:: JGRAPH_3 semantic presentation begin Lm1: for x being real number holds (x ^2) + 1 > 0 proof let x be real number ; ::_thesis: (x ^2) + 1 > 0 x ^2 >= 0 by XREAL_1:63; hence (x ^2) + 1 > 0 ; ::_thesis: verum end; Lm2: dom proj1 = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; Lm3: dom proj2 = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; theorem :: JGRAPH_3:1 for p being Point of (TOP-REAL 2) holds ( |.p.| = sqrt (((p `1) ^2) + ((p `2) ^2)) & |.p.| ^2 = ((p `1) ^2) + ((p `2) ^2) ) by JGRAPH_1:29, JGRAPH_1:30; theorem :: JGRAPH_3:2 for f being Function for B, C being set holds (f | B) .: C = f .: (C /\ B) proof let f be Function; ::_thesis: for B, C being set holds (f | B) .: C = f .: (C /\ B) let B, C be set ; ::_thesis: (f | B) .: C = f .: (C /\ B) thus (f | B) .: C c= f .: (C /\ B) :: according to XBOOLE_0:def_10 ::_thesis: f .: (C /\ B) c= (f | B) .: C proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in (f | B) .: C or x in f .: (C /\ B) ) assume x in (f | B) .: C ; ::_thesis: x in f .: (C /\ B) then consider y being set such that A1: y in dom (f | B) and A2: y in C and A3: x = (f | B) . y by FUNCT_1:def_6; A4: (f | B) . y = f . y by A1, FUNCT_1:47; A5: dom (f | B) = (dom f) /\ B by RELAT_1:61; then y in B by A1, XBOOLE_0:def_4; then A6: y in C /\ B by A2, XBOOLE_0:def_4; y in dom f by A1, A5, XBOOLE_0:def_4; hence x in f .: (C /\ B) by A3, A6, A4, FUNCT_1:def_6; ::_thesis: verum end; let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in f .: (C /\ B) or x in (f | B) .: C ) assume x in f .: (C /\ B) ; ::_thesis: x in (f | B) .: C then consider y being set such that A7: y in dom f and A8: y in C /\ B and A9: x = f . y by FUNCT_1:def_6; A10: y in C by A8, XBOOLE_0:def_4; y in B by A8, XBOOLE_0:def_4; then y in (dom f) /\ B by A7, XBOOLE_0:def_4; then A11: y in dom (f | B) by RELAT_1:61; then (f | B) . y = f . y by FUNCT_1:47; hence x in (f | B) .: C by A9, A10, A11, FUNCT_1:def_6; ::_thesis: verum end; theorem Th3: :: JGRAPH_3:3 for X, Y being non empty TopSpace for p0 being Point of X for D being non empty Subset of X for E being non empty Subset of Y for f being Function of X,Y st D ` = {p0} & E ` = {(f . p0)} & X is T_2 & Y is T_2 & ( for p being Point of (X | D) holds f . p <> f . p0 ) & f | D is continuous Function of (X | D),(Y | E) & ( for V being Subset of Y st f . p0 in V & V is open holds ex W being Subset of X st ( p0 in W & W is open & f .: W c= V ) ) holds f is continuous proof let X, Y be non empty TopSpace; ::_thesis: for p0 being Point of X for D being non empty Subset of X for E being non empty Subset of Y for f being Function of X,Y st D ` = {p0} & E ` = {(f . p0)} & X is T_2 & Y is T_2 & ( for p being Point of (X | D) holds f . p <> f . p0 ) & f | D is continuous Function of (X | D),(Y | E) & ( for V being Subset of Y st f . p0 in V & V is open holds ex W being Subset of X st ( p0 in W & W is open & f .: W c= V ) ) holds f is continuous let p0 be Point of X; ::_thesis: for D being non empty Subset of X for E being non empty Subset of Y for f being Function of X,Y st D ` = {p0} & E ` = {(f . p0)} & X is T_2 & Y is T_2 & ( for p being Point of (X | D) holds f . p <> f . p0 ) & f | D is continuous Function of (X | D),(Y | E) & ( for V being Subset of Y st f . p0 in V & V is open holds ex W being Subset of X st ( p0 in W & W is open & f .: W c= V ) ) holds f is continuous let D be non empty Subset of X; ::_thesis: for E being non empty Subset of Y for f being Function of X,Y st D ` = {p0} & E ` = {(f . p0)} & X is T_2 & Y is T_2 & ( for p being Point of (X | D) holds f . p <> f . p0 ) & f | D is continuous Function of (X | D),(Y | E) & ( for V being Subset of Y st f . p0 in V & V is open holds ex W being Subset of X st ( p0 in W & W is open & f .: W c= V ) ) holds f is continuous let E be non empty Subset of Y; ::_thesis: for f being Function of X,Y st D ` = {p0} & E ` = {(f . p0)} & X is T_2 & Y is T_2 & ( for p being Point of (X | D) holds f . p <> f . p0 ) & f | D is continuous Function of (X | D),(Y | E) & ( for V being Subset of Y st f . p0 in V & V is open holds ex W being Subset of X st ( p0 in W & W is open & f .: W c= V ) ) holds f is continuous let f be Function of X,Y; ::_thesis: ( D ` = {p0} & E ` = {(f . p0)} & X is T_2 & Y is T_2 & ( for p being Point of (X | D) holds f . p <> f . p0 ) & f | D is continuous Function of (X | D),(Y | E) & ( for V being Subset of Y st f . p0 in V & V is open holds ex W being Subset of X st ( p0 in W & W is open & f .: W c= V ) ) implies f is continuous ) assume that A1: D ` = {p0} and A2: E ` = {(f . p0)} and A3: X is T_2 and A4: Y is T_2 and A5: for p being Point of (X | D) holds f . p <> f . p0 and A6: f | D is continuous Function of (X | D),(Y | E) and A7: for V being Subset of Y st f . p0 in V & V is open holds ex W being Subset of X st ( p0 in W & W is open & f .: W c= V ) ; ::_thesis: f is continuous for p being Point of X for V being Subset of Y st f . p in V & V is open holds ex W being Subset of X st ( p in W & W is open & f .: W c= V ) proof A8: the carrier of (X | D) = D by PRE_TOPC:8; let p be Point of X; ::_thesis: for V being Subset of Y st f . p in V & V is open holds ex W being Subset of X st ( p in W & W is open & f .: W c= V ) let V be Subset of Y; ::_thesis: ( f . p in V & V is open implies ex W being Subset of X st ( p in W & W is open & f .: W c= V ) ) assume that A9: f . p in V and A10: V is open ; ::_thesis: ex W being Subset of X st ( p in W & W is open & f .: W c= V ) percases ( p = p0 or p <> p0 ) ; suppose p = p0 ; ::_thesis: ex W being Subset of X st ( p in W & W is open & f .: W c= V ) hence ex W being Subset of X st ( p in W & W is open & f .: W c= V ) by A7, A9, A10; ::_thesis: verum end; supposeA11: p <> p0 ; ::_thesis: ex W being Subset of X st ( p in W & W is open & f .: W c= V ) then not p in D ` by A1, TARSKI:def_1; then p in the carrier of X \ (D `) by XBOOLE_0:def_5; then A12: p in (D `) ` by SUBSET_1:def_4; then f . p <> f . p0 by A5, A8; then consider G1, G2 being Subset of Y such that A13: G1 is open and G2 is open and A14: f . p in G1 and f . p0 in G2 and G1 misses G2 by A4, PRE_TOPC:def_10; A15: [#] (X | D) = D by PRE_TOPC:def_5; then reconsider p22 = p as Point of (X | D) by A12; consider h being Function of (X | D),(Y | E) such that A16: h = f | D and A17: h is continuous by A6; A18: h . p = f . p by A12, A16, FUNCT_1:49; A19: [#] (Y | E) = E by PRE_TOPC:def_5; then reconsider V20 = (G1 /\ V) /\ E as Subset of (Y | E) by XBOOLE_1:17; G1 /\ V is open by A10, A13, TOPS_1:11; then A20: V20 is open by A19, TOPS_2:24; f . p <> f . p0 by A5, A12, A15; then not f . p in E ` by A2, TARSKI:def_1; then not f . p in the carrier of Y \ E by SUBSET_1:def_4; then A21: h . p22 in E by A18, XBOOLE_0:def_5; h . p22 in G1 /\ V by A9, A14, A18, XBOOLE_0:def_4; then h . p22 in V20 by A21, XBOOLE_0:def_4; then consider W2 being Subset of (X | D) such that A22: p22 in W2 and A23: W2 is open and A24: h .: W2 c= V20 by A17, A20, JGRAPH_2:10; consider W3b being Subset of X such that A25: W3b is open and A26: W2 = W3b /\ ([#] (X | D)) by A23, TOPS_2:24; consider H1, H2 being Subset of X such that A27: H1 is open and H2 is open and A28: p in H1 and A29: p0 in H2 and A30: H1 misses H2 by A3, A11, PRE_TOPC:def_10; p22 in W3b by A22, A26, XBOOLE_0:def_4; then A31: p in H1 /\ W3b by A28, XBOOLE_0:def_4; reconsider W3 = H1 /\ W3b as Subset of X ; A32: W3 c= W3b by XBOOLE_1:17; A33: f .: W3 c= h .: W2 proof let xx be set ; :: according to TARSKI:def_3 ::_thesis: ( not xx in f .: W3 or xx in h .: W2 ) assume xx in f .: W3 ; ::_thesis: xx in h .: W2 then consider yy being set such that A34: yy in dom f and A35: yy in W3 and A36: xx = f . yy by FUNCT_1:def_6; H2 c= H1 ` by A30, SUBSET_1:23; then D ` c= H1 ` by A1, A29, ZFMISC_1:31; then ( W3 c= H1 & H1 c= D ) by SUBSET_1:12, XBOOLE_1:17; then A37: W3 c= D by XBOOLE_1:1; then A38: yy in W2 by A15, A26, A32, A35, XBOOLE_0:def_4; dom h = (dom f) /\ D by A16, RELAT_1:61; then A39: yy in dom h by A34, A35, A37, XBOOLE_0:def_4; then h . yy = f . yy by A16, FUNCT_1:47; hence xx in h .: W2 by A36, A39, A38, FUNCT_1:def_6; ::_thesis: verum end; (G1 /\ V) /\ E c= G1 /\ V by XBOOLE_1:17; then ( G1 /\ V c= V & h .: W2 c= G1 /\ V ) by A24, XBOOLE_1:1, XBOOLE_1:17; then A40: h .: W2 c= V by XBOOLE_1:1; H1 /\ W3b is open by A25, A27, TOPS_1:11; hence ex W being Subset of X st ( p in W & W is open & f .: W c= V ) by A31, A33, A40, XBOOLE_1:1; ::_thesis: verum end; end; end; hence f is continuous by JGRAPH_2:10; ::_thesis: verum end; begin definition func Sq_Circ -> Function of the carrier of (TOP-REAL 2), the carrier of (TOP-REAL 2) means :Def1: :: JGRAPH_3:def 1 for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies it . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies it . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or it . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ); existence ex b1 being Function of the carrier of (TOP-REAL 2), the carrier of (TOP-REAL 2) st for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies b1 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies b1 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or b1 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) proof defpred S1[ set , set ] means for p being Point of (TOP-REAL 2) st p = $1 holds ( ( p = 0. (TOP-REAL 2) implies $2 = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies $2 = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or $2 = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ); set BP = the carrier of (TOP-REAL 2); A1: for x being Element of the carrier of (TOP-REAL 2) ex y being Element of the carrier of (TOP-REAL 2) st S1[x,y] proof let x be Element of the carrier of (TOP-REAL 2); ::_thesis: ex y being Element of the carrier of (TOP-REAL 2) st S1[x,y] set q = x; percases ( x = 0. (TOP-REAL 2) or ( ( ( x `2 <= x `1 & - (x `1) <= x `2 ) or ( x `2 >= x `1 & x `2 <= - (x `1) ) ) & x <> 0. (TOP-REAL 2) ) or ( not ( x `2 <= x `1 & - (x `1) <= x `2 ) & not ( x `2 >= x `1 & x `2 <= - (x `1) ) & x <> 0. (TOP-REAL 2) ) ) ; suppose x = 0. (TOP-REAL 2) ; ::_thesis: ex y being Element of the carrier of (TOP-REAL 2) st S1[x,y] then for p being Point of (TOP-REAL 2) st p = x holds ( ( p = 0. (TOP-REAL 2) implies 0. (TOP-REAL 2) = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies 0. (TOP-REAL 2) = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or 0. (TOP-REAL 2) = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ; hence ex y being Element of the carrier of (TOP-REAL 2) st S1[x,y] ; ::_thesis: verum end; supposeA2: ( ( ( x `2 <= x `1 & - (x `1) <= x `2 ) or ( x `2 >= x `1 & x `2 <= - (x `1) ) ) & x <> 0. (TOP-REAL 2) ) ; ::_thesis: ex y being Element of the carrier of (TOP-REAL 2) st S1[x,y] set r = |[((x `1) / (sqrt (1 + (((x `2) / (x `1)) ^2)))),((x `2) / (sqrt (1 + (((x `2) / (x `1)) ^2))))]|; for p being Point of (TOP-REAL 2) st p = x holds ( ( p = 0. (TOP-REAL 2) implies |[((x `1) / (sqrt (1 + (((x `2) / (x `1)) ^2)))),((x `2) / (sqrt (1 + (((x `2) / (x `1)) ^2))))]| = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies |[((x `1) / (sqrt (1 + (((x `2) / (x `1)) ^2)))),((x `2) / (sqrt (1 + (((x `2) / (x `1)) ^2))))]| = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or |[((x `1) / (sqrt (1 + (((x `2) / (x `1)) ^2)))),((x `2) / (sqrt (1 + (((x `2) / (x `1)) ^2))))]| = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) by A2; hence ex y being Element of the carrier of (TOP-REAL 2) st S1[x,y] ; ::_thesis: verum end; supposeA3: ( not ( x `2 <= x `1 & - (x `1) <= x `2 ) & not ( x `2 >= x `1 & x `2 <= - (x `1) ) & x <> 0. (TOP-REAL 2) ) ; ::_thesis: ex y being Element of the carrier of (TOP-REAL 2) st S1[x,y] set r = |[((x `1) / (sqrt (1 + (((x `1) / (x `2)) ^2)))),((x `2) / (sqrt (1 + (((x `1) / (x `2)) ^2))))]|; for p being Point of (TOP-REAL 2) st p = x holds ( ( p = 0. (TOP-REAL 2) implies |[((x `1) / (sqrt (1 + (((x `1) / (x `2)) ^2)))),((x `2) / (sqrt (1 + (((x `1) / (x `2)) ^2))))]| = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies |[((x `1) / (sqrt (1 + (((x `1) / (x `2)) ^2)))),((x `2) / (sqrt (1 + (((x `1) / (x `2)) ^2))))]| = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or |[((x `1) / (sqrt (1 + (((x `1) / (x `2)) ^2)))),((x `2) / (sqrt (1 + (((x `1) / (x `2)) ^2))))]| = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) by A3; hence ex y being Element of the carrier of (TOP-REAL 2) st S1[x,y] ; ::_thesis: verum end; end; end; ex h being Function of the carrier of (TOP-REAL 2), the carrier of (TOP-REAL 2) st for x being Element of the carrier of (TOP-REAL 2) holds S1[x,h . x] from FUNCT_2:sch_3(A1); then consider h being Function of the carrier of (TOP-REAL 2), the carrier of (TOP-REAL 2) such that A4: for x being Element of the carrier of (TOP-REAL 2) for p being Point of (TOP-REAL 2) st p = x holds ( ( p = 0. (TOP-REAL 2) implies h . x = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies h . x = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or h . x = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ; for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies h . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies h . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or h . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) by A4; hence ex b1 being Function of the carrier of (TOP-REAL 2), the carrier of (TOP-REAL 2) st for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies b1 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies b1 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or b1 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ; ::_thesis: verum end; uniqueness for b1, b2 being Function of the carrier of (TOP-REAL 2), the carrier of (TOP-REAL 2) st ( for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies b1 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies b1 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or b1 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ) & ( for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies b2 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies b2 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or b2 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ) holds b1 = b2 proof let h1, h2 be Function of the carrier of (TOP-REAL 2), the carrier of (TOP-REAL 2); ::_thesis: ( ( for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies h1 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies h1 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or h1 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ) & ( for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies h2 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies h2 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or h2 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ) implies h1 = h2 ) assume that A5: for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies h1 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies h1 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or h1 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) and A6: for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies h2 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies h2 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or h2 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ; ::_thesis: h1 = h2 for x being set st x in the carrier of (TOP-REAL 2) holds h1 . x = h2 . x proof let x be set ; ::_thesis: ( x in the carrier of (TOP-REAL 2) implies h1 . x = h2 . x ) assume x in the carrier of (TOP-REAL 2) ; ::_thesis: h1 . x = h2 . x then reconsider q = x as Point of (TOP-REAL 2) ; percases ( q = 0. (TOP-REAL 2) or ( ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) & q <> 0. (TOP-REAL 2) ) or ( not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) & q <> 0. (TOP-REAL 2) ) ) ; supposeA7: q = 0. (TOP-REAL 2) ; ::_thesis: h1 . x = h2 . x then h1 . q = q by A5; hence h1 . x = h2 . x by A6, A7; ::_thesis: verum end; supposeA8: ( ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) & q <> 0. (TOP-REAL 2) ) ; ::_thesis: h1 . x = h2 . x then h1 . q = |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]| by A5; hence h1 . x = h2 . x by A6, A8; ::_thesis: verum end; supposeA9: ( not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) & q <> 0. (TOP-REAL 2) ) ; ::_thesis: h1 . x = h2 . x then h1 . q = |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]| by A5; hence h1 . x = h2 . x by A6, A9; ::_thesis: verum end; end; end; hence h1 = h2 by FUNCT_2:12; ::_thesis: verum end; end; :: deftheorem Def1 defines Sq_Circ JGRAPH_3:def_1_:_ for b1 being Function of the carrier of (TOP-REAL 2), the carrier of (TOP-REAL 2) holds ( b1 = Sq_Circ iff for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies b1 . p = p ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies b1 . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or not p <> 0. (TOP-REAL 2) or b1 . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) ); theorem Th4: :: JGRAPH_3:4 for p being Point of (TOP-REAL 2) st p <> 0. (TOP-REAL 2) holds ( ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) implies Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) or Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) ) proof let p be Point of (TOP-REAL 2); ::_thesis: ( p <> 0. (TOP-REAL 2) implies ( ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) implies Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) or Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) ) ) A1: ( - (p `2) < p `1 implies - (- (p `2)) > - (p `1) ) by XREAL_1:24; assume A2: p <> 0. (TOP-REAL 2) ; ::_thesis: ( ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) implies Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) or Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) ) hereby ::_thesis: ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) or Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) assume A3: ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| now__::_thesis:_(_(_p_`1_<=_p_`2_&_-_(p_`2)_<=_p_`1_&_Sq_Circ_._p_=_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_or_(_p_`1_>=_p_`2_&_p_`1_<=_-_(p_`2)_&_Sq_Circ_._p_=_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_) percases ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) by A3; caseA4: ( p `1 <= p `2 & - (p `2) <= p `1 ) ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| now__::_thesis:_(_(_(_p_`2_<=_p_`1_&_-_(p_`1)_<=_p_`2_)_or_(_p_`2_>=_p_`1_&_p_`2_<=_-_(p_`1)_)_)_implies_Sq_Circ_._p_=_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_) assume A5: ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| A6: now__::_thesis:_(_(_p_`2_<=_p_`1_&_-_(p_`1)_<=_p_`2_&_(_p_`1_=_p_`2_or_p_`1_=_-_(p_`2)_)_)_or_(_p_`2_>=_p_`1_&_p_`2_<=_-_(p_`1)_&_(_p_`1_=_p_`2_or_p_`1_=_-_(p_`2)_)_)_) percases ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) by A5; case ( p `2 <= p `1 & - (p `1) <= p `2 ) ; ::_thesis: ( p `1 = p `2 or p `1 = - (p `2) ) hence ( p `1 = p `2 or p `1 = - (p `2) ) by A4, XXREAL_0:1; ::_thesis: verum end; case ( p `2 >= p `1 & p `2 <= - (p `1) ) ; ::_thesis: ( p `1 = p `2 or p `1 = - (p `2) ) then - (p `2) >= - (- (p `1)) by XREAL_1:24; hence ( p `1 = p `2 or p `1 = - (p `2) ) by A4, XXREAL_0:1; ::_thesis: verum end; end; end; now__::_thesis:_(_(_p_`1_=_p_`2_&_Sq_Circ_._p_=_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_or_(_p_`1_=_-_(p_`2)_&_Sq_Circ_._p_=_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_) percases ( p `1 = p `2 or p `1 = - (p `2) ) by A6; case p `1 = p `2 ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, A5, Def1; ::_thesis: verum end; caseA7: p `1 = - (p `2) ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| then ( p `1 <> 0 & - (p `1) = p `2 ) by A2, EUCLID:53, EUCLID:54; then A8: (p `2) / (p `1) = - 1 by XCMPLX_1:197; p `2 <> 0 by A2, A7, EUCLID:53, EUCLID:54; then (p `1) / (p `2) = - 1 by A7, XCMPLX_1:197; hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, A5, A8, Def1; ::_thesis: verum end; end; end; hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ; ::_thesis: verum end; hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, Def1; ::_thesis: verum end; caseA9: ( p `1 >= p `2 & p `1 <= - (p `2) ) ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| now__::_thesis:_(_(_(_p_`2_<=_p_`1_&_-_(p_`1)_<=_p_`2_)_or_(_p_`2_>=_p_`1_&_p_`2_<=_-_(p_`1)_)_)_implies_Sq_Circ_._p_=_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_) assume A10: ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| A11: now__::_thesis:_(_(_p_`2_<=_p_`1_&_-_(p_`1)_<=_p_`2_&_(_p_`1_=_p_`2_or_p_`1_=_-_(p_`2)_)_)_or_(_p_`2_>=_p_`1_&_p_`2_<=_-_(p_`1)_&_(_p_`1_=_p_`2_or_p_`1_=_-_(p_`2)_)_)_) percases ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) by A10; case ( p `2 <= p `1 & - (p `1) <= p `2 ) ; ::_thesis: ( p `1 = p `2 or p `1 = - (p `2) ) then - (- (p `1)) >= - (p `2) by XREAL_1:24; hence ( p `1 = p `2 or p `1 = - (p `2) ) by A9, XXREAL_0:1; ::_thesis: verum end; case ( p `2 >= p `1 & p `2 <= - (p `1) ) ; ::_thesis: ( p `1 = p `2 or p `1 = - (p `2) ) hence ( p `1 = p `2 or p `1 = - (p `2) ) by A9, XXREAL_0:1; ::_thesis: verum end; end; end; now__::_thesis:_(_(_p_`1_=_p_`2_&_Sq_Circ_._p_=_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_or_(_p_`1_=_-_(p_`2)_&_Sq_Circ_._p_=_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_) percases ( p `1 = p `2 or p `1 = - (p `2) ) by A11; case p `1 = p `2 ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, A10, Def1; ::_thesis: verum end; caseA12: p `1 = - (p `2) ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| then ( p `1 <> 0 & - (p `1) = p `2 ) by A2, EUCLID:53, EUCLID:54; then A13: (p `2) / (p `1) = - 1 by XCMPLX_1:197; p `2 <> 0 by A2, A12, EUCLID:53, EUCLID:54; then (p `1) / (p `2) = - 1 by A12, XCMPLX_1:197; hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, A10, A13, Def1; ::_thesis: verum end; end; end; hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ; ::_thesis: verum end; hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, Def1; ::_thesis: verum end; end; end; hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ; ::_thesis: verum end; A14: ( - (p `2) > p `1 implies - (- (p `2)) < - (p `1) ) by XREAL_1:24; assume ( not ( p `1 <= p `2 & - (p `2) <= p `1 ) & not ( p `1 >= p `2 & p `1 <= - (p `2) ) ) ; ::_thesis: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| hence Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by A2, A1, A14, Def1; ::_thesis: verum end; theorem Th5: :: JGRAPH_3:5 for X being non empty TopSpace for f1 being Function of X,R^1 st f1 is continuous & ( for q being Point of X ex r being real number st ( f1 . q = r & r >= 0 ) ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1 being real number st f1 . p = r1 holds g . p = sqrt r1 ) & g is continuous ) proof let X be non empty TopSpace; ::_thesis: for f1 being Function of X,R^1 st f1 is continuous & ( for q being Point of X ex r being real number st ( f1 . q = r & r >= 0 ) ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1 being real number st f1 . p = r1 holds g . p = sqrt r1 ) & g is continuous ) let f1 be Function of X,R^1; ::_thesis: ( f1 is continuous & ( for q being Point of X ex r being real number st ( f1 . q = r & r >= 0 ) ) implies ex g being Function of X,R^1 st ( ( for p being Point of X for r1 being real number st f1 . p = r1 holds g . p = sqrt r1 ) & g is continuous ) ) assume that A1: f1 is continuous and A2: for q being Point of X ex r being real number st ( f1 . q = r & r >= 0 ) ; ::_thesis: ex g being Function of X,R^1 st ( ( for p being Point of X for r1 being real number st f1 . p = r1 holds g . p = sqrt r1 ) & g is continuous ) defpred S1[ set , set ] means for r11 being real number st f1 . $1 = r11 holds $2 = sqrt r11; A3: for x being Element of X ex y being Element of REAL st S1[x,y] proof let x be Element of X; ::_thesis: ex y being Element of REAL st S1[x,y] reconsider pp = x as Point of X ; reconsider r1 = f1 . pp as Real by TOPMETR:17; for r11 being real number st f1 . x = r11 holds sqrt r1 = sqrt r11 ; hence ex y being Element of REAL st S1[x,y] ; ::_thesis: verum end; ex f being Function of the carrier of X,REAL st for x2 being Element of X holds S1[x2,f . x2] from FUNCT_2:sch_3(A3); then consider f being Function of the carrier of X,REAL such that A4: for x2 being Element of X for r11 being real number st f1 . x2 = r11 holds f . x2 = sqrt r11 ; reconsider g0 = f as Function of X,R^1 by TOPMETR:17; for p being Point of X for V being Subset of R^1 st g0 . p in V & V is open holds ex W being Subset of X st ( p in W & W is open & g0 .: W c= V ) proof let p be Point of X; ::_thesis: for V being Subset of R^1 st g0 . p in V & V is open holds ex W being Subset of X st ( p in W & W is open & g0 .: W c= V ) let V be Subset of R^1; ::_thesis: ( g0 . p in V & V is open implies ex W being Subset of X st ( p in W & W is open & g0 .: W c= V ) ) reconsider r = g0 . p as Real by TOPMETR:17; reconsider r1 = f1 . p as Real by TOPMETR:17; assume ( g0 . p in V & V is open ) ; ::_thesis: ex W being Subset of X st ( p in W & W is open & g0 .: W c= V ) then consider r01 being Real such that A5: r01 > 0 and A6: ].(r - r01),(r + r01).[ c= V by FRECHET:8; set r0 = min (r01,1); A7: min (r01,1) > 0 by A5, XXREAL_0:21; A8: min (r01,1) > 0 by A5, XXREAL_0:21; min (r01,1) <= r01 by XXREAL_0:17; then ( r - r01 <= r - (min (r01,1)) & r + (min (r01,1)) <= r + r01 ) by XREAL_1:6, XREAL_1:10; then ].(r - (min (r01,1))),(r + (min (r01,1))).[ c= ].(r - r01),(r + r01).[ by XXREAL_1:46; then A9: ].(r - (min (r01,1))),(r + (min (r01,1))).[ c= V by A6, XBOOLE_1:1; A10: ex r8 being real number st ( f1 . p = r8 & r8 >= 0 ) by A2; A11: r = sqrt r1 by A4; then A12: r1 = r ^2 by A10, SQUARE_1:def_2; A13: r >= 0 by A10, A11, SQUARE_1:17, SQUARE_1:26; then A14: ((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2) > 0 + 0 by A8, SQUARE_1:12, XREAL_1:8; percases ( r - (min (r01,1)) > 0 or r - (min (r01,1)) <= 0 ) ; supposeA15: r - (min (r01,1)) > 0 ; ::_thesis: ex W being Subset of X st ( p in W & W is open & g0 .: W c= V ) set r4 = (min (r01,1)) * (r - (min (r01,1))); reconsider G1 = ].(r1 - ((min (r01,1)) * (r - (min (r01,1))))),(r1 + ((min (r01,1)) * (r - (min (r01,1))))).[ as Subset of R^1 by TOPMETR:17; A16: r1 < r1 + ((min (r01,1)) * (r - (min (r01,1)))) by A8, A15, XREAL_1:29, XREAL_1:129; then r1 - ((min (r01,1)) * (r - (min (r01,1)))) < r1 by XREAL_1:19; then A17: f1 . p in G1 by A16, XXREAL_1:4; G1 is open by JORDAN6:35; then consider W1 being Subset of X such that A18: ( p in W1 & W1 is open ) and A19: f1 .: W1 c= G1 by A1, A17, JGRAPH_2:10; set W = W1; A20: ( (r - ((1 / 2) * (min (r01,1)))) ^2 >= 0 & (min (r01,1)) ^2 >= 0 ) by XREAL_1:63; now__::_thesis:_not_r1_=_0 assume r1 = 0 ; ::_thesis: contradiction then r = 0 by A4, SQUARE_1:17; hence contradiction by A7, A15; ::_thesis: verum end; then 0 < r by A10, A11, SQUARE_1:25; then A21: (min (r01,1)) * r > 0 by A8, XREAL_1:129; then 0 + (r * (min (r01,1))) < (r * (min (r01,1))) + (r * (min (r01,1))) by XREAL_1:8; then ((min (r01,1)) * r) - ((min (r01,1)) * (min (r01,1))) < ((2 * r) * (min (r01,1))) - ((min (r01,1)) * (min (r01,1))) by XREAL_1:14; then - ((min (r01,1)) * (r - (min (r01,1)))) > - (((2 * r) * (min (r01,1))) - ((min (r01,1)) ^2)) by XREAL_1:24; then r1 + (- ((min (r01,1)) * (r - (min (r01,1))))) > (r ^2) + (- (((2 * r) * (min (r01,1))) - ((min (r01,1)) ^2))) by A12, XREAL_1:8; then sqrt (r1 - ((min (r01,1)) * (r - (min (r01,1))))) > sqrt ((r - (min (r01,1))) ^2) by SQUARE_1:27, XREAL_1:63; then A22: sqrt (r1 - ((min (r01,1)) * (r - (min (r01,1))))) > r - (min (r01,1)) by A15, SQUARE_1:22; 0 + (r * (min (r01,1))) < (r * (min (r01,1))) + (r * (min (r01,1))) by A21, XREAL_1:8; then ((min (r01,1)) * r) + 0 < ((2 * r) * (min (r01,1))) + (2 * ((min (r01,1)) * (min (r01,1)))) by A8, XREAL_1:8; then (((min (r01,1)) * r) - ((min (r01,1)) * (min (r01,1)))) + ((min (r01,1)) * (min (r01,1))) < (((2 * r) * (min (r01,1))) + ((min (r01,1)) * (min (r01,1)))) + ((min (r01,1)) * (min (r01,1))) ; then ((min (r01,1)) * r) - ((min (r01,1)) * (min (r01,1))) < ((2 * r) * (min (r01,1))) + ((min (r01,1)) * (min (r01,1))) by XREAL_1:7; then r1 + ((min (r01,1)) * (r - (min (r01,1)))) < (r ^2) + (((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) by A12, XREAL_1:8; then sqrt (r1 + ((min (r01,1)) * (r - (min (r01,1))))) < sqrt ((r + (min (r01,1))) ^2) by A10, A8, A15, SQUARE_1:27; then A23: r + (min (r01,1)) > sqrt (r1 + ((min (r01,1)) * (r - (min (r01,1))))) by A13, A7, SQUARE_1:22; A24: r1 - ((min (r01,1)) * (r - (min (r01,1)))) = (r ^2) - (((min (r01,1)) * r) - ((min (r01,1)) * (min (r01,1)))) by A10, A11, SQUARE_1:def_2 .= ((r - ((1 / 2) * (min (r01,1)))) ^2) + ((3 / 4) * ((min (r01,1)) ^2)) ; g0 .: W1 c= ].(r - (min (r01,1))),(r + (min (r01,1))).[ proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in g0 .: W1 or x in ].(r - (min (r01,1))),(r + (min (r01,1))).[ ) assume x in g0 .: W1 ; ::_thesis: x in ].(r - (min (r01,1))),(r + (min (r01,1))).[ then consider z being set such that A25: z in dom g0 and A26: z in W1 and A27: g0 . z = x by FUNCT_1:def_6; reconsider pz = z as Point of X by A25; reconsider aa1 = f1 . pz as Real by TOPMETR:17; A28: ex r9 being real number st ( f1 . pz = r9 & r9 >= 0 ) by A2; pz in the carrier of X ; then pz in dom f1 by FUNCT_2:def_1; then A29: f1 . pz in f1 .: W1 by A26, FUNCT_1:def_6; then aa1 < r1 + ((min (r01,1)) * (r - (min (r01,1)))) by A19, XXREAL_1:4; then sqrt aa1 < sqrt (r1 + ((min (r01,1)) * (r - (min (r01,1))))) by A28, SQUARE_1:27; then A30: sqrt aa1 < r + (min (r01,1)) by A23, XXREAL_0:2; A31: r1 - ((min (r01,1)) * (r - (min (r01,1)))) < aa1 by A19, A29, XXREAL_1:4; A32: now__::_thesis:_(_(_0_<=_r1_-_((min_(r01,1))_*_(r_-_(min_(r01,1))))_&_r_-_(min_(r01,1))_<_sqrt_aa1_)_or_(_0_>_r1_-_((min_(r01,1))_*_(r_-_(min_(r01,1))))_&_contradiction_)_) percases ( 0 <= r1 - ((min (r01,1)) * (r - (min (r01,1)))) or 0 > r1 - ((min (r01,1)) * (r - (min (r01,1)))) ) ; case 0 <= r1 - ((min (r01,1)) * (r - (min (r01,1)))) ; ::_thesis: r - (min (r01,1)) < sqrt aa1 then sqrt (r1 - ((min (r01,1)) * (r - (min (r01,1))))) <= sqrt aa1 by A31, SQUARE_1:26; hence r - (min (r01,1)) < sqrt aa1 by A22, XXREAL_0:2; ::_thesis: verum end; case 0 > r1 - ((min (r01,1)) * (r - (min (r01,1)))) ; ::_thesis: contradiction hence contradiction by A24, A20; ::_thesis: verum end; end; end; x = sqrt aa1 by A4, A27; hence x in ].(r - (min (r01,1))),(r + (min (r01,1))).[ by A30, A32, XXREAL_1:4; ::_thesis: verum end; hence ex W being Subset of X st ( p in W & W is open & g0 .: W c= V ) by A9, A18, XBOOLE_1:1; ::_thesis: verum end; supposeA33: r - (min (r01,1)) <= 0 ; ::_thesis: ex W being Subset of X st ( p in W & W is open & g0 .: W c= V ) set r4 = (((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3; reconsider G1 = ].(r1 - ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3)),(r1 + ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3)).[ as Subset of R^1 by TOPMETR:17; (((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3 > 0 by A14, XREAL_1:139; then A34: r1 < r1 + ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3) by XREAL_1:29; then r1 - ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3) < r1 by XREAL_1:19; then A35: f1 . p in G1 by A34, XXREAL_1:4; G1 is open by JORDAN6:35; then consider W1 being Subset of X such that A36: ( p in W1 & W1 is open ) and A37: f1 .: W1 c= G1 by A1, A35, JGRAPH_2:10; set W = W1; (((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3 < ((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2) by A14, XREAL_1:221; then r1 + ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3) < (r ^2) + (((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) by A12, XREAL_1:8; then sqrt (r1 + ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3)) <= sqrt ((r + (min (r01,1))) ^2) by A10, A13, A8, SQUARE_1:26; then A38: r + (min (r01,1)) >= sqrt (r1 + ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3)) by A13, A7, SQUARE_1:22; g0 .: W1 c= ].(r - (min (r01,1))),(r + (min (r01,1))).[ proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in g0 .: W1 or x in ].(r - (min (r01,1))),(r + (min (r01,1))).[ ) assume x in g0 .: W1 ; ::_thesis: x in ].(r - (min (r01,1))),(r + (min (r01,1))).[ then consider z being set such that A39: z in dom g0 and A40: z in W1 and A41: g0 . z = x by FUNCT_1:def_6; reconsider pz = z as Point of X by A39; reconsider aa1 = f1 . pz as Real by TOPMETR:17; A42: ex r9 being real number st ( f1 . pz = r9 & r9 >= 0 ) by A2; pz in the carrier of X ; then pz in dom f1 by FUNCT_2:def_1; then A43: f1 . pz in f1 .: W1 by A40, FUNCT_1:def_6; then aa1 < r1 + ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3) by A37, XXREAL_1:4; then sqrt aa1 < sqrt (r1 + ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3)) by A42, SQUARE_1:27; then A44: sqrt aa1 < r + (min (r01,1)) by A38, XXREAL_0:2; A45: r1 - ((((2 * r) * (min (r01,1))) + ((min (r01,1)) ^2)) / 3) < aa1 by A37, A43, XXREAL_1:4; A46: now__::_thesis:_(_(_r_-_(min_(r01,1))_=_0_&_r_-_(min_(r01,1))_<_sqrt_aa1_)_or_(_r_-_(min_(r01,1))_<_0_&_r_-_(min_(r01,1))_<_sqrt_aa1_)_) percases ( r - (min (r01,1)) = 0 or r - (min (r01,1)) < 0 ) by A33; case r - (min (r01,1)) = 0 ; ::_thesis: r - (min (r01,1)) < sqrt aa1 hence r - (min (r01,1)) < sqrt aa1 by A12, A45, SQUARE_1:17, SQUARE_1:27; ::_thesis: verum end; case r - (min (r01,1)) < 0 ; ::_thesis: r - (min (r01,1)) < sqrt aa1 hence r - (min (r01,1)) < sqrt aa1 by A42, SQUARE_1:17, SQUARE_1:26; ::_thesis: verum end; end; end; x = sqrt aa1 by A4, A41; hence x in ].(r - (min (r01,1))),(r + (min (r01,1))).[ by A44, A46, XXREAL_1:4; ::_thesis: verum end; hence ex W being Subset of X st ( p in W & W is open & g0 .: W c= V ) by A9, A36, XBOOLE_1:1; ::_thesis: verum end; end; end; then A47: g0 is continuous by JGRAPH_2:10; for p being Point of X for r11 being real number st f1 . p = r11 holds g0 . p = sqrt r11 by A4; hence ex g being Function of X,R^1 st ( ( for p being Point of X for r1 being real number st f1 . p = r1 holds g . p = sqrt r1 ) & g is continuous ) by A47; ::_thesis: verum end; theorem Th6: :: JGRAPH_3:6 for X being non empty TopSpace for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = (r1 / r2) ^2 ) & g is continuous ) proof let X be non empty TopSpace; ::_thesis: for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = (r1 / r2) ^2 ) & g is continuous ) let f1, f2 be Function of X,R^1; ::_thesis: ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) implies ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = (r1 / r2) ^2 ) & g is continuous ) ) assume ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) ) ; ::_thesis: ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = (r1 / r2) ^2 ) & g is continuous ) then consider g2 being Function of X,R^1 such that A1: for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g2 . p = r1 / r2 and A2: g2 is continuous by JGRAPH_2:27; consider g3 being Function of X,R^1 such that A3: for p being Point of X for r1 being real number st g2 . p = r1 holds g3 . p = r1 * r1 and A4: g3 is continuous by A2, JGRAPH_2:22; for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = (r1 / r2) ^2 proof let p be Point of X; ::_thesis: for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = (r1 / r2) ^2 let r1, r2 be real number ; ::_thesis: ( f1 . p = r1 & f2 . p = r2 implies g3 . p = (r1 / r2) ^2 ) assume ( f1 . p = r1 & f2 . p = r2 ) ; ::_thesis: g3 . p = (r1 / r2) ^2 then g2 . p = r1 / r2 by A1; hence g3 . p = (r1 / r2) ^2 by A3; ::_thesis: verum end; hence ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = (r1 / r2) ^2 ) & g is continuous ) by A4; ::_thesis: verum end; theorem Th7: :: JGRAPH_3:7 for X being non empty TopSpace for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = 1 + ((r1 / r2) ^2) ) & g is continuous ) proof let X be non empty TopSpace; ::_thesis: for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = 1 + ((r1 / r2) ^2) ) & g is continuous ) let f1, f2 be Function of X,R^1; ::_thesis: ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) implies ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = 1 + ((r1 / r2) ^2) ) & g is continuous ) ) assume ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) ) ; ::_thesis: ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = 1 + ((r1 / r2) ^2) ) & g is continuous ) then consider g2 being Function of X,R^1 such that A1: for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g2 . p = (r1 / r2) ^2 and A2: g2 is continuous by Th6; consider g3 being Function of X,R^1 such that A3: for p being Point of X for r1 being real number st g2 . p = r1 holds g3 . p = r1 + 1 and A4: g3 is continuous by A2, JGRAPH_2:24; for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = 1 + ((r1 / r2) ^2) proof let p be Point of X; ::_thesis: for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = 1 + ((r1 / r2) ^2) let r1, r2 be real number ; ::_thesis: ( f1 . p = r1 & f2 . p = r2 implies g3 . p = 1 + ((r1 / r2) ^2) ) assume ( f1 . p = r1 & f2 . p = r2 ) ; ::_thesis: g3 . p = 1 + ((r1 / r2) ^2) then g2 . p = (r1 / r2) ^2 by A1; hence g3 . p = 1 + ((r1 / r2) ^2) by A3; ::_thesis: verum end; hence ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = 1 + ((r1 / r2) ^2) ) & g is continuous ) by A4; ::_thesis: verum end; theorem Th8: :: JGRAPH_3:8 for X being non empty TopSpace for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = sqrt (1 + ((r1 / r2) ^2)) ) & g is continuous ) proof let X be non empty TopSpace; ::_thesis: for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = sqrt (1 + ((r1 / r2) ^2)) ) & g is continuous ) let f1, f2 be Function of X,R^1; ::_thesis: ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) implies ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = sqrt (1 + ((r1 / r2) ^2)) ) & g is continuous ) ) assume ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) ) ; ::_thesis: ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = sqrt (1 + ((r1 / r2) ^2)) ) & g is continuous ) then consider g2 being Function of X,R^1 such that A1: for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g2 . p = 1 + ((r1 / r2) ^2) and A2: g2 is continuous by Th7; for q being Point of X ex r being real number st ( g2 . q = r & r >= 0 ) proof let q be Point of X; ::_thesis: ex r being real number st ( g2 . q = r & r >= 0 ) reconsider r1 = f1 . q, r2 = f2 . q as Real by TOPMETR:17; 1 + ((r1 / r2) ^2) > 0 by Lm1; hence ex r being real number st ( g2 . q = r & r >= 0 ) by A1; ::_thesis: verum end; then consider g3 being Function of X,R^1 such that A3: for p being Point of X for r1 being real number st g2 . p = r1 holds g3 . p = sqrt r1 and A4: g3 is continuous by A2, Th5; for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = sqrt (1 + ((r1 / r2) ^2)) proof let p be Point of X; ::_thesis: for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = sqrt (1 + ((r1 / r2) ^2)) let r1, r2 be real number ; ::_thesis: ( f1 . p = r1 & f2 . p = r2 implies g3 . p = sqrt (1 + ((r1 / r2) ^2)) ) assume ( f1 . p = r1 & f2 . p = r2 ) ; ::_thesis: g3 . p = sqrt (1 + ((r1 / r2) ^2)) then g2 . p = 1 + ((r1 / r2) ^2) by A1; hence g3 . p = sqrt (1 + ((r1 / r2) ^2)) by A3; ::_thesis: verum end; hence ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = sqrt (1 + ((r1 / r2) ^2)) ) & g is continuous ) by A4; ::_thesis: verum end; theorem Th9: :: JGRAPH_3:9 for X being non empty TopSpace for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) proof let X be non empty TopSpace; ::_thesis: for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) let f1, f2 be Function of X,R^1; ::_thesis: ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) implies ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) ) assume that A1: f1 is continuous and A2: ( f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) ) ; ::_thesis: ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) consider g2 being Function of X,R^1 such that A3: for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g2 . p = sqrt (1 + ((r1 / r2) ^2)) and A4: g2 is continuous by A1, A2, Th8; for q being Point of X holds g2 . q <> 0 proof let q be Point of X; ::_thesis: g2 . q <> 0 reconsider r1 = f1 . q, r2 = f2 . q as Real by TOPMETR:17; sqrt (1 + ((r1 / r2) ^2)) > 0 by Lm1, SQUARE_1:25; hence g2 . q <> 0 by A3; ::_thesis: verum end; then consider g3 being Function of X,R^1 such that A5: for p being Point of X for r1, r0 being real number st f1 . p = r1 & g2 . p = r0 holds g3 . p = r1 / r0 and A6: g3 is continuous by A1, A4, JGRAPH_2:27; for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) proof let p be Point of X; ::_thesis: for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) let r1, r2 be real number ; ::_thesis: ( f1 . p = r1 & f2 . p = r2 implies g3 . