((id Z) . x) ") * (1 / (1 + (x ^2))))) by A5, A12, RFUNCT_1:def_2 .= (- 1) * ((- ((arctan . x) / (x ^2))) + ((1 / x) * (1 / (1 + (x ^2))))) by A4, A12 .= (- 1) * ((- ((arctan . x) / (x ^2))) + ((1 * 1) / (x * (1 + (x ^2))))) by XCMPLX_1:76 .= ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) ; hence ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) ; ::_thesis: verum end; hence ( - (((id Z) ^) (#) arctan) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) ) ) by A3, A10, Lm3, FDIFF_1:20; ::_thesis: verum end; theorem Th55: :: INTEGR13:55 for Z being open Subset of REAL st Z c= dom (((id Z) ^) (#) arccot) & Z c= ].(- 1),1.[ holds ( - (((id Z) ^) (#) arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) ) ) proof let Z be open Subset of REAL; ::_thesis: ( Z c= dom (((id Z) ^) (#) arccot) & Z c= ].(- 1),1.[ implies ( - (((id Z) ^) (#) arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) ) ) ) set f = id Z; assume that A1: Z c= dom (((id Z) ^) (#) arccot) and A2: Z c= ].(- 1),1.[ ; ::_thesis: ( - (((id Z) ^) (#) arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) ) ) A3: Z c= dom (- (((id Z) ^) (#) arccot)) by A1, VALUED_1:8; A4: for x being Real st x in Z holds (id Z) . x = x by FUNCT_1:18; Z c= (dom ((id Z) ^)) /\ (dom arccot) by A1, VALUED_1:def_4; then A5: Z c= dom ((id Z) ^) by XBOOLE_1:18; A6: not 0 in Z proof assume A7: 0 in Z ; ::_thesis: contradiction dom ((id Z) ^) = (dom (id Z)) \ ((id Z) " {0}) by RFUNCT_1:def_2 .= (dom (id Z)) \ {0} by Lm1, A7 ; then not 0 in {0} by A7, A5, XBOOLE_0:def_5; hence contradiction by TARSKI:def_1; ::_thesis: verum end; then A8: ( (id Z) ^ is_differentiable_on Z & ( for x being Real st x in Z holds (((id Z) ^) `| Z) . x = - (1 / (x ^2)) ) ) by FDIFF_5:4; A9: arccot is_differentiable_on Z by A2, SIN_COS9:82; A10: ((id Z) ^) (#) arccot is_differentiable_on Z by A6, A1, A2, SIN_COS9:130; then A11: (- 1) (#) (((id Z) ^) (#) arccot) is_differentiable_on Z by A3, FDIFF_1:20; for x being Real st x in Z holds ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) proof let x be Real; ::_thesis: ( x in Z implies ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) ) assume A12: x in Z ; ::_thesis: ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) then A13: ((id Z) ^) (#) arccot is_differentiable_in x by A10, FDIFF_1:9; A14: (id Z) ^ is_differentiable_in x by A8, A12, FDIFF_1:9; A15: arccot is_differentiable_in x by A9, A12, FDIFF_1:9; ((- (((id Z) ^) (#) arccot)) `| Z) . x = diff ((- (((id Z) ^) (#) arccot)),x) by A11, A12, FDIFF_1:def_7 .= (- 1) * (diff ((((id Z) ^) (#) arccot),x)) by A13, FDIFF_1:15 .= (- 1) * (((arccot . x) * (diff (((id Z) ^),x))) + ((((id Z) ^) . x) * (diff (arccot,x)))) by A14, A15, FDIFF_1:16 .= (- 1) * (((arccot . x) * ((((id Z) ^) `| Z) . x)) + ((((id Z) ^) . x) * (diff (arccot,x)))) by A8, A12, FDIFF_1:def_7 .= (- 1) * (((arccot . x) * (- (1 / (x ^2)))) + ((((id Z) ^) . x) * (diff (arccot,x)))) by A12, A6, FDIFF_5:4 .= (- 1) * ((- ((arccot . x) * (1 / (x ^2)))) + ((((id Z) ^) . x) * ((arccot `| Z) . x))) by A9, A12, FDIFF_1:def_7 .= (- 1) * ((- ((arccot . x) * (1 / (x ^2)))) + ((((id Z) ^) . x) * (- (1 / (1 + (x ^2)))))) by A2, A12, SIN_COS9:82 .= (- 1) * ((- (((arccot . x) * 1) / (x ^2))) - ((((id Z) ^) . x) * (1 / (1 + (x ^2))))) .= (- 1) * ((- ((arccot . x) / (x ^2))) - ((((id Z) . x) ") * (1 / (1 + (x ^2))))) by A5, A12, RFUNCT_1:def_2 .= (- 1) * ((- ((arccot . x) / (x ^2))) - ((1 / x) * (1 / (1 + (x ^2))))) by A4, A12 .= (- 1) * ((- ((arccot . x) / (x ^2))) - ((1 * 1) / (x * (1 + (x ^2))))) by XCMPLX_1:76 .= ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) ; hence ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) ; ::_thesis: verum end; hence ( - (((id Z) ^) (#) arccot) is_differentiable_on Z & ( for x being Real st x in Z holds ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) ) ) by A11; ::_thesis: verum end; theorem :: INTEGR13:56 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (#Z 2)) - (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arctan) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((- (((id Z) ^) (#) arctan)) . (upper_bound A)) - ((- (((id Z) ^) (#) arctan)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (#Z 2)) - (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arctan) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((- (((id Z) ^) (#) arctan)) . (upper_bound A)) - ((- (((id Z) ^) (#) arctan)) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (#Z 2)) - (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arctan) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((- (((id Z) ^) (#) arctan)) . (upper_bound A)) - ((- (((id Z) ^) (#) arctan)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (#Z 2)) - (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arctan) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous implies integral (f,A) = ((- (((id Z) ^) (#) arctan)) . (upper_bound A)) - ((- (((id Z) ^) (#) arctan)) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arctan / (#Z 2)) - (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arctan) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- (((id Z) ^) (#) arctan)) . (upper_bound A)) - ((- (((id Z) ^) (#) arctan)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: - (((id Z) ^) (#) arctan) is_differentiable_on Z by A1, Th54; A4: Z = (dom (arctan / (#Z 2))) /\ (dom (((id Z) (#) (f1 + (#Z 2))) ^)) by A1, VALUED_1:12; then A5: Z c= dom (arctan / (#Z 2)) by XBOOLE_1:18; A6: Z c= dom (((id Z) (#) (f1 + (#Z 2))) ^) by A4, XBOOLE_1:18; dom (((id Z) (#) (f1 + (#Z 2))) ^) c= dom ((id Z) (#) (f1 + (#Z 2))) by RFUNCT_1:1; then Z c= dom ((id Z) (#) (f1 + (#Z 2))) by A6, XBOOLE_1:1; then Z c= (dom (id Z)) /\ (dom (f1 + (#Z 2))) by VALUED_1:def_4; then A7: Z c= dom (f1 + (#Z 2)) by XBOOLE_1:18; A8: for x being Real st x in Z holds f . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) proof let x be Real; ::_thesis: ( x in Z implies f . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) ) assume A9: x in Z ; ::_thesis: f . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) then A10: x in dom (((id Z) (#) (f1 + (#Z 2))) ^) by A6; ((arctan / (#Z 2)) - (((id Z) (#) (f1 + (#Z 2))) ^)) . x = ((arctan / (#Z 2)) . x) - ((((id Z) (#) (f1 + (#Z 2))) ^) . x) by A1, A9, VALUED_1:13 .= ((arctan / (#Z 2)) . x) - (1 / (((id Z) (#) (f1 + (#Z 2))) . x)) by A10, RFUNCT_1:def_2 .= ((arctan / (#Z 2)) . x) - (1 / (((id Z) . x) * ((f1 + (#Z 2)) . x))) by VALUED_1:5 .