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) ) assume that A7: f1 . p = r1 and A8: f2 . p = r2 ; ::_thesis: g3 . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) g2 . p = sqrt (1 + ((r1 / r2) ^2)) by A3, A7, A8; hence g3 . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) by A5, A7; ::_thesis: verum end; hence ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) by A6; ::_thesis: verum end; theorem Th10: :: JGRAPH_3:10 for X being non empty TopSpace for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) proof let X be non empty TopSpace; ::_thesis: for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) let f1, f2 be Function of X,R^1; ::_thesis: ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) implies ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) ) assume that A1: f1 is continuous and A2: f2 is continuous and A3: for q being Point of X holds f2 . q <> 0 ; ::_thesis: ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) consider g2 being Function of X,R^1 such that A4: for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g2 . p = sqrt (1 + ((r1 / r2) ^2)) and A5: g2 is continuous by A1, A2, A3, Th8; for q being Point of X holds g2 . q <> 0 proof let q be Point of X; ::_thesis: g2 . q <> 0 reconsider r1 = f1 . q, r2 = f2 . q as Real by TOPMETR:17; sqrt (1 + ((r1 / r2) ^2)) > 0 by Lm1, SQUARE_1:25; hence g2 . q <> 0 by A4; ::_thesis: verum end; then consider g3 being Function of X,R^1 such that A6: for p being Point of X for r2, r0 being real number st f2 . p = r2 & g2 . p = r0 holds g3 . p = r2 / r0 and A7: g3 is continuous by A2, A5, JGRAPH_2:27; for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) proof let p be Point of X; ::_thesis: for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) let r1, r2 be real number ; ::_thesis: ( f1 . p = r1 & f2 . p = r2 implies g3 . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) ) assume that A8: f1 . p = r1 and A9: f2 . p = r2 ; ::_thesis: g3 . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) g2 . p = sqrt (1 + ((r1 / r2) ^2)) by A4, A8, A9; hence g3 . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) by A6, A9; ::_thesis: verum end; hence ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 / (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) by A7; ::_thesis: verum end; Lm4: for K1 being non empty Subset of (TOP-REAL 2) for q being Point of ((TOP-REAL 2) | K1) holds (proj2 | K1) . q = proj2 . q proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for q being Point of ((TOP-REAL 2) | K1) holds (proj2 | K1) . q = proj2 . q let q be Point of ((TOP-REAL 2) | K1); ::_thesis: (proj2 | K1) . q = proj2 . q ( the carrier of ((TOP-REAL 2) | K1) = K1 & q in the carrier of ((TOP-REAL 2) | K1) ) by PRE_TOPC:8; then q in (dom proj2) /\ K1 by Lm3, XBOOLE_0:def_4; hence (proj2 | K1) . q = proj2 . q by FUNCT_1:48; ::_thesis: verum end; Lm5: for K1 being non empty Subset of (TOP-REAL 2) holds proj2 | K1 is continuous Function of ((TOP-REAL 2) | K1),R^1 proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: proj2 | K1 is continuous Function of ((TOP-REAL 2) | K1),R^1 reconsider g2 = proj2 | K1 as Function of ((TOP-REAL 2) | K1),R^1 by TOPMETR:17; for q being Point of ((TOP-REAL 2) | K1) holds g2 . q = proj2 . q by Lm4; hence proj2 | K1 is continuous Function of ((TOP-REAL 2) | K1),R^1 by JGRAPH_2:30; ::_thesis: verum end; Lm6: for K1 being non empty Subset of (TOP-REAL 2) for q being Point of ((TOP-REAL 2) | K1) holds (proj1 | K1) . q = proj1 . q proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for q being Point of ((TOP-REAL 2) | K1) holds (proj1 | K1) . q = proj1 . q let q be Point of ((TOP-REAL 2) | K1); ::_thesis: (proj1 | K1) . q = proj1 . q ( the carrier of ((TOP-REAL 2) | K1) = K1 & q in the carrier of ((TOP-REAL 2) | K1) ) by PRE_TOPC:8; then q in (dom proj1) /\ K1 by Lm2, XBOOLE_0:def_4; hence (proj1 | K1) . q = proj1 . q by FUNCT_1:48; ::_thesis: verum end; Lm7: for K1 being non empty Subset of (TOP-REAL 2) holds proj1 | K1 is continuous Function of ((TOP-REAL 2) | K1),R^1 proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: proj1 | K1 is continuous Function of ((TOP-REAL 2) | K1),R^1 reconsider g2 = proj1 | K1 as Function of ((TOP-REAL 2) | K1),R^1 by TOPMETR:17; for q being Point of ((TOP-REAL 2) | K1) holds g2 . q = proj1 . q by Lm6; hence proj1 | K1 is continuous Function of ((TOP-REAL 2) | K1),R^1 by JGRAPH_2:29; ::_thesis: verum end; theorem Th11: :: JGRAPH_3:11 for K1 being non empty Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) holds f is continuous proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) holds f is continuous let f be Function of ((TOP-REAL 2) | K1),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) implies f is continuous ) reconsider g1 = proj1 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm7; reconsider g2 = proj2 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm5; assume that A1: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) and A2: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ; ::_thesis: f is continuous A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; now__::_thesis:_for_q_being_Point_of_((TOP-REAL_2)_|_K1)_holds_g1_._q_<>_0 let q be Point of ((TOP-REAL 2) | K1); ::_thesis: g1 . q <> 0 q in the carrier of ((TOP-REAL 2) | K1) ; then reconsider q2 = q as Point of (TOP-REAL 2) by A3; g1 . q = proj1 . q by Lm6 .= q2 `1 by PSCOMP_1:def_5 ; hence g1 . q <> 0 by A2; ::_thesis: verum end; then consider g3 being Function of ((TOP-REAL 2) | K1),R^1 such that A4: for q being Point of ((TOP-REAL 2) | K1) for r1, r2 being real number st g2 . q = r1 & g1 . q = r2 holds g3 . q = r2 / (sqrt (1 + ((r1 / r2) ^2))) and A5: g3 is continuous by Th10; A6: for x being set st x in dom f holds f . x = g3 . x proof let x be set ; ::_thesis: ( x in dom f implies f . x = g3 . x ) assume A7: x in dom f ; ::_thesis: f . x = g3 . x then reconsider s = x as Point of ((TOP-REAL 2) | K1) ; x in the carrier of ((TOP-REAL 2) | K1) by A7; then x in K1 by PRE_TOPC:8; then reconsider r = x as Point of (TOP-REAL 2) ; A8: ( proj2 . r = r `2 & proj1 . r = r `1 ) by PSCOMP_1:def_5, PSCOMP_1:def_6; A9: ( g2 . s = proj2 . s & g1 . s = proj1 . s ) by Lm4, Lm6; f . r = (r `1) / (sqrt (1 + (((r `2) / (r `1)) ^2))) by A1, A7; hence f . x = g3 . x by A4, A9, A8; ::_thesis: verum end; dom g3 = the carrier of ((TOP-REAL 2) | K1) by FUNCT_2:def_1; then dom f = dom g3 by FUNCT_2:def_1; hence f is continuous by A5, A6, FUNCT_1:2; ::_thesis: verum end; theorem Th12: :: JGRAPH_3:12 for K1 being non empty Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) holds f is continuous proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) holds f is continuous let f be Function of ((TOP-REAL 2) | K1),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) implies f is continuous ) reconsider g1 = proj1 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm7; reconsider g2 = proj2 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm5; assume that A1: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) and A2: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ; ::_thesis: f is continuous A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; now__::_thesis:_for_q_being_Point_of_((TOP-REAL_2)_|_K1)_holds_g1_._q_<>_0 let q be Point of ((TOP-REAL 2) | K1); ::_thesis: g1 . q <> 0 q in the carrier of ((TOP-REAL 2) | K1) ; then reconsider q2 = q as Point of (TOP-REAL 2) by A3; g1 . q = proj1 . q by Lm6 .= q2 `1 by PSCOMP_1:def_5 ; hence g1 . q <> 0 by A2; ::_thesis: verum end; then consider g3 being Function of ((TOP-REAL 2) | K1),R^1 such that A4: for q being Point of ((TOP-REAL 2) | K1) for r1, r2 being real number st g2 . q = r1 & g1 . q = r2 holds g3 . q = r1 / (sqrt (1 + ((r1 / r2) ^2))) and A5: g3 is continuous by Th9; A6: for x being set st x in dom f holds f . x = g3 . x proof let x be set ; ::_thesis: ( x in dom f implies f . x = g3 . x ) assume A7: x in dom f ; ::_thesis: f . x = g3 . x then reconsider s = x as Point of ((TOP-REAL 2) | K1) ; x in the carrier of ((TOP-REAL 2) | K1) by A7; then x in K1 by PRE_TOPC:8; then reconsider r = x as Point of (TOP-REAL 2) ; A8: ( proj2 . r = r `2 & proj1 . r = r `1 ) by PSCOMP_1:def_5, PSCOMP_1:def_6; A9: ( g2 . s = proj2 . s & g1 . s = proj1 . s ) by Lm4, Lm6; f . r = (r `2) / (sqrt (1 + (((r `2) / (r `1)) ^2))) by A1, A7; hence f . x = g3 . x by A4, A9, A8; ::_thesis: verum end; dom g3 = the carrier of ((TOP-REAL 2) | K1) by FUNCT_2:def_1; then dom f = dom g3 by FUNCT_2:def_1; hence f is continuous by A5, A6, FUNCT_1:2; ::_thesis: verum end; theorem Th13: :: JGRAPH_3:13 for K1 being non empty Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) holds f is continuous proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) holds f is continuous let f be Function of ((TOP-REAL 2) | K1),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) implies f is continuous ) reconsider g1 = proj1 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm7; reconsider g2 = proj2 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm5; assume that A1: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) and A2: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ; ::_thesis: f is continuous A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; now__::_thesis:_for_q_being_Point_of_((TOP-REAL_2)_|_K1)_holds_g2_._q_<>_0 let q be Point of ((TOP-REAL 2) | K1); ::_thesis: g2 . q <> 0 q in the carrier of ((TOP-REAL 2) | K1) ; then reconsider q2 = q as Point of (TOP-REAL 2) by A3; g2 . q = proj2 . q by Lm4 .= q2 `2 by PSCOMP_1:def_6 ; hence g2 . q <> 0 by A2; ::_thesis: verum end; then consider g3 being Function of ((TOP-REAL 2) | K1),R^1 such that A4: for q being Point of ((TOP-REAL 2) | K1) for r1, r2 being real number st g1 . q = r1 & g2 . q = r2 holds g3 . q = r2 / (sqrt (1 + ((r1 / r2) ^2))) and A5: g3 is continuous by Th10; A6: for x being set st x in dom f holds f . x = g3 . x proof let x be set ; ::_thesis: ( x in dom f implies f . x = g3 . x ) assume A7: x in dom f ; ::_thesis: f . x = g3 . x then reconsider s = x as Point of ((TOP-REAL 2) | K1) ; x in the carrier of ((TOP-REAL 2) | K1) by A7; then x in K1 by PRE_TOPC:8; then reconsider r = x as Point of (TOP-REAL 2) ; A8: ( proj2 . r = r `2 & proj1 . r = r `1 ) by PSCOMP_1:def_5, PSCOMP_1:def_6; A9: ( g2 . s = proj2 . s & g1 . s = proj1 . s ) by Lm4, Lm6; f . r = (r `2) / (sqrt (1 + (((r `1) / (r `2)) ^2))) by A1, A7; hence f . x = g3 . x by A4, A9, A8; ::_thesis: verum end; dom g3 = the carrier of ((TOP-REAL 2) | K1) by FUNCT_2:def_1; then dom f = dom g3 by FUNCT_2:def_1; hence f is continuous by A5, A6, FUNCT_1:2; ::_thesis: verum end; theorem Th14: :: JGRAPH_3:14 for K1 being non empty Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) holds f is continuous proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) holds f is continuous let f be Function of ((TOP-REAL 2) | K1),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) implies f is continuous ) reconsider g1 = proj1 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm7; reconsider g2 = proj2 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm5; assume that A1: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) and A2: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ; ::_thesis: f is continuous A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; now__::_thesis:_for_q_being_Point_of_((TOP-REAL_2)_|_K1)_holds_g2_._q_<>_0 let q be Point of ((TOP-REAL 2) | K1); ::_thesis: g2 . q <> 0 q in the carrier of ((TOP-REAL 2) | K1) ; then reconsider q2 = q as Point of (TOP-REAL 2) by A3; g2 . q = proj2 . q by Lm4 .= q2 `2 by PSCOMP_1:def_6 ; hence g2 . q <> 0 by A2; ::_thesis: verum end; then consider g3 being Function of ((TOP-REAL 2) | K1),R^1 such that A4: for q being Point of ((TOP-REAL 2) | K1) for r1, r2 being real number st g1 . q = r1 & g2 . q = r2 holds g3 . q = r1 / (sqrt (1 + ((r1 / r2) ^2))) and A5: g3 is continuous by Th9; A6: for x being set st x in dom f holds f . x = g3 . x proof let x be set ; ::_thesis: ( x in dom f implies f . x = g3 . x ) assume A7: x in dom f ; ::_thesis: f . x = g3 . x then reconsider s = x as Point of ((TOP-REAL 2) | K1) ; x in the carrier of ((TOP-REAL 2) | K1) by A7; then x in K1 by PRE_TOPC:8; then reconsider r = x as Point of (TOP-REAL 2) ; A8: ( proj2 . r = r `2 & proj1 . r = r `1 ) by PSCOMP_1:def_5, PSCOMP_1:def_6; A9: ( g2 . s = proj2 . s & g1 . s = proj1 . s ) by Lm4, Lm6; f . r = (r `1) / (sqrt (1 + (((r `1) / (r `2)) ^2))) by A1, A7; hence f . x = g3 . x by A4, A9, A8; ::_thesis: verum end; dom g3 = the carrier of ((TOP-REAL 2) | K1) by FUNCT_2:def_1; then dom f = dom g3 by FUNCT_2:def_1; hence f is continuous by A5, A6, FUNCT_1:2; ::_thesis: verum end; Lm8: 0.REAL 2 = 0. (TOP-REAL 2) by EUCLID:66; Lm9: ( ( (1.REAL 2) `2 <= (1.REAL 2) `1 & - ((1.REAL 2) `1) <= (1.REAL 2) `2 ) or ( (1.REAL 2) `2 >= (1.REAL 2) `1 & (1.REAL 2) `2 <= - ((1.REAL 2) `1) ) ) by JGRAPH_2:5; Lm10: 1.REAL 2 <> 0. (TOP-REAL 2) by Lm8, REVROT_1:19; Lm11: for K1 being non empty Subset of (TOP-REAL 2) holds dom (proj2 * (Sq_Circ | K1)) = the carrier of ((TOP-REAL 2) | K1) proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: dom (proj2 * (Sq_Circ | K1)) = the carrier of ((TOP-REAL 2) | K1) A1: dom (Sq_Circ | K1) c= dom (proj2 * (Sq_Circ | K1)) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in dom (Sq_Circ | K1) or x in dom (proj2 * (Sq_Circ | K1)) ) assume A2: x in dom (Sq_Circ | K1) ; ::_thesis: x in dom (proj2 * (Sq_Circ | K1)) then x in (dom Sq_Circ) /\ K1 by RELAT_1:61; then x in dom Sq_Circ by XBOOLE_0:def_4; then A3: Sq_Circ . x in rng Sq_Circ by FUNCT_1:3; (Sq_Circ | K1) . x = Sq_Circ . x by A2, FUNCT_1:47; hence x in dom (proj2 * (Sq_Circ | K1)) by A2, A3, Lm3, FUNCT_1:11; ::_thesis: verum end; dom (proj2 * (Sq_Circ | K1)) c= dom (Sq_Circ | K1) by RELAT_1:25; hence dom (proj2 * (Sq_Circ | K1)) = dom (Sq_Circ | K1) by A1, XBOOLE_0:def_10 .= (dom Sq_Circ) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by FUNCT_2:def_1 .= K1 by XBOOLE_1:28 .= the carrier of ((TOP-REAL 2) | K1) by PRE_TOPC:8 ; ::_thesis: verum end; Lm12: for K1 being non empty Subset of (TOP-REAL 2) holds dom (proj1 * (Sq_Circ | K1)) = the carrier of ((TOP-REAL 2) | K1) proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: dom (proj1 * (Sq_Circ | K1)) = the carrier of ((TOP-REAL 2) | K1) A1: dom (Sq_Circ | K1) c= dom (proj1 * (Sq_Circ | K1)) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in dom (Sq_Circ | K1) or x in dom (proj1 * (Sq_Circ | K1)) ) assume A2: x in dom (Sq_Circ | K1) ; ::_thesis: x in dom (proj1 * (Sq_Circ | K1)) then x in (dom Sq_Circ) /\ K1 by RELAT_1:61; then x in dom Sq_Circ by XBOOLE_0:def_4; then A3: Sq_Circ . x in rng Sq_Circ by FUNCT_1:3; (Sq_Circ | K1) . x = Sq_Circ . x by A2, FUNCT_1:47; hence x in dom (proj1 * (Sq_Circ | K1)) by A2, A3, Lm2, FUNCT_1:11; ::_thesis: verum end; dom (proj1 * (Sq_Circ | K1)) c= dom (Sq_Circ | K1) by RELAT_1:25; hence dom (proj1 * (Sq_Circ | K1)) = dom (Sq_Circ | K1) by A1, XBOOLE_0:def_10 .= (dom Sq_Circ) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by FUNCT_2:def_1 .= K1 by XBOOLE_1:28 .= the carrier of ((TOP-REAL 2) | K1) by PRE_TOPC:8 ; ::_thesis: verum end; Lm13: NonZero (TOP-REAL 2) <> {} by JGRAPH_2:9; theorem Th15: :: JGRAPH_3:15 for K0, B0 being Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds f is continuous proof let K0, B0 be Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds f is continuous let f be Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0); ::_thesis: ( f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } implies f is continuous ) assume A1: ( f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } ) ; ::_thesis: f is continuous then 1.REAL 2 in K0 by Lm9, Lm10; then reconsider K1 = K0 as non empty Subset of (TOP-REAL 2) ; ( dom (proj1 * (Sq_Circ | K1)) = the carrier of ((TOP-REAL 2) | K1) & rng (proj1 * (Sq_Circ | K1)) c= the carrier of R^1 ) by Lm12, TOPMETR:17; then reconsider g1 = proj1 * (Sq_Circ | K1) as Function of ((TOP-REAL 2) | K1),R^1 by FUNCT_2:2; for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds g1 . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) proof let p be Point of (TOP-REAL 2); ::_thesis: ( p in the carrier of ((TOP-REAL 2) | K1) implies g1 . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) A2: dom (Sq_Circ | K1) = (dom Sq_Circ) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by FUNCT_2:def_1 .= K1 by XBOOLE_1:28 ; A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume A4: p in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: g1 . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) then ex p3 being Point of (TOP-REAL 2) st ( p = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A3; then A5: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by Def1; (Sq_Circ | K1) . p = Sq_Circ . p by A4, A3, FUNCT_1:49; then g1 . p = proj1 . |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by A4, A2, A3, A5, FUNCT_1:13 .= |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 by PSCOMP_1:def_5 .= (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) by EUCLID:52 ; hence g1 . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ; ::_thesis: verum end; then consider f1 being Function of ((TOP-REAL 2) | K1),R^1 such that A6: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f1 . p = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ; ( dom (proj2 * (Sq_Circ | K1)) = the carrier of ((TOP-REAL 2) | K1) & rng (proj2 * (Sq_Circ | K1)) c= the carrier of R^1 ) by Lm11, TOPMETR:17; then reconsider g2 = proj2 * (Sq_Circ | K1) as Function of ((TOP-REAL 2) | K1),R^1 by FUNCT_2:2; for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds g2 . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) proof let p be Point of (TOP-REAL 2); ::_thesis: ( p in the carrier of ((TOP-REAL 2) | K1) implies g2 . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) A7: dom (Sq_Circ | K1) = (dom Sq_Circ) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by FUNCT_2:def_1 .= K1 by XBOOLE_1:28 ; A8: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume A9: p in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: g2 . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) then ex p3 being Point of (TOP-REAL 2) st ( p = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A8; then A10: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by Def1; (Sq_Circ | K1) . p = Sq_Circ . p by A9, A8, FUNCT_1:49; then g2 . p = proj2 . |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by A9, A7, A8, A10, FUNCT_1:13 .= |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 by PSCOMP_1:def_6 .= (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) by EUCLID:52 ; hence g2 . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ; ::_thesis: verum end; then consider f2 being Function of ((TOP-REAL 2) | K1),R^1 such that A11: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f2 . p = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ; A12: now__::_thesis:_for_q_being_Point_of_(TOP-REAL_2)_st_q_in_the_carrier_of_((TOP-REAL_2)_|_K1)_holds_ q_`1_<>_0 let q be Point of (TOP-REAL 2); ::_thesis: ( q in the carrier of ((TOP-REAL 2) | K1) implies q `1 <> 0 ) A13: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume q in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: q `1 <> 0 then A14: ex p3 being Point of (TOP-REAL 2) st ( q = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A13; now__::_thesis:_not_q_`1_=_0 assume A15: q `1 = 0 ; ::_thesis: contradiction then q `2 = 0 by A14; hence contradiction by A14, A15, EUCLID:53, EUCLID:54; ::_thesis: verum end; hence q `1 <> 0 ; ::_thesis: verum end; then A16: f1 is continuous by A6, Th11; A17: for x, y, r, s being real number st |[x,y]| in K1 & r = f1 . |[x,y]| & s = f2 . |[x,y]| holds f . |[x,y]| = |[r,s]| proof let x, y, r, s be real number ; ::_thesis: ( |[x,y]| in K1 & r = f1 . |[x,y]| & s = f2 . |[x,y]| implies f . |[x,y]| = |[r,s]| ) assume that A18: |[x,y]| in K1 and A19: ( r = f1 . |[x,y]| & s = f2 . |[x,y]| ) ; ::_thesis: f . |[x,y]| = |[r,s]| set p99 = |[x,y]|; A20: ex p3 being Point of (TOP-REAL 2) st ( |[x,y]| = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A18; A21: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; then A22: f1 . |[x,y]| = (|[x,y]| `1) / (sqrt (1 + (((|[x,y]| `2) / (|[x,y]| `1)) ^2))) by A6, A18; (Sq_Circ | K0) . |[x,y]| = Sq_Circ . |[x,y]| by A18, FUNCT_1:49 .= |[((|[x,y]| `1) / (sqrt (1 + (((|[x,y]| `2) / (|[x,y]| `1)) ^2)))),((|[x,y]| `2) / (sqrt (1 + (((|[x,y]| `2) / (|[x,y]| `1)) ^2))))]| by A20, Def1 .= |[r,s]| by A11, A18, A19, A21, A22 ; hence f . |[x,y]| = |[r,s]| by A1; ::_thesis: verum end; f2 is continuous by A12, A11, Th12; hence f is continuous by A1, A16, A17, Lm13, JGRAPH_2:35; ::_thesis: verum end; Lm14: ( ( (1.REAL 2) `1 <= (1.REAL 2) `2 & - ((1.REAL 2) `2) <= (1.REAL 2) `1 ) or ( (1.REAL 2) `1 >= (1.REAL 2) `2 & (1.REAL 2) `1 <= - ((1.REAL 2) `2) ) ) by JGRAPH_2:5; Lm15: 1.REAL 2 <> 0. (TOP-REAL 2) by Lm8, REVROT_1:19; theorem Th16: :: JGRAPH_3:16 for K0, B0 being Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds f is continuous proof let K0, B0 be Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds f is continuous let f be Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0); ::_thesis: ( f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } implies f is continuous ) assume A1: ( f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } ) ; ::_thesis: f is continuous then 1.REAL 2 in K0 by Lm14, Lm15; then reconsider K1 = K0 as non empty Subset of (TOP-REAL 2) ; ( dom (proj2 * (Sq_Circ | K1)) = the carrier of ((TOP-REAL 2) | K1) & rng (proj2 * (Sq_Circ | K1)) c= the carrier of R^1 ) by Lm11, TOPMETR:17; then reconsider g1 = proj2 * (Sq_Circ | K1) as Function of ((TOP-REAL 2) | K1),R^1 by FUNCT_2:2; for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds g1 . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) proof let p be Point of (TOP-REAL 2); ::_thesis: ( p in the carrier of ((TOP-REAL 2) | K1) implies g1 . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) A2: dom (Sq_Circ | K1) = (dom Sq_Circ) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by FUNCT_2:def_1 .= K1 by XBOOLE_1:28 ; A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume A4: p in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: g1 . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) then ex p3 being Point of (TOP-REAL 2) st ( p = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A3; then A5: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by Th4; (Sq_Circ | K1) . p = Sq_Circ . p by A4, A3, FUNCT_1:49; then g1 . p = proj2 . |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A4, A2, A3, A5, FUNCT_1:13 .= |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 by PSCOMP_1:def_6 .= (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) by EUCLID:52 ; hence g1 . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ; ::_thesis: verum end; then consider f1 being Function of ((TOP-REAL 2) | K1),R^1 such that A6: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f1 . p = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ; ( dom (proj1 * (Sq_Circ | K1)) = the carrier of ((TOP-REAL 2) | K1) & rng (proj1 * (Sq_Circ | K1)) c= the carrier of R^1 ) by Lm12, TOPMETR:17; then reconsider g2 = proj1 * (Sq_Circ | K1) as Function of ((TOP-REAL 2) | K1),R^1 by FUNCT_2:2; for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds g2 . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) proof let p be Point of (TOP-REAL 2); ::_thesis: ( p in the carrier of ((TOP-REAL 2) | K1) implies g2 . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) A7: dom (Sq_Circ | K1) = (dom Sq_Circ) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by FUNCT_2:def_1 .= K1 by XBOOLE_1:28 ; A8: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume A9: p in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: g2 . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) then ex p3 being Point of (TOP-REAL 2) st ( p = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A8; then A10: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by Th4; (Sq_Circ | K1) . p = Sq_Circ . p by A9, A8, FUNCT_1:49; then g2 . p = proj1 . |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A9, A7, A8, A10, FUNCT_1:13 .= |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 by PSCOMP_1:def_5 .= (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) by EUCLID:52 ; hence g2 . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ; ::_thesis: verum end; then consider f2 being Function of ((TOP-REAL 2) | K1),R^1 such that A11: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f2 . p = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ; A12: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 proof let q be Point of (TOP-REAL 2); ::_thesis: ( q in the carrier of ((TOP-REAL 2) | K1) implies q `2 <> 0 ) A13: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume q in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: q `2 <> 0 then A14: ex p3 being Point of (TOP-REAL 2) st ( q = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A13; now__::_thesis:_not_q_`2_=_0 assume A15: q `2 = 0 ; ::_thesis: contradiction then q `1 = 0 by A14; hence contradiction by A14, A15, EUCLID:53, EUCLID:54; ::_thesis: verum end; hence q `2 <> 0 ; ::_thesis: verum end; then A16: f1 is continuous by A6, Th13; A17: now__::_thesis:_for_x,_y,_s,_r_being_real_number_st_|[x,y]|_in_K1_&_s_=_f2_._|[x,y]|_&_r_=_f1_._|[x,y]|_holds_ f_._|[x,y]|_=_|[s,r]| let x, y, s, r be real number ; ::_thesis: ( |[x,y]| in K1 & s = f2 . |[x,y]| & r = f1 . |[x,y]| implies f . |[x,y]| = |[s,r]| ) assume that A18: |[x,y]| in K1 and A19: ( s = f2 . |[x,y]| & r = f1 . |[x,y]| ) ; ::_thesis: f . |[x,y]| = |[s,r]| set p99 = |[x,y]|; A20: ex p3 being Point of (TOP-REAL 2) st ( |[x,y]| = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A18; A21: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; then A22: f1 . |[x,y]| = (|[x,y]| `2) / (sqrt (1 + (((|[x,y]| `1) / (|[x,y]| `2)) ^2))) by A6, A18; (Sq_Circ | K0) . |[x,y]| = Sq_Circ . |[x,y]| by A18, FUNCT_1:49 .= |[((|[x,y]| `1) / (sqrt (1 + (((|[x,y]| `1) / (|[x,y]| `2)) ^2)))),((|[x,y]| `2) / (sqrt (1 + (((|[x,y]| `1) / (|[x,y]| `2)) ^2))))]| by A20, Th4 .= |[s,r]| by A11, A18, A19, A21, A22 ; hence f . |[x,y]| = |[s,r]| by A1; ::_thesis: verum end; f2 is continuous by A12, A11, Th14; hence f is continuous by A1, A16, A17, Lm13, JGRAPH_2:35; ::_thesis: verum end; scheme :: JGRAPH_3:sch 1 TopIncl{ P1[ set ] } : { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } c= NonZero (TOP-REAL 2) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } or x in NonZero (TOP-REAL 2) ) assume x in { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } ; ::_thesis: x in NonZero (TOP-REAL 2) then A1: ex p8 being Point of (TOP-REAL 2) st ( x = p8 & P1[p8] & p8 <> 0. (TOP-REAL 2) ) ; then not x in {(0. (TOP-REAL 2))} by TARSKI:def_1; hence x in NonZero (TOP-REAL 2) by A1, XBOOLE_0:def_5; ::_thesis: verum end; scheme :: JGRAPH_3:sch 2 TopInter{ P1[ set ] } : { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } = { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) proof set B0 = NonZero (TOP-REAL 2); set K1 = { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } ; set K0 = { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } ; A1: { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) c= { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) or x in { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } ) assume A2: x in { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) ; ::_thesis: x in { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } then x in NonZero (TOP-REAL 2) by XBOOLE_0:def_4; then not x in {(0. (TOP-REAL 2))} by XBOOLE_0:def_5; then A3: x <> 0. (TOP-REAL 2) by TARSKI:def_1; x in { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } by A2, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & P1[p7] ) ; hence x in { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } by A3; ::_thesis: verum end; { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } c= { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } or x in { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) ) assume x in { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } ; ::_thesis: x in { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) then A4: ex p being Point of (TOP-REAL 2) st ( x = p & P1[p] & p <> 0. (TOP-REAL 2) ) ; then not x in {(0. (TOP-REAL 2))} by TARSKI:def_1; then A5: x in NonZero (TOP-REAL 2) by A4, XBOOLE_0:def_5; x in { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } by A4; hence x in { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) by A5, XBOOLE_0:def_4; ::_thesis: verum end; hence { p where p is Point of (TOP-REAL 2) : ( P1[p] & p <> 0. (TOP-REAL 2) ) } = { p7 where p7 is Point of (TOP-REAL 2) : P1[p7] } /\ (NonZero (TOP-REAL 2)) by A1, XBOOLE_0:def_10; ::_thesis: verum end; theorem Th17: :: JGRAPH_3:17 for B0 being Subset of (TOP-REAL 2) for K0 being Subset of ((TOP-REAL 2) | B0) for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) proof reconsider K5 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `2 <= - (p7 `1) } as closed Subset of (TOP-REAL 2) by JGRAPH_2:47; reconsider K4 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `1 <= p7 `2 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:46; reconsider K3 = { p7 where p7 is Point of (TOP-REAL 2) : - (p7 `1) <= p7 `2 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:47; reconsider K2 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `2 <= p7 `1 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:46; defpred S1[ Point of (TOP-REAL 2)] means ( ( $1 `2 <= $1 `1 & - ($1 `1) <= $1 `2 ) or ( $1 `2 >= $1 `1 & $1 `2 <= - ($1 `1) ) ); let B0 be Subset of (TOP-REAL 2); ::_thesis: for K0 being Subset of ((TOP-REAL 2) | B0) for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) let K0 be Subset of ((TOP-REAL 2) | B0); ::_thesis: for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) let f be Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0); ::_thesis: ( f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } implies ( f is continuous & K0 is closed ) ) assume A1: ( f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } ) ; ::_thesis: ( f is continuous & K0 is closed ) the carrier of ((TOP-REAL 2) | B0) = B0 by PRE_TOPC:8; then reconsider K1 = K0 as Subset of (TOP-REAL 2) by XBOOLE_1:1; { p where p is Point of (TOP-REAL 2) : ( S1[p] & p <> 0. (TOP-REAL 2) ) } c= NonZero (TOP-REAL 2) from JGRAPH_3:sch_1(); then A2: ((TOP-REAL 2) | B0) | K0 = (TOP-REAL 2) | K1 by A1, PRE_TOPC:7; defpred S2[ Point of (TOP-REAL 2)] means ( ( $1 `2 <= $1 `1 & - ($1 `1) <= $1 `2 ) or ( $1 `2 >= $1 `1 & $1 `2 <= - ($1 `1) ) ); reconsider K1 = { p7 where p7 is Point of (TOP-REAL 2) : S2[p7] } as Subset of (TOP-REAL 2) from JGRAPH_2:sch_1(); defpred S3[ Point of (TOP-REAL 2)] means ( ( $1 `2 <= $1 `1 & - ($1 `1) <= $1 `2 ) or ( $1 `2 >= $1 `1 & $1 `2 <= - ($1 `1) ) ); { p where p is Point of (TOP-REAL 2) : ( S3[p] & p <> 0. (TOP-REAL 2) ) } = { p7 where p7 is Point of (TOP-REAL 2) : S3[p7] } /\ (NonZero (TOP-REAL 2)) from JGRAPH_3:sch_2(); then A3: K0 = K1 /\ ([#] ((TOP-REAL 2) | B0)) by A1, PRE_TOPC:def_5; A4: (K2 /\ K3) \/ (K4 /\ K5) c= K1 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in (K2 /\ K3) \/ (K4 /\ K5) or x in K1 ) assume A5: x in (K2 /\ K3) \/ (K4 /\ K5) ; ::_thesis: x in K1 percases ( x in K2 /\ K3 or x in K4 /\ K5 ) by A5, XBOOLE_0:def_3; supposeA6: x in K2 /\ K3 ; ::_thesis: x in K1 then x in K3 by XBOOLE_0:def_4; then A7: ex p8 being Point of (TOP-REAL 2) st ( p8 = x & - (p8 `1) <= p8 `2 ) ; x in K2 by A6, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & p7 `2 <= p7 `1 ) ; hence x in K1 by A7; ::_thesis: verum end; supposeA8: x in K4 /\ K5 ; ::_thesis: x in K1 then x in K5 by XBOOLE_0:def_4; then A9: ex p8 being Point of (TOP-REAL 2) st ( p8 = x & p8 `2 <= - (p8 `1) ) ; x in K4 by A8, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & p7 `2 >= p7 `1 ) ; hence x in K1 by A9; ::_thesis: verum end; end; end; A10: ( K2 /\ K3 is closed & K4 /\ K5 is closed ) by TOPS_1:8; K1 c= (K2 /\ K3) \/ (K4 /\ K5) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in K1 or x in (K2 /\ K3) \/ (K4 /\ K5) ) assume x in K1 ; ::_thesis: x in (K2 /\ K3) \/ (K4 /\ K5) then ex p being Point of (TOP-REAL 2) st ( p = x & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) ) ; then ( ( x in K2 & x in K3 ) or ( x in K4 & x in K5 ) ) ; then ( x in K2 /\ K3 or x in K4 /\ K5 ) by XBOOLE_0:def_4; hence x in (K2 /\ K3) \/ (K4 /\ K5) by XBOOLE_0:def_3; ::_thesis: verum end; then K1 = (K2 /\ K3) \/ (K4 /\ K5) by A4, XBOOLE_0:def_10; then K1 is closed by A10, TOPS_1:9; hence ( f is continuous & K0 is closed ) by A1, A2, A3, Th15, PRE_TOPC:13; ::_thesis: verum end; theorem Th18: :: JGRAPH_3:18 for B0 being Subset of (TOP-REAL 2) for K0 being Subset of ((TOP-REAL 2) | B0) for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) proof reconsider K5 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `1 <= - (p7 `2) } as closed Subset of (TOP-REAL 2) by JGRAPH_2:48; reconsider K4 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `2 <= p7 `1 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:46; reconsider K3 = { p7 where p7 is Point of (TOP-REAL 2) : - (p7 `2) <= p7 `1 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:48; reconsider K2 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `1 <= p7 `2 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:46; defpred S1[ Point of (TOP-REAL 2)] means ( ( $1 `1 <= $1 `2 & - ($1 `2) <= $1 `1 ) or ( $1 `1 >= $1 `2 & $1 `1 <= - ($1 `2) ) ); set b0 = NonZero (TOP-REAL 2); defpred S2[ Point of (TOP-REAL 2)] means ( ( $1 `1 <= $1 `2 & - ($1 `2) <= $1 `1 ) or ( $1 `1 >= $1 `2 & $1 `1 <= - ($1 `2) ) ); let B0 be Subset of (TOP-REAL 2); ::_thesis: for K0 being Subset of ((TOP-REAL 2) | B0) for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) let K0 be Subset of ((TOP-REAL 2) | B0); ::_thesis: for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) let f be Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0); ::_thesis: ( f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } implies ( f is continuous & K0 is closed ) ) assume A1: ( f = Sq_Circ | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } ) ; ::_thesis: ( f is continuous & K0 is closed ) the carrier of ((TOP-REAL 2) | B0) = B0 by PRE_TOPC:8; then reconsider K1 = K0 as Subset of (TOP-REAL 2) by XBOOLE_1:1; { p where p is Point of (TOP-REAL 2) : ( S1[p] & p <> 0. (TOP-REAL 2) ) } c= NonZero (TOP-REAL 2) from JGRAPH_3:sch_1(); then A2: ((TOP-REAL 2) | B0) | K0 = (TOP-REAL 2) | K1 by A1, PRE_TOPC:7; defpred S3[ Point of (TOP-REAL 2)] means ( ( $1 `1 <= $1 `2 & - ($1 `2) <= $1 `1 ) or ( $1 `1 >= $1 `2 & $1 `1 <= - ($1 `2) ) ); reconsider K1 = { p7 where p7 is Point of (TOP-REAL 2) : S3[p7] } as Subset of (TOP-REAL 2) from JGRAPH_2:sch_1(); A3: (K2 /\ K3) \/ (K4 /\ K5) c= K1 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in (K2 /\ K3) \/ (K4 /\ K5) or x in K1 ) assume A4: x in (K2 /\ K3) \/ (K4 /\ K5) ; ::_thesis: x in K1 percases ( x in K2 /\ K3 or x in K4 /\ K5 ) by A4, XBOOLE_0:def_3; supposeA5: x in K2 /\ K3 ; ::_thesis: x in K1 then x in K3 by XBOOLE_0:def_4; then A6: ex p8 being Point of (TOP-REAL 2) st ( p8 = x & - (p8 `2) <= p8 `1 ) ; x in K2 by A5, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & p7 `1 <= p7 `2 ) ; hence x in K1 by A6; ::_thesis: verum end; supposeA7: x in K4 /\ K5 ; ::_thesis: x in K1 then x in K5 by XBOOLE_0:def_4; then A8: ex p8 being Point of (TOP-REAL 2) st ( p8 = x & p8 `1 <= - (p8 `2) ) ; x in K4 by A7, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & p7 `1 >= p7 `2 ) ; hence x in K1 by A8; ::_thesis: verum end; end; end; set k0 = { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } ; A9: ( K2 /\ K3 is closed & K4 /\ K5 is closed ) by TOPS_1:8; K1 c= (K2 /\ K3) \/ (K4 /\ K5) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in K1 or x in (K2 /\ K3) \/ (K4 /\ K5) ) assume x in K1 ; ::_thesis: x in (K2 /\ K3) \/ (K4 /\ K5) then ex p being Point of (TOP-REAL 2) st ( p = x & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) ) ; then ( ( x in K2 & x in K3 ) or ( x in K4 & x in K5 ) ) ; then ( x in K2 /\ K3 or x in K4 /\ K5 ) by XBOOLE_0:def_4; hence x in (K2 /\ K3) \/ (K4 /\ K5) by XBOOLE_0:def_3; ::_thesis: verum end; then K1 = (K2 /\ K3) \/ (K4 /\ K5) by A3, XBOOLE_0:def_10; then A10: K1 is closed by A9, TOPS_1:9; { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } = { p7 where p7 is Point of (TOP-REAL 2) : S2[p7] } /\ (NonZero (TOP-REAL 2)) from JGRAPH_3:sch_2(); then K0 = K1 /\ ([#] ((TOP-REAL 2) | B0)) by A1, PRE_TOPC:def_5; hence ( f is continuous & K0 is closed ) by A1, A2, A10, Th16, PRE_TOPC:13; ::_thesis: verum end; theorem Th19: :: JGRAPH_3:19 for D being non empty Subset of (TOP-REAL 2) st D ` = {(0. (TOP-REAL 2))} holds ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = Sq_Circ | D & h is continuous ) proof set Y1 = |[(- 1),1]|; let D be non empty Subset of (TOP-REAL 2); ::_thesis: ( D ` = {(0. (TOP-REAL 2))} implies ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = Sq_Circ | D & h is continuous ) ) A1: the carrier of ((TOP-REAL 2) | D) = D by PRE_TOPC:8; dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; then A2: dom (Sq_Circ | D) = the carrier of (TOP-REAL 2) /\ D by RELAT_1:61 .