= ((arctan / (#Z 2)) . x) - (1 / (((id Z) . x) * ((f1 . x) + ((#Z 2) . x)))) by A7, A9, VALUED_1:def_1 .= ((arctan / (#Z 2)) . x) - (1 / (x * ((f1 . x) + ((#Z 2) . x)))) by A9, FUNCT_1:18 .= ((arctan / (#Z 2)) . x) - (1 / (x * (1 + ((#Z 2) . x)))) by A1, A9 .= ((arctan . x) / ((#Z 2) . x)) - (1 / (x * (1 + ((#Z 2) . x)))) by A9, A5, RFUNCT_1:def_1 .= ((arctan . x) / (x #Z 2)) - (1 / (x * (1 + ((#Z 2) . x)))) by TAYLOR_1:def_1 .= ((arctan . x) / (x #Z 2)) - (1 / (x * (1 + (x #Z 2)))) by TAYLOR_1:def_1 .= ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x #Z 2)))) by FDIFF_7:1 .= ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) by FDIFF_7:1 ; hence f . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) by A1; ::_thesis: verum end; A11: for x being Real st x in dom ((- (((id Z) ^) (#) arctan)) `| Z) holds ((- (((id Z) ^) (#) arctan)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- (((id Z) ^) (#) arctan)) `| Z) implies ((- (((id Z) ^) (#) arctan)) `| Z) . x = f . x ) assume x in dom ((- (((id Z) ^) (#) arctan)) `| Z) ; ::_thesis: ((- (((id Z) ^) (#) arctan)) `| Z) . x = f . x then A12: x in Z by A3, FDIFF_1:def_7; then ((- (((id Z) ^) (#) arctan)) `| Z) . x = ((arctan . x) / (x ^2)) - (1 / (x * (1 + (x ^2)))) by A1, Th54 .= f . x by A8, A12 ; hence ((- (((id Z) ^) (#) arctan)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- (((id Z) ^) (#) arctan)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (- (((id Z) ^) (#) arctan)) `| Z = f by A11, PARTFUN1:5; hence integral (f,A) = ((- (((id Z) ^) (#) arctan)) . (upper_bound A)) - ((- (((id Z) ^) (#) arctan)) . (lower_bound A)) by A1, A2, A3, INTEGRA5:13; ::_thesis: verum end; theorem :: INTEGR13:57 for A being non empty closed_interval Subset of REAL for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (#Z 2)) + (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arccot) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((- (((id Z) ^) (#) arccot)) . (upper_bound A)) - ((- (((id Z) ^) (#) arccot)) . (lower_bound A)) proof let A be non empty closed_interval Subset of REAL; ::_thesis: for f1, f being PartFunc of REAL,REAL for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (#Z 2)) + (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arccot) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((- (((id Z) ^) (#) arccot)) . (upper_bound A)) - ((- (((id Z) ^) (#) arccot)) . (lower_bound A)) let f1, f be PartFunc of REAL,REAL; ::_thesis: for Z being open Subset of REAL st A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (#Z 2)) + (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arccot) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous holds integral (f,A) = ((- (((id Z) ^) (#) arccot)) . (upper_bound A)) - ((- (((id Z) ^) (#) arccot)) . (lower_bound A)) let Z be open Subset of REAL; ::_thesis: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (#Z 2)) + (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arccot) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous implies integral (f,A) = ((- (((id Z) ^) (#) arccot)) . (upper_bound A)) - ((- (((id Z) ^) (#) arccot)) . (lower_bound A)) ) assume A1: ( A c= Z & ( for x being Real st x in Z holds f1 . x = 1 ) & f = (arccot / (#Z 2)) + (((id Z) (#) (f1 + (#Z 2))) ^) & Z c= dom (((id Z) ^) (#) arccot) & Z c= ].