= the carrier of ((TOP-REAL 2) | D) by A1, XBOOLE_1:28 ; assume A3: D ` = {(0. (TOP-REAL 2))} ; ::_thesis: ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = Sq_Circ | D & h is continuous ) then A4: D = {(0. (TOP-REAL 2))} ` .= NonZero (TOP-REAL 2) by SUBSET_1:def_4 ; A5: { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } c= the carrier of ((TOP-REAL 2) | D) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } or x in the carrier of ((TOP-REAL 2) | D) ) assume x in { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } ; ::_thesis: x in the carrier of ((TOP-REAL 2) | D) then A6: ex p being Point of (TOP-REAL 2) st ( x = p & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) ; now__::_thesis:_x_in_D assume not x in D ; ::_thesis: contradiction then x in the carrier of (TOP-REAL 2) \ D by A6, XBOOLE_0:def_5; then x in D ` by SUBSET_1:def_4; hence contradiction by A3, A6, TARSKI:def_1; ::_thesis: verum end; hence x in the carrier of ((TOP-REAL 2) | D) by PRE_TOPC:8; ::_thesis: verum end; 1.REAL 2 in { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } by Lm9, Lm10; then reconsider K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } as non empty Subset of ((TOP-REAL 2) | D) by A5; A7: K0 = the carrier of (((TOP-REAL 2) | D) | K0) by PRE_TOPC:8; A8: { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } c= the carrier of ((TOP-REAL 2) | D) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } or x in the carrier of ((TOP-REAL 2) | D) ) assume x in { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } ; ::_thesis: x in the carrier of ((TOP-REAL 2) | D) then A9: ex p being Point of (TOP-REAL 2) st ( x = p & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) ; now__::_thesis:_x_in_D assume not x in D ; ::_thesis: contradiction then x in the carrier of (TOP-REAL 2) \ D by A9, XBOOLE_0:def_5; then x in D ` by SUBSET_1:def_4; hence contradiction by A3, A9, TARSKI:def_1; ::_thesis: verum end; hence x in the carrier of ((TOP-REAL 2) | D) by PRE_TOPC:8; ::_thesis: verum end; ( |[(- 1),1]| `1 = - 1 & |[(- 1),1]| `2 = 1 ) by EUCLID:52; then |[(- 1),1]| in { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } by JGRAPH_2:3; then reconsider K1 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } as non empty Subset of ((TOP-REAL 2) | D) by A8; A10: K1 = the carrier of (((TOP-REAL 2) | D) | K1) by PRE_TOPC:8; A11: D c= K0 \/ K1 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in D or x in K0 \/ K1 ) assume A12: x in D ; ::_thesis: x in K0 \/ K1 then reconsider px = x as Point of (TOP-REAL 2) ; not x in {(0. (TOP-REAL 2))} by A4, A12, XBOOLE_0:def_5; then ( ( ( ( px `2 <= px `1 & - (px `1) <= px `2 ) or ( px `2 >= px `1 & px `2 <= - (px `1) ) ) & px <> 0. (TOP-REAL 2) ) or ( ( ( px `1 <= px `2 & - (px `2) <= px `1 ) or ( px `1 >= px `2 & px `1 <= - (px `2) ) ) & px <> 0. (TOP-REAL 2) ) ) by TARSKI:def_1, XREAL_1:26; then ( x in K0 or x in K1 ) ; hence x in K0 \/ K1 by XBOOLE_0:def_3; ::_thesis: verum end; A13: the carrier of ((TOP-REAL 2) | D) = [#] ((TOP-REAL 2) | D) .= NonZero (TOP-REAL 2) by A4, PRE_TOPC:def_5 ; A14: the carrier of ((TOP-REAL 2) | D) = D by PRE_TOPC:8; A15: rng (Sq_Circ | K0) c= the carrier of (((TOP-REAL 2) | D) | K0) proof reconsider K00 = K0 as Subset of (TOP-REAL 2) by A14, XBOOLE_1:1; let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng (Sq_Circ | K0) or y in the carrier of (((TOP-REAL 2) | D) | K0) ) A16: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K00) holds q `1 <> 0 proof let q be Point of (TOP-REAL 2); ::_thesis: ( q in the carrier of ((TOP-REAL 2) | K00) implies q `1 <> 0 ) A17: the carrier of ((TOP-REAL 2) | K00) = K0 by PRE_TOPC:8; assume q in the carrier of ((TOP-REAL 2) | K00) ; ::_thesis: q `1 <> 0 then A18: ex p3 being Point of (TOP-REAL 2) st ( q = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A17; now__::_thesis:_not_q_`1_=_0 assume A19: q `1 = 0 ; ::_thesis: contradiction then q `2 = 0 by A18; hence contradiction by A18, A19, EUCLID:53, EUCLID:54; ::_thesis: verum end; hence q `1 <> 0 ; ::_thesis: verum end; assume y in rng (Sq_Circ | K0) ; ::_thesis: y in the carrier of (((TOP-REAL 2) | D) | K0) then consider x being set such that A20: x in dom (Sq_Circ | K0) and A21: y = (Sq_Circ | K0) . x by FUNCT_1:def_3; A22: x in (dom Sq_Circ) /\ K0 by A20, RELAT_1:61; then A23: x in K0 by XBOOLE_0:def_4; K0 c= the carrier of (TOP-REAL 2) by A14, XBOOLE_1:1; then reconsider p = x as Point of (TOP-REAL 2) by A23; K00 = the carrier of ((TOP-REAL 2) | K00) by PRE_TOPC:8; then p in the carrier of ((TOP-REAL 2) | K00) by A22, XBOOLE_0:def_4; then A24: p `1 <> 0 by A16; A25: ex px being Point of (TOP-REAL 2) st ( x = px & ( ( px `2 <= px `1 & - (px `1) <= px `2 ) or ( px `2 >= px `1 & px `2 <= - (px `1) ) ) & px <> 0. (TOP-REAL 2) ) by A23; then A26: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by Def1; A27: sqrt (1 + (((p `2) / (p `1)) ^2)) > 0 by Lm1, SQUARE_1:25; then ( ( (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) & (- (p `1)) / (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) or ( (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) >= (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) & (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (- (p `1)) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) ) by A25, XREAL_1:72; then A28: ( ( (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) & - ((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))) <= (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) or ( (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) >= (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) & (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) <= - ((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))) ) ) by XCMPLX_1:187; set p9 = |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]|; A29: ( |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) & |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 = (p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))) ) by EUCLID:52; A30: |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 = (p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2))) by EUCLID:52; A31: now__::_thesis:_not_|[((p_`1)_/_(sqrt_(1_+_(((p_`2)_/_(p_`1))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`2)_/_(p_`1))_^2))))]|_=_0._(TOP-REAL_2) assume |[((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) / (sqrt (1 + (((p `2) / (p `1)) ^2))))]| = 0. (TOP-REAL 2) ; ::_thesis: contradiction then 0 * (sqrt (1 + (((p `2) / (p `1)) ^2))) = ((p `1) / (sqrt (1 + (((p `2) / (p `1)) ^2)))) * (sqrt (1 + (((p `2) / (p `1)) ^2))) by A30, EUCLID:52, EUCLID:54; hence contradiction by A24, A27, XCMPLX_1:87; ::_thesis: verum end; Sq_Circ . p = y by A21, A23, FUNCT_1:49; then y in K0 by A31, A26, A28, A29; then y in [#] (((TOP-REAL 2) | D) | K0) by PRE_TOPC:def_5; hence y in the carrier of (((TOP-REAL 2) | D) | K0) ; ::_thesis: verum end; A32: K0 c= the carrier of (TOP-REAL 2) proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in K0 or z in the carrier of (TOP-REAL 2) ) assume z in K0 ; ::_thesis: z in the carrier of (TOP-REAL 2) then ex p8 being Point of (TOP-REAL 2) st ( p8 = z & ( ( p8 `2 <= p8 `1 & - (p8 `1) <= p8 `2 ) or ( p8 `2 >= p8 `1 & p8 `2 <= - (p8 `1) ) ) & p8 <> 0. (TOP-REAL 2) ) ; hence z in the carrier of (TOP-REAL 2) ; ::_thesis: verum end; dom (Sq_Circ | K0) = (dom Sq_Circ) /\ K0 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K0 by FUNCT_2:def_1 .= K0 by A32, XBOOLE_1:28 ; then reconsider f = Sq_Circ | K0 as Function of (((TOP-REAL 2) | D) | K0),((TOP-REAL 2) | D) by A7, A15, FUNCT_2:2, XBOOLE_1:1; A33: K1 = [#] (((TOP-REAL 2) | D) | K1) by PRE_TOPC:def_5; A34: K1 c= the carrier of (TOP-REAL 2) proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in K1 or z in the carrier of (TOP-REAL 2) ) assume z in K1 ; ::_thesis: z in the carrier of (TOP-REAL 2) then ex p8 being Point of (TOP-REAL 2) st ( p8 = z & ( ( p8 `1 <= p8 `2 & - (p8 `2) <= p8 `1 ) or ( p8 `1 >= p8 `2 & p8 `1 <= - (p8 `2) ) ) & p8 <> 0. (TOP-REAL 2) ) ; hence z in the carrier of (TOP-REAL 2) ; ::_thesis: verum end; A35: rng (Sq_Circ | K1) c= the carrier of (((TOP-REAL 2) | D) | K1) proof reconsider K10 = K1 as Subset of (TOP-REAL 2) by A34; let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng (Sq_Circ | K1) or y in the carrier of (((TOP-REAL 2) | D) | K1) ) A36: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K10) holds q `2 <> 0 proof let q be Point of (TOP-REAL 2); ::_thesis: ( q in the carrier of ((TOP-REAL 2) | K10) implies q `2 <> 0 ) A37: the carrier of ((TOP-REAL 2) | K10) = K1 by PRE_TOPC:8; assume q in the carrier of ((TOP-REAL 2) | K10) ; ::_thesis: q `2 <> 0 then A38: ex p3 being Point of (TOP-REAL 2) st ( q = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A37; now__::_thesis:_not_q_`2_=_0 assume A39: q `2 = 0 ; ::_thesis: contradiction then q `1 = 0 by A38; hence contradiction by A38, A39, EUCLID:53, EUCLID:54; ::_thesis: verum end; hence q `2 <> 0 ; ::_thesis: verum end; assume y in rng (Sq_Circ | K1) ; ::_thesis: y in the carrier of (((TOP-REAL 2) | D) | K1) then consider x being set such that A40: x in dom (Sq_Circ | K1) and A41: y = (Sq_Circ | K1) . x by FUNCT_1:def_3; A42: x in (dom Sq_Circ) /\ K1 by A40, RELAT_1:61; then A43: x in K1 by XBOOLE_0:def_4; then reconsider p = x as Point of (TOP-REAL 2) by A34; K10 = the carrier of ((TOP-REAL 2) | K10) by PRE_TOPC:8; then p in the carrier of ((TOP-REAL 2) | K10) by A42, XBOOLE_0:def_4; then A44: p `2 <> 0 by A36; set p9 = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]|; A45: ( |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) & |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 = (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) by EUCLID:52; A46: ex px being Point of (TOP-REAL 2) st ( x = px & ( ( px `1 <= px `2 & - (px `2) <= px `1 ) or ( px `1 >= px `2 & px `1 <= - (px `2) ) ) & px <> 0. (TOP-REAL 2) ) by A43; then A47: Sq_Circ . p = |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by Th4; A48: sqrt (1 + (((p `1) / (p `2)) ^2)) > 0 by Lm1, SQUARE_1:25; then ( ( (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) & (- (p `2)) / (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) or ( (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) >= (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) & (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (- (p `2)) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) ) by A46, XREAL_1:72; then A49: ( ( (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) & - ((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2)))) <= (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) ) or ( (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) >= (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) & (p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2))) <= - ((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2)))) ) ) by XCMPLX_1:187; A50: |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 = (p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))) by EUCLID:52; A51: now__::_thesis:_not_|[((p_`1)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_/_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_=_0._(TOP-REAL_2) assume |[((p `1) / (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2))))]| = 0. (TOP-REAL 2) ; ::_thesis: contradiction then 0 * (sqrt (1 + (((p `1) / (p `2)) ^2))) = ((p `2) / (sqrt (1 + (((p `1) / (p `2)) ^2)))) * (sqrt (1 + (((p `1) / (p `2)) ^2))) by A50, EUCLID:52, EUCLID:54; hence contradiction by A44, A48, XCMPLX_1:87; ::_thesis: verum end; Sq_Circ . p = y by A41, A43, FUNCT_1:49; then y in K1 by A51, A47, A49, A45; hence y in the carrier of (((TOP-REAL 2) | D) | K1) by PRE_TOPC:8; ::_thesis: verum end; dom (Sq_Circ | K1) = (dom Sq_Circ) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by FUNCT_2:def_1 .= K1 by A34, XBOOLE_1:28 ; then reconsider g = Sq_Circ | K1 as Function of (((TOP-REAL 2) | D) | K1),((TOP-REAL 2) | D) by A10, A35, FUNCT_2:2, XBOOLE_1:1; A52: dom g = K1 by A10, FUNCT_2:def_1; g = Sq_Circ | K1 ; then A53: K1 is closed by A4, Th18; A54: K0 = [#] (((TOP-REAL 2) | D) | K0) by PRE_TOPC:def_5; A55: for x being set st x in ([#] (((TOP-REAL 2) | D) | K0)) /\ ([#] (((TOP-REAL 2) | D) | K1)) holds f . x = g . x proof let x be set ; ::_thesis: ( x in ([#] (((TOP-REAL 2) | D) | K0)) /\ ([#] (((TOP-REAL 2) | D) | K1)) implies f . x = g . x ) assume A56: x in ([#] (((TOP-REAL 2) | D) | K0)) /\ ([#] (((TOP-REAL 2) | D) | K1)) ; ::_thesis: f . x = g . x then x in K0 by A54, XBOOLE_0:def_4; then f . x = Sq_Circ . x by FUNCT_1:49; hence f . x = g . x by A33, A56, FUNCT_1:49; ::_thesis: verum end; f = Sq_Circ | K0 ; then A57: K0 is closed by A4, Th17; A58: dom f = K0 by A7, FUNCT_2:def_1; D = [#] ((TOP-REAL 2) | D) by PRE_TOPC:def_5; then A59: ([#] (((TOP-REAL 2) | D) | K0)) \/ ([#] (((TOP-REAL 2) | D) | K1)) = [#] ((TOP-REAL 2) | D) by A54, A33, A11, XBOOLE_0:def_10; A60: ( f is continuous & g is continuous ) by A4, Th17, Th18; then consider h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) such that A61: h = f +* g and h is continuous by A54, A33, A59, A57, A53, A55, JGRAPH_2:1; ( K0 = [#] (((TOP-REAL 2) | D) | K0) & K1 = [#] (((TOP-REAL 2) | D) | K1) ) by PRE_TOPC:def_5; then A62: f tolerates g by A55, A58, A52, PARTFUN1:def_4; A63: for x being set st x in dom h holds h . x = (Sq_Circ | D) . x proof let x be set ; ::_thesis: ( x in dom h implies h . x = (Sq_Circ | D) . x ) assume A64: x in dom h ; ::_thesis: h . x = (Sq_Circ | D) . x then reconsider p = x as Point of (TOP-REAL 2) by A13, XBOOLE_0:def_5; not x in {(0. (TOP-REAL 2))} by A13, A64, XBOOLE_0:def_5; then A65: x <> 0. (TOP-REAL 2) by TARSKI:def_1; x in the carrier of (TOP-REAL 2) \ (D `) by A3, A13, A64; then A66: x in (D `) ` by SUBSET_1:def_4; percases ( x in K0 or not x in K0 ) ; supposeA67: x in K0 ; ::_thesis: h . x = (Sq_Circ | D) . x A68: (Sq_Circ | D) . p = Sq_Circ . p by A66, FUNCT_1:49 .= f . p by A67, FUNCT_1:49 ; h . p = (g +* f) . p by A61, A62, FUNCT_4:34 .= f . p by A58, A67, FUNCT_4:13 ; hence h . x = (Sq_Circ | D) . x by A68; ::_thesis: verum end; suppose not x in K0 ; ::_thesis: h . x = (Sq_Circ | D) . x then ( not ( p `2 <= p `1 & - (p `1) <= p `2 ) & not ( p `2 >= p `1 & p `2 <= - (p `1) ) ) by A65; then ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) by XREAL_1:26; then A69: x in K1 by A65; (Sq_Circ | D) . p = Sq_Circ . p by A66, FUNCT_1:49 .= g . p by A69, FUNCT_1:49 ; hence h . x = (Sq_Circ | D) . x by A61, A52, A69, FUNCT_4:13; ::_thesis: verum end; end; end; dom h = the carrier of ((TOP-REAL 2) | D) by FUNCT_2:def_1; then f +* g = Sq_Circ | D by A61, A2, A63, FUNCT_1:2; hence ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = Sq_Circ | D & h is continuous ) by A54, A33, A59, A57, A60, A53, A55, JGRAPH_2:1; ::_thesis: verum end; theorem Th20: :: JGRAPH_3:20 for D being non empty Subset of (TOP-REAL 2) st D = NonZero (TOP-REAL 2) holds D ` = {(0. (TOP-REAL 2))} proof let D be non empty Subset of (TOP-REAL 2); ::_thesis: ( D = NonZero (TOP-REAL 2) implies D ` = {(0. (TOP-REAL 2))} ) assume A1: D = NonZero (TOP-REAL 2) ; ::_thesis: D ` = {(0. (TOP-REAL 2))} A2: D ` c= {(0. (TOP-REAL 2))} proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in D ` or x in {(0. (TOP-REAL 2))} ) assume A3: x in D ` ; ::_thesis: x in {(0. (TOP-REAL 2))} then x in the carrier of (TOP-REAL 2) \ D by SUBSET_1:def_4; then not x in D by XBOOLE_0:def_5; hence x in {(0. (TOP-REAL 2))} by A1, A3, XBOOLE_0:def_5; ::_thesis: verum end; {(0. (TOP-REAL 2))} c= D ` proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in {(0. (TOP-REAL 2))} or x in D ` ) assume A4: x in {(0. (TOP-REAL 2))} ; ::_thesis: x in D ` then not x in D by A1, XBOOLE_0:def_5; then x in the carrier of (TOP-REAL 2) \ D by A4, XBOOLE_0:def_5; hence x in D ` by SUBSET_1:def_4; ::_thesis: verum end; hence D ` = {(0. (TOP-REAL 2))} by A2, XBOOLE_0:def_10; ::_thesis: verum end; Lm16: TopStruct(# the carrier of (TOP-REAL 2), the topology of (TOP-REAL 2) #) = TopSpaceMetr (Euclid 2) by EUCLID:def_8; theorem Th21: :: JGRAPH_3:21 ex h being Function of (TOP-REAL 2),(TOP-REAL 2) st ( h = Sq_Circ & h is continuous ) proof reconsider D = NonZero (TOP-REAL 2) as non empty Subset of (TOP-REAL 2) by JGRAPH_2:9; reconsider f = Sq_Circ as Function of (TOP-REAL 2),(TOP-REAL 2) ; A1: for p being Point of ((TOP-REAL 2) | D) holds f . p <> f . (0. (TOP-REAL 2)) proof let p be Point of ((TOP-REAL 2) | D); ::_thesis: f . p <> f . (0. (TOP-REAL 2)) A2: [#] ((TOP-REAL 2) | D) = D by PRE_TOPC:def_5; then reconsider q = p as Point of (TOP-REAL 2) by XBOOLE_0:def_5; not p in {(0. (TOP-REAL 2))} by A2, XBOOLE_0:def_5; then A3: not p = 0. (TOP-REAL 2) by TARSKI:def_1; percases ( ( not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) or ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; supposeA4: ( not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; ::_thesis: f . p <> f . (0. (TOP-REAL 2)) then A5: q `2 <> 0 ; set q9 = |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]|; A6: |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]| `2 = (q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))) by EUCLID:52; A7: sqrt (1 + (((q `1) / (q `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A8: now__::_thesis:_not_|[((q_`1)_/_(sqrt_(1_+_(((q_`1)_/_(q_`2))_^2)))),((q_`2)_/_(sqrt_(1_+_(((q_`1)_/_(q_`2))_^2))))]|_=_0._(TOP-REAL_2) assume |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]| = 0. (TOP-REAL 2) ; ::_thesis: contradiction then 0 * (sqrt (1 + (((q `1) / (q `2)) ^2))) = ((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2)))) * (sqrt (1 + (((q `1) / (q `2)) ^2))) by A6, EUCLID:52, EUCLID:54; hence contradiction by A5, A7, XCMPLX_1:87; ::_thesis: verum end; Sq_Circ . q = |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]| by A3, A4, Def1; hence f . p <> f . (0. (TOP-REAL 2)) by A8, Def1; ::_thesis: verum end; supposeA9: ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; ::_thesis: f . p <> f . (0. (TOP-REAL 2)) A10: now__::_thesis:_not_q_`1_=_0 assume A11: q `1 = 0 ; ::_thesis: contradiction then q `2 = 0 by A9; hence contradiction by A3, A11, EUCLID:53, EUCLID:54; ::_thesis: verum end; set q9 = |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|; A12: |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]| `1 = (q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2))) by EUCLID:52; A13: sqrt (1 + (((q `2) / (q `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A14: now__::_thesis:_not_|[((q_`1)_/_(sqrt_(1_+_(((q_`2)_/_(q_`1))_^2)))),((q_`2)_/_(sqrt_(1_+_(((q_`2)_/_(q_`1))_^2))))]|_=_0._(TOP-REAL_2) assume |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]| = 0. (TOP-REAL 2) ; ::_thesis: contradiction then 0 * (sqrt (1 + (((q `2) / (q `1)) ^2))) = ((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))) * (sqrt (1 + (((q `2) / (q `1)) ^2))) by A12, EUCLID:52, EUCLID:54; hence contradiction by A10, A13, XCMPLX_1:87; ::_thesis: verum end; Sq_Circ . q = |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]| by A3, A9, Def1; hence f . p <> f . (0. (TOP-REAL 2)) by A14, Def1; ::_thesis: verum end; end; end; A15: f . (0. (TOP-REAL 2)) = 0. (TOP-REAL 2) by Def1; A16: for V being Subset of (TOP-REAL 2) st f . (0. (TOP-REAL 2)) in V & V is open holds ex W being Subset of (TOP-REAL 2) st ( 0. (TOP-REAL 2) in W & W is open & f .: W c= V ) proof reconsider u0 = 0. (TOP-REAL 2) as Point of (Euclid 2) by EUCLID:67; let V be Subset of (TOP-REAL 2); ::_thesis: ( f . (0. (TOP-REAL 2)) in V & V is open implies ex W being Subset of (TOP-REAL 2) st ( 0. (TOP-REAL 2) in W & W is open & f .: W c= V ) ) reconsider VV = V as Subset of (TopSpaceMetr (Euclid 2)) by Lm16; assume that A17: f . (0. (TOP-REAL 2)) in V and A18: V is open ; ::_thesis: ex W being Subset of (TOP-REAL 2) st ( 0. (TOP-REAL 2) in W & W is open & f .: W c= V ) VV is open by A18, Lm16, PRE_TOPC:30; then consider r being real number such that A19: r > 0 and A20: Ball (u0,r) c= V by A15, A17, TOPMETR:15; reconsider r = r as Real by XREAL_0:def_1; reconsider W1 = Ball (u0,r) as Subset of (TOP-REAL 2) by EUCLID:67; A21: W1 is open by GOBOARD6:3; A22: f .: W1 c= W1 proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in f .: W1 or z in W1 ) assume z in f .: W1 ; ::_thesis: z in W1 then consider y being set such that A23: y in dom f and A24: y in W1 and A25: z = f . y by FUNCT_1:def_6; z in rng f by A23, A25, FUNCT_1:def_3; then reconsider qz = z as Point of (TOP-REAL 2) ; reconsider pz = qz as Point of (Euclid 2) by EUCLID:67; reconsider q = y as Point of (TOP-REAL 2) by A23; reconsider qy = q as Point of (Euclid 2) by EUCLID:67; dist (u0,qy) < r by A24, METRIC_1:11; then |.((0. (TOP-REAL 2)) - q).| < r by JGRAPH_1:28; then sqrt (((((0. (TOP-REAL 2)) - q) `1) ^2) + ((((0. (TOP-REAL 2)) - q) `2) ^2)) < r by JGRAPH_1:30; then sqrt (((((0. (TOP-REAL 2)) `1) - (q `1)) ^2) + ((((0. (TOP-REAL 2)) - q) `2) ^2)) < r by TOPREAL3:3; then A26: sqrt (((((0. (TOP-REAL 2)) `1) - (q `1)) ^2) + ((((0. (TOP-REAL 2)) `2) - (q `2)) ^2)) < r by TOPREAL3:3; percases ( q = 0. (TOP-REAL 2) or ( q <> 0. (TOP-REAL 2) & ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) or ( q <> 0. (TOP-REAL 2) & not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) ; suppose q = 0. (TOP-REAL 2) ; ::_thesis: z in W1 hence z in W1 by A24, A25, Def1; ::_thesis: verum end; supposeA27: ( q <> 0. (TOP-REAL 2) & ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) ; ::_thesis: z in W1 A28: (q `2) ^2 >= 0 by XREAL_1:63; ((q `2) / (q `1)) ^2 >= 0 by XREAL_1:63; then 1 + (((q `2) / (q `1)) ^2) >= 1 + 0 by XREAL_1:7; then A29: sqrt (1 + (((q `2) / (q `1)) ^2)) >= 1 by SQUARE_1:18, SQUARE_1:26; then (sqrt (1 + (((q `2) / (q `1)) ^2))) ^2 >= sqrt (1 + (((q `2) / (q `1)) ^2)) by XREAL_1:151; then A30: 1 <= (sqrt (1 + (((q `2) / (q `1)) ^2))) ^2 by A29, XXREAL_0:2; A31: Sq_Circ . q = |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]| by A27, Def1; then (qz `2) ^2 = ((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2)))) ^2 by A25, EUCLID:52 .= ((q `2) ^2) / ((sqrt (1 + (((q `2) / (q `1)) ^2))) ^2) by XCMPLX_1:76 ; then A32: (qz `2) ^2 <= ((q `2) ^2) / 1 by A30, A28, XREAL_1:118; A33: (q `1) ^2 >= 0 by XREAL_1:63; (qz `1) ^2 = ((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))) ^2 by A25, A31, EUCLID:52 .= ((q `1) ^2) / ((sqrt (1 + (((q `2) / (q `1)) ^2))) ^2) by XCMPLX_1:76 ; then (qz `1) ^2 <= ((q `1) ^2) / 1 by A30, A33, XREAL_1:118; then A34: ((qz `1) ^2) + ((qz `2) ^2) <= ((q `1) ^2) + ((q `2) ^2) by A32, XREAL_1:7; ( (qz `1) ^2 >= 0 & (qz `2) ^2 >= 0 ) by XREAL_1:63; then A35: sqrt (((qz `1) ^2) + ((qz `2) ^2)) <= sqrt (((q `1) ^2) + ((q `2) ^2)) by A34, SQUARE_1:26; A36: ((0. (TOP-REAL 2)) - qz) `2 = ((0. (TOP-REAL 2)) `2) - (qz `2) by TOPREAL3:3 .= - (qz `2) by JGRAPH_2:3 ; ((0. (TOP-REAL 2)) - qz) `1 = ((0. (TOP-REAL 2)) `1) - (qz `1) by TOPREAL3:3 .= - (qz `1) by JGRAPH_2:3 ; then sqrt (((((0. (TOP-REAL 2)) - qz) `1) ^2) + ((((0. (TOP-REAL 2)) - qz) `2) ^2)) < r by A26, A36, A35, JGRAPH_2:3, XXREAL_0:2; then |.((0. (TOP-REAL 2)) - qz).| < r by JGRAPH_1:30; then dist (u0,pz) < r by JGRAPH_1:28; hence z in W1 by METRIC_1:11; ::_thesis: verum end; supposeA37: ( q <> 0. (TOP-REAL 2) & not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; ::_thesis: z in W1 A38: (q `2) ^2 >= 0 by XREAL_1:63; ((q `1) / (q `2)) ^2 >= 0 by XREAL_1:63; then 1 + (((q `1) / (q `2)) ^2) >= 1 + 0 by XREAL_1:7; then A39: sqrt (1 + (((q `1) / (q `2)) ^2)) >= 1 by SQUARE_1:18, SQUARE_1:26; then (sqrt (1 + (((q `1) / (q `2)) ^2))) ^2 >= sqrt (1 + (((q `1) / (q `2)) ^2)) by XREAL_1:151; then A40: 1 <= (sqrt (1 + (((q `1) / (q `2)) ^2))) ^2 by A39, XXREAL_0:2; A41: Sq_Circ . q = |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]| by A37, Def1; then (qz `2) ^2 = ((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2)))) ^2 by A25, EUCLID:52 .= ((q `2) ^2) / ((sqrt (1 + (((q `1) / (q `2)) ^2))) ^2) by XCMPLX_1:76 ; then A42: (qz `2) ^2 <= ((q `2) ^2) / 1 by A40, A38, XREAL_1:118; A43: (q `1) ^2 >= 0 by XREAL_1:63; (qz `1) ^2 = ((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))) ^2 by A25, A41, EUCLID:52 .= ((q `1) ^2) / ((sqrt (1 + (((q `1) / (q `2)) ^2))) ^2) by XCMPLX_1:76 ; then (qz `1) ^2 <= ((q `1) ^2) / 1 by A40, A43, XREAL_1:118; then A44: ((qz `1) ^2) + ((qz `2) ^2) <= ((q `1) ^2) + ((q `2) ^2) by A42, XREAL_1:7; ( (qz `1) ^2 >= 0 & (qz `2) ^2 >= 0 ) by XREAL_1:63; then A45: sqrt (((qz `1) ^2) + ((qz `2) ^2)) <= sqrt (((q `1) ^2) + ((q `2) ^2)) by A44, SQUARE_1:26; A46: ((0. (TOP-REAL 2)) - qz) `2 = ((0. (TOP-REAL 2)) `2) - (qz `2) by TOPREAL3:3 .= - (qz `2) by JGRAPH_2:3 ; ((0. (TOP-REAL 2)) - qz) `1 = ((0. (TOP-REAL 2)) `1) - (qz `1) by TOPREAL3:3 .= - (qz `1) by JGRAPH_2:3 ; then sqrt (((((0. (TOP-REAL 2)) - qz) `1) ^2) + ((((0. (TOP-REAL 2)) - qz) `2) ^2)) < r by A26, A46, A45, JGRAPH_2:3, XXREAL_0:2; then |.((0. (TOP-REAL 2)) - qz).| < r by JGRAPH_1:30; then dist (u0,pz) < r by JGRAPH_1:28; hence z in W1 by METRIC_1:11; ::_thesis: verum end; end; end; u0 in W1 by A19, GOBOARD6:1; hence ex W being Subset of (TOP-REAL 2) st ( 0. (TOP-REAL 2) in W & W is open & f .: W c= V ) by A20, A21, A22, XBOOLE_1:1; ::_thesis: verum end; A47: D ` = {(0. (TOP-REAL 2))} by Th20; then ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = Sq_Circ | D & h is continuous ) by Th19; hence ex h being Function of (TOP-REAL 2),(TOP-REAL 2) st ( h = Sq_Circ & h is continuous ) by A15, A47, A1, A16, Th3; ::_thesis: verum end; theorem Th22: :: JGRAPH_3:22 Sq_Circ is one-to-one proof let x1, x2 be set ; :: according to FUNCT_1:def_4 ::_thesis: ( not x1 in dom Sq_Circ or not x2 in dom Sq_Circ or not Sq_Circ . x1 = Sq_Circ . x2 or x1 = x2 ) assume that A1: x1 in dom Sq_Circ and A2: x2 in dom Sq_Circ and A3: Sq_Circ . x1 = Sq_Circ . x2 ; ::_thesis: x1 = x2 reconsider p2 = x2 as Point of (TOP-REAL 2) by A2; reconsider p1 = x1 as Point of (TOP-REAL 2) by A1; set q = p1; set p = p2; percases ( p1 = 0. (TOP-REAL 2) or ( p1 <> 0. (TOP-REAL 2) & ( ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) or ( p1 `2 >= p1 `1 & p1 `2 <= - (p1 `1) ) ) ) or ( p1 <> 0. (TOP-REAL 2) & not ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) & not ( p1 `2 >= p1 `1 & p1 `2 <= - (p1 `1) ) ) ) ; supposeA4: p1 = 0. (TOP-REAL 2) ; ::_thesis: x1 = x2 then A5: Sq_Circ . p1 = 0. (TOP-REAL 2) by Def1; now__::_thesis:_(_(_p2_=_0._(TOP-REAL_2)_&_x1_=_x2_)_or_(_p2_<>_0._(TOP-REAL_2)_&_(_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_or_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_)_&_contradiction_)_or_(_p2_<>_0._(TOP-REAL_2)_&_not_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_&_not_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_&_contradiction_)_) percases ( p2 = 0. (TOP-REAL 2) or ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) or ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; case p2 = 0. (TOP-REAL 2) ; ::_thesis: x1 = x2 hence x1 = x2 by A4; ::_thesis: verum end; caseA6: ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; ::_thesis: contradiction ((p2 `2) / (p2 `1)) ^2 >= 0 by XREAL_1:63; then 1 + (((p2 `2) / (p2 `1)) ^2) >= 1 + 0 by XREAL_1:7; then A7: sqrt (1 + (((p2 `2) / (p2 `1)) ^2)) >= 1 by SQUARE_1:18, SQUARE_1:26; A8: Sq_Circ . p2 = |[((p2 `1) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| by A6, Def1; then (p2 `2) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = 0 by A3, A5, EUCLID:52, JGRAPH_2:3; then A9: p2 `2 = 0 * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by A7, XCMPLX_1:87 .= 0 ; (p2 `1) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = 0 by A3, A5, A8, EUCLID:52, JGRAPH_2:3; then p2 `1 = 0 * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by A7, XCMPLX_1:87 .= 0 ; hence contradiction by A6, A9, EUCLID:53, EUCLID:54; ::_thesis: verum end; caseA10: ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ; ::_thesis: contradiction ((p2 `1) / (p2 `2)) ^2 >= 0 by XREAL_1:63; then 1 + (((p2 `1) / (p2 `2)) ^2) >= 1 + 0 by XREAL_1:7; then A11: sqrt (1 + (((p2 `1) / (p2 `2)) ^2)) >= 1 by SQUARE_1:18, SQUARE_1:26; Sq_Circ . p2 = |[((p2 `1) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| by A10, Def1; then (p2 `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) = 0 by A3, A5, EUCLID:52, JGRAPH_2:3; then p2 `2 = 0 * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by A11, XCMPLX_1:87 .= 0 ; hence contradiction by A10; ::_thesis: verum end; end; end; hence x1 = x2 ; ::_thesis: verum end; supposeA12: ( p1 <> 0. (TOP-REAL 2) & ( ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) or ( p1 `2 >= p1 `1 & p1 `2 <= - (p1 `1) ) ) ) ; ::_thesis: x1 = x2 A13: sqrt (1 + (((p1 `2) / (p1 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A14: Sq_Circ . p1 = |[((p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))),((p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))))]| by A12, Def1; A15: |[((p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))),((p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))))]| `2 = (p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by EUCLID:52; A16: 1 + (((p1 `2) / (p1 `1)) ^2) > 0 by Lm1; A17: |[((p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))),((p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))))]| `1 = (p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by EUCLID:52; now__::_thesis:_(_(_p2_=_0._(TOP-REAL_2)_&_contradiction_)_or_(_p2_<>_0._(TOP-REAL_2)_&_(_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_or_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_)_&_x1_=_x2_)_or_(_p2_<>_0._(TOP-REAL_2)_&_not_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_&_not_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_&_x1_=_x2_)_) percases ( p2 = 0. (TOP-REAL 2) or ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) or ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; caseA18: p2 = 0. (TOP-REAL 2) ; ::_thesis: contradiction ((p1 `2) / (p1 `1)) ^2 >= 0 by XREAL_1:63; then 1 + (((p1 `2) / (p1 `1)) ^2) >= 1 + 0 by XREAL_1:7; then A19: sqrt (1 + (((p1 `2) / (p1 `1)) ^2)) >= 1 by SQUARE_1:18, SQUARE_1:26; A20: Sq_Circ . p2 = 0. (TOP-REAL 2) by A18, Def1; then (p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) = 0 by A3, A14, EUCLID:52, JGRAPH_2:3; then A21: p1 `2 = 0 * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A19, XCMPLX_1:87 .= 0 ; (p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) = 0 by A3, A14, A20, EUCLID:52, JGRAPH_2:3; then p1 `1 = 0 * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A19, XCMPLX_1:87 .= 0 ; hence contradiction by A12, A21, EUCLID:53, EUCLID:54; ::_thesis: verum end; caseA22: ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; ::_thesis: x1 = x2 now__::_thesis:_not_p2_`1_=_0 assume A23: p2 `1 = 0 ; ::_thesis: contradiction then p2 `2 = 0 by A22; hence contradiction by A22, A23, EUCLID:53, EUCLID:54; ::_thesis: verum end; then A24: (p2 `1) ^2 > 0 by SQUARE_1:12; A25: sqrt (1 + (((p2 `2) / (p2 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A26: 1 + (((p2 `2) / (p2 `1)) ^2) > 0 by Lm1; A27: Sq_Circ . p2 = |[((p2 `1) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| by A22, Def1; then A28: (p2 `2) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = (p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A3, A14, A15, EUCLID:52; then ((p2 `2) ^2) / ((sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ^2) = ((p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))) ^2 by XCMPLX_1:76; then ((p2 `2) ^2) / ((sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ^2) = ((p1 `2) ^2) / ((sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ^2) by XCMPLX_1:76; then ((p2 `2) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2)) = ((p1 `2) ^2) / ((sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ^2) by A26, SQUARE_1:def_2; then A29: ((p2 `2) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2)) = ((p1 `2) ^2) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A16, SQUARE_1:def_2; A30: (p2 `1) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = (p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A3, A14, A17, A27, EUCLID:52; then ((p2 `1) ^2) / ((sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ^2) = ((p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))) ^2 by XCMPLX_1:76; then ((p2 `1) ^2) / ((sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ^2) = ((p1 `1) ^2) / ((sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ^2) by XCMPLX_1:76; then ((p2 `1) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2)) = ((p1 `1) ^2) / ((sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ^2) by A26, SQUARE_1:def_2; then ((p2 `1) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2)) = ((p1 `1) ^2) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A16, SQUARE_1:def_2; then (((p2 `1) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2))) / ((p2 `1) ^2) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by XCMPLX_1:48; then (((p2 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p2 `2) / (p2 `1)) ^2)) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by XCMPLX_1:48; then 1 / (1 + (((p2 `2) / (p2 `1)) ^2)) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A24, XCMPLX_1:60; then A31: (1 / (1 + (((p2 `2) / (p2 `1)) ^2))) * (1 + (((p1 `2) / (p1 `1)) ^2)) = ((p1 `1) ^2) / ((p2 `1) ^2) by A16, XCMPLX_1:87; now__::_thesis:_not_p1_`1_=_0 assume A32: p1 `1 = 0 ; ::_thesis: contradiction then p1 `2 = 0 by A12; hence contradiction by A12, A32, EUCLID:53, EUCLID:54; ::_thesis: verum end; then A33: (p1 `1) ^2 > 0 by SQUARE_1:12; now__::_thesis:_(_(_p2_`2_=_0_&_x1_=_x2_)_or_(_p2_`2_<>_0_&_x1_=_x2_)_) percases ( p2 `2 = 0 or p2 `2 <> 0 ) ; caseA34: p2 `2 = 0 ; ::_thesis: x1 = x2 then (p1 `2) ^2 = 0 by A16, A29, XCMPLX_1:50; then A35: p1 `2 = 0 by XCMPLX_1:6; then p2 = |[(p1 `1),0]| by A3, A14, A27, A34, EUCLID:53, SQUARE_1:18; hence x1 = x2 by A35, EUCLID:53; ::_thesis: verum end; case p2 `2 <> 0 ; ::_thesis: x1 = x2 then A36: (p2 `2) ^2 > 0 by SQUARE_1:12; (((p2 `2) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2))) / ((p2 `2) ^2) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A29, XCMPLX_1:48; then (((p2 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p2 `2) / (p2 `1)) ^2)) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by XCMPLX_1:48; then 1 / (1 + (((p2 `2) / (p2 `1)) ^2)) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A36, XCMPLX_1:60; then (1 / (1 + (((p2 `2) / (p2 `1)) ^2))) * (1 + (((p1 `2) / (p1 `1)) ^2)) = ((p1 `2) ^2) / ((p2 `2) ^2) by A16, XCMPLX_1:87; then (((p1 `1) ^2) / ((p1 `1) ^2)) / ((p2 `1) ^2) = (((p1 `2) ^2) / ((p2 `2) ^2)) / ((p1 `1) ^2) by A31, XCMPLX_1:48; then 1 / ((p2 `1) ^2) = (((p1 `2) ^2) / ((p2 `2) ^2)) / ((p1 `1) ^2) by A33, XCMPLX_1:60; then (1 / ((p2 `1) ^2)) * ((p2 `2) ^2) = (((p2 `2) ^2) * (((p1 `2) ^2) / ((p2 `2) ^2))) / ((p1 `1) ^2) by XCMPLX_1:74; then (1 / ((p2 `1) ^2)) * ((p2 `2) ^2) = ((p1 `2) ^2) / ((p1 `1) ^2) by A36, XCMPLX_1:87; then ((p2 `2) ^2) / ((p2 `1) ^2) = ((p1 `2) ^2) / ((p1 `1) ^2) by XCMPLX_1:99; then ((p2 `2) / (p2 `1)) ^2 = ((p1 `2) ^2) / ((p1 `1) ^2) by XCMPLX_1:76; then A37: 1 + (((p2 `2) / (p2 `1)) ^2) = 1 + (((p1 `2) / (p1 `1)) ^2) by XCMPLX_1:76; then p2 `2 = ((p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A28, A25, XCMPLX_1:87; then A38: p2 `2 = p1 `2 by A13, XCMPLX_1:87; p2 `1 = ((p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A30, A25, A37, XCMPLX_1:87; then p2 `1 = p1 `1 by A13, XCMPLX_1:87; then p2 = |[(p1 `1),(p1 `2)]| by A38, EUCLID:53; hence x1 = x2 by EUCLID:53; ::_thesis: verum end; end; end; hence x1 = x2 ; ::_thesis: verum end; caseA39: ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ; ::_thesis: x1 = x2 A40: 1 + (((p2 `1) / (p2 `2)) ^2) > 0 by Lm1; A41: ( ( p2 <> 0. (TOP-REAL 2) & p2 `1 <= p2 `2 & - (p2 `2) <= p2 `1 ) or ( p2 `1 >= p2 `2 & p2 `1 <= - (p2 `2) ) ) by A39, JGRAPH_2:13; p2 `2 <> 0 by A39; then A42: (p2 `2) ^2 > 0 by SQUARE_1:12; |[((p2 `1) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = (p2 `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by EUCLID:52; then A43: (p2 `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) = (p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A3, A14, A15, A39, Def1; then ((p2 `2) ^2) / ((sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ^2) = ((p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))) ^2 by XCMPLX_1:76; then ((p2 `2) ^2) / ((sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ^2) = ((p1 `2) ^2) / ((sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ^2) by XCMPLX_1:76; then ((p2 `2) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2)) = ((p1 `2) ^2) / ((sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ^2) by A40, SQUARE_1:def_2; then ((p2 `2) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2)) = ((p1 `2) ^2) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A16, SQUARE_1:def_2; then (((p2 `2) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2))) / ((p2 `2) ^2) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by XCMPLX_1:48; then (((p2 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p2 `1) / (p2 `2)) ^2)) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by XCMPLX_1:48; then 1 / (1 + (((p2 `1) / (p2 `2)) ^2)) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A42, XCMPLX_1:60; then A44: (1 / (1 + (((p2 `1) / (p2 `2)) ^2))) * (1 + (((p1 `2) / (p1 `1)) ^2)) = ((p1 `2) ^2) / ((p2 `2) ^2) by A16, XCMPLX_1:87; A45: sqrt (1 + (((p2 `1) / (p2 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; |[((p2 `1) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 = (p2 `1) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by EUCLID:52; then A46: (p2 `1) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) = (p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A3, A14, A17, A39, Def1; then ((p2 `1) ^2) / ((sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ^2) = ((p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))) ^2 by XCMPLX_1:76; then ((p2 `1) ^2) / ((sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ^2) = ((p1 `1) ^2) / ((sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ^2) by XCMPLX_1:76; then ((p2 `1) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2)) = ((p1 `1) ^2) / ((sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ^2) by A40, SQUARE_1:def_2; then A47: ((p2 `1) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2)) = ((p1 `1) ^2) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A16, SQUARE_1:def_2; A48: now__::_thesis:_not_p1_`1_=_0 assume A49: p1 `1 = 0 ; ::_thesis: contradiction then p1 `2 = 0 by A12; hence contradiction by A12, A49, EUCLID:53, EUCLID:54; ::_thesis: verum end; then A50: (p1 `1) ^2 > 0 by SQUARE_1:12; now__::_thesis:_(_(_p2_`1_=_0_&_contradiction_)_or_(_p2_`1_<>_0_&_x1_=_x2_)_) percases ( p2 `1 = 0 or p2 `1 <> 0 ) ; case p2 `1 = 0 ; ::_thesis: contradiction then (p1 `1) ^2 = 0 by A16, A47, XCMPLX_1:50; then A51: p1 `1 = 0 by XCMPLX_1:6; then p1 `2 = 0 by A12; hence contradiction by A12, A51, EUCLID:53, EUCLID:54; ::_thesis: verum end; caseA52: p2 `1 <> 0 ; ::_thesis: x1 = x2 set a = (p1 `2) / (p1 `1); (((p2 `1) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2))) / ((p2 `1) ^2) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A47, XCMPLX_1:48; then A53: (((p2 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p2 `1) / (p2 `2)) ^2)) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by XCMPLX_1:48; A54: ( ( (p1 `1) * ((p1 `2) / (p1 `1)) <= p1 `1 & - (p1 `1) <= (p1 `1) * ((p1 `2) / (p1 `1)) ) or ( (p1 `1) * ((p1 `2) / (p1 `1)) >= p1 `1 & (p1 `1) * ((p1 `2) / (p1 `1)) <= - (p1 `1) ) ) by A12, A48, XCMPLX_1:87; A55: now__::_thesis:_(_(_p1_`1_>_0_&_(_(_(p1_`2)_/_(p1_`1)_<=_1_&_-_1_<=_(p1_`2)_/_(p1_`1)_)_or_(_(p1_`2)_/_(p1_`1)_>=_1_&_(p1_`2)_/_(p1_`1)_<=_-_1_)_)_)_or_(_p1_`1_<_0_&_(_(_(p1_`2)_/_(p1_`1)_<=_1_&_-_1_<=_(p1_`2)_/_(p1_`1)_)_or_(_(p1_`2)_/_(p1_`1)_>=_1_&_(p1_`2)_/_(p1_`1)_<=_-_1_)_)_)_) percases ( p1 `1 > 0 or p1 `1 < 0 ) by A48; caseA56: p1 `1 > 0 ; ::_thesis: ( ( (p1 `2) / (p1 `1) <= 1 & - 1 <= (p1 `2) / (p1 `1) ) or ( (p1 `2) / (p1 `1) >= 1 & (p1 `2) / (p1 `1) <= - 1 ) ) then ( ( (((p1 `2) / (p1 `1)) * (p1 `1)) / (p1 `1) <= (p1 `1) / (p1 `1) & (- (p1 `1)) / (p1 `1) <= (((p1 `2) / (p1 `1)) * (p1 `1)) / (p1 `1) ) or ( (((p1 `2) / (p1 `1)) * (p1 `1)) / (p1 `1) >= (p1 `1) / (p1 `1) & (((p1 `2) / (p1 `1)) * (p1 `1)) / (p1 `1) <= (- (p1 `1)) / (p1 `1) ) ) by A54, XREAL_1:72; then A57: ( ( (p1 `2) / (p1 `1) <= (p1 `1) / (p1 `1) & (- (p1 `1)) / (p1 `1) <= (p1 `2) / (p1 `1) ) or ( (p1 `2) / (p1 `1) >= (p1 `1) / (p1 `1) & (p1 `2) / (p1 `1) <= (- (p1 `1)) / (p1 `1) ) ) by A56, XCMPLX_1:89; (p1 `1) / (p1 `1) = 1 by A56, XCMPLX_1:60; hence ( ( (p1 `2) / (p1 `1) <= 1 & - 1 <= (p1 `2) / (p1 `1) ) or ( (p1 `2) / (p1 `1) >= 1 & (p1 `2) / (p1 `1) <= - 1 ) ) by A57, XCMPLX_1:187; ::_thesis: verum end; caseA58: p1 `1 < 0 ; ::_thesis: ( ( (p1 `2) / (p1 `1) <= 1 & - 1 <= (p1 `2) / (p1 `1) ) or ( (p1 `2) / (p1 `1) >= 1 & (p1 `2) / (p1 `1) <= - 1 ) ) then A59: ( (p1 `1) / (p1 `1) = 1 & (- (p1 `1)) / (p1 `1) = - 1 ) by XCMPLX_1:60, XCMPLX_1:197; ( ( (((p1 `2) / (p1 `1)) * (p1 `1)) / (p1 `1) >= (p1 `1) / (p1 `1) & (- (p1 `1)) / (p1 `1) >= (((p1 `2) / (p1 `1)) * (p1 `1)) / (p1 `1) ) or ( (((p1 `2) / (p1 `1)) * (p1 `1)) / (p1 `1) <= (p1 `1) / (p1 `1) & (((p1 `2) / (p1 `1)) * (p1 `1)) / (p1 `1) >= (- (p1 `1)) / (p1 `1) ) ) by A54, A58, XREAL_1:73; hence ( ( (p1 `2) / (p1 `1) <= 1 & - 1 <= (p1 `2) / (p1 `1) ) or ( (p1 `2) / (p1 `1) >= 1 & (p1 `2) / (p1 `1) <= - 1 ) ) by A58, A59, XCMPLX_1:89; ::_thesis: verum end; end; end; (p2 `1) ^2 > 0 by A52, SQUARE_1:12; then 1 / (1 + (((p2 `1) / (p2 `2)) ^2)) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `2) / (p1 `1)) ^2)) by A53, XCMPLX_1:60; then (1 / (1 + (((p2 `1) / (p2 `2)) ^2))) * (1 + (((p1 `2) / (p1 `1)) ^2)) = ((p1 `1) ^2) / ((p2 `1) ^2) by A16, XCMPLX_1:87; then (((p1 `1) ^2) / ((p1 `1) ^2)) / ((p2 `1) ^2) = (((p1 `2) ^2) / ((p2 `2) ^2)) / ((p1 `1) ^2) by A44, XCMPLX_1:48; then 1 / ((p2 `1) ^2) = (((p1 `2) ^2) / ((p2 `2) ^2)) / ((p1 `1) ^2) by A50, XCMPLX_1:60; then (1 / ((p2 `1) ^2)) * ((p2 `2) ^2) = (((p2 `2) ^2) * (((p1 `2) ^2) / ((p2 `2) ^2))) / ((p1 `1) ^2) by XCMPLX_1:74; then (1 / ((p2 `1) ^2)) * ((p2 `2) ^2) = ((p1 `2) ^2) / ((p1 `1) ^2) by A42, XCMPLX_1:87; then ((p2 `2) ^2) / ((p2 `1) ^2) = ((p1 `2) ^2) / ((p1 `1) ^2) by XCMPLX_1:99; then ((p2 `2) / (p2 `1)) ^2 = ((p1 `2) ^2) / ((p1 `1) ^2) by XCMPLX_1:76; then A60: ((p2 `2) / (p2 `1)) ^2 = ((p1 `2) / (p1 `1)) ^2 by XCMPLX_1:76; then A61: ( ((p2 `2) / (p2 `1)) * (p2 `1) = ((p1 `2) / (p1 `1)) * (p2 `1) or ((p2 `2) / (p2 `1)) * (p2 `1) = (- ((p1 `2) / (p1 `1))) * (p2 `1) ) by SQUARE_1:40; A62: now__::_thesis:_(_(_p2_`2_=_((p1_`2)_/_(p1_`1))_*_(p2_`1)_&_(_1_<=_(p1_`2)_/_(p1_`1)_or_-_1_>=_(p1_`2)_/_(p1_`1)_)_)_or_(_p2_`2_=_(-_((p1_`2)_/_(p1_`1)))_*_(p2_`1)_&_(_1_<=_(p1_`2)_/_(p1_`1)_or_-_1_>=_(p1_`2)_/_(p1_`1)_)_)_) percases ( p2 `2 = ((p1 `2) / (p1 `1)) * (p2 `1) or p2 `2 = (- ((p1 `2) / (p1 `1))) * (p2 `1) ) by A52, A61, XCMPLX_1:87; caseA63: p2 `2 = ((p1 `2) / (p1 `1)) * (p2 `1) ; ::_thesis: ( 1 <= (p1 `2) / (p1 `1) or - 1 >= (p1 `2) / (p1 `1) ) now__::_thesis:_(_(_p2_`1_>_0_&_(_(_1_<=_(p1_`2)_/_(p1_`1)_&_-_((p1_`2)_/_(p1_`1))_<=_1_)_or_(_1_>=_(p1_`2)_/_(p1_`1)_&_1_<=_-_((p1_`2)_/_(p1_`1))_)_)_)_or_(_p2_`1_<_0_&_(_(_1_<=_(p1_`2)_/_(p1_`1)_&_-_((p1_`2)_/_(p1_`1))_<=_1_)_or_(_1_>=_(p1_`2)_/_(p1_`1)_&_1_<=_-_((p1_`2)_/_(p1_`1))_)_)_)_) percases ( p2 `1 > 0 or p2 `1 < 0 ) by A52; case p2 `1 > 0 ; ::_thesis: ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & 1 <= - ((p1 `2) / (p1 `1)) ) ) then ( ( (p2 `1) / (p2 `1) <= (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) & (- (((p1 `2) / (p1 `1)) * (p2 `1))) / (p2 `1) <= (p2 `1) / (p2 `1) ) or ( (p2 `1) / (p2 `1) >= (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) & (p2 `1) / (p2 `1) <= (- (((p1 `2) / (p1 `1)) * (p2 `1))) / (p2 `1) ) ) by A41, A63, XREAL_1:72; then A64: ( ( 1 <= (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) & (- (((p1 `2) / (p1 `1)) * (p2 `1))) / (p2 `1) <= 1 ) or ( 1 >= (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) & 1 <= (- (((p1 `2) / (p1 `1)) * (p2 `1))) / (p2 `1) ) ) by A52, XCMPLX_1:60; (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) = (p1 `2) / (p1 `1) by A52, XCMPLX_1:89; hence ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & 1 <= - ((p1 `2) / (p1 `1)) ) ) by A64, XCMPLX_1:187; ::_thesis: verum end; case p2 `1 < 0 ; ::_thesis: ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & 1 <= - ((p1 `2) / (p1 `1)) ) ) then ( ( (p2 `1) / (p2 `1) >= (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) & (- (((p1 `2) / (p1 `1)) * (p2 `1))) / (p2 `1) >= (p2 `1) / (p2 `1) ) or ( (p2 `1) / (p2 `1) <= (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) & (p2 `1) / (p2 `1) >= (- (((p1 `2) / (p1 `1)) * (p2 `1))) / (p2 `1) ) ) by A41, A63, XREAL_1:73; then A65: ( ( 1 >= (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) & (- (((p1 `2) / (p1 `1)) * (p2 `1))) / (p2 `1) >= 1 ) or ( 1 <= (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) & 1 >= (- (((p1 `2) / (p1 `1)) * (p2 `1))) / (p2 `1) ) ) by A52, XCMPLX_1:60; (((p1 `2) / (p1 `1)) * (p2 `1)) / (p2 `1) = (p1 `2) / (p1 `1) by A52, XCMPLX_1:89; hence ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & 1 <= - ((p1 `2) / (p1 `1)) ) ) by A65, XCMPLX_1:187; ::_thesis: verum end; end; end; then ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & - 1 >= - (- ((p1 `2) / (p1 `1))) ) ) by XREAL_1:24; hence ( 1 <= (p1 `2) / (p1 `1) or - 1 >= (p1 `2) / (p1 `1) ) ; ::_thesis: verum end; caseA66: p2 `2 = (- ((p1 `2) / (p1 `1))) * (p2 `1) ; ::_thesis: ( 1 <= (p1 `2) / (p1 `1) or - 1 >= (p1 `2) / (p1 `1) ) now__::_thesis:_(_(_p2_`1_>_0_&_(_(_1_<=_(p1_`2)_/_(p1_`1)_&_-_((p1_`2)_/_(p1_`1))_<=_1_)_or_(_1_>=_(p1_`2)_/_(p1_`1)_&_1_<=_-_((p1_`2)_/_(p1_`1))_)_)_)_or_(_p2_`1_<_0_&_(_(_1_<=_(p1_`2)_/_(p1_`1)_&_-_((p1_`2)_/_(p1_`1))_<=_1_)_or_(_1_>=_(p1_`2)_/_(p1_`1)_&_1_<=_-_((p1_`2)_/_(p1_`1))_)_)_)_) percases ( p2 `1 > 0 or p2 `1 < 0 ) by A52; case p2 `1 > 0 ; ::_thesis: ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & 1 <= - ((p1 `2) / (p1 `1)) ) ) then ( ( (p2 `1) / (p2 `1) <= ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) & (- ((- ((p1 `2) / (p1 `1))) * (p2 `1))) / (p2 `1) <= (p2 `1) / (p2 `1) ) or ( (p2 `1) / (p2 `1) >= ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) & (p2 `1) / (p2 `1) <= (- ((- ((p1 `2) / (p1 `1))) * (p2 `1))) / (p2 `1) ) ) by A41, A66, XREAL_1:72; then ( ( 1 <= ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) & (- ((- ((p1 `2) / (p1 `1))) * (p2 `1))) / (p2 `1) <= 1 ) or ( 1 >= ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) & 1 <= (- ((- ((p1 `2) / (p1 `1))) * (p2 `1))) / (p2 `1) ) ) by A52, XCMPLX_1:60; then A67: ( ( 1 <= - ((p1 `2) / (p1 `1)) & - (((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1)) <= 1 ) or ( 1 >= - ((p1 `2) / (p1 `1)) & 1 <= - (((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1)) ) ) by A52, XCMPLX_1:89, XCMPLX_1:187; ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) = - ((p1 `2) / (p1 `1)) by A52, XCMPLX_1:89; hence ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & 1 <= - ((p1 `2) / (p1 `1)) ) ) by A67; ::_thesis: verum end; case p2 `1 < 0 ; ::_thesis: ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & 1 <= - ((p1 `2) / (p1 `1)) ) ) then ( ( (p2 `1) / (p2 `1) >= ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) & (- ((- ((p1 `2) / (p1 `1))) * (p2 `1))) / (p2 `1) >= (p2 `1) / (p2 `1) ) or ( (p2 `1) / (p2 `1) <= ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) & (p2 `1) / (p2 `1) >= (- ((- ((p1 `2) / (p1 `1))) * (p2 `1))) / (p2 `1) ) ) by A41, A66, XREAL_1:73; then ( ( 1 >= ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) & (- ((- ((p1 `2) / (p1 `1))) * (p2 `1))) / (p2 `1) >= 1 ) or ( 1 <= ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) & 1 >= (- ((- ((p1 `2) / (p1 `1))) * (p2 `1))) / (p2 `1) ) ) by A52, XCMPLX_1:60; then A68: ( ( 1 >= - ((p1 `2) / (p1 `1)) & - (((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1)) >= 1 ) or ( 1 <= - ((p1 `2) / (p1 `1)) & 1 >= - (((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1)) ) ) by A52, XCMPLX_1:89, XCMPLX_1:187; ((- ((p1 `2) / (p1 `1))) * (p2 `1)) / (p2 `1) = - ((p1 `2) / (p1 `1)) by A52, XCMPLX_1:89; hence ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & 1 <= - ((p1 `2) / (p1 `1)) ) ) by A68; ::_thesis: verum end; end; end; then ( ( 1 <= (p1 `2) / (p1 `1) & - ((p1 `2) / (p1 `1)) <= 1 ) or ( 1 >= (p1 `2) / (p1 `1) & - 1 >= - (- ((p1 `2) / (p1 `1))) ) ) by XREAL_1:24; hence ( 1 <= (p1 `2) / (p1 `1) or - 1 >= (p1 `2) / (p1 `1) ) ; ::_thesis: verum end; end; end; A69: now__::_thesis:_(_(_(p1_`2)_/_(p1_`1)_=_1_&_((p2_`1)_/_(p2_`2))_^2_=_((p1_`2)_/_(p1_`1))_^2_)_or_(_(p1_`2)_/_(p1_`1)_=_-_1_&_((p2_`1)_/_(p2_`2))_^2_=_((p1_`2)_/_(p1_`1))_^2_)_) percases ( (p1 `2) / (p1 `1) = 1 or (p1 `2) / (p1 `1) = - 1 ) by A62, A55, XXREAL_0:1; case (p1 `2) / (p1 `1) = 1 ; ::_thesis: ((p2 `1) / (p2 `2)) ^2 = ((p1 `2) / (p1 `1)) ^2 then ((p2 `2) ^2) / ((p2 `1) ^2) = 1 by A60, XCMPLX_1:76; then A70: (p2 `2) ^2 = (p2 `1) ^2 by XCMPLX_1:58; ((p2 `1) / (p2 `2)) ^2 = ((p2 `1) ^2) / ((p2 `2) ^2) by XCMPLX_1:76; hence ((p2 `1) / (p2 `2)) ^2 = ((p1 `2) / (p1 `1)) ^2 by A60, A70, XCMPLX_1:76; ::_thesis: verum end; case (p1 `2) / (p1 `1) = - 1 ; ::_thesis: ((p2 `1) / (p2 `2)) ^2 = ((p1 `2) / (p1 `1)) ^2 then ((p2 `2) ^2) / ((p2 `1) ^2) = 1 by A60, XCMPLX_1:76; then A71: (p2 `2) ^2 = (p2 `1) ^2 by XCMPLX_1:58; ((p2 `1) / (p2 `2)) ^2 = ((p2 `1) ^2) / ((p2 `2) ^2) by XCMPLX_1:76; hence ((p2 `1) / (p2 `2)) ^2 = ((p1 `2) / (p1 `1)) ^2 by A60, A71, XCMPLX_1:76; ::_thesis: verum end; end; end; then p2 `2 = ((p1 `2) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A43, A45, XCMPLX_1:87; then A72: p2 `2 = p1 `2 by A13, XCMPLX_1:87; p2 `1 = ((p1 `1) / (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) by A46, A45, A69, XCMPLX_1:87; then p2 `1 = p1 `1 by A13, XCMPLX_1:87; then p2 = |[(p1 `1),(p1 `2)]| by A72, EUCLID:53; hence x1 = x2 by EUCLID:53; ::_thesis: verum end; end; end; hence x1 = x2 ; ::_thesis: verum end; end; end; hence x1 = x2 ; ::_thesis: verum end; supposeA73: ( p1 <> 0. (TOP-REAL 2) & not ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) & not ( p1 `2 >= p1 `1 & p1 `2 <= - (p1 `1) ) ) ; ::_thesis: x1 = x2 A74: |[((p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))),((p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))))]| `2 = (p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by EUCLID:52; A75: |[((p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))),((p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))))]| `1 = (p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by EUCLID:52; A76: 1 + (((p1 `1) / (p1 `2)) ^2) > 0 by Lm1; A77: sqrt (1 + (((p1 `1) / (p1 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A78: Sq_Circ . p1 = |[((p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))),((p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))))]| by A73, Def1; A79: ( ( p1 `1 <= p1 `2 & - (p1 `2) <= p1 `1 ) or ( p1 `1 >= p1 `2 & p1 `1 <= - (p1 `2) ) ) by A73, JGRAPH_2:13; now__::_thesis:_(_(_p2_=_0._(TOP-REAL_2)_&_contradiction_)_or_(_p2_<>_0._(TOP-REAL_2)_&_(_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_or_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_)_&_x1_=_x2_)_or_(_p2_<>_0._(TOP-REAL_2)_&_not_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_&_not_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_&_x1_=_x2_)_) percases ( p2 = 0. (TOP-REAL 2) or ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) or ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; caseA80: p2 = 0. (TOP-REAL 2) ; ::_thesis: contradiction ((p1 `1) / (p1 `2)) ^2 >= 0 by XREAL_1:63; then 1 + (((p1 `1) / (p1 `2)) ^2) >= 1 + 0 by XREAL_1:7; then A81: sqrt (1 + (((p1 `1) / (p1 `2)) ^2)) >= 1 by SQUARE_1:18, SQUARE_1:26; Sq_Circ . p2 = 0. (TOP-REAL 2) by A80, Def1; then (p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) = 0 by A3, A78, EUCLID:52, JGRAPH_2:3; then p1 `2 = 0 * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A81, XCMPLX_1:87 .= 0 ; hence contradiction by A73; ::_thesis: verum end; caseA82: ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; ::_thesis: x1 = x2 now__::_thesis:_not_p2_`1_=_0 assume A83: p2 `1 = 0 ; ::_thesis: contradiction then p2 `2 = 0 by A82; hence contradiction by A82, A83, EUCLID:53, EUCLID:54; ::_thesis: verum end; then A84: (p2 `1) ^2 > 0 by SQUARE_1:12; A85: 1 + (((p2 `2) / (p2 `1)) ^2) > 0 by Lm1; A86: Sq_Circ . p2 = |[((p2 `1) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| by A82, Def1; then A87: (p2 `1) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = (p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A3, A78, A75, EUCLID:52; then ((p2 `1) ^2) / ((sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ^2) = ((p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))) ^2 by XCMPLX_1:76; then ((p2 `1) ^2) / ((sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ^2) = ((p1 `1) ^2) / ((sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ^2) by XCMPLX_1:76; then ((p2 `1) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2)) = ((p1 `1) ^2) / ((sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ^2) by A85, SQUARE_1:def_2; then ((p2 `1) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2)) = ((p1 `1) ^2) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A76, SQUARE_1:def_2; then (((p2 `1) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2))) / ((p2 `1) ^2) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by XCMPLX_1:48; then (((p2 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p2 `2) / (p2 `1)) ^2)) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by XCMPLX_1:48; then 1 / (1 + (((p2 `2) / (p2 `1)) ^2)) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A84, XCMPLX_1:60; then A88: (1 / (1 + (((p2 `2) / (p2 `1)) ^2))) * (1 + (((p1 `1) / (p1 `2)) ^2)) = ((p1 `1) ^2) / ((p2 `1) ^2) by A76, XCMPLX_1:87; A89: (p2 `2) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = (p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A3, A78, A74, A86, EUCLID:52; then ((p2 `2) ^2) / ((sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ^2) = ((p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))) ^2 by XCMPLX_1:76; then ((p2 `2) ^2) / ((sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ^2) = ((p1 `2) ^2) / ((sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ^2) by XCMPLX_1:76; then ((p2 `2) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2)) = ((p1 `2) ^2) / ((sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ^2) by A85, SQUARE_1:def_2; then A90: ((p2 `2) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2)) = ((p1 `2) ^2) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A76, SQUARE_1:def_2; A91: sqrt (1 + (((p2 `2) / (p2 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A92: p1 `2 <> 0 by A73; then A93: (p1 `2) ^2 > 0 by SQUARE_1:12; now__::_thesis:_(_(_p2_`2_=_0_&_contradiction_)_or_(_p2_`2_<>_0_&_x1_=_x2_)_) percases ( p2 `2 = 0 or p2 `2 <> 0 ) ; case p2 `2 = 0 ; ::_thesis: contradiction then (p1 `2) ^2 = 0 by A76, A90, XCMPLX_1:50; then p1 `2 = 0 by XCMPLX_1:6; hence contradiction by A73; ::_thesis: verum end; caseA94: p2 `2 <> 0 ; ::_thesis: x1 = x2 set a = (p1 `1) / (p1 `2); (((p2 `2) ^2) / (1 + (((p2 `2) / (p2 `1)) ^2))) / ((p2 `2) ^2) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A90, XCMPLX_1:48; then A95: (((p2 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p2 `2) / (p2 `1)) ^2)) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by XCMPLX_1:48; A96: ( ( (p1 `2) * ((p1 `1) / (p1 `2)) <= p1 `2 & - (p1 `2) <= (p1 `2) * ((p1 `1) / (p1 `2)) ) or ( (p1 `2) * ((p1 `1) / (p1 `2)) >= p1 `2 & (p1 `2) * ((p1 `1) / (p1 `2)) <= - (p1 `2) ) ) by A79, A92, XCMPLX_1:87; A97: now__::_thesis:_(_(_p1_`2_>_0_&_(_(_(p1_`1)_/_(p1_`2)_<=_1_&_-_1_<=_(p1_`1)_/_(p1_`2)_)_or_(_(p1_`1)_/_(p1_`2)_>=_1_&_(p1_`1)_/_(p1_`2)_<=_-_1_)_)_)_or_(_p1_`2_<_0_&_(_(_(p1_`1)_/_(p1_`2)_<=_1_&_-_1_<=_(p1_`1)_/_(p1_`2)_)_or_(_(p1_`1)_/_(p1_`2)_>=_1_&_(p1_`1)_/_(p1_`2)_<=_-_1_)_)_)_) percases ( p1 `2 > 0 or p1 `2 < 0 ) by A73; caseA98: p1 `2 > 0 ; ::_thesis: ( ( (p1 `1) / (p1 `2) <= 1 & - 1 <= (p1 `1) / (p1 `2) ) or ( (p1 `1) / (p1 `2) >= 1 & (p1 `1) / (p1 `2) <= - 1 ) ) then A99: ( (p1 `2) / (p1 `2) = 1 & (- (p1 `2)) / (p1 `2) = - 1 ) by XCMPLX_1:60, XCMPLX_1:197; ( ( (((p1 `1) / (p1 `2)) * (p1 `2)) / (p1 `2) <= (p1 `2) / (p1 `2) & (- (p1 `2)) / (p1 `2) <= (((p1 `1) / (p1 `2)) * (p1 `2)) / (p1 `2) ) or ( (((p1 `1) / (p1 `2)) * (p1 `2)) / (p1 `2) >= (p1 `2) / (p1 `2) & (((p1 `1) / (p1 `2)) * (p1 `2)) / (p1 `2) <= (- (p1 `2)) / (p1 `2) ) ) by A96, A98, XREAL_1:72; hence ( ( (p1 `1) / (p1 `2) <= 1 & - 1 <= (p1 `1) / (p1 `2) ) or ( (p1 `1) / (p1 `2) >= 1 & (p1 `1) / (p1 `2) <= - 1 ) ) by A98, A99, XCMPLX_1:89; ::_thesis: verum end; caseA100: p1 `2 < 0 ; ::_thesis: ( ( (p1 `1) / (p1 `2) <= 1 & - 1 <= (p1 `1) / (p1 `2) ) or ( (p1 `1) / (p1 `2) >= 1 & (p1 `1) / (p1 `2) <= - 1 ) ) then ( ( (((p1 `1) / (p1 `2)) * (p1 `2)) / (p1 `2) >= (p1 `2) / (p1 `2) & (- (p1 `2)) / (p1 `2) >= (((p1 `1) / (p1 `2)) * (p1 `2)) / (p1 `2) ) or ( (((p1 `1) / (p1 `2)) * (p1 `2)) / (p1 `2) <= (p1 `2) / (p1 `2) & (((p1 `1) / (p1 `2)) * (p1 `2)) / (p1 `2) >= (- (p1 `2)) / (p1 `2) ) ) by A96, XREAL_1:73; then ( ( (p1 `1) / (p1 `2) >= (p1 `2) / (p1 `2) & (- (p1 `2)) / (p1 `2) >= (p1 `1) / (p1 `2) ) or ( (p1 `1) / (p1 `2) <= (p1 `2) / (p1 `2) & (p1 `1) / (p1 `2) >= (- (p1 `2)) / (p1 `2) ) ) by A100, XCMPLX_1:89; hence ( ( (p1 `1) / (p1 `2) <= 1 & - 1 <= (p1 `1) / (p1 `2) ) or ( (p1 `1) / (p1 `2) >= 1 & (p1 `1) / (p1 `2) <= - 1 ) ) by A100, XCMPLX_1:60, XCMPLX_1:197; ::_thesis: verum end; end; end; (p2 `2) ^2 > 0 by A94, SQUARE_1:12; then 1 / (1 + (((p2 `2) / (p2 `1)) ^2)) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A95, XCMPLX_1:60; then (1 / (1 + (((p2 `2) / (p2 `1)) ^2))) * (1 + (((p1 `1) / (p1 `2)) ^2)) = ((p1 `2) ^2) / ((p2 `2) ^2) by A76, XCMPLX_1:87; then (((p1 `2) ^2) / ((p1 `2) ^2)) / ((p2 `2) ^2) = (((p1 `1) ^2) / ((p2 `1) ^2)) / ((p1 `2) ^2) by A88, XCMPLX_1:48; then 1 / ((p2 `2) ^2) = (((p1 `1) ^2) / ((p2 `1) ^2)) / ((p1 `2) ^2) by A93, XCMPLX_1:60; then (1 / ((p2 `2) ^2)) * ((p2 `1) ^2) = (((p2 `1) ^2) * (((p1 `1) ^2) / ((p2 `1) ^2))) / ((p1 `2) ^2) by XCMPLX_1:74; then (1 / ((p2 `2) ^2)) * ((p2 `1) ^2) = ((p1 `1) ^2) / ((p1 `2) ^2) by A84, XCMPLX_1:87; then ((p2 `1) ^2) / ((p2 `2) ^2) = ((p1 `1) ^2) / ((p1 `2) ^2) by XCMPLX_1:99; then ((p2 `1) / (p2 `2)) ^2 = ((p1 `1) ^2) / ((p1 `2) ^2) by XCMPLX_1:76; then A101: ((p2 `1) / (p2 `2)) ^2 = ((p1 `1) / (p1 `2)) ^2 by XCMPLX_1:76; then A102: ( (p2 `1) / (p2 `2) = (p1 `1) / (p1 `2) or (p2 `1) / (p2 `2) = - ((p1 `1) / (p1 `2)) ) by SQUARE_1:40; A103: now__::_thesis:_(_(_p2_`1_=_((p1_`1)_/_(p1_`2))_*_(p2_`2)_&_(_1_<=_(p1_`1)_/_(p1_`2)_or_-_1_>=_(p1_`1)_/_(p1_`2)_)_)_or_(_p2_`1_=_(-_((p1_`1)_/_(p1_`2)))_*_(p2_`2)_&_(_1_<=_(p1_`1)_/_(p1_`2)_or_-_1_>=_(p1_`1)_/_(p1_`2)_)_)_) percases ( p2 `1 = ((p1 `1) / (p1 `2)) * (p2 `2) or p2 `1 = (- ((p1 `1) / (p1 `2))) * (p2 `2) ) by A94, A102, XCMPLX_1:87; caseA104: p2 `1 = ((p1 `1) / (p1 `2)) * (p2 `2) ; ::_thesis: ( 1 <= (p1 `1) / (p1 `2) or - 1 >= (p1 `1) / (p1 `2) ) now__::_thesis:_(_(_p2_`2_>_0_&_(_(_1_<=_(p1_`1)_/_(p1_`2)_&_-_((p1_`1)_/_(p1_`2))_<=_1_)_or_(_1_>=_(p1_`1)_/_(p1_`2)_&_1_<=_-_((p1_`1)_/_(p1_`2))_)_)_)_or_(_p2_`2_<_0_&_(_(_1_<=_(p1_`1)_/_(p1_`2)_&_-_((p1_`1)_/_(p1_`2))_<=_1_)_or_(_1_>=_(p1_`1)_/_(p1_`2)_&_1_<=_-_((p1_`1)_/_(p1_`2))_)_)_)_) percases ( p2 `2 > 0 or p2 `2 < 0 ) by A94; case p2 `2 > 0 ; ::_thesis: ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & 1 <= - ((p1 `1) / (p1 `2)) ) ) then ( ( (p2 `2) / (p2 `2) <= (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) & (- (((p1 `1) / (p1 `2)) * (p2 `2))) / (p2 `2) <= (p2 `2) / (p2 `2) ) or ( (p2 `2) / (p2 `2) >= (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) & (p2 `2) / (p2 `2) <= (- (((p1 `1) / (p1 `2)) * (p2 `2))) / (p2 `2) ) ) by A82, A104, XREAL_1:72; then A105: ( ( 1 <= (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) & (- (((p1 `1) / (p1 `2)) * (p2 `2))) / (p2 `2) <= 1 ) or ( 1 >= (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) & 1 <= (- (((p1 `1) / (p1 `2)) * (p2 `2))) / (p2 `2) ) ) by A94, XCMPLX_1:60; (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) = (p1 `1) / (p1 `2) by A94, XCMPLX_1:89; hence ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & 1 <= - ((p1 `1) / (p1 `2)) ) ) by A105, XCMPLX_1:187; ::_thesis: verum end; case p2 `2 < 0 ; ::_thesis: ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & 1 <= - ((p1 `1) / (p1 `2)) ) ) then ( ( (p2 `2) / (p2 `2) >= (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) & (- (((p1 `1) / (p1 `2)) * (p2 `2))) / (p2 `2) >= (p2 `2) / (p2 `2) ) or ( (p2 `2) / (p2 `2) <= (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) & (p2 `2) / (p2 `2) >= (- (((p1 `1) / (p1 `2)) * (p2 `2))) / (p2 `2) ) ) by A82, A104, XREAL_1:73; then A106: ( ( 1 >= (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) & (- (((p1 `1) / (p1 `2)) * (p2 `2))) / (p2 `2) >= 1 ) or ( 1 <= (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) & 1 >= (- (((p1 `1) / (p1 `2)) * (p2 `2))) / (p2 `2) ) ) by A94, XCMPLX_1:60; (((p1 `1) / (p1 `2)) * (p2 `2)) / (p2 `2) = (p1 `1) / (p1 `2) by A94, XCMPLX_1:89; hence ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & 1 <= - ((p1 `1) / (p1 `2)) ) ) by A106, XCMPLX_1:187; ::_thesis: verum end; end; end; then ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & - 1 >= - (- ((p1 `1) / (p1 `2))) ) ) by XREAL_1:24; hence ( 1 <= (p1 `1) / (p1 `2) or - 1 >= (p1 `1) / (p1 `2) ) ; ::_thesis: verum end; caseA107: p2 `1 = (- ((p1 `1) / (p1 `2))) * (p2 `2) ; ::_thesis: ( 1 <= (p1 `1) / (p1 `2) or - 1 >= (p1 `1) / (p1 `2) ) now__::_thesis:_(_(_p2_`2_>_0_&_(_(_1_<=_(p1_`1)_/_(p1_`2)_&_-_((p1_`1)_/_(p1_`2))_<=_1_)_or_(_1_>=_(p1_`1)_/_(p1_`2)_&_1_<=_-_((p1_`1)_/_(p1_`2))_)_)_)_or_(_p2_`2_<_0_&_(_(_1_<=_(p1_`1)_/_(p1_`2)_&_-_((p1_`1)_/_(p1_`2))_<=_1_)_or_(_1_>=_(p1_`1)_/_(p1_`2)_&_1_<=_-_((p1_`1)_/_(p1_`2))_)_)_)_) percases ( p2 `2 > 0 or p2 `2 < 0 ) by A94; case p2 `2 > 0 ; ::_thesis: ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & 1 <= - ((p1 `1) / (p1 `2)) ) ) then ( ( (p2 `2) / (p2 `2) <= ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) & (- ((- ((p1 `1) / (p1 `2))) * (p2 `2))) / (p2 `2) <= (p2 `2) / (p2 `2) ) or ( (p2 `2) / (p2 `2) >= ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) & (p2 `2) / (p2 `2) <= (- ((- ((p1 `1) / (p1 `2))) * (p2 `2))) / (p2 `2) ) ) by A82, A107, XREAL_1:72; then ( ( 1 <= ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) & (- ((- ((p1 `1) / (p1 `2))) * (p2 `2))) / (p2 `2) <= 1 ) or ( 1 >= ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) & 1 <= (- ((- ((p1 `1) / (p1 `2))) * (p2 `2))) / (p2 `2) ) ) by A94, XCMPLX_1:60; then A108: ( ( 1 <= - ((p1 `1) / (p1 `2)) & - (((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2)) <= 1 ) or ( 1 >= - ((p1 `1) / (p1 `2)) & 1 <= - (((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2)) ) ) by A94, XCMPLX_1:89, XCMPLX_1:187; ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) = - ((p1 `1) / (p1 `2)) by A94, XCMPLX_1:89; hence ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & 1 <= - ((p1 `1) / (p1 `2)) ) ) by A108; ::_thesis: verum end; case p2 `2 < 0 ; ::_thesis: ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & 1 <= - ((p1 `1) / (p1 `2)) ) ) then ( ( (p2 `2) / (p2 `2) >= ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) & (- ((- ((p1 `1) / (p1 `2))) * (p2 `2))) / (p2 `2) >= (p2 `2) / (p2 `2) ) or ( (p2 `2) / (p2 `2) <= ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) & (p2 `2) / (p2 `2) >= (- ((- ((p1 `1) / (p1 `2))) * (p2 `2))) / (p2 `2) ) ) by A82, A107, XREAL_1:73; then ( ( 1 >= ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) & (- ((- ((p1 `1) / (p1 `2))) * (p2 `2))) / (p2 `2) >= 1 ) or ( 1 <= ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) & 1 >= (- ((- ((p1 `1) / (p1 `2))) * (p2 `2))) / (p2 `2) ) ) by A94, XCMPLX_1:60; then A109: ( ( 1 >= - ((p1 `1) / (p1 `2)) & - (((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2)) >= 1 ) or ( 1 <= - ((p1 `1) / (p1 `2)) & 1 >= - (((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2)) ) ) by A94, XCMPLX_1:89, XCMPLX_1:187; ((- ((p1 `1) / (p1 `2))) * (p2 `2)) / (p2 `2) = - ((p1 `1) / (p1 `2)) by A94, XCMPLX_1:89; hence ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & 1 <= - ((p1 `1) / (p1 `2)) ) ) by A109; ::_thesis: verum end; end; end; then ( ( 1 <= (p1 `1) / (p1 `2) & - ((p1 `1) / (p1 `2)) <= 1 ) or ( 1 >= (p1 `1) / (p1 `2) & - 1 >= - (- ((p1 `1) / (p1 `2))) ) ) by XREAL_1:24; hence ( 1 <= (p1 `1) / (p1 `2) or - 1 >= (p1 `1) / (p1 `2) ) ; ::_thesis: verum end; end; end; A110: now__::_thesis:_(_(_(p1_`1)_/_(p1_`2)_=_1_&_((p2_`2)_/_(p2_`1))_^2_=_((p1_`1)_/_(p1_`2))_^2_)_or_(_(p1_`1)_/_(p1_`2)_=_-_1_&_((p2_`2)_/_(p2_`1))_^2_=_((p1_`1)_/_(p1_`2))_^2_)_) percases ( (p1 `1) / (p1 `2) = 1 or (p1 `1) / (p1 `2) = - 1 ) by A103, A97, XXREAL_0:1; case (p1 `1) / (p1 `2) = 1 ; ::_thesis: ((p2 `2) / (p2 `1)) ^2 = ((p1 `1) / (p1 `2)) ^2 then ((p2 `1) ^2) / ((p2 `2) ^2) = 1 by A101, XCMPLX_1:76; then A111: (p2 `1) ^2 = (p2 `2) ^2 by XCMPLX_1:58; ((p2 `2) / (p2 `1)) ^2 = ((p2 `2) ^2) / ((p2 `1) ^2) by XCMPLX_1:76; hence ((p2 `2) / (p2 `1)) ^2 = ((p1 `1) / (p1 `2)) ^2 by A101, A111, XCMPLX_1:76; ::_thesis: verum end; case (p1 `1) / (p1 `2) = - 1 ; ::_thesis: ((p2 `2) / (p2 `1)) ^2 = ((p1 `1) / (p1 `2)) ^2 then ((p2 `1) ^2) / ((p2 `2) ^2) = 1 by A101, XCMPLX_1:76; then A112: (p2 `1) ^2 = (p2 `2) ^2 by XCMPLX_1:58; ((p2 `2) / (p2 `1)) ^2 = ((p2 `2) ^2) / ((p2 `1) ^2) by XCMPLX_1:76; hence ((p2 `2) / (p2 `1)) ^2 = ((p1 `1) / (p1 `2)) ^2 by A101, A112, XCMPLX_1:76; ::_thesis: verum end; end; end; then p2 `1 = ((p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A87, A91, XCMPLX_1:87; then A113: p2 `1 = p1 `1 by A77, XCMPLX_1:87; p2 `2 = ((p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A89, A91, A110, XCMPLX_1:87; then p2 `2 = p1 `2 by A77, XCMPLX_1:87; then p2 = |[(p1 `1),(p1 `2)]| by A113, EUCLID:53; hence x1 = x2 by EUCLID:53; ::_thesis: verum end; end; end; hence x1 = x2 ; ::_thesis: verum end; caseA114: ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ; ::_thesis: x1 = x2 then p2 `2 <> 0 ; then A115: (p2 `2) ^2 > 0 by SQUARE_1:12; A116: sqrt (1 + (((p2 `1) / (p2 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A117: 1 + (((p2 `1) / (p2 `2)) ^2) > 0 by Lm1; A118: Sq_Circ . p2 = |[((p2 `1) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| by A114, Def1; then A119: (p2 `1) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) = (p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A3, A78, A75, EUCLID:52; then ((p2 `1) ^2) / ((sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ^2) = ((p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))) ^2 by XCMPLX_1:76; then ((p2 `1) ^2) / ((sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ^2) = ((p1 `1) ^2) / ((sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ^2) by XCMPLX_1:76; then ((p2 `1) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2)) = ((p1 `1) ^2) / ((sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ^2) by A117, SQUARE_1:def_2; then A120: ((p2 `1) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2)) = ((p1 `1) ^2) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A76, SQUARE_1:def_2; A121: (p2 `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) = (p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A3, A78, A74, A118, EUCLID:52; then ((p2 `2) ^2) / ((sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ^2) = ((p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))) ^2 by XCMPLX_1:76; then ((p2 `2) ^2) / ((sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ^2) = ((p1 `2) ^2) / ((sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ^2) by XCMPLX_1:76; then ((p2 `2) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2)) = ((p1 `2) ^2) / ((sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ^2) by A117, SQUARE_1:def_2; then ((p2 `2) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2)) = ((p1 `2) ^2) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A76, SQUARE_1:def_2; then (((p2 `2) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2))) / ((p2 `2) ^2) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by XCMPLX_1:48; then (((p2 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p2 `1) / (p2 `2)) ^2)) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by XCMPLX_1:48; then 1 / (1 + (((p2 `1) / (p2 `2)) ^2)) = (((p1 `2) ^2) / ((p2 `2) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A115, XCMPLX_1:60; then A122: (1 / (1 + (((p2 `1) / (p2 `2)) ^2))) * (1 + (((p1 `1) / (p1 `2)) ^2)) = ((p1 `2) ^2) / ((p2 `2) ^2) by A76, XCMPLX_1:87; p1 `2 <> 0 by A73; then A123: (p1 `2) ^2 > 0 by SQUARE_1:12; now__::_thesis:_(_(_p2_`1_=_0_&_x1_=_x2_)_or_(_p2_`1_<>_0_&_x1_=_x2_)_) percases ( p2 `1 = 0 or p2 `1 <> 0 ) ; caseA124: p2 `1 = 0 ; ::_thesis: x1 = x2 then (p1 `1) ^2 = 0 by A76, A120, XCMPLX_1:50; then A125: p1 `1 = 0 by XCMPLX_1:6; then p2 = |[0,(p1 `2)]| by A3, A78, A118, A124, EUCLID:53, SQUARE_1:18; hence x1 = x2 by A125, EUCLID:53; ::_thesis: verum end; case p2 `1 <> 0 ; ::_thesis: x1 = x2 then A126: (p2 `1) ^2 > 0 by SQUARE_1:12; (((p2 `1) ^2) / (1 + (((p2 `1) / (p2 `2)) ^2))) / ((p2 `1) ^2) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A120, XCMPLX_1:48; then (((p2 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p2 `1) / (p2 `2)) ^2)) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by XCMPLX_1:48; then 1 / (1 + (((p2 `1) / (p2 `2)) ^2)) = (((p1 `1) ^2) / ((p2 `1) ^2)) / (1 + (((p1 `1) / (p1 `2)) ^2)) by A126, XCMPLX_1:60; then (1 / (1 + (((p2 `1) / (p2 `2)) ^2))) * (1 + (((p1 `1) / (p1 `2)) ^2)) = ((p1 `1) ^2) / ((p2 `1) ^2) by A76, XCMPLX_1:87; then (((p1 `2) ^2) / ((p1 `2) ^2)) / ((p2 `2) ^2) = (((p1 `1) ^2) / ((p2 `1) ^2)) / ((p1 `2) ^2) by A122, XCMPLX_1:48; then 1 / ((p2 `2) ^2) = (((p1 `1) ^2) / ((p2 `1) ^2)) / ((p1 `2) ^2) by A123, XCMPLX_1:60; then (1 / ((p2 `2) ^2)) * ((p2 `1) ^2) = (((p2 `1) ^2) * (((p1 `1) ^2) / ((p2 `1) ^2))) / ((p1 `2) ^2) by XCMPLX_1:74; then (1 / ((p2 `2) ^2)) * ((p2 `1) ^2) = ((p1 `1) ^2) / ((p1 `2) ^2) by A126, XCMPLX_1:87; then ((p2 `1) ^2) / ((p2 `2) ^2) = ((p1 `1) ^2) / ((p1 `2) ^2) by XCMPLX_1:99; then ((p2 `1) / (p2 `2)) ^2 = ((p1 `1) ^2) / ((p1 `2) ^2) by XCMPLX_1:76; then A127: 1 + (((p2 `1) / (p2 `2)) ^2) = 1 + (((p1 `1) / (p1 `2)) ^2) by XCMPLX_1:76; then p2 `1 = ((p1 `1) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A119, A116, XCMPLX_1:87; then A128: p2 `1 = p1 `1 by A77, XCMPLX_1:87; p2 `2 = ((p1 `2) / (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A121, A116, A127, XCMPLX_1:87; then p2 `2 = p1 `2 by A77, XCMPLX_1:87; then p2 = |[(p1 `1),(p1 `2)]| by A128, EUCLID:53; hence x1 = x2 by EUCLID:53; ::_thesis: verum end; end; end; hence x1 = x2 ; ::_thesis: verum end; end; end; hence x1 = x2 ; ::_thesis: verum end; end; end; registration cluster Sq_Circ -> one-to-one ; coherence Sq_Circ is one-to-one by Th22; end; theorem Th23: :: JGRAPH_3:23 for Kb, Cb being Subset of (TOP-REAL 2) st Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } & Cb = { p2 where p2 is Point of (TOP-REAL 2) : |.p2.| = 1 } holds Sq_Circ .: Kb = Cb proof let Kb, Cb be Subset of (TOP-REAL 2); ::_thesis: ( Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } & Cb = { p2 where p2 is Point of (TOP-REAL 2) : |.p2.| = 1 } implies Sq_Circ .: Kb = Cb ) assume A1: ( Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } & Cb = { p2 where p2 is Point of (TOP-REAL 2) : |.p2.| = 1 } ) ; ::_thesis: Sq_Circ .: Kb = Cb thus Sq_Circ .: Kb c= Cb :: according to XBOOLE_0:def_10 ::_thesis: Cb c= Sq_Circ .: Kb proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in Sq_Circ .: Kb or y in Cb ) assume y in Sq_Circ .: Kb ; ::_thesis: y in Cb then consider x being set such that x in dom Sq_Circ and A2: x in Kb and A3: y = Sq_Circ . x by FUNCT_1:def_6; consider q being Point of (TOP-REAL 2) such that A4: q = x and A5: ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) by A1, A2; now__::_thesis:_(_(_q_=_0._(TOP-REAL_2)_&_contradiction_)_or_(_q_<>_0._(TOP-REAL_2)_&_(_(_q_`2_<=_q_`1_&_-_(q_`1)_<=_q_`2_)_or_(_q_`2_>=_q_`1_&_q_`2_<=_-_(q_`1)_)_)_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_or_(_q_<>_0._(TOP-REAL_2)_&_not_(_q_`2_<=_q_`1_&_-_(q_`1)_<=_q_`2_)_&_not_(_q_`2_>=_q_`1_&_q_`2_<=_-_(q_`1)_)_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_) percases ( q = 0. (TOP-REAL 2) or ( q <> 0. (TOP-REAL 2) & ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) or ( q <> 0. (TOP-REAL 2) & not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) ; case q = 0. (TOP-REAL 2) ; ::_thesis: contradiction hence contradiction by A5, JGRAPH_2:3; ::_thesis: verum end; caseA6: ( q <> 0. (TOP-REAL 2) & ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) A7: ( |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]| `1 = (q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2))) & |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]| `2 = (q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))) ) by EUCLID:52; A8: 1 + ((q `2) ^2) > 0 by Lm1; A9: Sq_Circ . q = |[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]| by A6, Def1; now__::_thesis:_(_(_-_1_=_q_`1_&_-_1_<=_q_`2_&_q_`2_<=_1_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_or_(_q_`1_=_1_&_-_1_<=_q_`2_&_q_`2_<=_1_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_or_(_-_1_=_q_`2_&_-_1_<=_q_`1_&_q_`1_<=_1_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_or_(_1_=_q_`2_&_-_1_<=_q_`1_&_q_`1_<=_1_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_) percases ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) by A5; case ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) then |.|[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|.| ^2 = (((- 1) / (sqrt (1 + (((q `2) / (- 1)) ^2)))) ^2) + (((q `2) / (sqrt (1 + (((q `2) / (- 1)) ^2)))) ^2) by A7, JGRAPH_1:29 .= (((- 1) ^2) / ((sqrt (1 + (((q `2) / (- 1)) ^2))) ^2)) + (((q `2) / (sqrt (1 + (((q `2) / (- 1)) ^2)))) ^2) by XCMPLX_1:76 .= (1 / ((sqrt (1 + ((- (q `2)) ^2))) ^2)) + (((q `2) ^2) / ((sqrt (1 + ((- (q `2)) ^2))) ^2)) by XCMPLX_1:76 .= (1 / (1 + ((q `2) ^2))) + (((q `2) ^2) / ((sqrt (1 + ((q `2) ^2))) ^2)) by A8, SQUARE_1:def_2 .= (1 / (1 + ((q `2) ^2))) + (((q `2) ^2) / (1 + ((q `2) ^2))) by A8, SQUARE_1:def_2 .= (1 + ((q `2) ^2)) / (1 + ((q `2) ^2)) by XCMPLX_1:62 .= 1 by A8, XCMPLX_1:60 ; then |.|[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|.| = 1 by SQUARE_1:18, SQUARE_1:22; hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) by A3, A4, A9; ::_thesis: verum end; case ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) then |.|[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|.| ^2 = ((1 / (sqrt (1 + (((q `2) / 1) ^2)))) ^2) + (((q `2) / (sqrt (1 + (((q `2) / 1) ^2)))) ^2) by A7, JGRAPH_1:29 .= ((1 ^2) / ((sqrt (1 + (((q `2) / 1) ^2))) ^2)) + (((q `2) / (sqrt (1 + (((q `2) / 1) ^2)))) ^2) by XCMPLX_1:76 .= (1 / ((sqrt (1 + (((q `2) / 1) ^2))) ^2)) + (((q `2) ^2) / ((sqrt (1 + (((q `2) / 1) ^2))) ^2)) by XCMPLX_1:76 .= (1 / (1 + ((q `2) ^2))) + (((q `2) ^2) / ((sqrt (1 + ((q `2) ^2))) ^2)) by A8, SQUARE_1:def_2 .= (1 / (1 + ((q `2) ^2))) + (((q `2) ^2) / (1 + ((q `2) ^2))) by A8, SQUARE_1:def_2 .= (1 + ((q `2) ^2)) / (1 + ((q `2) ^2)) by XCMPLX_1:62 .= 1 by A8, XCMPLX_1:60 ; then |.|[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|.| = 1 by SQUARE_1:18, SQUARE_1:22; hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) by A3, A4, A9; ::_thesis: verum end; caseA10: ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) then ( ( - 1 <= q `1 & q `1 >= 1 ) or ( - 1 >= q `1 & 1 >= q `1 ) ) by A6, XREAL_1:24; then A11: ( q `1 = 1 or q `1 = - 1 ) by A10, XXREAL_0:1; |.|[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|.| ^2 = (((q `1) / (sqrt (1 + (((- 1) / (q `1)) ^2)))) ^2) + (((- 1) / (sqrt (1 + (((- 1) / (q `1)) ^2)))) ^2) by A7, A10, JGRAPH_1:29 .= (((q `1) / (sqrt (1 + (((- 1) / (q `1)) ^2)))) ^2) + (((- 1) ^2) / ((sqrt (1 + (((- 1) / (q `1)) ^2))) ^2)) by XCMPLX_1:76 .= (((q `1) ^2) / ((sqrt (1 + (((- 1) / (q `1)) ^2))) ^2)) + (1 / ((sqrt (1 + (((- 1) / (q `1)) ^2))) ^2)) by XCMPLX_1:76 .= (1 / 2) + (1 / ((sqrt 2) ^2)) by A11, SQUARE_1:def_2 .= (1 / 2) + (1 / 2) by SQUARE_1:def_2 .= 1 ; then |.|[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|.| = 1 by SQUARE_1:18, SQUARE_1:22; hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) by A3, A4, A9; ::_thesis: verum end; caseA12: ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) then ( ( 1 <= q `1 & q `1 >= - 1 ) or ( 1 >= q `1 & - 1 >= q `1 ) ) by A6, XREAL_1:25; then A13: ( q `1 = 1 or q `1 = - 1 ) by A12, XXREAL_0:1; |.|[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|.| ^2 = (((q `1) / (sqrt (1 + ((1 / (q `1)) ^2)))) ^2) + ((1 / (sqrt (1 + ((1 / (q `1)) ^2)))) ^2) by A7, A12, JGRAPH_1:29 .= (((q `1) / (sqrt (1 + ((1 / (q `1)) ^2)))) ^2) + ((1 ^2) / ((sqrt (1 + ((1 / (q `1)) ^2))) ^2)) by XCMPLX_1:76 .= (1 / ((sqrt (1 + (1 / 1))) ^2)) + (1 / ((sqrt (1 + (1 / 1))) ^2)) by A13, XCMPLX_1:76 .= (1 / 2) + (1 / ((sqrt 2) ^2)) by SQUARE_1:def_2 .= (1 / 2) + (1 / 2) by SQUARE_1:def_2 .= 1 ; then |.|[((q `1) / (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) / (sqrt (1 + (((q `2) / (q `1)) ^2))))]|.