(- 1),1.[ & Z = dom f & f | A is continuous ) ; ::_thesis: integral (f,A) = ((- (((id Z) ^) (#) arccot)) . (upper_bound A)) - ((- (((id Z) ^) (#) arccot)) . (lower_bound A)) then A2: ( f is_integrable_on A & f | A is bounded ) by INTEGRA5:10, INTEGRA5:11; A3: - (((id Z) ^) (#) arccot) is_differentiable_on Z by A1, Th55; A4: Z = (dom (arccot / (#Z 2))) /\ (dom (((id Z) (#) (f1 + (#Z 2))) ^)) by A1, VALUED_1:def_1; then A5: Z c= dom (arccot / (#Z 2)) by XBOOLE_1:18; A6: Z c= dom (((id Z) (#) (f1 + (#Z 2))) ^) by A4, XBOOLE_1:18; dom (((id Z) (#) (f1 + (#Z 2))) ^) c= dom ((id Z) (#) (f1 + (#Z 2))) by RFUNCT_1:1; then Z c= dom ((id Z) (#) (f1 + (#Z 2))) by A6, XBOOLE_1:1; then Z c= (dom (id Z)) /\ (dom (f1 + (#Z 2))) by VALUED_1:def_4; then A7: Z c= dom (f1 + (#Z 2)) by XBOOLE_1:18; A8: for x being Real st x in Z holds f . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) proof let x be Real; ::_thesis: ( x in Z implies f . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) ) assume A9: x in Z ; ::_thesis: f . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) then A10: x in dom (((id Z) (#) (f1 + (#Z 2))) ^) by A6; ((arccot / (#Z 2)) + (((id Z) (#) (f1 + (#Z 2))) ^)) . x = ((arccot / (#Z 2)) . x) + ((((id Z) (#) (f1 + (#Z 2))) ^) . x) by A1, A9, VALUED_1:def_1 .= ((arccot / (#Z 2)) . x) + (1 / (((id Z) (#) (f1 + (#Z 2))) . x)) by A10, RFUNCT_1:def_2 .= ((arccot / (#Z 2)) . x) + (1 / (((id Z) . x) * ((f1 + (#Z 2)) . x))) by VALUED_1:5 .= ((arccot / (#Z 2)) . x) + (1 / (((id Z) . x) * ((f1 . x) + ((#Z 2) . x)))) by A7, A9, VALUED_1:def_1 .= ((arccot / (#Z 2)) . x) + (1 / (x * ((f1 . x) + ((#Z 2) . x)))) by A9, FUNCT_1:18 .= ((arccot / (#Z 2)) . x) + (1 / (x * (1 + ((#Z 2) . x)))) by A1, A9 .= ((arccot . x) / ((#Z 2) . x)) + (1 / (x * (1 + ((#Z 2) . x)))) by A9, A5, RFUNCT_1:def_1 .= ((arccot . x) / (x #Z 2)) + (1 / (x * (1 + ((#Z 2) . x)))) by TAYLOR_1:def_1 .= ((arccot . x) / (x #Z 2)) + (1 / (x * (1 + (x #Z 2)))) by TAYLOR_1:def_1 .= ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x #Z 2)))) by FDIFF_7:1 .= ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) by FDIFF_7:1 ; hence f . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) by A1; ::_thesis: verum end; A11: for x being Real st x in dom ((- (((id Z) ^) (#) arccot)) `| Z) holds ((- (((id Z) ^) (#) arccot)) `| Z) . x = f . x proof let x be Real; ::_thesis: ( x in dom ((- (((id Z) ^) (#) arccot)) `| Z) implies ((- (((id Z) ^) (#) arccot)) `| Z) . x = f . x ) assume x in dom ((- (((id Z) ^) (#) arccot)) `| Z) ; ::_thesis: ((- (((id Z) ^) (#) arccot)) `| Z) . x = f . x then A12: x in Z by A3, FDIFF_1:def_7; then ((- (((id Z) ^) (#) arccot)) `| Z) . x = ((arccot . x) / (x ^2)) + (1 / (x * (1 + (x ^2)))) by A1, Th55 .= f . x by A12, A8 ; hence ((- (((id Z) ^) (#) arccot)) `| Z) . x = f . x ; ::_thesis: verum end; dom ((- (((id Z) ^) (#) arccot)) `| Z) = dom f by A1, A3, FDIFF_1:def_7; then (- (((id Z) ^) (#) arccot)) `| Z = f by A11, PARTFUN1:5; hence integral (f,A) = ((- (((id Z) ^) (#) arccot)) . (upper_bound A)) - ((- (((id Z) ^) (#) arccot)) . (lower_bound A)) by A1, A2, Th55, INTEGRA5:13; ::_thesis: verum end;