| = 1 by SQUARE_1:18, SQUARE_1:22; hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) by A3, A4, A9; ::_thesis: verum end; end; end; hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) ; ::_thesis: verum end; caseA14: ( q <> 0. (TOP-REAL 2) & not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) A15: ( |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]| `1 = (q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2))) & |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]| `2 = (q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))) ) by EUCLID:52; A16: 1 + ((q `1) ^2) > 0 by Lm1; A17: Sq_Circ . q = |[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]| by A14, Def1; now__::_thesis:_(_(_-_1_=_q_`2_&_-_1_<=_q_`1_&_q_`1_<=_1_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_or_(_q_`2_=_1_&_-_1_<=_q_`1_&_q_`1_<=_1_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_or_(_-_1_=_q_`1_&_-_1_<=_q_`2_&_q_`2_<=_1_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_or_(_1_=_q_`1_&_-_1_<=_q_`2_&_q_`2_<=_1_&_ex_p2_being_Point_of_(TOP-REAL_2)_st_ (_p2_=_y_&_|.p2.|_=_1_)_)_) percases ( ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( q `2 = 1 & - 1 <= q `1 & q `1 <= 1 ) or ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) ) by A5; case ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) then |.|[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]|.| ^2 = (((q `1) / (sqrt (1 + (((q `1) / (- 1)) ^2)))) ^2) + (((- 1) / (sqrt (1 + (((q `1) / (- 1)) ^2)))) ^2) by A15, JGRAPH_1:29 .= (((- 1) ^2) / ((sqrt (1 + (((q `1) / (- 1)) ^2))) ^2)) + (((q `1) / (sqrt (1 + (((q `1) / (- 1)) ^2)))) ^2) by XCMPLX_1:76 .= (1 / ((sqrt (1 + ((- (q `1)) ^2))) ^2)) + (((q `1) ^2) / ((sqrt (1 + ((- (q `1)) ^2))) ^2)) by XCMPLX_1:76 .= (1 / (1 + ((q `1) ^2))) + (((q `1) ^2) / ((sqrt (1 + ((q `1) ^2))) ^2)) by A16, SQUARE_1:def_2 .= (1 / (1 + ((q `1) ^2))) + (((q `1) ^2) / (1 + ((q `1) ^2))) by A16, SQUARE_1:def_2 .= (1 + ((q `1) ^2)) / (1 + ((q `1) ^2)) by XCMPLX_1:62 .= 1 by A16, XCMPLX_1:60 ; then |.|[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]|.| = 1 by SQUARE_1:18, SQUARE_1:22; hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) by A3, A4, A17; ::_thesis: verum end; case ( q `2 = 1 & - 1 <= q `1 & q `1 <= 1 ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) then |.|[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]|.| ^2 = ((1 / (sqrt (1 + (((q `1) / 1) ^2)))) ^2) + (((q `1) / (sqrt (1 + (((q `1) / 1) ^2)))) ^2) by A15, JGRAPH_1:29 .= ((1 ^2) / ((sqrt (1 + (((q `1) / 1) ^2))) ^2)) + (((q `1) / (sqrt (1 + (((q `1) / 1) ^2)))) ^2) by XCMPLX_1:76 .= (1 / ((sqrt (1 + (((q `1) / 1) ^2))) ^2)) + (((q `1) ^2) / ((sqrt (1 + (((q `1) / 1) ^2))) ^2)) by XCMPLX_1:76 .= (1 / (1 + ((q `1) ^2))) + (((q `1) ^2) / ((sqrt (1 + ((q `1) ^2))) ^2)) by A16, SQUARE_1:def_2 .= (1 / (1 + ((q `1) ^2))) + (((q `1) ^2) / (1 + ((q `1) ^2))) by A16, SQUARE_1:def_2 .= (1 + ((q `1) ^2)) / (1 + ((q `1) ^2)) by XCMPLX_1:62 .= 1 by A16, XCMPLX_1:60 ; then |.|[((q `1) / (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) / (sqrt (1 + (((q `1) / (q `2)) ^2))))]|.| = 1 by SQUARE_1:18, SQUARE_1:22; hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) by A3, A4, A17; ::_thesis: verum end; case ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) by A14; ::_thesis: verum end; case ( 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) ; ::_thesis: ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) by A14; ::_thesis: verum end; end; end; hence ex p2 being Point of (TOP-REAL 2) st ( p2 = y & |.p2.| = 1 ) ; ::_thesis: verum end; end; end; hence y in Cb by A1; ::_thesis: verum end; let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in Cb or y in Sq_Circ .: Kb ) assume y in Cb ; ::_thesis: y in Sq_Circ .: Kb then consider p2 being Point of (TOP-REAL 2) such that A18: p2 = y and A19: |.p2.| = 1 by A1; set q = p2; now__::_thesis:_(_(_p2_=_0._(TOP-REAL_2)_&_contradiction_)_or_(_p2_<>_0._(TOP-REAL_2)_&_(_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_or_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_)_&_ex_x_being_set_st_ (_x_in_dom_Sq_Circ_&_x_in_Kb_&_y_=_Sq_Circ_._x_)_)_or_(_p2_<>_0._(TOP-REAL_2)_&_not_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_&_not_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_&_ex_x_being_set_st_ (_x_in_dom_Sq_Circ_&_x_in_Kb_&_y_=_Sq_Circ_._x_)_)_) percases ( p2 = 0. (TOP-REAL 2) or ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) or ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; case p2 = 0. (TOP-REAL 2) ; ::_thesis: contradiction hence contradiction by A19, TOPRNS_1:23; ::_thesis: verum end; caseA20: ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; ::_thesis: ex x being set st ( x in dom Sq_Circ & x in Kb & y = Sq_Circ . x ) A21: |.p2.| ^2 = ((p2 `1) ^2) + ((p2 `2) ^2) by JGRAPH_1:29; set px = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]|; A22: |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by EUCLID:52; A23: sqrt (1 + (((p2 `2) / (p2 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; then A24: p2 `2 = ((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by XCMPLX_1:89 .= (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by EUCLID:52 ; A25: |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 = (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by EUCLID:52; then A26: (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) = (p2 `2) / (p2 `1) by A22, A23, XCMPLX_1:91; then A27: (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) = p2 `2 by A25, A23, XCMPLX_1:89; ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (- (p2 `1)) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ) ) by A20, A23, XREAL_1:64; then A28: ( ( p2 `2 <= p2 `1 & (- (p2 `1)) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 >= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= - (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ) ) by A22, A25, A23, XREAL_1:64; A29: 1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2) > 0 by Lm1; p2 `1 = ((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by A23, XCMPLX_1:89 .= (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) / (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by EUCLID:52 ; then (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) / ((sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) ^2)) + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2)))) ^2) = 1 by A19, A26, A24, A21, XCMPLX_1:76; then (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) / ((sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) ^2)) + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) / ((sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) ^2)) = 1 by XCMPLX_1:76; then (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) / ((sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) ^2)) = 1 by A29, SQUARE_1:def_2; then 1 * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2)) = (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2)) * ((((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2)))) by A29, SQUARE_1:def_2 .= ((((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) + ((((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) ; then ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) + ((((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) = 1 * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2)) by A29, XCMPLX_1:87; then A30: ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) + ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) = 1 * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2)) by A29, XCMPLX_1:87 .= 1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) / ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2)) by XCMPLX_1:76 ; A31: now__::_thesis:_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_=_0_implies_not_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_=_0_) assume that A32: |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 0 and A33: |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 = 0 ; ::_thesis: contradiction (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = 0 by A33, EUCLID:52; then A34: p2 `2 = 0 by A23, XCMPLX_1:6; (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = 0 by A32, EUCLID:52; then p2 `1 = 0 by A23, XCMPLX_1:6; hence contradiction by A20, A34, EUCLID:53, EUCLID:54; ::_thesis: verum end; then not |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 0 by A22, A25, A23, A28, XREAL_1:64; then (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) - 1)) * ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) = (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2 by A30, XCMPLX_1:6, XCMPLX_1:87; then 0 = (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) - 1) * (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) + ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2)) ; then A35: ( ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) - 1 = 0 or ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ^2) + ((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) ^2) = 0 ) by XCMPLX_1:6; now__::_thesis:_(_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_=_1_&_(_(_-_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_<=_1_)_or_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_=_1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_<=_1_)_or_(_-_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_<=_1_)_or_(_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_<=_1_)_)_)_or_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_=_-_1_&_(_(_-_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_<=_1_)_or_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_=_1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_<=_1_)_or_(_-_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_<=_1_)_or_(_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_<=_1_)_)_)_) percases ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 1 or |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = - 1 ) by A31, A35, COMPLEX1:1, SQUARE_1:41; case |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 1 ; ::_thesis: ( ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= 1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= 1 ) or ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 <= 1 ) or ( 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 <= 1 ) ) hence ( ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= 1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= 1 ) or ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 <= 1 ) or ( 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 <= 1 ) ) by A22, A25, A23, A28, XREAL_1:64; ::_thesis: verum end; case |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = - 1 ; ::_thesis: ( ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= 1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= 1 ) or ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 <= 1 ) or ( 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 <= 1 ) ) hence ( ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= 1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= 1 ) or ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 <= 1 ) or ( 1 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 <= 1 ) ) by A22, A23, A28, XREAL_1:64; ::_thesis: verum end; end; end; then A36: ( dom Sq_Circ = the carrier of (TOP-REAL 2) & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| in Kb ) by A1, FUNCT_2:def_1; ( ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & - (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 >= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= - (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ) ) by A22, A25, A23, A28, XREAL_1:64; then A37: Sq_Circ . |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| = |[((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2)))),((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))))]| by A31, Def1, JGRAPH_2:3; (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) = p2 `1 by A22, A23, A26, XCMPLX_1:89; hence ex x being set st ( x in dom Sq_Circ & x in Kb & y = Sq_Circ . x ) by A18, A37, A27, A36, EUCLID:53; ::_thesis: verum end; caseA38: ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ; ::_thesis: ex x being set st ( x in dom Sq_Circ & x in Kb & y = Sq_Circ . x ) A39: |.p2.| ^2 = ((p2 `2) ^2) + ((p2 `1) ^2) by JGRAPH_1:29; set px = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]|; A40: sqrt (1 + (((p2 `1) / (p2 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A41: |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 = (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by EUCLID:52; then A42: p2 `1 = (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by A40, XCMPLX_1:89; A43: |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = (p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by EUCLID:52; then A44: (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) = (p2 `1) / (p2 `2) by A41, A40, XCMPLX_1:91; then A45: (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) = p2 `1 by A41, A40, XCMPLX_1:89; ( ( p2 `1 <= p2 `2 & - (p2 `2) <= p2 `1 ) or ( p2 `1 >= p2 `2 & p2 `1 <= - (p2 `2) ) ) by A38, JGRAPH_2:13; then ( ( p2 `1 <= p2 `2 & - (p2 `2) <= p2 `1 ) or ( p2 `1 >= p2 `2 & (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) <= (- (p2 `2)) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ) ) by A40, XREAL_1:64; then A46: ( ( p2 `1 <= p2 `2 & (- (p2 `2)) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) <= (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 >= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= - (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ) ) by A43, A41, A40, XREAL_1:64; A47: 1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2) > 0 by Lm1; p2 `2 = (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) / (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by A43, A40, XCMPLX_1:89; then (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) / ((sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) ^2)) + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2)))) ^2) = 1 by A19, A44, A42, A39, XCMPLX_1:76; then (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) / ((sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) ^2)) + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) / ((sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) ^2)) = 1 by XCMPLX_1:76; then (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) / ((sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) ^2)) = 1 by A47, SQUARE_1:def_2; then 1 * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2)) = (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2)) * ((((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2)))) by A47, SQUARE_1:def_2 .= ((((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) + ((((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) ; then ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) + ((((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) / (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) = 1 * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2)) by A47, XCMPLX_1:87; then ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) + ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) = 1 * (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2)) by A47, XCMPLX_1:87; then A48: (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) + ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2)) - 1 = ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) / ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) by XCMPLX_1:76; A49: now__::_thesis:_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_=_0_implies_not_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_=_0_) assume that A50: |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = 0 and |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 = 0 ; ::_thesis: contradiction p2 `2 = 0 by A43, A40, A50, XCMPLX_1:6; hence contradiction by A38; ::_thesis: verum end; then |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <> 0 by A43, A41, A40, A46, XREAL_1:64; then (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) - 1)) * ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) = (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2 by A48, XCMPLX_1:6, XCMPLX_1:87; then 0 = (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) - 1) * (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) + ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2)) ; then A51: ( ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) - 1 = 0 or ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ^2) + ((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) ^2) = 0 ) by XCMPLX_1:6; now__::_thesis:_(_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_=_1_&_(_(_-_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_<=_1_)_or_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_=_1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_<=_1_)_or_(_-_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_<=_1_)_or_(_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_<=_1_)_)_)_or_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_=_-_1_&_(_(_-_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_<=_1_)_or_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_=_1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_<=_1_)_or_(_-_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_<=_1_)_or_(_1_=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_&_-_1_<=_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_&_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_<=_1_)_)_)_) percases ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = 1 or |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = - 1 ) by A49, A51, COMPLEX1:1, SQUARE_1:41; case |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = 1 ; ::_thesis: ( ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= 1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = 1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= 1 ) or ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <= 1 ) or ( 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <= 1 ) ) hence ( ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= 1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = 1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= 1 ) or ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <= 1 ) or ( 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <= 1 ) ) by A43, A41, A40, A46, XREAL_1:64; ::_thesis: verum end; case |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = - 1 ; ::_thesis: ( ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= 1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = 1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= 1 ) or ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <= 1 ) or ( 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <= 1 ) ) hence ( ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= 1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = 1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= 1 ) or ( - 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <= 1 ) or ( 1 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 & - 1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 <= 1 ) ) by A43, A40, A46, XREAL_1:64; ::_thesis: verum end; end; end; then A52: ( dom Sq_Circ = the carrier of (TOP-REAL 2) & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| in Kb ) by A1, FUNCT_2:def_1; ( ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & - (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 >= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= - (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ) ) by A43, A41, A40, A46, XREAL_1:64; then A53: Sq_Circ . |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| = |[((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2)))),((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))))]| by A49, Th4, JGRAPH_2:3; (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) = p2 `2 by A43, A40, A44, XCMPLX_1:89; hence ex x being set st ( x in dom Sq_Circ & x in Kb & y = Sq_Circ . x ) by A18, A53, A45, A52, EUCLID:53; ::_thesis: verum end; end; end; hence y in Sq_Circ .: Kb by FUNCT_1:def_6; ::_thesis: verum end; theorem Th24: :: JGRAPH_3:24 for P, Kb being Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | Kb),((TOP-REAL 2) | P) st Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } & f is being_homeomorphism holds P is being_simple_closed_curve proof set X = (TOP-REAL 2) | R^2-unit_square; set b = 1; set a = 0 ; set v = |[1,0]|; let P, Kb be Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | Kb),((TOP-REAL 2) | P) st Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } & f is being_homeomorphism holds P is being_simple_closed_curve let f be Function of ((TOP-REAL 2) | Kb),((TOP-REAL 2) | P); ::_thesis: ( Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } & f is being_homeomorphism implies P is being_simple_closed_curve ) assume A1: ( Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } & f is being_homeomorphism ) ; ::_thesis: P is being_simple_closed_curve ( |[1,0]| `1 = 1 & |[1,0]| `2 = 0 ) by EUCLID:52; then A2: |[1,0]| in { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } ; then reconsider Kbb = Kb as non empty Subset of (TOP-REAL 2) by A1; set A = 2 / (1 - 0); set B = 1 - ((2 * 1) / (1 - 0)); set C = 2 / (1 - 0); set D = 1 - ((2 * 1) / (1 - 0)); reconsider Kbd = Kbb as non empty Subset of (TOP-REAL 2) ; defpred S1[ set , set ] means for t being Point of (TOP-REAL 2) st t = $1 holds $2 = |[(((2 / (1 - 0)) * (t `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (t `2)) + (1 - ((2 * 1) / (1 - 0))))]|; A3: for x being set st x in the carrier of (TOP-REAL 2) holds ex y being set st S1[x,y] proof let x be set ; ::_thesis: ( x in the carrier of (TOP-REAL 2) implies ex y being set st S1[x,y] ) assume x in the carrier of (TOP-REAL 2) ; ::_thesis: ex y being set st S1[x,y] then reconsider t2 = x as Point of (TOP-REAL 2) ; reconsider y2 = |[(((2 / (1 - 0)) * (t2 `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (t2 `2)) + (1 - ((2 * 1) / (1 - 0))))]| as set ; for t being Point of (TOP-REAL 2) st t = x holds y2 = |[(((2 / (1 - 0)) * (t `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (t `2)) + (1 - ((2 * 1) / (1 - 0))))]| ; hence ex y being set st S1[x,y] ; ::_thesis: verum end; ex ff being Function st ( dom ff = the carrier of (TOP-REAL 2) & ( for x being set st x in the carrier of (TOP-REAL 2) holds S1[x,ff . x] ) ) from CLASSES1:sch_1(A3); then consider ff being Function such that A4: dom ff = the carrier of (TOP-REAL 2) and A5: for x being set st x in the carrier of (TOP-REAL 2) holds for t being Point of (TOP-REAL 2) st t = x holds ff . x = |[(((2 / (1 - 0)) * (t `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (t `2)) + (1 - ((2 * 1) / (1 - 0))))]| ; A6: for t being Point of (TOP-REAL 2) holds ff . t = |[(((2 / (1 - 0)) * (t `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (t `2)) + (1 - ((2 * 1) / (1 - 0))))]| by A5; for x being set st x in the carrier of (TOP-REAL 2) holds ff . x in the carrier of (TOP-REAL 2) proof let x be set ; ::_thesis: ( x in the carrier of (TOP-REAL 2) implies ff . x in the carrier of (TOP-REAL 2) ) assume x in the carrier of (TOP-REAL 2) ; ::_thesis: ff . x in the carrier of (TOP-REAL 2) then reconsider t = x as Point of (TOP-REAL 2) ; ff . t = |[(((2 / (1 - 0)) * (t `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (t `2)) + (1 - ((2 * 1) / (1 - 0))))]| by A5; hence ff . x in the carrier of (TOP-REAL 2) ; ::_thesis: verum end; then reconsider ff = ff as Function of (TOP-REAL 2),(TOP-REAL 2) by A4, FUNCT_2:3; reconsider f11 = ff | R^2-unit_square as Function of ((TOP-REAL 2) | R^2-unit_square),(TOP-REAL 2) by PRE_TOPC:9; A7: f11 is continuous by A6, JGRAPH_2:43, TOPMETR:7; ff is one-to-one proof let x1, x2 be set ; :: according to FUNCT_1:def_4 ::_thesis: ( not x1 in dom ff or not x2 in dom ff or not ff . x1 = ff . x2 or x1 = x2 ) assume that A8: ( x1 in dom ff & x2 in dom ff ) and A9: ff . x1 = ff . x2 ; ::_thesis: x1 = x2 reconsider p1 = x1, p2 = x2 as Point of (TOP-REAL 2) by A8; A10: ( ff . x1 = |[(((2 / (1 - 0)) * (p1 `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (p1 `2)) + (1 - ((2 * 1) / (1 - 0))))]| & ff . x2 = |[(((2 / (1 - 0)) * (p2 `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (p2 `2)) + (1 - ((2 * 1) / (1 - 0))))]| ) by A5; then (((2 / (1 - 0)) * (p1 `1)) + (1 - ((2 * 1) / (1 - 0)))) - (1 - ((2 * 1) / (1 - 0))) = (((2 / (1 - 0)) * (p2 `1)) + (1 - ((2 * 1) / (1 - 0)))) - (1 - ((2 * 1) / (1 - 0))) by A9, SPPOL_2:1; then ((2 / (1 - 0)) * (p1 `1)) / (2 / (1 - 0)) = p2 `1 by XCMPLX_1:89; then A11: p1 `1 = p2 `1 by XCMPLX_1:89; (((2 / (1 - 0)) * (p1 `2)) + (1 - ((2 * 1) / (1 - 0)))) - (1 - ((2 * 1) / (1 - 0))) = (((2 / (1 - 0)) * (p2 `2)) + (1 - ((2 * 1) / (1 - 0)))) - (1 - ((2 * 1) / (1 - 0))) by A9, A10, SPPOL_2:1; then ((2 / (1 - 0)) * (p1 `2)) / (2 / (1 - 0)) = p2 `2 by XCMPLX_1:89; hence x1 = x2 by A11, TOPREAL3:6, XCMPLX_1:89; ::_thesis: verum end; then A12: f11 is one-to-one by FUNCT_1:52; A13: dom f11 = (dom ff) /\ R^2-unit_square by RELAT_1:61 .= R^2-unit_square by A4, XBOOLE_1:28 ; A14: Kbd c= rng f11 proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in Kbd or y in rng f11 ) assume A15: y in Kbd ; ::_thesis: y in rng f11 then reconsider py = y as Point of (TOP-REAL 2) ; set t = |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]|; A16: ex q being Point of (TOP-REAL 2) st ( py = q & ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) ) by A1, A15; now__::_thesis:_(_(_-_1_=_py_`1_&_-_1_<=_py_`2_&_py_`2_<=_1_&_(_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_>=_0_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_>=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_=_1_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_>=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_=_0_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_>=_0_)_)_)_or_(_py_`1_=_1_&_-_1_<=_py_`2_&_py_`2_<=_1_&_(_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_>=_0_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_>=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_=_1_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_>=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_=_0_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_>=_0_)_)_)_or_(_-_1_=_py_`2_&_-_1_<=_py_`1_&_py_`1_<=_1_&_(_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_>=_0_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_>=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_=_1_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_>=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_=_0_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_>=_0_)_)_)_or_(_1_=_py_`2_&_-_1_<=_py_`1_&_py_`1_<=_1_&_(_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_>=_0_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_>=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_=_1_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_>=_0_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_=_0_)_or_(_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`1_=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_<=_1_&_|[(((py_`1)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2),(((py_`2)_-_(1_-_((2_*_1)_/_(1_-_0))))_/_2)]|_`2_>=_0_)_)_)_) percases ( ( - 1 = py `1 & - 1 <= py `2 & py `2 <= 1 ) or ( py `1 = 1 & - 1 <= py `2 & py `2 <= 1 ) or ( - 1 = py `2 & - 1 <= py `1 & py `1 <= 1 ) or ( 1 = py `2 & - 1 <= py `1 & py `1 <= 1 ) ) by A16; caseA17: ( - 1 = py `1 & - 1 <= py `2 & py `2 <= 1 ) ; ::_thesis: ( ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 1 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) ) then 2 - 1 >= py `2 ; then 2 >= (py `2) + 1 by XREAL_1:19; then A18: 2 / 2 >= ((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2 by XREAL_1:72; 0 - 1 <= py `2 by A17; then 0 <= (py `2) + 1 by XREAL_1:20; hence ( ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 1 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) ) by A17, A18, EUCLID:52; ::_thesis: verum end; caseA19: ( py `1 = 1 & - 1 <= py `2 & py `2 <= 1 ) ; ::_thesis: ( ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 1 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) ) then 2 - 1 >= py `2 ; then 2 >= (py `2) + 1 by XREAL_1:19; then A20: 2 / 2 >= ((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2 by XREAL_1:72; 0 - 1 <= py `2 by A19; then 0 <= (py `2) + 1 by XREAL_1:20; hence ( ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 1 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) ) by A19, A20, EUCLID:52; ::_thesis: verum end; caseA21: ( - 1 = py `2 & - 1 <= py `1 & py `1 <= 1 ) ; ::_thesis: ( ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 1 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) ) then 2 - 1 >= py `1 ; then 2 >= (py `1) + 1 by XREAL_1:19; then A22: 2 / 2 >= ((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2 by XREAL_1:72; 0 - 1 <= py `1 by A21; then 0 <= (py `1) + 1 by XREAL_1:20; hence ( ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 1 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) ) by A21, A22, EUCLID:52; ::_thesis: verum end; caseA23: ( 1 = py `2 & - 1 <= py `1 & py `1 <= 1 ) ; ::_thesis: ( ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 1 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) ) then 2 - 1 >= py `1 ; then 2 >= (py `1) + 1 by XREAL_1:19; then A24: 2 / 2 >= ((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2 by XREAL_1:72; 0 - 1 <= py `1 by A23; then 0 <= (py `1) + 1 by XREAL_1:20; hence ( ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 1 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 >= 0 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = 0 ) or ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 <= 1 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 >= 0 ) ) by A23, A24, EUCLID:52; ::_thesis: verum end; end; end; then A25: |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| in R^2-unit_square by TOPREAL1:14; ( |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1 = ((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2 & |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2 = ((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2 ) by EUCLID:52; then py = |[(((2 / (1 - 0)) * (|[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (|[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| `2)) + (1 - ((2 * 1) / (1 - 0))))]| by EUCLID:53; then py = ff . |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| by A5 .= f11 . |[(((py `1) - (1 - ((2 * 1) / (1 - 0)))) / 2),(((py `2) - (1 - ((2 * 1) / (1 - 0)))) / 2)]| by A25, FUNCT_1:49 ; hence y in rng f11 by A13, A25, FUNCT_1:def_3; ::_thesis: verum end; rng f11 c= Kbd proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng f11 or y in Kbd ) assume y in rng f11 ; ::_thesis: y in Kbd then consider x being set such that A26: x in dom f11 and A27: y = f11 . x by FUNCT_1:def_3; reconsider t = x as Point of (TOP-REAL 2) by A13, A26; A28: y = ff . t by A13, A26, A27, FUNCT_1:49 .= |[(((2 / (1 - 0)) * (t `1)) + (1 - ((2 * 1) / (1 - 0)))),(((2 / (1 - 0)) * (t `2)) + (1 - ((2 * 1) / (1 - 0))))]| by A5 ; then reconsider qy = y as Point of (TOP-REAL 2) ; A29: ex p being Point of (TOP-REAL 2) st ( t = p & ( ( p `1 = 0 & p `2 <= 1 & p `2 >= 0 ) or ( p `1 <= 1 & p `1 >= 0 & p `2 = 1 ) or ( p `1 <= 1 & p `1 >= 0 & p `2 = 0 ) or ( p `1 = 1 & p `2 <= 1 & p `2 >= 0 ) ) ) by A13, A26, TOPREAL1:14; now__::_thesis:_(_(_-_1_=_qy_`1_&_-_1_<=_qy_`2_&_qy_`2_<=_1_)_or_(_qy_`1_=_1_&_-_1_<=_qy_`2_&_qy_`2_<=_1_)_or_(_-_1_=_qy_`2_&_-_1_<=_qy_`1_&_qy_`1_<=_1_)_or_(_1_=_qy_`2_&_-_1_<=_qy_`1_&_qy_`1_<=_1_)_) percases ( ( t `1 = 0 & t `2 <= 1 & t `2 >= 0 ) or ( t `1 <= 1 & t `1 >= 0 & t `2 = 1 ) or ( t `1 <= 1 & t `1 >= 0 & t `2 = 0 ) or ( t `1 = 1 & t `2 <= 1 & t `2 >= 0 ) ) by A29; supposeA30: ( t `1 = 0 & t `2 <= 1 & t `2 >= 0 ) ; ::_thesis: ( ( - 1 = qy `1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( qy `1 = 1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( - 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) or ( 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) ) A31: qy `2 = (2 * (t `2)) - 1 by A28, EUCLID:52; 2 * 1 >= 2 * (t `2) by A30, XREAL_1:64; then A32: (1 + 1) - 1 >= ((qy `2) + 1) - 1 by A31, XREAL_1:9; 0 - 1 <= ((qy `2) + 1) - 1 by A30, A31, XREAL_1:9; hence ( ( - 1 = qy `1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( qy `1 = 1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( - 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) or ( 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) ) by A28, A30, A32, EUCLID:52; ::_thesis: verum end; supposeA33: ( t `1 <= 1 & t `1 >= 0 & t `2 = 1 ) ; ::_thesis: ( ( - 1 = qy `1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( qy `1 = 1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( - 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) or ( 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) ) A34: qy `1 = (2 * (t `1)) - 1 by A28, EUCLID:52; 2 * 1 >= 2 * (t `1) by A33, XREAL_1:64; then A35: (1 + 1) - 1 >= ((qy `1) + 1) - 1 by A34, XREAL_1:9; 0 - 1 <= ((qy `1) + 1) - 1 by A33, A34, XREAL_1:9; hence ( ( - 1 = qy `1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( qy `1 = 1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( - 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) or ( 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) ) by A28, A33, A35, EUCLID:52; ::_thesis: verum end; supposeA36: ( t `1 <= 1 & t `1 >= 0 & t `2 = 0 ) ; ::_thesis: ( ( - 1 = qy `1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( qy `1 = 1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( - 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) or ( 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) ) A37: qy `1 = (2 * (t `1)) - 1 by A28, EUCLID:52; 2 * 1 >= 2 * (t `1) by A36, XREAL_1:64; then A38: (1 + 1) - 1 >= ((qy `1) + 1) - 1 by A37, XREAL_1:9; 0 - 1 <= ((qy `1) + 1) - 1 by A36, A37, XREAL_1:9; hence ( ( - 1 = qy `1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( qy `1 = 1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( - 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) or ( 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) ) by A28, A36, A38, EUCLID:52; ::_thesis: verum end; supposeA39: ( t `1 = 1 & t `2 <= 1 & t `2 >= 0 ) ; ::_thesis: ( ( - 1 = qy `1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( qy `1 = 1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( - 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) or ( 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) ) A40: qy `2 = (2 * (t `2)) - 1 by A28, EUCLID:52; 2 * 1 >= 2 * (t `2) by A39, XREAL_1:64; then A41: (1 + 1) - 1 >= ((qy `2) + 1) - 1 by A40, XREAL_1:9; 0 - 1 <= ((qy `2) + 1) - 1 by A39, A40, XREAL_1:9; hence ( ( - 1 = qy `1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( qy `1 = 1 & - 1 <= qy `2 & qy `2 <= 1 ) or ( - 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) or ( 1 = qy `2 & - 1 <= qy `1 & qy `1 <= 1 ) ) by A28, A39, A41, EUCLID:52; ::_thesis: verum end; end; end; hence y in Kbd by A1; ::_thesis: verum end; then Kbd = rng f11 by A14, XBOOLE_0:def_10; then consider f1 being Function of ((TOP-REAL 2) | R^2-unit_square),((TOP-REAL 2) | Kbd) such that f11 = f1 and A42: f1 is being_homeomorphism by A7, A12, JGRAPH_1:46; dom f = [#] ((TOP-REAL 2) | Kb) by A1, TOPS_2:def_5 .= Kb by PRE_TOPC:def_5 ; then f . |[1,0]| in rng f by A1, A2, FUNCT_1:3; then reconsider PP = P as non empty Subset of (TOP-REAL 2) ; reconsider g = f as Function of ((TOP-REAL 2) | Kbb),((TOP-REAL 2) | PP) ; reconsider g = g as Function of ((TOP-REAL 2) | Kbb),((TOP-REAL 2) | PP) ; reconsider f22 = f1 as Function of ((TOP-REAL 2) | R^2-unit_square),((TOP-REAL 2) | Kbb) ; reconsider h = g * f22 as Function of ((TOP-REAL 2) | R^2-unit_square),((TOP-REAL 2) | PP) ; h is being_homeomorphism by A1, A42, TOPS_2:57; hence P is being_simple_closed_curve by TOPREAL2:def_1; ::_thesis: verum end; theorem Th25: :: JGRAPH_3:25 for Kb being Subset of (TOP-REAL 2) st Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } holds ( Kb is being_simple_closed_curve & Kb is compact ) proof set v = |[1,0]|; let Kb be Subset of (TOP-REAL 2); ::_thesis: ( Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } implies ( Kb is being_simple_closed_curve & Kb is compact ) ) assume A1: Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } ; ::_thesis: ( Kb is being_simple_closed_curve & Kb is compact ) ( |[1,0]| `1 = 1 & |[1,0]| `2 = 0 ) by EUCLID:52; then |[1,0]| in { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } ; then reconsider Kbd = Kb as non empty Subset of (TOP-REAL 2) by A1; set P = Kb; id ((TOP-REAL 2) | Kbd) is being_homeomorphism ; hence Kb is being_simple_closed_curve by A1, Th24; ::_thesis: Kb is compact then consider f being Function of ((TOP-REAL 2) | R^2-unit_square),((TOP-REAL 2) | Kb) such that A2: f is being_homeomorphism by TOPREAL2:def_1; percases ( Kb is empty or not Kb is empty ) ; supposeA3: Kb is empty ; ::_thesis: Kb is compact Kbd <> {} ; hence Kb is compact by A3; ::_thesis: verum end; suppose not Kb is empty ; ::_thesis: Kb is compact then reconsider R = Kb as non empty Subset of (TOP-REAL 2) ; ( f is continuous & rng f = [#] ((TOP-REAL 2) | Kb) ) by A2, TOPS_2:def_5; then (TOP-REAL 2) | R is compact by COMPTS_1:14; hence Kb is compact by COMPTS_1:3; ::_thesis: verum end; end; end; theorem :: JGRAPH_3:26 for Cb being Subset of (TOP-REAL 2) st Cb = { p where p is Point of (TOP-REAL 2) : |.p.| = 1 } holds Cb is being_simple_closed_curve proof defpred S1[ Point of (TOP-REAL 2)] means ( ( - 1 = $1 `1 & - 1 <= $1 `2 & $1 `2 <= 1 ) or ( $1 `1 = 1 & - 1 <= $1 `2 & $1 `2 <= 1 ) or ( - 1 = $1 `2 & - 1 <= $1 `1 & $1 `1 <= 1 ) or ( 1 = $1 `2 & - 1 <= $1 `1 & $1 `1 <= 1 ) ); A1: ( |[1,0]| `1 = 1 & |[1,0]| `2 = 0 ) by EUCLID:52; A2: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; set v = |[1,0]|; let Cb be Subset of (TOP-REAL 2); ::_thesis: ( Cb = { p where p is Point of (TOP-REAL 2) : |.p.| = 1 } implies Cb is being_simple_closed_curve ) assume A3: Cb = { p where p is Point of (TOP-REAL 2) : |.p.| = 1 } ; ::_thesis: Cb is being_simple_closed_curve ( |[1,0]| `1 = 1 & |[1,0]| `2 = 0 ) by EUCLID:52; then A4: |[1,0]| in { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } ; { q where q is Element of (TOP-REAL 2) : S1[q] } is Subset of (TOP-REAL 2) from DOMAIN_1:sch_7(); then reconsider Kb = { q where q is Point of (TOP-REAL 2) : ( ( - 1 = q `1 & - 1 <= q `2 & q `2 <= 1 ) or ( q `1 = 1 & - 1 <= q `2 & q `2 <= 1 ) or ( - 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) or ( 1 = q `2 & - 1 <= q `1 & q `1 <= 1 ) ) } as non empty Subset of (TOP-REAL 2) by A4; |.|[1,0]|.| = sqrt (((|[1,0]| `1) ^2) + ((|[1,0]| `2) ^2)) by JGRAPH_1:30 .= 1 by A1, SQUARE_1:18 ; then |[1,0]| in Cb by A3; then reconsider Cbb = Cb as non empty Subset of (TOP-REAL 2) ; A5: the carrier of ((TOP-REAL 2) | Kb) = Kb by PRE_TOPC:8; A6: dom (Sq_Circ | Kb) = (dom Sq_Circ) /\ Kb by RELAT_1:61 .= the carrier of ((TOP-REAL 2) | Kb) by A5, A2, XBOOLE_1:28 ; A7: rng (Sq_Circ | Kb) c= (Sq_Circ | Kb) .: the carrier of ((TOP-REAL 2) | Kb) proof let u be set ; :: according to TARSKI:def_3 ::_thesis: ( not u in rng (Sq_Circ | Kb) or u in (Sq_Circ | Kb) .: the carrier of ((TOP-REAL 2) | Kb) ) assume u in rng (Sq_Circ | Kb) ; ::_thesis: u in (Sq_Circ | Kb) .: the carrier of ((TOP-REAL 2) | Kb) then ex z being set st ( z in dom (Sq_Circ | Kb) & u = (Sq_Circ | Kb) . z ) by FUNCT_1:def_3; hence u in (Sq_Circ | Kb) .: the carrier of ((TOP-REAL 2) | Kb) by A6, FUNCT_1:def_6; ::_thesis: verum end; (Sq_Circ | Kb) .: the carrier of ((TOP-REAL 2) | Kb) = Sq_Circ .: Kb by A5, RELAT_1:129 .= Cb by A3, Th23 .= the carrier of ((TOP-REAL 2) | Cbb) by PRE_TOPC:8 ; then reconsider f0 = Sq_Circ | Kb as Function of ((TOP-REAL 2) | Kb),((TOP-REAL 2) | Cbb) by A6, A7, FUNCT_2:2; rng (Sq_Circ | Kb) c= the carrier of (TOP-REAL 2) ; then reconsider f00 = f0 as Function of ((TOP-REAL 2) | Kb),(TOP-REAL 2) by A6, FUNCT_2:2; A8: ( f0 is one-to-one & Kb is compact ) by Th25, FUNCT_1:52; rng f0 = (Sq_Circ | Kb) .: the carrier of ((TOP-REAL 2) | Kb) by RELSET_1:22 .= Sq_Circ .: Kb by A5, RELAT_1:129 .= Cb by A3, Th23 ; then ex f1 being Function of ((TOP-REAL 2) | Kb),((TOP-REAL 2) | Cbb) st ( f00 = f1 & f1 is being_homeomorphism ) by A8, Th21, JGRAPH_1:46, TOPMETR:7; hence Cb is being_simple_closed_curve by Th24; ::_thesis: verum end; begin theorem :: JGRAPH_3:27 for K0, C0 being Subset of (TOP-REAL 2) st K0 = { p where p is Point of (TOP-REAL 2) : ( - 1 <= p `1 & p `1 <= 1 & - 1 <= p `2 & p `2 <= 1 ) } & C0 = { p1 where p1 is Point of (TOP-REAL 2) : |.p1.| <= 1 } holds Sq_Circ " C0 c= K0 proof let K0, C0 be Subset of (TOP-REAL 2); ::_thesis: ( K0 = { p where p is Point of (TOP-REAL 2) : ( - 1 <= p `1 & p `1 <= 1 & - 1 <= p `2 & p `2 <= 1 ) } & C0 = { p1 where p1 is Point of (TOP-REAL 2) : |.p1.| <= 1 } implies Sq_Circ " C0 c= K0 ) assume A1: ( K0 = { p where p is Point of (TOP-REAL 2) : ( - 1 <= p `1 & p `1 <= 1 & - 1 <= p `2 & p `2 <= 1 ) } & C0 = { p1 where p1 is Point of (TOP-REAL 2) : |.p1.| <= 1 } ) ; ::_thesis: Sq_Circ " C0 c= K0 let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in Sq_Circ " C0 or x in K0 ) assume A2: x in Sq_Circ " C0 ; ::_thesis: x in K0 then reconsider px = x as Point of (TOP-REAL 2) ; set q = px; A3: Sq_Circ . x in C0 by A2, FUNCT_1:def_7; now__::_thesis:_(_(_px_=_0._(TOP-REAL_2)_&_-_1_<=_px_`1_&_px_`1_<=_1_&_-_1_<=_px_`2_&_px_`2_<=_1_)_or_(_px_<>_0._(TOP-REAL_2)_&_(_(_px_`2_<=_px_`1_&_-_(px_`1)_<=_px_`2_)_or_(_px_`2_>=_px_`1_&_px_`2_<=_-_(px_`1)_)_)_&_-_1_<=_px_`1_&_px_`1_<=_1_&_-_1_<=_px_`2_&_px_`2_<=_1_)_or_(_px_<>_0._(TOP-REAL_2)_&_not_(_px_`2_<=_px_`1_&_-_(px_`1)_<=_px_`2_)_&_not_(_px_`2_>=_px_`1_&_px_`2_<=_-_(px_`1)_)_&_-_1_<=_px_`1_&_px_`1_<=_1_&_-_1_<=_px_`2_&_px_`2_<=_1_)_) percases ( px = 0. (TOP-REAL 2) or ( px <> 0. (TOP-REAL 2) & ( ( px `2 <= px `1 & - (px `1) <= px `2 ) or ( px `2 >= px `1 & px `2 <= - (px `1) ) ) ) or ( px <> 0. (TOP-REAL 2) & not ( px `2 <= px `1 & - (px `1) <= px `2 ) & not ( px `2 >= px `1 & px `2 <= - (px `1) ) ) ) ; case px = 0. (TOP-REAL 2) ; ::_thesis: ( - 1 <= px `1 & px `1 <= 1 & - 1 <= px `2 & px `2 <= 1 ) hence ( - 1 <= px `1 & px `1 <= 1 & - 1 <= px `2 & px `2 <= 1 ) by JGRAPH_2:3; ::_thesis: verum end; caseA4: ( px <> 0. (TOP-REAL 2) & ( ( px `2 <= px `1 & - (px `1) <= px `2 ) or ( px `2 >= px `1 & px `2 <= - (px `1) ) ) ) ; ::_thesis: ( - 1 <= px `1 & px `1 <= 1 & - 1 <= px `2 & px `2 <= 1 ) A5: now__::_thesis:_not_((px_`1)_^2)_+_((px_`2)_^2)_=_0 assume ((px `1) ^2) + ((px `2) ^2) = 0 ; ::_thesis: contradiction then ( px `1 = 0 & px `2 = 0 ) by COMPLEX1:1; hence contradiction by A4, EUCLID:53, EUCLID:54; ::_thesis: verum end; A6: (px `1) ^2 >= 0 by XREAL_1:63; A7: now__::_thesis:_not_px_`1_=_0 assume A8: px `1 = 0 ; ::_thesis: contradiction then px `2 = 0 by A4; hence contradiction by A4, A8, EUCLID:53, EUCLID:54; ::_thesis: verum end; A9: ( |[((px `1) / (sqrt (1 + (((px `2) / (px `1)) ^2)))),((px `2) / (sqrt (1 + (((px `2) / (px `1)) ^2))))]| `1 = (px `1) / (sqrt (1 + (((px `2) / (px `1)) ^2))) & |[((px `1) / (sqrt (1 + (((px `2) / (px `1)) ^2)))),((px `2) / (sqrt (1 + (((px `2) / (px `1)) ^2))))]| `2 = (px `2) / (sqrt (1 + (((px `2) / (px `1)) ^2))) ) by EUCLID:52; consider p1 being Point of (TOP-REAL 2) such that A10: p1 = Sq_Circ . px and A11: |.p1.| <= 1 by A1, A3; |.p1.| ^2 <= |.p1.| by A11, SQUARE_1:42; then A12: |.p1.| ^2 <= 1 by A11, XXREAL_0:2; A13: 1 + (((px `2) / (px `1)) ^2) > 0 by Lm1; Sq_Circ . px = |[((px `1) / (sqrt (1 + (((px `2) / (px `1)) ^2)))),((px `2) / (sqrt (1 + (((px `2) / (px `1)) ^2))))]| by A4, Def1; then |.p1.| ^2 = (((px `1) / (sqrt (1 + (((px `2) / (px `1)) ^2)))) ^2) + (((px `2) / (sqrt (1 + (((px `2) / (px `1)) ^2)))) ^2) by A9, A10, JGRAPH_1:29 .= (((px `1) ^2) / ((sqrt (1 + (((px `2) / (px `1)) ^2))) ^2)) + (((px `2) / (sqrt (1 + (((px `2) / (px `1)) ^2)))) ^2) by XCMPLX_1:76 .= (((px `1) ^2) / ((sqrt (1 + (((px `2) / (px `1)) ^2))) ^2)) + (((px `2) ^2) / ((sqrt (1 + (((px `2) / (px `1)) ^2))) ^2)) by XCMPLX_1:76 .= (((px `1) ^2) / (1 + (((px `2) / (px `1)) ^2))) + (((px `2) ^2) / ((sqrt (1 + (((px `2) / (px `1)) ^2))) ^2)) by A13, SQUARE_1:def_2 .= (((px `1) ^2) / (1 + (((px `2) / (px `1)) ^2))) + (((px `2) ^2) / (1 + (((px `2) / (px `1)) ^2))) by A13, SQUARE_1:def_2 .= (((px `1) ^2) + ((px `2) ^2)) / (1 + (((px `2) / (px `1)) ^2)) by XCMPLX_1:62 ; then ((((px `1) ^2) + ((px `2) ^2)) / (1 + (((px `2) / (px `1)) ^2))) * (1 + (((px `2) / (px `1)) ^2)) <= 1 * (1 + (((px `2) / (px `1)) ^2)) by A13, A12, XREAL_1:64; then ((px `1) ^2) + ((px `2) ^2) <= 1 + (((px `2) / (px `1)) ^2) by A13, XCMPLX_1:87; then ((px `1) ^2) + ((px `2) ^2) <= 1 + (((px `2) ^2) / ((px `1) ^2)) by XCMPLX_1:76; then (((px `1) ^2) + ((px `2) ^2)) - 1 <= (1 + (((px `2) ^2) / ((px `1) ^2))) - 1 by XREAL_1:9; then ((((px `1) ^2) + ((px `2) ^2)) - 1) * ((px `1) ^2) <= (((px `2) ^2) / ((px `1) ^2)) * ((px `1) ^2) by A6, XREAL_1:64; then (((px `1) ^2) * ((px `1) ^2)) + ((((px `2) ^2) - 1) * ((px `1) ^2)) <= (px `2) ^2 by A7, XCMPLX_1:6, XCMPLX_1:87; then (((((px `1) ^2) * ((px `1) ^2)) - (((px `1) ^2) * 1)) + (((px `1) ^2) * ((px `2) ^2))) - (1 * ((px `2) ^2)) <= 0 by XREAL_1:47; then A14: (((px `1) ^2) - 1) * (((px `1) ^2) + ((px `2) ^2)) <= 0 ; (px `2) ^2 >= 0 by XREAL_1:63; then A15: ((px `1) ^2) - 1 <= 0 by A6, A14, A5, XREAL_1:129; then A16: px `1 <= 1 by SQUARE_1:43; A17: - 1 <= px `1 by A15, SQUARE_1:43; then ( ( px `2 <= 1 & - (- (px `1)) >= - (px `2) ) or ( px `2 >= - 1 & - (px `2) >= - (- (px `1)) ) ) by A4, A16, XREAL_1:24, XXREAL_0:2; then ( ( px `2 <= 1 & 1 >= - (px `2) ) or ( px `2 >= - 1 & - (px `2) >= px `1 ) ) by A16, XXREAL_0:2; then ( ( px `2 <= 1 & - 1 <= - (- (px `2)) ) or ( px `2 >= - 1 & - (px `2) >= - 1 ) ) by A17, XREAL_1:24, XXREAL_0:2; hence ( - 1 <= px `1 & px `1 <= 1 & - 1 <= px `2 & px `2 <= 1 ) by A15, SQUARE_1:43, XREAL_1:24; ::_thesis: verum end; caseA18: ( px <> 0. (TOP-REAL 2) & not ( px `2 <= px `1 & - (px `1) <= px `2 ) & not ( px `2 >= px `1 & px `2 <= - (px `1) ) ) ; ::_thesis: ( - 1 <= px `1 & px `1 <= 1 & - 1 <= px `2 & px `2 <= 1 ) A19: now__::_thesis:_not_((px_`2)_^2)_+_((px_`1)_^2)_=_0 assume ((px `2) ^2) + ((px `1) ^2) = 0 ; ::_thesis: contradiction then px `2 = 0 by COMPLEX1:1; hence contradiction by A18; ::_thesis: verum end; A20: (px `2) ^2 >= 0 by XREAL_1:63; A21: px `2 <> 0 by A18; A22: ( |[((px `1) / (sqrt (1 + (((px `1) / (px `2)) ^2)))),((px `2) / (sqrt (1 + (((px `1) / (px `2)) ^2))))]| `2 = (px `2) / (sqrt (1 + (((px `1) / (px `2)) ^2))) & |[((px `1) / (sqrt (1 + (((px `1) / (px `2)) ^2)))),((px `2) / (sqrt (1 + (((px `1) / (px `2)) ^2))))]| `1 = (px `1) / (sqrt (1 + (((px `1) / (px `2)) ^2))) ) by EUCLID:52; consider p1 being Point of (TOP-REAL 2) such that A23: p1 = Sq_Circ . px and A24: |.p1.| <= 1 by A1, A3; |.p1.| ^2 <= |.p1.| by A24, SQUARE_1:42; then A25: |.p1.| ^2 <= 1 by A24, XXREAL_0:2; A26: 1 + (((px `1) / (px `2)) ^2) > 0 by Lm1; Sq_Circ . px = |[((px `1) / (sqrt (1 + (((px `1) / (px `2)) ^2)))),((px `2) / (sqrt (1 + (((px `1) / (px `2)) ^2))))]| by A18, Def1; then |.p1.| ^2 = (((px `1) / (sqrt (1 + (((px `1) / (px `2)) ^2)))) ^2) + (((px `2) / (sqrt (1 + (((px `1) / (px `2)) ^2)))) ^2) by A22, A23, JGRAPH_1:29 .= (((px `2) ^2) / ((sqrt (1 + (((px `1) / (px `2)) ^2))) ^2)) + (((px `1) / (sqrt (1 + (((px `1) / (px `2)) ^2)))) ^2) by XCMPLX_1:76 .= (((px `2) ^2) / ((sqrt (1 + (((px `1) / (px `2)) ^2))) ^2)) + (((px `1) ^2) / ((sqrt (1 + (((px `1) / (px `2)) ^2))) ^2)) by XCMPLX_1:76 .= (((px `2) ^2) / (1 + (((px `1) / (px `2)) ^2))) + (((px `1) ^2) / ((sqrt (1 + (((px `1) / (px `2)) ^2))) ^2)) by A26, SQUARE_1:def_2 .= (((px `2) ^2) / (1 + (((px `1) / (px `2)) ^2))) + (((px `1) ^2) / (1 + (((px `1) / (px `2)) ^2))) by A26, SQUARE_1:def_2 .= (((px `2) ^2) + ((px `1) ^2)) / (1 + (((px `1) / (px `2)) ^2)) by XCMPLX_1:62 ; then ((((px `2) ^2) + ((px `1) ^2)) / (1 + (((px `1) / (px `2)) ^2))) * (1 + (((px `1) / (px `2)) ^2)) <= 1 * (1 + (((px `1) / (px `2)) ^2)) by A26, A25, XREAL_1:64; then ((px `2) ^2) + ((px `1) ^2) <= 1 + (((px `1) / (px `2)) ^2) by A26, XCMPLX_1:87; then ((px `2) ^2) + ((px `1) ^2) <= 1 + (((px `1) ^2) / ((px `2) ^2)) by XCMPLX_1:76; then (((px `2) ^2) + ((px `1) ^2)) - 1 <= (1 + (((px `1) ^2) / ((px `2) ^2))) - 1 by XREAL_1:9; then ((((px `2) ^2) + ((px `1) ^2)) - 1) * ((px `2) ^2) <= (((px `1) ^2) / ((px `2) ^2)) * ((px `2) ^2) by A20, XREAL_1:64; then (((px `2) ^2) * ((px `2) ^2)) + ((((px `1) ^2) - 1) * ((px `2) ^2)) <= (px `1) ^2 by A21, XCMPLX_1:6, XCMPLX_1:87; then (((((px `2) ^2) * ((px `2) ^2)) - (((px `2) ^2) * 1)) + (((px `2) ^2) * ((px `1) ^2))) - (1 * ((px `1) ^2)) <= 0 by XREAL_1:47; then A27: (((px `2) ^2) - 1) * (((px `2) ^2) + ((px `1) ^2)) <= 0 ; (px `1) ^2 >= 0 by XREAL_1:63; then A28: ((px `2) ^2) - 1 <= 0 by A20, A27, A19, XREAL_1:129; then ( - 1 <= px `2 & px `2 <= 1 ) by SQUARE_1:43; then ( ( px `1 <= 1 & 1 >= - (px `1) ) or ( px `1 >= - 1 & - (px `1) >= - 1 ) ) by A18, XXREAL_0:2; then ( ( px `1 <= 1 & - 1 <= - (- (px `1)) ) or ( px `1 >= - 1 & px `1 <= 1 ) ) by XREAL_1:24; hence ( - 1 <= px `1 & px `1 <= 1 & - 1 <= px `2 & px `2 <= 1 ) by A28, SQUARE_1:43; ::_thesis: verum end; end; end; hence x in K0 by A1; ::_thesis: verum end; theorem Th28: :: JGRAPH_3:28 for p being Point of (TOP-REAL 2) holds ( ( p = 0. (TOP-REAL 2) implies (Sq_Circ ") . p = 0. (TOP-REAL 2) ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) proof let p be Point of (TOP-REAL 2); ::_thesis: ( ( p = 0. (TOP-REAL 2) implies (Sq_Circ ") . p = 0. (TOP-REAL 2) ) & ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) set q = p; set px = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]|; A1: |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) by EUCLID:52; A2: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; hereby ::_thesis: ( ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) implies (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) ) assume A3: p = 0. (TOP-REAL 2) ; ::_thesis: (Sq_Circ ") . p = 0. (TOP-REAL 2) then Sq_Circ . p = p by Def1; hence (Sq_Circ ") . p = 0. (TOP-REAL 2) by A2, A3, FUNCT_1:34; ::_thesis: verum end; hereby ::_thesis: ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) or (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) A4: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; set q = p; assume that A5: ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) and A6: p <> 0. (TOP-REAL 2) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| set px = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]|; A7: |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) by EUCLID:52; A8: sqrt (1 + (((p `2) / (p `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A9: |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) by EUCLID:52; then A10: (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2) / (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1) = (p `2) / (p `1) by A7, A8, XCMPLX_1:91; then A11: (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2) / (sqrt (1 + (((|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2) / (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1)) ^2))) = p `2 by A9, A8, XCMPLX_1:89; A12: now__::_thesis:_(_|[((p_`1)_*_(sqrt_(1_+_(((p_`2)_/_(p_`1))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`2)_/_(p_`1))_^2))))]|_`1_=_0_implies_not_|[((p_`1)_*_(sqrt_(1_+_(((p_`2)_/_(p_`1))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`2)_/_(p_`1))_^2))))]|_`2_=_0_) assume ( |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 = 0 & |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 = 0 ) ; ::_thesis: contradiction then ( p `1 = 0 & p `2 = 0 ) by A7, A9, A8, XCMPLX_1:6; hence contradiction by A6, EUCLID:53, EUCLID:54; ::_thesis: verum end; ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (- (p `1)) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) ) by A5, A8, XREAL_1:64; then ( ( p `2 <= p `1 & (- (p `1)) * (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) or ( |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 >= |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 & |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 <= - (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1) ) ) by A7, A9, A8, XREAL_1:64; then ( ( (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) & - (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1) <= |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 ) or ( |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 >= |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 & |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 <= - (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1) ) ) by A7, A8, EUCLID:52, XREAL_1:64; then A13: Sq_Circ . |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| = |[((|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1) / (sqrt (1 + (((|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2) / (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1)) ^2)))),((|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2) / (sqrt (1 + (((|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2) / (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1)) ^2))))]| by A7, A9, A12, Def1, JGRAPH_2:3; (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1) / (sqrt (1 + (((|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2) / (|[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1)) ^2))) = p `1 by A7, A8, A10, XCMPLX_1:89; then p = Sq_Circ . |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by A13, A11, EUCLID:53; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by A4, FUNCT_1:34; ::_thesis: verum end; A14: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; A15: sqrt (1 + (((p `1) / (p `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A16: |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) by EUCLID:52; then A17: (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1) / (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2) = (p `1) / (p `2) by A1, A15, XCMPLX_1:91; then A18: (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1) / (sqrt (1 + (((|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1) / (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2)) ^2))) = p `1 by A16, A15, XCMPLX_1:89; assume A19: ( not ( p `2 <= p `1 & - (p `1) <= p `2 ) & not ( p `2 >= p `1 & p `2 <= - (p `1) ) ) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| A20: now__::_thesis:_(_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_`2_=_0_implies_not_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_`1_=_0_) assume that A21: |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 = 0 and |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 = 0 ; ::_thesis: contradiction p `2 = 0 by A1, A15, A21, XCMPLX_1:6; hence contradiction by A19; ::_thesis: verum end; ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) by A19, JGRAPH_2:13; then ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (- (p `2)) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) ) by A15, XREAL_1:64; then ( ( p `1 <= p `2 & (- (p `2)) * (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) or ( |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 >= |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 & |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 <= - (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2) ) ) by A1, A16, A15, XREAL_1:64; then ( ( (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) & - (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2) <= |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 ) or ( |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 >= |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 & |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 <= - (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2) ) ) by A1, A15, EUCLID:52, XREAL_1:64; then A22: Sq_Circ . |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| = |[((|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1) / (sqrt (1 + (((|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1) / (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2)) ^2)))),((|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2) / (sqrt (1 + (((|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1) / (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2)) ^2))))]| by A1, A16, A20, Th4, JGRAPH_2:3; (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2) / (sqrt (1 + (((|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1) / (|[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2)) ^2))) = p `2 by A1, A15, A17, XCMPLX_1:89; then p = Sq_Circ . |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A22, A18, EUCLID:53; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A14, FUNCT_1:34; ::_thesis: verum end; theorem Th29: :: JGRAPH_3:29 Sq_Circ " is Function of (TOP-REAL 2),(TOP-REAL 2) proof A1: the carrier of (TOP-REAL 2) c= rng Sq_Circ proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in the carrier of (TOP-REAL 2) or y in rng Sq_Circ ) assume y in the carrier of (TOP-REAL 2) ; ::_thesis: y in rng Sq_Circ then reconsider py = y as Point of (TOP-REAL 2) ; A2: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; now__::_thesis:_(_(_py_=_0._(TOP-REAL_2)_&_ex_x_being_set_st_ (_x_in_dom_Sq_Circ_&_y_=_Sq_Circ_._x_)_)_or_(_(_(_py_`2_<=_py_`1_&_-_(py_`1)_<=_py_`2_)_or_(_py_`2_>=_py_`1_&_py_`2_<=_-_(py_`1)_)_)_&_py_<>_0._(TOP-REAL_2)_&_ex_x_being_set_st_ (_x_in_dom_Sq_Circ_&_y_=_Sq_Circ_._x_)_)_or_(_not_(_py_`2_<=_py_`1_&_-_(py_`1)_<=_py_`2_)_&_not_(_py_`2_>=_py_`1_&_py_`2_<=_-_(py_`1)_)_&_py_<>_0._(TOP-REAL_2)_&_ex_x_being_set_st_ (_x_in_dom_Sq_Circ_&_y_=_Sq_Circ_._x_)_)_) percases ( py = 0. (TOP-REAL 2) or ( ( ( py `2 <= py `1 & - (py `1) <= py `2 ) or ( py `2 >= py `1 & py `2 <= - (py `1) ) ) & py <> 0. (TOP-REAL 2) ) or ( not ( py `2 <= py `1 & - (py `1) <= py `2 ) & not ( py `2 >= py `1 & py `2 <= - (py `1) ) & py <> 0. (TOP-REAL 2) ) ) ; case py = 0. (TOP-REAL 2) ; ::_thesis: ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) then Sq_Circ . py = py by Def1; hence ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) by A2; ::_thesis: verum end; caseA3: ( ( ( py `2 <= py `1 & - (py `1) <= py `2 ) or ( py `2 >= py `1 & py `2 <= - (py `1) ) ) & py <> 0. (TOP-REAL 2) ) ; ::_thesis: ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) set q = py; set px = |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]|; A4: sqrt (1 + (((py `2) / (py `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A5: now__::_thesis:_(_|[((py_`1)_*_(sqrt_(1_+_(((py_`2)_/_(py_`1))_^2)))),((py_`2)_*_(sqrt_(1_+_(((py_`2)_/_(py_`1))_^2))))]|_`1_=_0_implies_not_|[((py_`1)_*_(sqrt_(1_+_(((py_`2)_/_(py_`1))_^2)))),((py_`2)_*_(sqrt_(1_+_(((py_`2)_/_(py_`1))_^2))))]|_`2_=_0_) assume that A6: |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1 = 0 and A7: |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2 = 0 ; ::_thesis: contradiction (py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))) = 0 by A7, EUCLID:52; then A8: py `2 = 0 by A4, XCMPLX_1:6; (py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2))) = 0 by A6, EUCLID:52; then py `1 = 0 by A4, XCMPLX_1:6; hence contradiction by A3, A8, EUCLID:53, EUCLID:54; ::_thesis: verum end; A9: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; A10: |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1 = (py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2))) by EUCLID:52; A11: |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2 = (py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))) by EUCLID:52; then A12: (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2) / (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1) = (py `2) / (py `1) by A10, A4, XCMPLX_1:91; then A13: (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2) / (sqrt (1 + (((|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2) / (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1)) ^2))) = py `2 by A11, A4, XCMPLX_1:89; ( ( py `2 <= py `1 & - (py `1) <= py `2 ) or ( py `2 >= py `1 & (py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))) <= (- (py `1)) * (sqrt (1 + (((py `2) / (py `1)) ^2))) ) ) by A3, A4, XREAL_1:64; then ( ( py `2 <= py `1 & (- (py `1)) * (sqrt (1 + (((py `2) / (py `1)) ^2))) <= (py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))) ) or ( |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2 >= |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1 & |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2 <= - (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1) ) ) by A10, A11, A4, XREAL_1:64; then ( ( (py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))) <= (py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2))) & - (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1) <= |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2 ) or ( |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2 >= |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1 & |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2 <= - (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1) ) ) by A10, A4, EUCLID:52, XREAL_1:64; then A14: Sq_Circ . |[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| = |[((|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1) / (sqrt (1 + (((|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2) / (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1)) ^2)))),((|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2) / (sqrt (1 + (((|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2) / (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1)) ^2))))]| by A10, A11, A5, Def1, JGRAPH_2:3; (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1) / (sqrt (1 + (((|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `2) / (|[((py `1) * (sqrt (1 + (((py `2) / (py `1)) ^2)))),((py `2) * (sqrt (1 + (((py `2) / (py `1)) ^2))))]| `1)) ^2))) = py `1 by A10, A4, A12, XCMPLX_1:89; hence ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) by A14, A13, A9, EUCLID:53; ::_thesis: verum end; caseA15: ( not ( py `2 <= py `1 & - (py `1) <= py `2 ) & not ( py `2 >= py `1 & py `2 <= - (py `1) ) & py <> 0. (TOP-REAL 2) ) ; ::_thesis: ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) set q = py; set px = |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]|; A16: sqrt (1 + (((py `1) / (py `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A17: |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2 = (py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))) by EUCLID:52; A18: now__::_thesis:_(_|[((py_`1)_*_(sqrt_(1_+_(((py_`1)_/_(py_`2))_^2)))),((py_`2)_*_(sqrt_(1_+_(((py_`1)_/_(py_`2))_^2))))]|_`2_=_0_implies_not_|[((py_`1)_*_(sqrt_(1_+_(((py_`1)_/_(py_`2))_^2)))),((py_`2)_*_(sqrt_(1_+_(((py_`1)_/_(py_`2))_^2))))]|_`1_=_0_) assume that A19: |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2 = 0 and |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1 = 0 ; ::_thesis: contradiction py `2 = 0 by A17, A16, A19, XCMPLX_1:6; hence contradiction by A15; ::_thesis: verum end; A20: |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1 = (py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2))) by EUCLID:52; then A21: (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1) / (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2) = (py `1) / (py `2) by A17, A16, XCMPLX_1:91; then A22: (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1) / (sqrt (1 + (((|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1) / (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2)) ^2))) = py `1 by A20, A16, XCMPLX_1:89; ( ( py `1 <= py `2 & - (py `2) <= py `1 ) or ( py `1 >= py `2 & py `1 <= - (py `2) ) ) by A15, JGRAPH_2:13; then ( ( py `1 <= py `2 & - (py `2) <= py `1 ) or ( py `1 >= py `2 & (py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2))) <= (- (py `2)) * (sqrt (1 + (((py `1) / (py `2)) ^2))) ) ) by A16, XREAL_1:64; then ( ( py `1 <= py `2 & (- (py `2)) * (sqrt (1 + (((py `1) / (py `2)) ^2))) <= (py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2))) ) or ( |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1 >= |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2 & |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1 <= - (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2) ) ) by A17, A20, A16, XREAL_1:64; then ( ( (py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2))) <= (py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))) & - (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2) <= |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1 ) or ( |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1 >= |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2 & |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1 <= - (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2) ) ) by A17, A16, EUCLID:52, XREAL_1:64; then A23: Sq_Circ . |[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| = |[((|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1) / (sqrt (1 + (((|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1) / (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2)) ^2)))),((|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2) / (sqrt (1 + (((|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1) / (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2)) ^2))))]| by A17, A20, A18, Th4, JGRAPH_2:3; A24: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2) / (sqrt (1 + (((|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `1) / (|[((py `1) * (sqrt (1 + (((py `1) / (py `2)) ^2)))),((py `2) * (sqrt (1 + (((py `1) / (py `2)) ^2))))]| `2)) ^2))) = py `2 by A17, A16, A21, XCMPLX_1:89; hence ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) by A23, A22, A24, EUCLID:53; ::_thesis: verum end; end; end; hence y in rng Sq_Circ by FUNCT_1:def_3; ::_thesis: verum end; A25: rng (Sq_Circ ") = dom Sq_Circ by FUNCT_1:33 .= the carrier of (TOP-REAL 2) by FUNCT_2:def_1 ; dom (Sq_Circ ") = rng Sq_Circ by FUNCT_1:33; then dom (Sq_Circ ") = the carrier of (TOP-REAL 2) by A1, XBOOLE_0:def_10; hence Sq_Circ " is Function of (TOP-REAL 2),(TOP-REAL 2) by A25, FUNCT_2:1; ::_thesis: verum end; theorem Th30: :: JGRAPH_3:30 for p being Point of (TOP-REAL 2) st p <> 0. (TOP-REAL 2) holds ( ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) implies (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) or (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) ) proof let p be Point of (TOP-REAL 2); ::_thesis: ( p <> 0. (TOP-REAL 2) implies ( ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) implies (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) or (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) ) ) A1: ( - (p `2) < p `1 implies - (- (p `2)) > - (p `1) ) by XREAL_1:24; assume A2: p <> 0. (TOP-REAL 2) ; ::_thesis: ( ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) implies (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ) & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) or (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) ) hereby ::_thesis: ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) or (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| ) assume A3: ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| now__::_thesis:_(_(_p_`1_<=_p_`2_&_-_(p_`2)_<=_p_`1_&_(Sq_Circ_")_._p_=_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_or_(_p_`1_>=_p_`2_&_p_`1_<=_-_(p_`2)_&_(Sq_Circ_")_._p_=_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_) percases ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) by A3; caseA4: ( p `1 <= p `2 & - (p `2) <= p `1 ) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| now__::_thesis:_(_(_(_p_`2_<=_p_`1_&_-_(p_`1)_<=_p_`2_)_or_(_p_`2_>=_p_`1_&_p_`2_<=_-_(p_`1)_)_)_implies_(Sq_Circ_")_._p_=_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_) assume A5: ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| A6: now__::_thesis:_(_(_p_`2_<=_p_`1_&_-_(p_`1)_<=_p_`2_&_(_p_`1_=_p_`2_or_p_`1_=_-_(p_`2)_)_)_or_(_p_`2_>=_p_`1_&_p_`2_<=_-_(p_`1)_&_(_p_`1_=_p_`2_or_p_`1_=_-_(p_`2)_)_)_) percases ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) by A5; case ( p `2 <= p `1 & - (p `1) <= p `2 ) ; ::_thesis: ( p `1 = p `2 or p `1 = - (p `2) ) hence ( p `1 = p `2 or p `1 = - (p `2) ) by A4, XXREAL_0:1; ::_thesis: verum end; case ( p `2 >= p `1 & p `2 <= - (p `1) ) ; ::_thesis: ( p `1 = p `2 or p `1 = - (p `2) ) then - (p `2) >= - (- (p `1)) by XREAL_1:24; hence ( p `1 = p `2 or p `1 = - (p `2) ) by A4, XXREAL_0:1; ::_thesis: verum end; end; end; now__::_thesis:_(_(_p_`1_=_p_`2_&_(Sq_Circ_")_._p_=_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_or_(_p_`1_=_-_(p_`2)_&_(Sq_Circ_")_._p_=_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_) percases ( p `1 = p `2 or p `1 = - (p `2) ) by A6; case p `1 = p `2 ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, A5, Th28; ::_thesis: verum end; case p `1 = - (p `2) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| then ( p `1 <> 0 & - (p `1) = p `2 ) by A2, EUCLID:53, EUCLID:54; then ( (p `1) / (p `2) = - 1 & (p `2) / (p `1) = - 1 ) by XCMPLX_1:197, XCMPLX_1:198; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, A5, Th28; ::_thesis: verum end; end; end; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ; ::_thesis: verum end; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by Th28; ::_thesis: verum end; caseA7: ( p `1 >= p `2 & p `1 <= - (p `2) ) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| now__::_thesis:_(_(_(_p_`2_<=_p_`1_&_-_(p_`1)_<=_p_`2_)_or_(_p_`2_>=_p_`1_&_p_`2_<=_-_(p_`1)_)_)_implies_(Sq_Circ_")_._p_=_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_) assume A8: ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| A9: now__::_thesis:_(_(_p_`2_<=_p_`1_&_-_(p_`1)_<=_p_`2_&_(_p_`1_=_p_`2_or_p_`1_=_-_(p_`2)_)_)_or_(_p_`2_>=_p_`1_&_p_`2_<=_-_(p_`1)_&_(_p_`1_=_p_`2_or_p_`1_=_-_(p_`2)_)_)_) percases ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) by A8; case ( p `2 <= p `1 & - (p `1) <= p `2 ) ; ::_thesis: ( p `1 = p `2 or p `1 = - (p `2) ) then - (- (p `1)) >= - (p `2) by XREAL_1:24; hence ( p `1 = p `2 or p `1 = - (p `2) ) by A7, XXREAL_0:1; ::_thesis: verum end; case ( p `2 >= p `1 & p `2 <= - (p `1) ) ; ::_thesis: ( p `1 = p `2 or p `1 = - (p `2) ) hence ( p `1 = p `2 or p `1 = - (p `2) ) by A7, XXREAL_0:1; ::_thesis: verum end; end; end; now__::_thesis:_(_(_p_`1_=_p_`2_&_(Sq_Circ_")_._p_=_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_or_(_p_`1_=_-_(p_`2)_&_(Sq_Circ_")_._p_=_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_)_) percases ( p `1 = p `2 or p `1 = - (p `2) ) by A9; case p `1 = p `2 ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, A8, Th28; ::_thesis: verum end; caseA10: p `1 = - (p `2) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| then ( p `1 <> 0 & - (p `1) = p `2 ) by A2, EUCLID:53, EUCLID:54; then A11: (p `2) / (p `1) = - 1 by XCMPLX_1:197; p `2 <> 0 by A2, A10, EUCLID:53, EUCLID:54; then (p `1) / (p `2) = - 1 by A10, XCMPLX_1:197; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A2, A8, A11, Th28; ::_thesis: verum end; end; end; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ; ::_thesis: verum end; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by Th28; ::_thesis: verum end; end; end; hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| ; ::_thesis: verum end; A12: ( - (p `2) > p `1 implies - (- (p `2)) < - (p `1) ) by XREAL_1:24; assume ( not ( p `1 <= p `2 & - (p `2) <= p `1 ) & not ( p `1 >= p `2 & p `1 <= - (p `2) ) ) ; ::_thesis: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| hence (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by A2, A1, A12, Th28; ::_thesis: verum end; theorem Th31: :: JGRAPH_3:31 for X being non empty TopSpace for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) proof let X be non empty TopSpace; ::_thesis: for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) let f1, f2 be Function of X,R^1; ::_thesis: ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) implies ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) ) assume that A1: f1 is continuous and A2: ( f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) ) ; ::_thesis: ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) consider g2 being Function of X,R^1 such that A3: for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g2 . p = sqrt (1 + ((r1 / r2) ^2)) and A4: g2 is continuous by A1, A2, Th8; consider g3 being Function of X,R^1 such that A5: for p being Point of X for r1, r0 being real number st f1 . p = r1 & g2 . p = r0 holds g3 . p = r1 * r0 and A6: g3 is continuous by A1, A4, JGRAPH_2:25; for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) proof let p be Point of X; ::_thesis: for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) let r1, r2 be real number ; ::_thesis: ( f1 . p = r1 & f2 . p = r2 implies g3 . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) ) assume that A7: f1 . p = r1 and A8: f2 . p = r2 ; ::_thesis: g3 . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) g2 . p = sqrt (1 + ((r1 / r2) ^2)) by A3, A7, A8; hence g3 . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) by A5, A7; ::_thesis: verum end; hence ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r1 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) by A6; ::_thesis: verum end; theorem Th32: :: JGRAPH_3:32 for X being non empty TopSpace for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) proof let X be non empty TopSpace; ::_thesis: for f1, f2 being Function of X,R^1 st f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) holds ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) let f1, f2 be Function of X,R^1; ::_thesis: ( f1 is continuous & f2 is continuous & ( for q being Point of X holds f2 . q <> 0 ) implies ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) ) assume that A1: f1 is continuous and A2: f2 is continuous and A3: for q being Point of X holds f2 . q <> 0 ; ::_thesis: ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) consider g2 being Function of X,R^1 such that A4: for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g2 . p = sqrt (1 + ((r1 / r2) ^2)) and A5: g2 is continuous by A1, A2, A3, Th8; consider g3 being Function of X,R^1 such that A6: for p being Point of X for r2, r0 being real number st f2 . p = r2 & g2 . p = r0 holds g3 . p = r2 * r0 and A7: g3 is continuous by A2, A5, JGRAPH_2:25; for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) proof let p be Point of X; ::_thesis: for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g3 . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) let r1, r2 be real number ; ::_thesis: ( f1 . p = r1 & f2 . p = r2 implies g3 . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) ) assume that A8: f1 . p = r1 and A9: f2 . p = r2 ; ::_thesis: g3 . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) g2 . p = sqrt (1 + ((r1 / r2) ^2)) by A4, A8, A9; hence g3 . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) by A6, A9; ::_thesis: verum end; hence ex g being Function of X,R^1 st ( ( for p being Point of X for r1, r2 being real number st f1 . p = r1 & f2 . p = r2 holds g . p = r2 * (sqrt (1 + ((r1 / r2) ^2))) ) & g is continuous ) by A7; ::_thesis: verum end; theorem Th33: :: JGRAPH_3:33 for K1 being non empty Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) holds f is continuous proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) holds f is continuous let f be Function of ((TOP-REAL 2) | K1),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) implies f is continuous ) reconsider g1 = proj1 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm7; reconsider g2 = proj2 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm5; assume that A1: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) and A2: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ; ::_thesis: f is continuous A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; for q being Point of ((TOP-REAL 2) | K1) holds g1 . q <> 0 proof let q be Point of ((TOP-REAL 2) | K1); ::_thesis: g1 . q <> 0 q in the carrier of ((TOP-REAL 2) | K1) ; then reconsider q2 = q as Point of (TOP-REAL 2) by A3; g1 . q = proj1 . q by Lm6 .= q2 `1 by PSCOMP_1:def_5 ; hence g1 . q <> 0 by A2; ::_thesis: verum end; then consider g3 being Function of ((TOP-REAL 2) | K1),R^1 such that A4: for q being Point of ((TOP-REAL 2) | K1) for r1, r2 being real number st g2 . q = r1 & g1 . q = r2 holds g3 . q = r2 * (sqrt (1 + ((r1 / r2) ^2))) and A5: g3 is continuous by Th32; A6: now__::_thesis:_for_x_being_set_st_x_in_dom_f_holds_ f_._x_=_g3_._x let x be set ; ::_thesis: ( x in dom f implies f . x = g3 . x ) assume A7: x in dom f ; ::_thesis: f . x = g3 . x then reconsider s = x as Point of ((TOP-REAL 2) | K1) ; x in the carrier of ((TOP-REAL 2) | K1) by A7; then x in K1 by PRE_TOPC:8; then reconsider r = x as Point of (TOP-REAL 2) ; A8: ( proj2 . r = r `2 & proj1 . r = r `1 ) by PSCOMP_1:def_5, PSCOMP_1:def_6; A9: ( g2 . s = proj2 . s & g1 . s = proj1 . s ) by Lm4, Lm6; f . r = (r `1) * (sqrt (1 + (((r `2) / (r `1)) ^2))) by A1, A7; hence f . x = g3 . x by A4, A9, A8; ::_thesis: verum end; dom g3 = the carrier of ((TOP-REAL 2) | K1) by FUNCT_2:def_1; then dom f = dom g3 by FUNCT_2:def_1; hence f is continuous by A5, A6, FUNCT_1:2; ::_thesis: verum end; theorem Th34: :: JGRAPH_3:34 for K1 being non empty Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) holds f is continuous proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) holds f is continuous let f be Function of ((TOP-REAL 2) | K1),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ) implies f is continuous ) reconsider g1 = proj1 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm7; reconsider g2 = proj2 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm5; assume that A1: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) and A2: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 ; ::_thesis: f is continuous A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; for q being Point of ((TOP-REAL 2) | K1) holds g1 . q <> 0 proof let q be Point of ((TOP-REAL 2) | K1); ::_thesis: g1 . q <> 0 q in the carrier of ((TOP-REAL 2) | K1) ; then reconsider q2 = q as Point of (TOP-REAL 2) by A3; g1 . q = proj1 . q by Lm6 .= q2 `1 by PSCOMP_1:def_5 ; hence g1 . q <> 0 by A2; ::_thesis: verum end; then consider g3 being Function of ((TOP-REAL 2) | K1),R^1 such that A4: for q being Point of ((TOP-REAL 2) | K1) for r1, r2 being real number st g2 . q = r1 & g1 . q = r2 holds g3 . q = r1 * (sqrt (1 + ((r1 / r2) ^2))) and A5: g3 is continuous by Th31; A6: now__::_thesis:_for_x_being_set_st_x_in_dom_f_holds_ f_._x_=_g3_._x let x be set ; ::_thesis: ( x in dom f implies f . x = g3 . x ) assume A7: x in dom f ; ::_thesis: f . x = g3 . x then reconsider s = x as Point of ((TOP-REAL 2) | K1) ; x in the carrier of ((TOP-REAL 2) | K1) by A7; then x in K1 by PRE_TOPC:8; then reconsider r = x as Point of (TOP-REAL 2) ; A8: ( proj2 . r = r `2 & proj1 . r = r `1 ) by PSCOMP_1:def_5, PSCOMP_1:def_6; A9: ( g2 . s = proj2 . s & g1 . s = proj1 . s ) by Lm4, Lm6; f . r = (r `2) * (sqrt (1 + (((r `2) / (r `1)) ^2))) by A1, A7; hence f . x = g3 . x by A4, A9, A8; ::_thesis: verum end; dom g3 = the carrier of ((TOP-REAL 2) | K1) by FUNCT_2:def_1; then dom f = dom g3 by FUNCT_2:def_1; hence f is continuous by A5, A6, FUNCT_1:2; ::_thesis: verum end; theorem Th35: :: JGRAPH_3:35 for K1 being non empty Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) holds f is continuous proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) holds f is continuous let f be Function of ((TOP-REAL 2) | K1),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) implies f is continuous ) reconsider g1 = proj1 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm7; reconsider g2 = proj2 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm5; assume that A1: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) and A2: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ; ::_thesis: f is continuous A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; for q being Point of ((TOP-REAL 2) | K1) holds g2 . q <> 0 proof let q be Point of ((TOP-REAL 2) | K1); ::_thesis: g2 . q <> 0 q in the carrier of ((TOP-REAL 2) | K1) ; then reconsider q2 = q as Point of (TOP-REAL 2) by A3; g2 . q = proj2 . q by Lm4 .= q2 `2 by PSCOMP_1:def_6 ; hence g2 . q <> 0 by A2; ::_thesis: verum end; then consider g3 being Function of ((TOP-REAL 2) | K1),R^1 such that A4: for q being Point of ((TOP-REAL 2) | K1) for r1, r2 being real number st g1 . q = r1 & g2 . q = r2 holds g3 . q = r2 * (sqrt (1 + ((r1 / r2) ^2))) and A5: g3 is continuous by Th32; A6: now__::_thesis:_for_x_being_set_st_x_in_dom_f_holds_ f_._x_=_g3_._x let x be set ; ::_thesis: ( x in dom f implies f . x = g3 . x ) assume A7: x in dom f ; ::_thesis: f . x = g3 . x then reconsider s = x as Point of ((TOP-REAL 2) | K1) ; x in the carrier of ((TOP-REAL 2) | K1) by A7; then x in K1 by PRE_TOPC:8; then reconsider r = x as Point of (TOP-REAL 2) ; A8: ( proj2 . r = r `2 & proj1 . r = r `1 ) by PSCOMP_1:def_5, PSCOMP_1:def_6; A9: ( g2 . s = proj2 . s & g1 . s = proj1 . s ) by Lm4, Lm6; f . r = (r `2) * (sqrt (1 + (((r `1) / (r `2)) ^2))) by A1, A7; hence f . x = g3 . x by A4, A9, A8; ::_thesis: verum end; dom g3 = the carrier of ((TOP-REAL 2) | K1) by FUNCT_2:def_1; then dom f = dom g3 by FUNCT_2:def_1; hence f is continuous by A5, A6, FUNCT_1:2; ::_thesis: verum end; theorem Th36: :: JGRAPH_3:36 for K1 being non empty Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) holds f is continuous proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K1),R^1 st ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) holds f is continuous let f be Function of ((TOP-REAL 2) | K1),R^1; ::_thesis: ( ( for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) & ( for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ) implies f is continuous ) reconsider g1 = proj1 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm7; reconsider g2 = proj2 | K1 as continuous Function of ((TOP-REAL 2) | K1),R^1 by Lm5; assume that A1: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) and A2: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 ; ::_thesis: f is continuous A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; for q being Point of ((TOP-REAL 2) | K1) holds g2 . q <> 0 proof let q be Point of ((TOP-REAL 2) | K1); ::_thesis: g2 . q <> 0 q in the carrier of ((TOP-REAL 2) | K1) ; then reconsider q2 = q as Point of (TOP-REAL 2) by A3; g2 . q = proj2 . q by Lm4 .= q2 `2 by PSCOMP_1:def_6 ; hence g2 . q <> 0 by A2; ::_thesis: verum end; then consider g3 being Function of ((TOP-REAL 2) | K1),R^1 such that A4: for q being Point of ((TOP-REAL 2) | K1) for r1, r2 being real number st g1 . q = r1 & g2 . q = r2 holds g3 . q = r1 * (sqrt (1 + ((r1 / r2) ^2))) and A5: g3 is continuous by Th31; A6: now__::_thesis:_for_x_being_set_st_x_in_dom_f_holds_ f_._x_=_g3_._x let x be set ; ::_thesis: ( x in dom f implies f . x = g3 . x ) assume A7: x in dom f ; ::_thesis: f . x = g3 . x then reconsider s = x as Point of ((TOP-REAL 2) | K1) ; x in the carrier of ((TOP-REAL 2) | K1) by A7; then x in K1 by PRE_TOPC:8; then reconsider r = x as Point of (TOP-REAL 2) ; A8: ( proj2 . r = r `2 & proj1 . r = r `1 ) by PSCOMP_1:def_5, PSCOMP_1:def_6; A9: ( g2 . s = proj2 . s & g1 . s = proj1 . s ) by Lm4, Lm6; f . r = (r `1) * (sqrt (1 + (((r `1) / (r `2)) ^2))) by A1, A7; hence f . x = g3 . x by A4, A9, A8; ::_thesis: verum end; dom g3 = the carrier of ((TOP-REAL 2) | K1) by FUNCT_2:def_1; then dom f = dom g3 by FUNCT_2:def_1; hence f is continuous by A5, A6, FUNCT_1:2; ::_thesis: verum end; Lm17: for K1 being non empty Subset of (TOP-REAL 2) holds proj2 * ((Sq_Circ ") | K1) is Function of ((TOP-REAL 2) | K1),R^1 proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: proj2 * ((Sq_Circ ") | K1) is Function of ((TOP-REAL 2) | K1),R^1 A1: rng (proj2 * ((Sq_Circ ") | K1)) c= rng proj2 by RELAT_1:26; A2: dom ((Sq_Circ ") | K1) c= dom (proj2 * ((Sq_Circ ") | K1)) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in dom ((Sq_Circ ") | K1) or x in dom (proj2 * ((Sq_Circ ") | K1)) ) A3: rng (Sq_Circ ") c= the carrier of (TOP-REAL 2) by Th29, RELAT_1:def_19; assume A4: x in dom ((Sq_Circ ") | K1) ; ::_thesis: x in dom (proj2 * ((Sq_Circ ") | K1)) then x in (dom (Sq_Circ ")) /\ K1 by RELAT_1:61; then x in dom (Sq_Circ ") by XBOOLE_0:def_4; then A5: (Sq_Circ ") . x in rng (Sq_Circ ") by FUNCT_1:3; ((Sq_Circ ") | K1) . x = (Sq_Circ ") . x by A4, FUNCT_1:47; hence x in dom (proj2 * ((Sq_Circ ") | K1)) by A4, A5, A3, Lm3, FUNCT_1:11; ::_thesis: verum end; dom (proj2 * ((Sq_Circ ") | K1)) c= dom ((Sq_Circ ") | K1) by RELAT_1:25; then dom (proj2 * ((Sq_Circ ") | K1)) = dom ((Sq_Circ ") | K1) by A2, XBOOLE_0:def_10 .= (dom (Sq_Circ ")) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by Th29, FUNCT_2:def_1 .= K1 by XBOOLE_1:28 .= the carrier of ((TOP-REAL 2) | K1) by PRE_TOPC:8 ; hence proj2 * ((Sq_Circ ") | K1) is Function of ((TOP-REAL 2) | K1),R^1 by A1, FUNCT_2:2, TOPMETR:17, XBOOLE_1:1; ::_thesis: verum end; Lm18: for K1 being non empty Subset of (TOP-REAL 2) holds proj1 * ((Sq_Circ ") | K1) is Function of ((TOP-REAL 2) | K1),R^1 proof let K1 be non empty Subset of (TOP-REAL 2); ::_thesis: proj1 * ((Sq_Circ ") | K1) is Function of ((TOP-REAL 2) | K1),R^1 A1: rng (proj1 * ((Sq_Circ ") | K1)) c= rng proj1 by RELAT_1:26; A2: dom ((Sq_Circ ") | K1) c= dom (proj1 * ((Sq_Circ ") | K1)) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in dom ((Sq_Circ ") | K1) or x in dom (proj1 * ((Sq_Circ ") | K1)) ) A3: rng (Sq_Circ ") c= the carrier of (TOP-REAL 2) by Th29, RELAT_1:def_19; assume A4: x in dom ((Sq_Circ ") | K1) ; ::_thesis: x in dom (proj1 * ((Sq_Circ ") | K1)) then x in (dom (Sq_Circ ")) /\ K1 by RELAT_1:61; then x in dom (Sq_Circ ") by XBOOLE_0:def_4; then A5: (Sq_Circ ") . x in rng (Sq_Circ ") by FUNCT_1:3; ((Sq_Circ ") | K1) . x = (Sq_Circ ") . x by A4, FUNCT_1:47; hence x in dom (proj1 * ((Sq_Circ ") | K1)) by A4, A5, A3, Lm2, FUNCT_1:11; ::_thesis: verum end; dom (proj1 * ((Sq_Circ ") | K1)) c= dom ((Sq_Circ ") | K1) by RELAT_1:25; then dom (proj1 * ((Sq_Circ ") | K1)) = dom ((Sq_Circ ") | K1) by A2, XBOOLE_0:def_10 .= (dom (Sq_Circ ")) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by Th29, FUNCT_2:def_1 .= K1 by XBOOLE_1:28 .= the carrier of ((TOP-REAL 2) | K1) by PRE_TOPC:8 ; hence proj1 * ((Sq_Circ ") | K1) is Function of ((TOP-REAL 2) | K1),R^1 by A1, FUNCT_2:2, TOPMETR:17, XBOOLE_1:1; ::_thesis: verum end; theorem Th37: :: JGRAPH_3:37 for K0, B0 being Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds f is continuous proof let K0, B0 be Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds f is continuous let f be Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0); ::_thesis: ( f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } implies f is continuous ) assume A1: ( f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } ) ; ::_thesis: f is continuous then 1.REAL 2 in K0 by Lm9, Lm10; then reconsider K1 = K0 as non empty Subset of (TOP-REAL 2) ; reconsider g1 = proj1 * ((Sq_Circ ") | K1) as Function of ((TOP-REAL 2) | K1),R^1 by Lm18; for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds g1 . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) proof A2: dom ((Sq_Circ ") | K1) = (dom (Sq_Circ ")) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by Th29, FUNCT_2:def_1 .= K1 by XBOOLE_1:28 ; let p be Point of (TOP-REAL 2); ::_thesis: ( p in the carrier of ((TOP-REAL 2) | K1) implies g1 . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume A4: p in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: g1 . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) then ex p3 being Point of (TOP-REAL 2) st ( p = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A3; then A5: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by Th28; ((Sq_Circ ") | K1) . p = (Sq_Circ ") . p by A4, A3, FUNCT_1:49; then g1 . p = proj1 . |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by A4, A2, A3, A5, FUNCT_1:13 .= |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 by PSCOMP_1:def_5 .= (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) by EUCLID:52 ; hence g1 . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ; ::_thesis: verum end; then consider f1 being Function of ((TOP-REAL 2) | K1),R^1 such that A6: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f1 . p = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ; reconsider g2 = proj2 * ((Sq_Circ ") | K1) as Function of ((TOP-REAL 2) | K1),R^1 by Lm17; for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds g2 . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) proof A7: dom ((Sq_Circ ") | K1) = (dom (Sq_Circ ")) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by Th29, FUNCT_2:def_1 .= K1 by XBOOLE_1:28 ; let p be Point of (TOP-REAL 2); ::_thesis: ( p in the carrier of ((TOP-REAL 2) | K1) implies g2 . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) A8: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume A9: p in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: g2 . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) then ex p3 being Point of (TOP-REAL 2) st ( p = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A8; then A10: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by Th28; ((Sq_Circ ") | K1) . p = (Sq_Circ ") . p by A9, A8, FUNCT_1:49; then g2 . p = proj2 . |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by A9, A7, A8, A10, FUNCT_1:13 .= |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 by PSCOMP_1:def_6 .= (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) by EUCLID:52 ; hence g2 . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ; ::_thesis: verum end; then consider f2 being Function of ((TOP-REAL 2) | K1),R^1 such that A11: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f2 . p = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ; A12: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `1 <> 0 proof let q be Point of (TOP-REAL 2); ::_thesis: ( q in the carrier of ((TOP-REAL 2) | K1) implies q `1 <> 0 ) A13: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume q in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: q `1 <> 0 then A14: ex p3 being Point of (TOP-REAL 2) st ( q = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A13; now__::_thesis:_not_q_`1_=_0 assume A15: q `1 = 0 ; ::_thesis: contradiction then q `2 = 0 by A14; hence contradiction by A14, A15, EUCLID:53, EUCLID:54; ::_thesis: verum end; hence q `1 <> 0 ; ::_thesis: verum end; then A16: f1 is continuous by A6, Th33; A17: now__::_thesis:_for_x,_y,_r,_s_being_real_number_st_|[x,y]|_in_K1_&_r_=_f1_._|[x,y]|_&_s_=_f2_._|[x,y]|_holds_ f_._|[x,y]|_=_|[r,s]| let x, y, r, s be real number ; ::_thesis: ( |[x,y]| in K1 & r = f1 . |[x,y]| & s = f2 . |[x,y]| implies f . |[x,y]| = |[r,s]| ) assume that A18: |[x,y]| in K1 and A19: ( r = f1 . |[x,y]| & s = f2 . |[x,y]| ) ; ::_thesis: f . |[x,y]| = |[r,s]| set p99 = |[x,y]|; A20: ex p3 being Point of (TOP-REAL 2) st ( |[x,y]| = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A18; A21: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; then A22: f1 . |[x,y]| = (|[x,y]| `1) * (sqrt (1 + (((|[x,y]| `2) / (|[x,y]| `1)) ^2))) by A6, A18; ((Sq_Circ ") | K0) . |[x,y]| = (Sq_Circ ") . |[x,y]| by A18, FUNCT_1:49 .= |[((|[x,y]| `1) * (sqrt (1 + (((|[x,y]| `2) / (|[x,y]| `1)) ^2)))),((|[x,y]| `2) * (sqrt (1 + (((|[x,y]| `2) / (|[x,y]| `1)) ^2))))]| by A20, Th28 .= |[r,s]| by A11, A18, A19, A21, A22 ; hence f . |[x,y]| = |[r,s]| by A1; ::_thesis: verum end; f2 is continuous by A12, A11, Th34; hence f is continuous by A1, A16, A17, Lm13, JGRAPH_2:35; ::_thesis: verum end; theorem Th38: :: JGRAPH_3:38 for K0, B0 being Subset of (TOP-REAL 2) for f being Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds f is continuous proof let K0, B0 be Subset of (TOP-REAL 2); ::_thesis: for f being Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds f is continuous let f be Function of ((TOP-REAL 2) | K0),((TOP-REAL 2) | B0); ::_thesis: ( f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } implies f is continuous ) assume A1: ( f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } ) ; ::_thesis: f is continuous then 1.REAL 2 in K0 by Lm14, Lm15; then reconsider K1 = K0 as non empty Subset of (TOP-REAL 2) ; reconsider g1 = proj2 * ((Sq_Circ ") | K1) as Function of ((TOP-REAL 2) | K1),R^1 by Lm17; for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds g1 . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) proof A2: dom ((Sq_Circ ") | K1) = (dom (Sq_Circ ")) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by Th29, FUNCT_2:def_1 .= K1 by XBOOLE_1:28 ; let p be Point of (TOP-REAL 2); ::_thesis: ( p in the carrier of ((TOP-REAL 2) | K1) implies g1 . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) A3: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume A4: p in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: g1 . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) then ex p3 being Point of (TOP-REAL 2) st ( p = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A3; then A5: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by Th30; ((Sq_Circ ") | K1) . p = (Sq_Circ ") . p by A4, A3, FUNCT_1:49; then g1 . p = proj2 . |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A4, A2, A3, A5, FUNCT_1:13 .= |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 by PSCOMP_1:def_6 .= (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) by EUCLID:52 ; hence g1 . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ; ::_thesis: verum end; then consider f1 being Function of ((TOP-REAL 2) | K1),R^1 such that A6: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f1 . p = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ; reconsider g2 = proj1 * ((Sq_Circ ") | K1) as Function of ((TOP-REAL 2) | K1),R^1 by Lm18; for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds g2 . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) proof A7: dom ((Sq_Circ ") | K1) = (dom (Sq_Circ ")) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by Th29, FUNCT_2:def_1 .= K1 by XBOOLE_1:28 ; let p be Point of (TOP-REAL 2); ::_thesis: ( p in the carrier of ((TOP-REAL 2) | K1) implies g2 . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) A8: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume A9: p in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: g2 . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) then ex p3 being Point of (TOP-REAL 2) st ( p = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A8; then A10: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by Th30; ((Sq_Circ ") | K1) . p = (Sq_Circ ") . p by A9, A8, FUNCT_1:49; then g2 . p = proj1 . |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by A9, A7, A8, A10, FUNCT_1:13 .= |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 by PSCOMP_1:def_5 .= (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) by EUCLID:52 ; hence g2 . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ; ::_thesis: verum end; then consider f2 being Function of ((TOP-REAL 2) | K1),R^1 such that A11: for p being Point of (TOP-REAL 2) st p in the carrier of ((TOP-REAL 2) | K1) holds f2 . p = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ; A12: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K1) holds q `2 <> 0 proof let q be Point of (TOP-REAL 2); ::_thesis: ( q in the carrier of ((TOP-REAL 2) | K1) implies q `2 <> 0 ) A13: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; assume q in the carrier of ((TOP-REAL 2) | K1) ; ::_thesis: q `2 <> 0 then A14: ex p3 being Point of (TOP-REAL 2) st ( q = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A13; now__::_thesis:_not_q_`2_=_0 assume A15: q `2 = 0 ; ::_thesis: contradiction then q `1 = 0 by A14; hence contradiction by A14, A15, EUCLID:53, EUCLID:54; ::_thesis: verum end; hence q `2 <> 0 ; ::_thesis: verum end; then A16: f1 is continuous by A6, Th35; A17: for x, y, s, r being real number st |[x,y]| in K1 & s = f2 . |[x,y]| & r = f1 . |[x,y]| holds f . |[x,y]| = |[s,r]| proof let x, y, s, r be real number ; ::_thesis: ( |[x,y]| in K1 & s = f2 . |[x,y]| & r = f1 . |[x,y]| implies f . |[x,y]| = |[s,r]| ) assume that A18: |[x,y]| in K1 and A19: ( s = f2 . |[x,y]| & r = f1 . |[x,y]| ) ; ::_thesis: f . |[x,y]| = |[s,r]| set p99 = |[x,y]|; A20: ex p3 being Point of (TOP-REAL 2) st ( |[x,y]| = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A1, A18; A21: the carrier of ((TOP-REAL 2) | K1) = K1 by PRE_TOPC:8; then A22: f1 . |[x,y]| = (|[x,y]| `2) * (sqrt (1 + (((|[x,y]| `1) / (|[x,y]| `2)) ^2))) by A6, A18; ((Sq_Circ ") | K0) . |[x,y]| = (Sq_Circ ") . |[x,y]| by A18, FUNCT_1:49 .= |[((|[x,y]| `1) * (sqrt (1 + (((|[x,y]| `1) / (|[x,y]| `2)) ^2)))),((|[x,y]| `2) * (sqrt (1 + (((|[x,y]| `1) / (|[x,y]| `2)) ^2))))]| by A20, Th30 .= |[s,r]| by A11, A18, A19, A21, A22 ; hence f . |[x,y]| = |[s,r]| by A1; ::_thesis: verum end; f2 is continuous by A12, A11, Th36; hence f is continuous by A1, A16, A17, Lm13, JGRAPH_2:35; ::_thesis: verum end; theorem Th39: :: JGRAPH_3:39 for B0 being Subset of (TOP-REAL 2) for K0 being Subset of ((TOP-REAL 2) | B0) for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) proof reconsider K5 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `2 <= - (p7 `1) } as closed Subset of (TOP-REAL 2) by JGRAPH_2:47; reconsider K4 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `1 <= p7 `2 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:46; reconsider K3 = { p7 where p7 is Point of (TOP-REAL 2) : - (p7 `1) <= p7 `2 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:47; reconsider K2 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `2 <= p7 `1 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:46; defpred S1[ Point of (TOP-REAL 2)] means ( ( $1 `2 <= $1 `1 & - ($1 `1) <= $1 `2 ) or ( $1 `2 >= $1 `1 & $1 `2 <= - ($1 `1) ) ); set b0 = NonZero (TOP-REAL 2); defpred S2[ Point of (TOP-REAL 2)] means ( ( $1 `2 <= $1 `1 & - ($1 `1) <= $1 `2 ) or ( $1 `2 >= $1 `1 & $1 `2 <= - ($1 `1) ) ); let B0 be Subset of (TOP-REAL 2); ::_thesis: for K0 being Subset of ((TOP-REAL 2) | B0) for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) let K0 be Subset of ((TOP-REAL 2) | B0); ::_thesis: for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) let f be Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0); ::_thesis: ( f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } implies ( f is continuous & K0 is closed ) ) set k0 = { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } ; assume that A1: f = (Sq_Circ ") | K0 and A2: ( B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } ) ; ::_thesis: ( f is continuous & K0 is closed ) the carrier of ((TOP-REAL 2) | B0) = B0 by PRE_TOPC:8; then reconsider K1 = K0 as Subset of (TOP-REAL 2) by XBOOLE_1:1; { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } c= NonZero (TOP-REAL 2) from JGRAPH_3:sch_1(); then A3: ((TOP-REAL 2) | B0) | K0 = (TOP-REAL 2) | K1 by A2, PRE_TOPC:7; reconsider K1 = { p7 where p7 is Point of (TOP-REAL 2) : S1[p7] } as Subset of (TOP-REAL 2) from JGRAPH_2:sch_1(); A4: (K2 /\ K3) \/ (K4 /\ K5) c= K1 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in (K2 /\ K3) \/ (K4 /\ K5) or x in K1 ) assume A5: x in (K2 /\ K3) \/ (K4 /\ K5) ; ::_thesis: x in K1 percases ( x in K2 /\ K3 or x in K4 /\ K5 ) by A5, XBOOLE_0:def_3; supposeA6: x in K2 /\ K3 ; ::_thesis: x in K1 then x in K3 by XBOOLE_0:def_4; then A7: ex p8 being Point of (TOP-REAL 2) st ( p8 = x & - (p8 `1) <= p8 `2 ) ; x in K2 by A6, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & p7 `2 <= p7 `1 ) ; hence x in K1 by A7; ::_thesis: verum end; supposeA8: x in K4 /\ K5 ; ::_thesis: x in K1 then x in K5 by XBOOLE_0:def_4; then A9: ex p8 being Point of (TOP-REAL 2) st ( p8 = x & p8 `2 <= - (p8 `1) ) ; x in K4 by A8, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & p7 `2 >= p7 `1 ) ; hence x in K1 by A9; ::_thesis: verum end; end; end; A10: ( K2 /\ K3 is closed & K4 /\ K5 is closed ) by TOPS_1:8; K1 c= (K2 /\ K3) \/ (K4 /\ K5) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in K1 or x in (K2 /\ K3) \/ (K4 /\ K5) ) assume x in K1 ; ::_thesis: x in (K2 /\ K3) \/ (K4 /\ K5) then ex p being Point of (TOP-REAL 2) st ( p = x & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) ) ; then ( ( x in K2 & x in K3 ) or ( x in K4 & x in K5 ) ) ; then ( x in K2 /\ K3 or x in K4 /\ K5 ) by XBOOLE_0:def_4; hence x in (K2 /\ K3) \/ (K4 /\ K5) by XBOOLE_0:def_3; ::_thesis: verum end; then K1 = (K2 /\ K3) \/ (K4 /\ K5) by A4, XBOOLE_0:def_10; then A11: K1 is closed by A10, TOPS_1:9; { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } = { p7 where p7 is Point of (TOP-REAL 2) : S2[p7] } /\ (NonZero (TOP-REAL 2)) from JGRAPH_3:sch_2(); then K0 = K1 /\ ([#] ((TOP-REAL 2) | B0)) by A2, PRE_TOPC:def_5; hence ( f is continuous & K0 is closed ) by A1, A2, A3, A11, Th37, PRE_TOPC:13; ::_thesis: verum end; theorem Th40: :: JGRAPH_3:40 for B0 being Subset of (TOP-REAL 2) for K0 being Subset of ((TOP-REAL 2) | B0) for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) proof reconsider K5 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `1 <= - (p7 `2) } as closed Subset of (TOP-REAL 2) by JGRAPH_2:48; reconsider K4 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `2 <= p7 `1 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:46; reconsider K3 = { p7 where p7 is Point of (TOP-REAL 2) : - (p7 `2) <= p7 `1 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:48; reconsider K2 = { p7 where p7 is Point of (TOP-REAL 2) : p7 `1 <= p7 `2 } as closed Subset of (TOP-REAL 2) by JGRAPH_2:46; defpred S1[ Point of (TOP-REAL 2)] means ( ( $1 `1 <= $1 `2 & - ($1 `2) <= $1 `1 ) or ( $1 `1 >= $1 `2 & $1 `1 <= - ($1 `2) ) ); defpred S2[ Point of (TOP-REAL 2)] means ( ( $1 `1 <= $1 `2 & - ($1 `2) <= $1 `1 ) or ( $1 `1 >= $1 `2 & $1 `1 <= - ($1 `2) ) ); let B0 be Subset of (TOP-REAL 2); ::_thesis: for K0 being Subset of ((TOP-REAL 2) | B0) for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) let K0 be Subset of ((TOP-REAL 2) | B0); ::_thesis: for f being Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0) st f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } holds ( f is continuous & K0 is closed ) let f be Function of (((TOP-REAL 2) | B0) | K0),((TOP-REAL 2) | B0); ::_thesis: ( f = (Sq_Circ ") | K0 & B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } implies ( f is continuous & K0 is closed ) ) set k0 = { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } ; set b0 = NonZero (TOP-REAL 2); assume that A1: f = (Sq_Circ ") | K0 and A2: ( B0 = NonZero (TOP-REAL 2) & K0 = { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } ) ; ::_thesis: ( f is continuous & K0 is closed ) the carrier of ((TOP-REAL 2) | B0) = B0 by PRE_TOPC:8; then reconsider K1 = K0 as Subset of (TOP-REAL 2) by XBOOLE_1:1; { p where p is Point of (TOP-REAL 2) : ( S1[p] & p <> 0. (TOP-REAL 2) ) } c= NonZero (TOP-REAL 2) from JGRAPH_3:sch_1(); then A3: ((TOP-REAL 2) | B0) | K0 = (TOP-REAL 2) | K1 by A2, PRE_TOPC:7; set k1 = { p7 where p7 is Point of (TOP-REAL 2) : S2[p7] } ; A4: ( K2 /\ K3 is closed & K4 /\ K5 is closed ) by TOPS_1:8; reconsider K1 = { p7 where p7 is Point of (TOP-REAL 2) : S2[p7] } as Subset of (TOP-REAL 2) from JGRAPH_2:sch_1(); A5: (K2 /\ K3) \/ (K4 /\ K5) c= K1 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in (K2 /\ K3) \/ (K4 /\ K5) or x in K1 ) assume A6: x in (K2 /\ K3) \/ (K4 /\ K5) ; ::_thesis: x in K1 percases ( x in K2 /\ K3 or x in K4 /\ K5 ) by A6, XBOOLE_0:def_3; supposeA7: x in K2 /\ K3 ; ::_thesis: x in K1 then x in K3 by XBOOLE_0:def_4; then A8: ex p8 being Point of (TOP-REAL 2) st ( p8 = x & - (p8 `2) <= p8 `1 ) ; x in K2 by A7, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & p7 `1 <= p7 `2 ) ; hence x in K1 by A8; ::_thesis: verum end; supposeA9: x in K4 /\ K5 ; ::_thesis: x in K1 then x in K5 by XBOOLE_0:def_4; then A10: ex p8 being Point of (TOP-REAL 2) st ( p8 = x & p8 `1 <= - (p8 `2) ) ; x in K4 by A9, XBOOLE_0:def_4; then ex p7 being Point of (TOP-REAL 2) st ( p7 = x & p7 `1 >= p7 `2 ) ; hence x in K1 by A10; ::_thesis: verum end; end; end; K1 c= (K2 /\ K3) \/ (K4 /\ K5) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in K1 or x in (K2 /\ K3) \/ (K4 /\ K5) ) assume x in K1 ; ::_thesis: x in (K2 /\ K3) \/ (K4 /\ K5) then ex p being Point of (TOP-REAL 2) st ( p = x & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) ) ; then ( ( x in K2 & x in K3 ) or ( x in K4 & x in K5 ) ) ; then ( x in K2 /\ K3 or x in K4 /\ K5 ) by XBOOLE_0:def_4; hence x in (K2 /\ K3) \/ (K4 /\ K5) by XBOOLE_0:def_3; ::_thesis: verum end; then K1 = (K2 /\ K3) \/ (K4 /\ K5) by A5, XBOOLE_0:def_10; then A11: K1 is closed by A4, TOPS_1:9; { p where p is Point of (TOP-REAL 2) : ( S2[p] & p <> 0. (TOP-REAL 2) ) } = { p7 where p7 is Point of (TOP-REAL 2) : S2[p7] } /\ (NonZero (TOP-REAL 2)) from JGRAPH_3:sch_2(); then K0 = K1 /\ ([#] ((TOP-REAL 2) | B0)) by A2, PRE_TOPC:def_5; hence ( f is continuous & K0 is closed ) by A1, A2, A3, A11, Th38, PRE_TOPC:13; ::_thesis: verum end; theorem Th41: :: JGRAPH_3:41 for D being non empty Subset of (TOP-REAL 2) st D ` = {(0. (TOP-REAL 2))} holds ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = (Sq_Circ ") | D & h is continuous ) proof set Y1 = |[(- 1),1]|; set B0 = {(0. (TOP-REAL 2))}; let D be non empty Subset of (TOP-REAL 2); ::_thesis: ( D ` = {(0. (TOP-REAL 2))} implies ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = (Sq_Circ ") | D & h is continuous ) ) A1: the carrier of ((TOP-REAL 2) | D) = D by PRE_TOPC:8; dom (Sq_Circ ") = the carrier of (TOP-REAL 2) by Th29, FUNCT_2:def_1; then A2: dom ((Sq_Circ ") | D) = the carrier of (TOP-REAL 2) /\ D by RELAT_1:61 .= the carrier of ((TOP-REAL 2) | D) by A1, XBOOLE_1:28 ; assume A3: D ` = {(0. (TOP-REAL 2))} ; ::_thesis: ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = (Sq_Circ ") | D & h is continuous ) then A4: D = {(0. (TOP-REAL 2))} ` .= NonZero (TOP-REAL 2) by SUBSET_1:def_4 ; A5: { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } c= the carrier of ((TOP-REAL 2) | D) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } or x in the carrier of ((TOP-REAL 2) | D) ) assume x in { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } ; ::_thesis: x in the carrier of ((TOP-REAL 2) | D) then A6: ex p being Point of (TOP-REAL 2) st ( x = p & ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) ; now__::_thesis:_x_in_D assume not x in D ; ::_thesis: contradiction then x in the carrier of (TOP-REAL 2) \ D by A6, XBOOLE_0:def_5; then x in D ` by SUBSET_1:def_4; hence contradiction by A3, A6, TARSKI:def_1; ::_thesis: verum end; hence x in the carrier of ((TOP-REAL 2) | D) by PRE_TOPC:8; ::_thesis: verum end; 1.REAL 2 in { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } by Lm9, Lm10; then reconsider K0 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `2 <= p `1 & - (p `1) <= p `2 ) or ( p `2 >= p `1 & p `2 <= - (p `1) ) ) & p <> 0. (TOP-REAL 2) ) } as non empty Subset of ((TOP-REAL 2) | D) by A5; A7: K0 = the carrier of (((TOP-REAL 2) | D) | K0) by PRE_TOPC:8; A8: { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } c= the carrier of ((TOP-REAL 2) | D) proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } or x in the carrier of ((TOP-REAL 2) | D) ) assume x in { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } ; ::_thesis: x in the carrier of ((TOP-REAL 2) | D) then A9: ex p being Point of (TOP-REAL 2) st ( x = p & ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) ; now__::_thesis:_x_in_D assume not x in D ; ::_thesis: contradiction then x in the carrier of (TOP-REAL 2) \ D by A9, XBOOLE_0:def_5; then x in D ` by SUBSET_1:def_4; hence contradiction by A3, A9, TARSKI:def_1; ::_thesis: verum end; hence x in the carrier of ((TOP-REAL 2) | D) by PRE_TOPC:8; ::_thesis: verum end; ( |[(- 1),1]| `1 = - 1 & |[(- 1),1]| `2 = 1 ) by EUCLID:52; then |[(- 1),1]| in { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } by JGRAPH_2:3; then reconsider K1 = { p where p is Point of (TOP-REAL 2) : ( ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) & p <> 0. (TOP-REAL 2) ) } as non empty Subset of ((TOP-REAL 2) | D) by A8; A10: K1 = the carrier of (((TOP-REAL 2) | D) | K1) by PRE_TOPC:8; A11: D c= K0 \/ K1 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in D or x in K0 \/ K1 ) assume A12: x in D ; ::_thesis: x in K0 \/ K1 then reconsider px = x as Point of (TOP-REAL 2) ; not x in {(0. (TOP-REAL 2))} by A4, A12, XBOOLE_0:def_5; then ( ( ( ( px `2 <= px `1 & - (px `1) <= px `2 ) or ( px `2 >= px `1 & px `2 <= - (px `1) ) ) & px <> 0. (TOP-REAL 2) ) or ( ( ( px `1 <= px `2 & - (px `2) <= px `1 ) or ( px `1 >= px `2 & px `1 <= - (px `2) ) ) & px <> 0. (TOP-REAL 2) ) ) by TARSKI:def_1, XREAL_1:26; then ( x in K0 or x in K1 ) ; hence x in K0 \/ K1 by XBOOLE_0:def_3; ::_thesis: verum end; A13: the carrier of ((TOP-REAL 2) | D) = [#] ((TOP-REAL 2) | D) .= NonZero (TOP-REAL 2) by A4, PRE_TOPC:def_5 ; A14: K0 c= the carrier of (TOP-REAL 2) proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in K0 or z in the carrier of (TOP-REAL 2) ) assume z in K0 ; ::_thesis: z in the carrier of (TOP-REAL 2) then ex p8 being Point of (TOP-REAL 2) st ( p8 = z & ( ( p8 `2 <= p8 `1 & - (p8 `1) <= p8 `2 ) or ( p8 `2 >= p8 `1 & p8 `2 <= - (p8 `1) ) ) & p8 <> 0. (TOP-REAL 2) ) ; hence z in the carrier of (TOP-REAL 2) ; ::_thesis: verum end; A15: rng ((Sq_Circ ") | K0) c= the carrier of (((TOP-REAL 2) | D) | K0) proof reconsider K00 = K0 as Subset of (TOP-REAL 2) by A14; let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng ((Sq_Circ ") | K0) or y in the carrier of (((TOP-REAL 2) | D) | K0) ) A16: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K00) holds q `1 <> 0 proof let q be Point of (TOP-REAL 2); ::_thesis: ( q in the carrier of ((TOP-REAL 2) | K00) implies q `1 <> 0 ) A17: the carrier of ((TOP-REAL 2) | K00) = K0 by PRE_TOPC:8; assume q in the carrier of ((TOP-REAL 2) | K00) ; ::_thesis: q `1 <> 0 then A18: ex p3 being Point of (TOP-REAL 2) st ( q = p3 & ( ( p3 `2 <= p3 `1 & - (p3 `1) <= p3 `2 ) or ( p3 `2 >= p3 `1 & p3 `2 <= - (p3 `1) ) ) & p3 <> 0. (TOP-REAL 2) ) by A17; now__::_thesis:_not_q_`1_=_0 assume A19: q `1 = 0 ; ::_thesis: contradiction then q `2 = 0 by A18; hence contradiction by A18, A19, EUCLID:53, EUCLID:54; ::_thesis: verum end; hence q `1 <> 0 ; ::_thesis: verum end; assume y in rng ((Sq_Circ ") | K0) ; ::_thesis: y in the carrier of (((TOP-REAL 2) | D) | K0) then consider x being set such that A20: x in dom ((Sq_Circ ") | K0) and A21: y = ((Sq_Circ ") | K0) . x by FUNCT_1:def_3; A22: x in (dom (Sq_Circ ")) /\ K0 by A20, RELAT_1:61; then A23: x in K0 by XBOOLE_0:def_4; then reconsider p = x as Point of (TOP-REAL 2) by A14; K00 = the carrier of ((TOP-REAL 2) | K00) by PRE_TOPC:8; then p in the carrier of ((TOP-REAL 2) | K00) by A22, XBOOLE_0:def_4; then A24: p `1 <> 0 by A16; set p9 = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]|; A25: ( |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) & |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `2 = (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) by EUCLID:52; A26: ex px being Point of (TOP-REAL 2) st ( x = px & ( ( px `2 <= px `1 & - (px `1) <= px `2 ) or ( px `2 >= px `1 & px `2 <= - (px `1) ) ) & px <> 0. (TOP-REAL 2) ) by A23; then A27: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| by Th28; A28: sqrt (1 + (((p `2) / (p `1)) ^2)) > 0 by Lm1, SQUARE_1:25; then ( ( (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) & (- (p `1)) * (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) or ( (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) >= (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) & (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (- (p `1)) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) ) by A26, XREAL_1:64; then A29: ( ( (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) <= (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) & - ((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))) <= (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) ) or ( (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) >= (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) & (p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))) <= - ((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))) ) ) ; A30: |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| `1 = (p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2))) by EUCLID:52; A31: now__::_thesis:_not_|[((p_`1)_*_(sqrt_(1_+_(((p_`2)_/_(p_`1))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`2)_/_(p_`1))_^2))))]|_=_0._(TOP-REAL_2) assume |[((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))),((p `2) * (sqrt (1 + (((p `2) / (p `1)) ^2))))]| = 0. (TOP-REAL 2) ; ::_thesis: contradiction then 0 / (sqrt (1 + (((p `2) / (p `1)) ^2))) = ((p `1) * (sqrt (1 + (((p `2) / (p `1)) ^2)))) / (sqrt (1 + (((p `2) / (p `1)) ^2))) by A30, EUCLID:52, EUCLID:54; hence contradiction by A24, A28, XCMPLX_1:89; ::_thesis: verum end; (Sq_Circ ") . p = y by A21, A23, FUNCT_1:49; then y in K0 by A31, A27, A29, A25; hence y in the carrier of (((TOP-REAL 2) | D) | K0) by PRE_TOPC:8; ::_thesis: verum end; dom ((Sq_Circ ") | K0) = (dom (Sq_Circ ")) /\ K0 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K0 by Th29, FUNCT_2:def_1 .= K0 by A14, XBOOLE_1:28 ; then reconsider f = (Sq_Circ ") | K0 as Function of (((TOP-REAL 2) | D) | K0),((TOP-REAL 2) | D) by A7, A15, FUNCT_2:2, XBOOLE_1:1; A32: K1 = [#] (((TOP-REAL 2) | D) | K1) by PRE_TOPC:def_5; A33: K1 c= the carrier of (TOP-REAL 2) proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in K1 or z in the carrier of (TOP-REAL 2) ) assume z in K1 ; ::_thesis: z in the carrier of (TOP-REAL 2) then ex p8 being Point of (TOP-REAL 2) st ( p8 = z & ( ( p8 `1 <= p8 `2 & - (p8 `2) <= p8 `1 ) or ( p8 `1 >= p8 `2 & p8 `1 <= - (p8 `2) ) ) & p8 <> 0. (TOP-REAL 2) ) ; hence z in the carrier of (TOP-REAL 2) ; ::_thesis: verum end; A34: rng ((Sq_Circ ") | K1) c= the carrier of (((TOP-REAL 2) | D) | K1) proof reconsider K10 = K1 as Subset of (TOP-REAL 2) by A33; let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng ((Sq_Circ ") | K1) or y in the carrier of (((TOP-REAL 2) | D) | K1) ) A35: for q being Point of (TOP-REAL 2) st q in the carrier of ((TOP-REAL 2) | K10) holds q `2 <> 0 proof let q be Point of (TOP-REAL 2); ::_thesis: ( q in the carrier of ((TOP-REAL 2) | K10) implies q `2 <> 0 ) A36: the carrier of ((TOP-REAL 2) | K10) = K1 by PRE_TOPC:8; assume q in the carrier of ((TOP-REAL 2) | K10) ; ::_thesis: q `2 <> 0 then A37: ex p3 being Point of (TOP-REAL 2) st ( q = p3 & ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & p3 `1 <= - (p3 `2) ) ) & p3 <> 0. (TOP-REAL 2) ) by A36; now__::_thesis:_not_q_`2_=_0 assume A38: q `2 = 0 ; ::_thesis: contradiction then q `1 = 0 by A37; hence contradiction by A37, A38, EUCLID:53, EUCLID:54; ::_thesis: verum end; hence q `2 <> 0 ; ::_thesis: verum end; assume y in rng ((Sq_Circ ") | K1) ; ::_thesis: y in the carrier of (((TOP-REAL 2) | D) | K1) then consider x being set such that A39: x in dom ((Sq_Circ ") | K1) and A40: y = ((Sq_Circ ") | K1) . x by FUNCT_1:def_3; A41: x in (dom (Sq_Circ ")) /\ K1 by A39, RELAT_1:61; then A42: x in K1 by XBOOLE_0:def_4; then reconsider p = x as Point of (TOP-REAL 2) by A33; K10 = the carrier of ((TOP-REAL 2) | K10) by PRE_TOPC:8; then p in the carrier of ((TOP-REAL 2) | K10) by A41, XBOOLE_0:def_4; then A43: p `2 <> 0 by A35; set p9 = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]|; A44: ( |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) & |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `1 = (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) by EUCLID:52; A45: ex px being Point of (TOP-REAL 2) st ( x = px & ( ( px `1 <= px `2 & - (px `2) <= px `1 ) or ( px `1 >= px `2 & px `1 <= - (px `2) ) ) & px <> 0. (TOP-REAL 2) ) by A42; then A46: (Sq_Circ ") . p = |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| by Th30; A47: sqrt (1 + (((p `1) / (p `2)) ^2)) > 0 by Lm1, SQUARE_1:25; then ( ( (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) & (- (p `2)) * (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) or ( (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) >= (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) & (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (- (p `2)) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) ) by A45, XREAL_1:64; then A48: ( ( (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) <= (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) & - ((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2)))) <= (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) ) or ( (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) >= (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) & (p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2))) <= - ((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2)))) ) ) ; A49: |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| `2 = (p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))) by EUCLID:52; A50: now__::_thesis:_not_|[((p_`1)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2)))),((p_`2)_*_(sqrt_(1_+_(((p_`1)_/_(p_`2))_^2))))]|_=_0._(TOP-REAL_2) assume |[((p `1) * (sqrt (1 + (((p `1) / (p `2)) ^2)))),((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2))))]| = 0. (TOP-REAL 2) ; ::_thesis: contradiction then 0 / (sqrt (1 + (((p `1) / (p `2)) ^2))) = ((p `2) * (sqrt (1 + (((p `1) / (p `2)) ^2)))) / (sqrt (1 + (((p `1) / (p `2)) ^2))) by A49, EUCLID:52, EUCLID:54; hence contradiction by A43, A47, XCMPLX_1:89; ::_thesis: verum end; (Sq_Circ ") . p = y by A40, A42, FUNCT_1:49; then y in K1 by A50, A46, A48, A44; hence y in the carrier of (((TOP-REAL 2) | D) | K1) by PRE_TOPC:8; ::_thesis: verum end; dom ((Sq_Circ ") | K1) = (dom (Sq_Circ ")) /\ K1 by RELAT_1:61 .= the carrier of (TOP-REAL 2) /\ K1 by Th29, FUNCT_2:def_1 .= K1 by A33, XBOOLE_1:28 ; then reconsider g = (Sq_Circ ") | K1 as Function of (((TOP-REAL 2) | D) | K1),((TOP-REAL 2) | D) by A10, A34, FUNCT_2:2, XBOOLE_1:1; A51: dom g = K1 by A10, FUNCT_2:def_1; g = (Sq_Circ ") | K1 ; then A52: K1 is closed by A4, Th40; A53: K0 = [#] (((TOP-REAL 2) | D) | K0) by PRE_TOPC:def_5; A54: now__::_thesis:_for_x_being_set_st_x_in_([#]_(((TOP-REAL_2)_|_D)_|_K0))_/\_([#]_(((TOP-REAL_2)_|_D)_|_K1))_holds_ f_._x_=_g_._x let x be set ; ::_thesis: ( x in ([#] (((TOP-REAL 2) | D) | K0)) /\ ([#] (((TOP-REAL 2) | D) | K1)) implies f . x = g . x ) assume A55: x in ([#] (((TOP-REAL 2) | D) | K0)) /\ ([#] (((TOP-REAL 2) | D) | K1)) ; ::_thesis: f . x = g . x then x in K0 by A53, XBOOLE_0:def_4; then f . x = (Sq_Circ ") . x by FUNCT_1:49; hence f . x = g . x by A32, A55, FUNCT_1:49; ::_thesis: verum end; f = (Sq_Circ ") | K0 ; then A56: K0 is closed by A4, Th39; A57: dom f = K0 by A7, FUNCT_2:def_1; D = [#] ((TOP-REAL 2) | D) by PRE_TOPC:def_5; then A58: ([#] (((TOP-REAL 2) | D) | K0)) \/ ([#] (((TOP-REAL 2) | D) | K1)) = [#] ((TOP-REAL 2) | D) by A53, A32, A11, XBOOLE_0:def_10; A59: ( f is continuous & g is continuous ) by A4, Th39, Th40; then consider h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) such that A60: h = f +* g and h is continuous by A53, A32, A58, A56, A52, A54, JGRAPH_2:1; ( K0 = [#] (((TOP-REAL 2) | D) | K0) & K1 = [#] (((TOP-REAL 2) | D) | K1) ) by PRE_TOPC:def_5; then A61: f tolerates g by A54, A57, A51, PARTFUN1:def_4; A62: for x being set st x in dom h holds h . x = ((Sq_Circ ") | D) . x proof let x be set ; ::_thesis: ( x in dom h implies h . x = ((Sq_Circ ") | D) . x ) assume A63: x in dom h ; ::_thesis: h . x = ((Sq_Circ ") | D) . x then reconsider p = x as Point of (TOP-REAL 2) by A13, XBOOLE_0:def_5; not x in {(0. (TOP-REAL 2))} by A13, A63, XBOOLE_0:def_5; then A64: x <> 0. (TOP-REAL 2) by TARSKI:def_1; x in the carrier of (TOP-REAL 2) \ (D `) by A3, A13, A63; then A65: x in (D `) ` by SUBSET_1:def_4; percases ( x in K0 or not x in K0 ) ; supposeA66: x in K0 ; ::_thesis: h . x = ((Sq_Circ ") | D) . x A67: ((Sq_Circ ") | D) . p = (Sq_Circ ") . p by A65, FUNCT_1:49 .= f . p by A66, FUNCT_1:49 ; h . p = (g +* f) . p by A60, A61, FUNCT_4:34 .= f . p by A57, A66, FUNCT_4:13 ; hence h . x = ((Sq_Circ ") | D) . x by A67; ::_thesis: verum end; suppose not x in K0 ; ::_thesis: h . x = ((Sq_Circ ") | D) . x then ( not ( p `2 <= p `1 & - (p `1) <= p `2 ) & not ( p `2 >= p `1 & p `2 <= - (p `1) ) ) by A64; then ( ( p `1 <= p `2 & - (p `2) <= p `1 ) or ( p `1 >= p `2 & p `1 <= - (p `2) ) ) by XREAL_1:26; then A68: x in K1 by A64; ((Sq_Circ ") | D) . p = (Sq_Circ ") . p by A65, FUNCT_1:49 .= g . p by A68, FUNCT_1:49 ; hence h . x = ((Sq_Circ ") | D) . x by A60, A51, A68, FUNCT_4:13; ::_thesis: verum end; end; end; dom h = the carrier of ((TOP-REAL 2) | D) by FUNCT_2:def_1; then f +* g = (Sq_Circ ") | D by A60, A2, A62, FUNCT_1:2; hence ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = (Sq_Circ ") | D & h is continuous ) by A53, A32, A58, A56, A59, A52, A54, JGRAPH_2:1; ::_thesis: verum end; theorem Th42: :: JGRAPH_3:42 ex h being Function of (TOP-REAL 2),(TOP-REAL 2) st ( h = Sq_Circ " & h is continuous ) proof reconsider f = Sq_Circ " as Function of (TOP-REAL 2),(TOP-REAL 2) by Th29; reconsider D = NonZero (TOP-REAL 2) as non empty Subset of (TOP-REAL 2) by JGRAPH_2:9; A1: f . (0. (TOP-REAL 2)) = 0. (TOP-REAL 2) by Th28; A2: for p being Point of ((TOP-REAL 2) | D) holds f . p <> f . (0. (TOP-REAL 2)) proof let p be Point of ((TOP-REAL 2) | D); ::_thesis: f . p <> f . (0. (TOP-REAL 2)) A3: [#] ((TOP-REAL 2) | D) = D by PRE_TOPC:def_5; then reconsider q = p as Point of (TOP-REAL 2) by XBOOLE_0:def_5; not p in {(0. (TOP-REAL 2))} by A3, XBOOLE_0:def_5; then A4: not p = 0. (TOP-REAL 2) by TARSKI:def_1; percases ( ( not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) or ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; supposeA5: ( not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; ::_thesis: f . p <> f . (0. (TOP-REAL 2)) then A6: q `2 <> 0 ; set q9 = |[((q `1) * (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) * (sqrt (1 + (((q `1) / (q `2)) ^2))))]|; A7: |[((q `1) * (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) * (sqrt (1 + (((q `1) / (q `2)) ^2))))]| `2 = (q `2) * (sqrt (1 + (((q `1) / (q `2)) ^2))) by EUCLID:52; A8: sqrt (1 + (((q `1) / (q `2)) ^2)) > 0 by Lm1, SQUARE_1:25; now__::_thesis:_not_|[((q_`1)_*_(sqrt_(1_+_(((q_`1)_/_(q_`2))_^2)))),((q_`2)_*_(sqrt_(1_+_(((q_`1)_/_(q_`2))_^2))))]|_=_0._(TOP-REAL_2) assume |[((q `1) * (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) * (sqrt (1 + (((q `1) / (q `2)) ^2))))]| = 0. (TOP-REAL 2) ; ::_thesis: contradiction then 0 * (q `2) = (q `2) * (sqrt (1 + (((q `1) / (q `2)) ^2))) by A7, EUCLID:52, EUCLID:54; then 0 * (sqrt (1 + (((q `1) / (q `2)) ^2))) = ((q `2) * (sqrt (1 + (((q `1) / (q `2)) ^2)))) / (sqrt (1 + (((q `1) / (q `2)) ^2))) ; hence contradiction by A6, A8, XCMPLX_1:89; ::_thesis: verum end; hence f . p <> f . (0. (TOP-REAL 2)) by A1, A5, Th28; ::_thesis: verum end; supposeA9: ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; ::_thesis: f . p <> f . (0. (TOP-REAL 2)) A10: now__::_thesis:_not_q_`1_=_0 assume A11: q `1 = 0 ; ::_thesis: contradiction then q `2 = 0 by A9; hence contradiction by A4, A11, EUCLID:53, EUCLID:54; ::_thesis: verum end; set q9 = |[((q `1) * (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) * (sqrt (1 + (((q `2) / (q `1)) ^2))))]|; A12: |[((q `1) * (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) * (sqrt (1 + (((q `2) / (q `1)) ^2))))]| `1 = (q `1) * (sqrt (1 + (((q `2) / (q `1)) ^2))) by EUCLID:52; A13: sqrt (1 + (((q `2) / (q `1)) ^2)) > 0 by Lm1, SQUARE_1:25; now__::_thesis:_not_|[((q_`1)_*_(sqrt_(1_+_(((q_`2)_/_(q_`1))_^2)))),((q_`2)_*_(sqrt_(1_+_(((q_`2)_/_(q_`1))_^2))))]|_=_0._(TOP-REAL_2) assume |[((q `1) * (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) * (sqrt (1 + (((q `2) / (q `1)) ^2))))]| = 0. (TOP-REAL 2) ; ::_thesis: contradiction then 0 / (sqrt (1 + (((q `2) / (q `1)) ^2))) = ((q `1) * (sqrt (1 + (((q `2) / (q `1)) ^2)))) / (sqrt (1 + (((q `2) / (q `1)) ^2))) by A12, EUCLID:52, EUCLID:54; hence contradiction by A10, A13, XCMPLX_1:89; ::_thesis: verum end; hence f . p <> f . (0. (TOP-REAL 2)) by A1, A4, A9, Th28; ::_thesis: verum end; end; end; A14: for V being Subset of (TOP-REAL 2) st f . (0. (TOP-REAL 2)) in V & V is open holds ex W being Subset of (TOP-REAL 2) st ( 0. (TOP-REAL 2) in W & W is open & f .: W c= V ) proof reconsider u0 = 0. (TOP-REAL 2) as Point of (Euclid 2) by EUCLID:67; let V be Subset of (TOP-REAL 2); ::_thesis: ( f . (0. (TOP-REAL 2)) in V & V is open implies ex W being Subset of (TOP-REAL 2) st ( 0. (TOP-REAL 2) in W & W is open & f .: W c= V ) ) reconsider VV = V as Subset of (TopSpaceMetr (Euclid 2)) by Lm16; assume that A15: f . (0. (TOP-REAL 2)) in V and A16: V is open ; ::_thesis: ex W being Subset of (TOP-REAL 2) st ( 0. (TOP-REAL 2) in W & W is open & f .: W c= V ) VV is open by A16, Lm16, PRE_TOPC:30; then consider r being real number such that A17: r > 0 and A18: Ball (u0,r) c= V by A1, A15, TOPMETR:15; reconsider r = r as Real by XREAL_0:def_1; reconsider W1 = Ball (u0,r), V1 = Ball (u0,(r / (sqrt 2))) as Subset of (TOP-REAL 2) by EUCLID:67; A19: f .: V1 c= W1 proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in f .: V1 or z in W1 ) A20: sqrt 2 > 0 by SQUARE_1:25; assume z in f .: V1 ; ::_thesis: z in W1 then consider y being set such that A21: y in dom f and A22: y in V1 and A23: z = f . y by FUNCT_1:def_6; z in rng f by A21, A23, FUNCT_1:def_3; then reconsider qz = z as Point of (TOP-REAL 2) ; reconsider pz = qz as Point of (Euclid 2) by EUCLID:67; reconsider q = y as Point of (TOP-REAL 2) by A21; reconsider qy = q as Point of (Euclid 2) by EUCLID:67; A24: (q `1) ^2 >= 0 by XREAL_1:63; A25: (q `2) ^2 >= 0 by XREAL_1:63; dist (u0,qy) < r / (sqrt 2) by A22, METRIC_1:11; then |.((0. (TOP-REAL 2)) - q).| < r / (sqrt 2) by JGRAPH_1:28; then sqrt (((((0. (TOP-REAL 2)) - q) `1) ^2) + ((((0. (TOP-REAL 2)) - q) `2) ^2)) < r / (sqrt 2) by JGRAPH_1:30; then sqrt (((((0. (TOP-REAL 2)) `1) - (q `1)) ^2) + ((((0. (TOP-REAL 2)) - q) `2) ^2)) < r / (sqrt 2) by TOPREAL3:3; then sqrt (((((0. (TOP-REAL 2)) `1) - (q `1)) ^2) + ((((0. (TOP-REAL 2)) `2) - (q `2)) ^2)) < r / (sqrt 2) by TOPREAL3:3; then (sqrt (((q `1) ^2) + ((q `2) ^2))) * (sqrt 2) < (r / (sqrt 2)) * (sqrt 2) by A20, JGRAPH_2:3, XREAL_1:68; then sqrt ((((q `1) ^2) + ((q `2) ^2)) * 2) < (r / (sqrt 2)) * (sqrt 2) by A24, A25, SQUARE_1:29; then A26: sqrt ((((q `1) ^2) + ((q `2) ^2)) * 2) < r by A20, XCMPLX_1:87; percases ( q = 0. (TOP-REAL 2) or ( q <> 0. (TOP-REAL 2) & ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) or ( q <> 0. (TOP-REAL 2) & not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) ; suppose q = 0. (TOP-REAL 2) ; ::_thesis: z in W1 then z = 0. (TOP-REAL 2) by A23, Th28; hence z in W1 by A17, GOBOARD6:1; ::_thesis: verum end; supposeA27: ( q <> 0. (TOP-REAL 2) & ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ) ; ::_thesis: z in W1 A28: now__::_thesis:_not_(q_`1)_^2_<=_0 assume (q `1) ^2 <= 0 ; ::_thesis: contradiction then (q `1) ^2 = 0 by XREAL_1:63; then A29: q `1 = 0 by XCMPLX_1:6; then q `2 = 0 by A27; hence contradiction by A27, A29, EUCLID:53, EUCLID:54; ::_thesis: verum end; A30: (Sq_Circ ") . q = |[((q `1) * (sqrt (1 + (((q `2) / (q `1)) ^2)))),((q `2) * (sqrt (1 + (((q `2) / (q `1)) ^2))))]| by A27, Th28; then qz `1 = (q `1) * (sqrt (1 + (((q `2) / (q `1)) ^2))) by A23, EUCLID:52; then A31: (qz `1) ^2 = ((q `1) ^2) * ((sqrt (1 + (((q `2) / (q `1)) ^2))) ^2) ; qz `2 = (q `2) * (sqrt (1 + (((q `2) / (q `1)) ^2))) by A23, A30, EUCLID:52; then A32: (qz `2) ^2 = ((q `2) ^2) * ((sqrt (1 + (((q `2) / (q `1)) ^2))) ^2) ; A33: 1 + (((q `2) / (q `1)) ^2) > 0 by Lm1; now__::_thesis:_(_(_q_`2_<=_q_`1_&_-_(q_`1)_<=_q_`2_&_(q_`2)_^2_<=_(q_`1)_^2_)_or_(_q_`2_>=_q_`1_&_q_`2_<=_-_(q_`1)_&_(q_`2)_^2_<=_(q_`1)_^2_)_) percases ( ( q `2 <= q `1 & - (q `1) <= q `2 ) or ( q `2 >= q `1 & q `2 <= - (q `1) ) ) by A27; caseA34: ( q `2 <= q `1 & - (q `1) <= q `2 ) ; ::_thesis: (q `2) ^2 <= (q `1) ^2 now__::_thesis:_(_(_0_<=_q_`2_&_(q_`2)_^2_<=_(q_`1)_^2_)_or_(_0_>_q_`2_&_(q_`2)_^2_<=_(q_`1)_^2_)_) percases ( 0 <= q `2 or 0 > q `2 ) ; case 0 <= q `2 ; ::_thesis: (q `2) ^2 <= (q `1) ^2 hence (q `2) ^2 <= (q `1) ^2 by A34, SQUARE_1:15; ::_thesis: verum end; caseA35: 0 > q `2 ; ::_thesis: (q `2) ^2 <= (q `1) ^2 - (- (q `1)) >= - (q `2) by A34, XREAL_1:24; then (- (q `2)) ^2 <= (q `1) ^2 by A35, SQUARE_1:15; hence (q `2) ^2 <= (q `1) ^2 ; ::_thesis: verum end; end; end; hence (q `2) ^2 <= (q `1) ^2 ; ::_thesis: verum end; caseA36: ( q `2 >= q `1 & q `2 <= - (q `1) ) ; ::_thesis: (q `2) ^2 <= (q `1) ^2 now__::_thesis:_(_(_0_>=_q_`2_&_(q_`2)_^2_<=_(q_`1)_^2_)_or_(_0_<_q_`2_&_(q_`2)_^2_<=_(q_`1)_^2_)_) percases ( 0 >= q `2 or 0 < q `2 ) ; caseA37: 0 >= q `2 ; ::_thesis: (q `2) ^2 <= (q `1) ^2 - (q `2) <= - (q `1) by A36, XREAL_1:24; then (- (q `2)) ^2 <= (- (q `1)) ^2 by A37, SQUARE_1:15; hence (q `2) ^2 <= (q `1) ^2 ; ::_thesis: verum end; case 0 < q `2 ; ::_thesis: (q `2) ^2 <= (q `1) ^2 then (q `2) ^2 <= (- (q `1)) ^2 by A36, SQUARE_1:15; hence (q `2) ^2 <= (q `1) ^2 ; ::_thesis: verum end; end; end; hence (q `2) ^2 <= (q `1) ^2 ; ::_thesis: verum end; end; end; then ((q `2) ^2) / ((q `1) ^2) <= ((q `1) ^2) / ((q `1) ^2) by A28, XREAL_1:72; then ((q `2) / (q `1)) ^2 <= ((q `1) ^2) / ((q `1) ^2) by XCMPLX_1:76; then ((q `2) / (q `1)) ^2 <= 1 by A28, XCMPLX_1:60; then A38: 1 + (((q `2) / (q `1)) ^2) <= 1 + 1 by XREAL_1:7; then ((q `2) ^2) * (1 + (((q `2) / (q `1)) ^2)) <= ((q `2) ^2) * 2 by A25, XREAL_1:64; then A39: (qz `2) ^2 <= ((q `2) ^2) * 2 by A33, A32, SQUARE_1:def_2; ((q `1) ^2) * (1 + (((q `2) / (q `1)) ^2)) <= ((q `1) ^2) * 2 by A24, A38, XREAL_1:64; then (qz `1) ^2 <= ((q `1) ^2) * 2 by A33, A31, SQUARE_1:def_2; then A40: ((qz `1) ^2) + ((qz `2) ^2) <= (((q `1) ^2) * 2) + (((q `2) ^2) * 2) by A39, XREAL_1:7; ( (qz `1) ^2 >= 0 & (qz `2) ^2 >= 0 ) by XREAL_1:63; then A41: sqrt (((qz `1) ^2) + ((qz `2) ^2)) <= sqrt ((((q `1) ^2) * 2) + (((q `2) ^2) * 2)) by A40, SQUARE_1:26; A42: ((0. (TOP-REAL 2)) - qz) `2 = ((0. (TOP-REAL 2)) `2) - (qz `2) by TOPREAL3:3 .= - (qz `2) by JGRAPH_2:3 ; ((0. (TOP-REAL 2)) - qz) `1 = ((0. (TOP-REAL 2)) `1) - (qz `1) by TOPREAL3:3 .= - (qz `1) by JGRAPH_2:3 ; then sqrt (((((0. (TOP-REAL 2)) - qz) `1) ^2) + ((((0. (TOP-REAL 2)) - qz) `2) ^2)) < r by A26, A42, A41, XXREAL_0:2; then |.((0. (TOP-REAL 2)) - qz).| < r by JGRAPH_1:30; then dist (u0,pz) < r by JGRAPH_1:28; hence z in W1 by METRIC_1:11; ::_thesis: verum end; supposeA43: ( q <> 0. (TOP-REAL 2) & not ( q `2 <= q `1 & - (q `1) <= q `2 ) & not ( q `2 >= q `1 & q `2 <= - (q `1) ) ) ; ::_thesis: z in W1 A44: now__::_thesis:_not_(q_`2)_^2_<=_0 assume (q `2) ^2 <= 0 ; ::_thesis: contradiction then (q `2) ^2 = 0 by XREAL_1:63; then q `2 = 0 by XCMPLX_1:6; hence contradiction by A43; ::_thesis: verum end; now__::_thesis:_(_(_q_`1_<=_q_`2_&_-_(q_`2)_<=_q_`1_&_(q_`1)_^2_<=_(q_`2)_^2_)_or_(_q_`1_>=_q_`2_&_q_`1_<=_-_(q_`2)_&_(q_`1)_^2_<=_(q_`2)_^2_)_) percases ( ( q `1 <= q `2 & - (q `2) <= q `1 ) or ( q `1 >= q `2 & q `1 <= - (q `2) ) ) by A43, JGRAPH_2:13; caseA45: ( q `1 <= q `2 & - (q `2) <= q `1 ) ; ::_thesis: (q `1) ^2 <= (q `2) ^2 now__::_thesis:_(_(_0_<=_q_`1_&_(q_`1)_^2_<=_(q_`2)_^2_)_or_(_0_>_q_`1_&_(q_`1)_^2_<=_(q_`2)_^2_)_) percases ( 0 <= q `1 or 0 > q `1 ) ; case 0 <= q `1 ; ::_thesis: (q `1) ^2 <= (q `2) ^2 hence (q `1) ^2 <= (q `2) ^2 by A45, SQUARE_1:15; ::_thesis: verum end; caseA46: 0 > q `1 ; ::_thesis: (q `1) ^2 <= (q `2) ^2 - (- (q `2)) >= - (q `1) by A45, XREAL_1:24; then (- (q `1)) ^2 <= (q `2) ^2 by A46, SQUARE_1:15; hence (q `1) ^2 <= (q `2) ^2 ; ::_thesis: verum end; end; end; hence (q `1) ^2 <= (q `2) ^2 ; ::_thesis: verum end; caseA47: ( q `1 >= q `2 & q `1 <= - (q `2) ) ; ::_thesis: (q `1) ^2 <= (q `2) ^2 now__::_thesis:_(_(_0_>=_q_`1_&_(q_`1)_^2_<=_(q_`2)_^2_)_or_(_0_<_q_`1_&_(q_`1)_^2_<=_(q_`2)_^2_)_) percases ( 0 >= q `1 or 0 < q `1 ) ; caseA48: 0 >= q `1 ; ::_thesis: (q `1) ^2 <= (q `2) ^2 - (q `1) <= - (q `2) by A47, XREAL_1:24; then (- (q `1)) ^2 <= (- (q `2)) ^2 by A48, SQUARE_1:15; hence (q `1) ^2 <= (q `2) ^2 ; ::_thesis: verum end; case 0 < q `1 ; ::_thesis: (q `1) ^2 <= (q `2) ^2 then (q `1) ^2 <= (- (q `2)) ^2 by A47, SQUARE_1:15; hence (q `1) ^2 <= (q `2) ^2 ; ::_thesis: verum end; end; end; hence (q `1) ^2 <= (q `2) ^2 ; ::_thesis: verum end; end; end; then ((q `1) ^2) / ((q `2) ^2) <= ((q `2) ^2) / ((q `2) ^2) by A44, XREAL_1:72; then ((q `1) / (q `2)) ^2 <= ((q `2) ^2) / ((q `2) ^2) by XCMPLX_1:76; then ((q `1) / (q `2)) ^2 <= 1 by A44, XCMPLX_1:60; then A49: 1 + (((q `1) / (q `2)) ^2) <= 1 + 1 by XREAL_1:7; then A50: ((q `2) ^2) * (1 + (((q `1) / (q `2)) ^2)) <= ((q `2) ^2) * 2 by A25, XREAL_1:64; 1 + (((q `1) / (q `2)) ^2) > 0 by Lm1; then A51: (sqrt (1 + (((q `1) / (q `2)) ^2))) ^2 = 1 + (((q `1) / (q `2)) ^2) by SQUARE_1:def_2; A52: ((q `1) ^2) * (1 + (((q `1) / (q `2)) ^2)) <= ((q `1) ^2) * 2 by A24, A49, XREAL_1:64; A53: (Sq_Circ ") . q = |[((q `1) * (sqrt (1 + (((q `1) / (q `2)) ^2)))),((q `2) * (sqrt (1 + (((q `1) / (q `2)) ^2))))]| by A43, Th28; then qz `1 = (q `1) * (sqrt (1 + (((q `1) / (q `2)) ^2))) by A23, EUCLID:52; then A54: (qz `1) ^2 <= ((q `1) ^2) * 2 by A52, A51, SQUARE_1:9; qz `2 = (q `2) * (sqrt (1 + (((q `1) / (q `2)) ^2))) by A23, A53, EUCLID:52; then (qz `2) ^2 <= ((q `2) ^2) * 2 by A50, A51, SQUARE_1:9; then A55: ((qz `2) ^2) + ((qz `1) ^2) <= (((q `2) ^2) * 2) + (((q `1) ^2) * 2) by A54, XREAL_1:7; ( (qz `2) ^2 >= 0 & (qz `1) ^2 >= 0 ) by XREAL_1:63; then A56: sqrt (((qz `2) ^2) + ((qz `1) ^2)) <= sqrt ((((q `2) ^2) * 2) + (((q `1) ^2) * 2)) by A55, SQUARE_1:26; A57: ((0. (TOP-REAL 2)) - qz) `2 = ((0. (TOP-REAL 2)) `2) - (qz `2) by TOPREAL3:3 .= - (qz `2) by JGRAPH_2:3 ; ((0. (TOP-REAL 2)) - qz) `1 = ((0. (TOP-REAL 2)) `1) - (qz `1) by TOPREAL3:3 .= - (qz `1) by JGRAPH_2:3 ; then sqrt (((((0. (TOP-REAL 2)) - qz) `2) ^2) + ((((0. (TOP-REAL 2)) - qz) `1) ^2)) < r by A26, A57, A56, XXREAL_0:2; then |.((0. (TOP-REAL 2)) - qz).| < r by JGRAPH_1:30; then dist (u0,pz) < r by JGRAPH_1:28; hence z in W1 by METRIC_1:11; ::_thesis: verum end; end; end; A58: V1 is open by GOBOARD6:3; sqrt 2 > 0 by SQUARE_1:25; then u0 in V1 by A17, GOBOARD6:1, XREAL_1:139; hence ex W being Subset of (TOP-REAL 2) st ( 0. (TOP-REAL 2) in W & W is open & f .: W c= V ) by A18, A58, A19, XBOOLE_1:1; ::_thesis: verum end; A59: D ` = {(0. (TOP-REAL 2))} by Th20; then ex h being Function of ((TOP-REAL 2) | D),((TOP-REAL 2) | D) st ( h = (Sq_Circ ") | D & h is continuous ) by Th41; hence ex h being Function of (TOP-REAL 2),(TOP-REAL 2) st ( h = Sq_Circ " & h is continuous ) by A1, A59, A2, A14, Th3; ::_thesis: verum end; theorem Th43: :: JGRAPH_3:43 ( Sq_Circ is Function of (TOP-REAL 2),(TOP-REAL 2) & rng Sq_Circ = the carrier of (TOP-REAL 2) & ( for f being Function of (TOP-REAL 2),(TOP-REAL 2) st f = Sq_Circ holds f is being_homeomorphism ) ) proof thus Sq_Circ is Function of (TOP-REAL 2),(TOP-REAL 2) ; ::_thesis: ( rng Sq_Circ = the carrier of (TOP-REAL 2) & ( for f being Function of (TOP-REAL 2),(TOP-REAL 2) st f = Sq_Circ holds f is being_homeomorphism ) ) A1: for f being Function of (TOP-REAL 2),(TOP-REAL 2) st f = Sq_Circ holds ( rng Sq_Circ = the carrier of (TOP-REAL 2) & f is being_homeomorphism ) proof let f be Function of (TOP-REAL 2),(TOP-REAL 2); ::_thesis: ( f = Sq_Circ implies ( rng Sq_Circ = the carrier of (TOP-REAL 2) & f is being_homeomorphism ) ) assume A2: f = Sq_Circ ; ::_thesis: ( rng Sq_Circ = the carrier of (TOP-REAL 2) & f is being_homeomorphism ) reconsider g = f /" as Function of (TOP-REAL 2),(TOP-REAL 2) ; A3: dom f = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; the carrier of (TOP-REAL 2) c= rng f proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in the carrier of (TOP-REAL 2) or y in rng f ) assume y in the carrier of (TOP-REAL 2) ; ::_thesis: y in rng f then reconsider p2 = y as Point of (TOP-REAL 2) ; set q = p2; now__::_thesis:_(_(_p2_=_0._(TOP-REAL_2)_&_ex_x_being_set_st_ (_x_in_dom_Sq_Circ_&_y_=_Sq_Circ_._x_)_)_or_(_p2_<>_0._(TOP-REAL_2)_&_(_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_or_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_)_&_ex_x_being_set_st_ (_x_in_dom_Sq_Circ_&_y_=_Sq_Circ_._x_)_)_or_(_p2_<>_0._(TOP-REAL_2)_&_not_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_&_not_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_&_ex_x_being_set_st_ (_x_in_dom_Sq_Circ_&_y_=_Sq_Circ_._x_)_)_) percases ( p2 = 0. (TOP-REAL 2) or ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) or ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; case p2 = 0. (TOP-REAL 2) ; ::_thesis: ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) then y = Sq_Circ . p2 by Def1; hence ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) by A2, A3; ::_thesis: verum end; caseA4: ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; ::_thesis: ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) set px = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]|; A5: sqrt (1 + (((p2 `2) / (p2 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A6: now__::_thesis:_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`1_=_0_implies_not_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`2)_/_(p2_`1))_^2))))]|_`2_=_0_) assume that A7: |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = 0 and A8: |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 = 0 ; ::_thesis: contradiction (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = 0 by A8, EUCLID:52; then A9: p2 `2 = 0 by A5, XCMPLX_1:6; (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) = 0 by A7, EUCLID:52; then p2 `1 = 0 by A5, XCMPLX_1:6; hence contradiction by A4, A9, EUCLID:53, EUCLID:54; ::_thesis: verum end; A10: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; A11: |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 = (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by EUCLID:52; A12: |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 = (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by EUCLID:52; then A13: (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) = (p2 `2) / (p2 `1) by A11, A5, XCMPLX_1:91; then A14: (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) = p2 `2 by A12, A5, XCMPLX_1:89; ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (- (p2 `1)) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ) ) by A4, A5, XREAL_1:64; then ( ( p2 `2 <= p2 `1 & (- (p2 `1)) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 >= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= - (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ) ) by A11, A12, A5, XREAL_1:64; then ( ( (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) & - (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) <= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 >= |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1 & |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2 <= - (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) ) ) by A11, A5, EUCLID:52, XREAL_1:64; then A15: Sq_Circ . |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| = |[((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2)))),((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))))]| by A11, A12, A6, Def1, JGRAPH_2:3; (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `2) / (|[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| `1)) ^2))) = p2 `1 by A11, A5, A13, XCMPLX_1:89; hence ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) by A15, A14, A10, EUCLID:53; ::_thesis: verum end; caseA16: ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ; ::_thesis: ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) set px = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]|; A17: sqrt (1 + (((p2 `1) / (p2 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A18: now__::_thesis:_(_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`2_=_0_implies_not_|[((p2_`1)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2)))),((p2_`2)_*_(sqrt_(1_+_(((p2_`1)_/_(p2_`2))_^2))))]|_`1_=_0_) assume that A19: |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = 0 and |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 = 0 ; ::_thesis: contradiction (p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) = 0 by A19, EUCLID:52; then p2 `2 = 0 by A17, XCMPLX_1:6; hence contradiction by A16; ::_thesis: verum end; A20: |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 = (p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by EUCLID:52; A21: |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 = (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by EUCLID:52; then A22: (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) = (p2 `1) / (p2 `2) by A20, A17, XCMPLX_1:91; then A23: (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) = p2 `1 by A21, A17, XCMPLX_1:89; ( ( p2 `1 <= p2 `2 & - (p2 `2) <= p2 `1 ) or ( p2 `1 >= p2 `2 & p2 `1 <= - (p2 `2) ) ) by A16, JGRAPH_2:13; then ( ( p2 `1 <= p2 `2 & - (p2 `2) <= p2 `1 ) or ( p2 `1 >= p2 `2 & (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) <= (- (p2 `2)) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ) ) by A17, XREAL_1:64; then ( ( p2 `1 <= p2 `2 & (- (p2 `2)) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) <= (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 >= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= - (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ) ) by A20, A21, A17, XREAL_1:64; then ( ( (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) <= (p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) & - (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) <= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 ) or ( |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 >= |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2 & |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1 <= - (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) ) ) by A20, A17, EUCLID:52, XREAL_1:64; then A24: Sq_Circ . |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| = |[((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2)))),((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))))]| by A20, A21, A18, Th4, JGRAPH_2:3; A25: dom Sq_Circ = the carrier of (TOP-REAL 2) by FUNCT_2:def_1; (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2) / (sqrt (1 + (((|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `1) / (|[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| `2)) ^2))) = p2 `2 by A20, A17, A22, XCMPLX_1:89; hence ex x being set st ( x in dom Sq_Circ & y = Sq_Circ . x ) by A24, A23, A25, EUCLID:53; ::_thesis: verum end; end; end; hence y in rng f by A2, FUNCT_1:def_3; ::_thesis: verum end; then rng f = the carrier of (TOP-REAL 2) by XBOOLE_0:def_10; then A26: f is onto by FUNCT_2:def_3; A27: rng f = dom (f ") by A2, FUNCT_1:33 .= dom (f /") by A2, A26, TOPS_2:def_4 .= [#] (TOP-REAL 2) by FUNCT_2:def_1 ; g = Sq_Circ " by A26, A2, TOPS_2:def_4; hence ( rng Sq_Circ = the carrier of (TOP-REAL 2) & f is being_homeomorphism ) by A2, A3, A27, Th21, Th42, TOPS_2:def_5; ::_thesis: verum end; hence rng Sq_Circ = the carrier of (TOP-REAL 2) ; ::_thesis: for f being Function of (TOP-REAL 2),(TOP-REAL 2) st f = Sq_Circ holds f is being_homeomorphism thus for f being Function of (TOP-REAL 2),(TOP-REAL 2) st f = Sq_Circ holds f is being_homeomorphism by A1; ::_thesis: verum end; Lm19: now__::_thesis:_for_pz2,_pz1_being_real_number_st_(((pz2_^2)_+_(pz1_^2))_-_1)_*_(pz2_^2)_<=_pz1_^2_holds_ ((pz2_^2)_-_1)_*_((pz2_^2)_+_(pz1_^2))_<=_0 let pz2, pz1 be real number ; ::_thesis: ( (((pz2 ^2) + (pz1 ^2)) - 1) * (pz2 ^2) <= pz1 ^2 implies ((pz2 ^2) - 1) * ((pz2 ^2) + (pz1 ^2)) <= 0 ) assume (((pz2 ^2) + (pz1 ^2)) - 1) * (pz2 ^2) <= pz1 ^2 ; ::_thesis: ((pz2 ^2) - 1) * ((pz2 ^2) + (pz1 ^2)) <= 0 then (((pz2 ^2) * (pz2 ^2)) + ((pz2 ^2) * ((pz1 ^2) - 1))) - (pz1 ^2) <= (pz1 ^2) - (pz1 ^2) by XREAL_1:9; hence ((pz2 ^2) - 1) * ((pz2 ^2) + (pz1 ^2)) <= 0 ; ::_thesis: verum end; Lm20: now__::_thesis:_for_px1_being_real_number_holds_ (_not_(px1_^2)_-_1_=_0_or_px1_=_1_or_px1_=_-_1_) let px1 be real number ; ::_thesis: ( not (px1 ^2) - 1 = 0 or px1 = 1 or px1 = - 1 ) assume (px1 ^2) - 1 = 0 ; ::_thesis: ( px1 = 1 or px1 = - 1 ) then (px1 - 1) * (px1 + 1) = 0 ; then ( px1 - 1 = 0 or px1 + 1 = 0 ) by XCMPLX_1:6; hence ( px1 = 1 or px1 = - 1 ) ; ::_thesis: verum end; theorem :: JGRAPH_3:44 for f, g being Function of I[01],(TOP-REAL 2) for C0, KXP, KXN, KYP, KYN being Subset of (TOP-REAL 2) for O, I being Point of I[01] st O = 0 & I = 1 & f is continuous & f is one-to-one & g is continuous & g is one-to-one & C0 = { p where p is Point of (TOP-REAL 2) : |.p.| <= 1 } & KXP = { q1 where q1 is Point of (TOP-REAL 2) : ( |.q1.| = 1 & q1 `2 <= q1 `1 & q1 `2 >= - (q1 `1) ) } & KXN = { q2 where q2 is Point of (TOP-REAL 2) : ( |.q2.| = 1 & q2 `2 >= q2 `1 & q2 `2 <= - (q2 `1) ) } & KYP = { q3 where q3 is Point of (TOP-REAL 2) : ( |.q3.| = 1 & q3 `2 >= q3 `1 & q3 `2 >= - (q3 `1) ) } & KYN = { q4 where q4 is Point of (TOP-REAL 2) : ( |.q4.| = 1 & q4 `2 <= q4 `1 & q4 `2 <= - (q4 `1) ) } & f . O in KXN & f . I in KXP & g . O in KYN & g . I in KYP & rng f c= C0 & rng g c= C0 holds rng f meets rng g proof A1: dom (Sq_Circ ") = the carrier of (TOP-REAL 2) by Th29, FUNCT_2:def_1; let f, g be Function of I[01],(TOP-REAL 2); ::_thesis: for C0, KXP, KXN, KYP, KYN being Subset of (TOP-REAL 2) for O, I being Point of I[01] st O = 0 & I = 1 & f is continuous & f is one-to-one & g is continuous & g is one-to-one & C0 = { p where p is Point of (TOP-REAL 2) : |.p.| <= 1 } & KXP = { q1 where q1 is Point of (TOP-REAL 2) : ( |.q1.| = 1 & q1 `2 <= q1 `1 & q1 `2 >= - (q1 `1) ) } & KXN = { q2 where q2 is Point of (TOP-REAL 2) : ( |.q2.| = 1 & q2 `2 >= q2 `1 & q2 `2 <= - (q2 `1) ) } & KYP = { q3 where q3 is Point of (TOP-REAL 2) : ( |.q3.| = 1 & q3 `2 >= q3 `1 & q3 `2 >= - (q3 `1) ) } & KYN = { q4 where q4 is Point of (TOP-REAL 2) : ( |.q4.| = 1 & q4 `2 <= q4 `1 & q4 `2 <= - (q4 `1) ) } & f . O in KXN & f . I in KXP & g . O in KYN & g . I in KYP & rng f c= C0 & rng g c= C0 holds rng f meets rng g let C0, KXP, KXN, KYP, KYN be Subset of (TOP-REAL 2); ::_thesis: for O, I being Point of I[01] st O = 0 & I = 1 & f is continuous & f is one-to-one & g is continuous & g is one-to-one & C0 = { p where p is Point of (TOP-REAL 2) : |.p.| <= 1 } & KXP = { q1 where q1 is Point of (TOP-REAL 2) : ( |.q1.| = 1 & q1 `2 <= q1 `1 & q1 `2 >= - (q1 `1) ) } & KXN = { q2 where q2 is Point of (TOP-REAL 2) : ( |.q2.| = 1 & q2 `2 >= q2 `1 & q2 `2 <= - (q2 `1) ) } & KYP = { q3 where q3 is Point of (TOP-REAL 2) : ( |.q3.| = 1 & q3 `2 >= q3 `1 & q3 `2 >= - (q3 `1) ) } & KYN = { q4 where q4 is Point of (TOP-REAL 2) : ( |.q4.| = 1 & q4 `2 <= q4 `1 & q4 `2 <= - (q4 `1) ) } & f . O in KXN & f . I in KXP & g . O in KYN & g . I in KYP & rng f c= C0 & rng g c= C0 holds rng f meets rng g let O, I be Point of I[01]; ::_thesis: ( O = 0 & I = 1 & f is continuous & f is one-to-one & g is continuous & g is one-to-one & C0 = { p where p is Point of (TOP-REAL 2) : |.p.| <= 1 } & KXP = { q1 where q1 is Point of (TOP-REAL 2) : ( |.q1.| = 1 & q1 `2 <= q1 `1 & q1 `2 >= - (q1 `1) ) } & KXN = { q2 where q2 is Point of (TOP-REAL 2) : ( |.q2.| = 1 & q2 `2 >= q2 `1 & q2 `2 <= - (q2 `1) ) } & KYP = { q3 where q3 is Point of (TOP-REAL 2) : ( |.q3.| = 1 & q3 `2 >= q3 `1 & q3 `2 >= - (q3 `1) ) } & KYN = { q4 where q4 is Point of (TOP-REAL 2) : ( |.q4.| = 1 & q4 `2 <= q4 `1 & q4 `2 <= - (q4 `1) ) } & f . O in KXN & f . I in KXP & g . O in KYN & g . I in KYP & rng f c= C0 & rng g c= C0 implies rng f meets rng g ) assume A2: ( O = 0 & I = 1 & f is continuous & f is one-to-one & g is continuous & g is one-to-one & C0 = { p where p is Point of (TOP-REAL 2) : |.p.| <= 1 } & KXP = { q1 where q1 is Point of (TOP-REAL 2) : ( |.q1.| = 1 & q1 `2 <= q1 `1 & q1 `2 >= - (q1 `1) ) } & KXN = { q2 where q2 is Point of (TOP-REAL 2) : ( |.q2.| = 1 & q2 `2 >= q2 `1 & q2 `2 <= - (q2 `1) ) } & KYP = { q3 where q3 is Point of (TOP-REAL 2) : ( |.q3.| = 1 & q3 `2 >= q3 `1 & q3 `2 >= - (q3 `1) ) } & KYN = { q4 where q4 is Point of (TOP-REAL 2) : ( |.q4.| = 1 & q4 `2 <= q4 `1 & q4 `2 <= - (q4 `1) ) } & f . O in KXN & f . I in KXP & g . O in KYN & g . I in KYP & rng f c= C0 & rng g c= C0 ) ; ::_thesis: rng f meets rng g then consider p1 being Point of (TOP-REAL 2) such that A3: f . O = p1 and A4: |.p1.| = 1 and A5: p1 `2 >= p1 `1 and A6: p1 `2 <= - (p1 `1) ; reconsider gg = (Sq_Circ ") * g as Function of I[01],(TOP-REAL 2) by Th29, FUNCT_2:13; A7: dom g = the carrier of I[01] by FUNCT_2:def_1; reconsider ff = (Sq_Circ ") * f as Function of I[01],(TOP-REAL 2) by Th29, FUNCT_2:13; A8: dom gg = the carrier of I[01] by FUNCT_2:def_1; A9: dom ff = the carrier of I[01] by FUNCT_2:def_1; then A10: ff . O = (Sq_Circ ") . (f . O) by FUNCT_1:12; A11: dom f = the carrier of I[01] by FUNCT_2:def_1; A12: for r being Point of I[01] holds ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) proof let r be Point of I[01]; ::_thesis: ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) f . r in rng f by A11, FUNCT_1:3; then f . r in C0 by A2; then consider p1 being Point of (TOP-REAL 2) such that A13: f . r = p1 and A14: |.p1.| <= 1 by A2; g . r in rng g by A7, FUNCT_1:3; then g . r in C0 by A2; then consider p2 being Point of (TOP-REAL 2) such that A15: g . r = p2 and A16: |.p2.| <= 1 by A2; A17: gg . r = (Sq_Circ ") . (g . r) by A8, FUNCT_1:12; A18: now__::_thesis:_(_(_p2_=_0._(TOP-REAL_2)_&_-_1_<=_(gg_._r)_`1_&_(gg_._r)_`1_<=_1_&_-_1_<=_(gg_._r)_`2_&_(gg_._r)_`2_<=_1_)_or_(_p2_<>_0._(TOP-REAL_2)_&_(_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_or_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_)_&_-_1_<=_(gg_._r)_`1_&_(gg_._r)_`1_<=_1_&_-_1_<=_(gg_._r)_`2_&_(gg_._r)_`2_<=_1_)_or_(_p2_<>_0._(TOP-REAL_2)_&_not_(_p2_`2_<=_p2_`1_&_-_(p2_`1)_<=_p2_`2_)_&_not_(_p2_`2_>=_p2_`1_&_p2_`2_<=_-_(p2_`1)_)_&_-_1_<=_(gg_._r)_`1_&_(gg_._r)_`1_<=_1_&_-_1_<=_(gg_._r)_`2_&_(gg_._r)_`2_<=_1_)_) percases ( p2 = 0. (TOP-REAL 2) or ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) or ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; case p2 = 0. (TOP-REAL 2) ; ::_thesis: ( - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) hence ( - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) by A17, A15, Th28, JGRAPH_2:3; ::_thesis: verum end; caseA19: ( p2 <> 0. (TOP-REAL 2) & ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ) ; ::_thesis: ( - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) set px = gg . r; A20: (Sq_Circ ") . p2 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| by A19, Th28; then A21: (gg . r) `1 = (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by A17, A15, EUCLID:52; |.p2.| ^2 <= |.p2.| by A16, SQUARE_1:42; then A22: |.p2.| ^2 <= 1 by A16, XXREAL_0:2; A23: ((gg . r) `2) ^2 >= 0 by XREAL_1:63; A24: ((gg . r) `1) ^2 >= 0 by XREAL_1:63; A25: (gg . r) `2 = (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by A17, A15, A20, EUCLID:52; A26: sqrt (1 + (((p2 `2) / (p2 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; then ( ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) or ( p2 `2 >= p2 `1 & (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (- (p2 `1)) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ) ) by A19, XREAL_1:64; then A27: ( ( p2 `2 <= p2 `1 & (- (p2 `1)) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ) or ( (gg . r) `2 >= (gg . r) `1 & (gg . r) `2 <= - ((gg . r) `1) ) ) by A21, A25, A26, XREAL_1:64; then A28: ( ( (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) & - ((gg . r) `1) <= (gg . r) `2 ) or ( (gg . r) `2 >= (gg . r) `1 & (gg . r) `2 <= - ((gg . r) `1) ) ) by A17, A15, A20, A21, A26, EUCLID:52, XREAL_1:64; A29: now__::_thesis:_(_(gg_._r)_`1_=_0_implies_not_(gg_._r)_`2_=_0_) assume ( (gg . r) `1 = 0 & (gg . r) `2 = 0 ) ; ::_thesis: contradiction then ( p2 `1 = 0 & p2 `2 = 0 ) by A21, A25, A26, XCMPLX_1:6; hence contradiction by A19, EUCLID:53, EUCLID:54; ::_thesis: verum end; then A30: (gg . r) `1 <> 0 by A21, A25, A26, A27, XREAL_1:64; set q = gg . r; A31: |[(((gg . r) `1) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)))),(((gg . r) `2) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))))]| `2 = ((gg . r) `2) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) by EUCLID:52; A32: 1 + ((((gg . r) `2) / ((gg . r) `1)) ^2) > 0 by Lm1; A33: ( p2 = Sq_Circ . (gg . r) & |[(((gg . r) `1) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)))),(((gg . r) `2) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))))]| `1 = ((gg . r) `1) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) ) by A17, A15, Th43, EUCLID:52, FUNCT_1:32; Sq_Circ . (gg . r) = |[(((gg . r) `1) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)))),(((gg . r) `2) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))))]| by A21, A25, A29, A28, Def1, JGRAPH_2:3; then |.p2.| ^2 = ((((gg . r) `1) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)))) ^2) + ((((gg . r) `2) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)))) ^2) by A33, A31, JGRAPH_1:29 .= ((((gg . r) `1) ^2) / ((sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) ^2)) + ((((gg . r) `2) / (sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)))) ^2) by XCMPLX_1:76 .= ((((gg . r) `1) ^2) / ((sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) ^2)) + ((((gg . r) `2) ^2) / ((sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) ^2)) by XCMPLX_1:76 .= ((((gg . r) `1) ^2) / (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) + ((((gg . r) `2) ^2) / ((sqrt (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) ^2)) by A32, SQUARE_1:def_2 .= ((((gg . r) `1) ^2) / (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) + ((((gg . r) `2) ^2) / (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) by A32, SQUARE_1:def_2 .= ((((gg . r) `1) ^2) + (((gg . r) `2) ^2)) / (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)) by XCMPLX_1:62 ; then (((((gg . r) `1) ^2) + (((gg . r) `2) ^2)) / (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2))) * (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)) <= 1 * (1 + ((((gg . r) `2) / ((gg . r) `1)) ^2)) by A32, A22, XREAL_1:64; then (((gg . r) `1) ^2) + (((gg . r) `2) ^2) <= 1 + ((((gg . r) `2) / ((gg . r) `1)) ^2) by A32, XCMPLX_1:87; then (((gg . r) `1) ^2) + (((gg . r) `2) ^2) <= 1 + ((((gg . r) `2) ^2) / (((gg . r) `1) ^2)) by XCMPLX_1:76; then ((((gg . r) `1) ^2) + (((gg . r) `2) ^2)) - 1 <= (((gg . r) `2) ^2) / (((gg . r) `1) ^2) by XREAL_1:20; then (((((gg . r) `1) ^2) + (((gg . r) `2) ^2)) - 1) * (((gg . r) `1) ^2) <= ((((gg . r) `2) ^2) / (((gg . r) `1) ^2)) * (((gg . r) `1) ^2) by A24, XREAL_1:64; then (((((gg . r) `1) ^2) + (((gg . r) `2) ^2)) - 1) * (((gg . r) `1) ^2) <= ((gg . r) `2) ^2 by A30, XCMPLX_1:6, XCMPLX_1:87; then A34: ((((gg . r) `1) ^2) - 1) * ((((gg . r) `1) ^2) + (((gg . r) `2) ^2)) <= 0 by Lm19; (((gg . r) `1) ^2) + (((gg . r) `2) ^2) <> 0 by A29, COMPLEX1:1; then A35: (((gg . r) `1) ^2) - 1 <= 0 by A24, A34, A23, XREAL_1:129; then A36: (gg . r) `1 >= - 1 by SQUARE_1:43; A37: (gg . r) `1 <= 1 by A35, SQUARE_1:43; then ( ( (gg . r) `2 <= 1 & - (- ((gg . r) `1)) >= - ((gg . r) `2) ) or ( (gg . r) `2 >= - 1 & (gg . r) `2 <= - ((gg . r) `1) ) ) by A21, A25, A28, A36, XREAL_1:24, XXREAL_0:2; then ( ( (gg . r) `2 <= 1 & (gg . r) `1 >= - ((gg . r) `2) ) or ( (gg . r) `2 >= - 1 & - ((gg . r) `2) >= - (- ((gg . r) `1)) ) ) by XREAL_1:24; then ( ( (gg . r) `2 <= 1 & 1 >= - ((gg . r) `2) ) or ( (gg . r) `2 >= - 1 & - ((gg . r) `2) >= (gg . r) `1 ) ) by A37, XXREAL_0:2; then ( ( (gg . r) `2 <= 1 & - 1 <= - (- ((gg . r) `2)) ) or ( (gg . r) `2 >= - 1 & - ((gg . r) `2) >= - 1 ) ) by A36, XREAL_1:24, XXREAL_0:2; hence ( - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) by A35, SQUARE_1:43, XREAL_1:24; ::_thesis: verum end; caseA38: ( p2 <> 0. (TOP-REAL 2) & not ( p2 `2 <= p2 `1 & - (p2 `1) <= p2 `2 ) & not ( p2 `2 >= p2 `1 & p2 `2 <= - (p2 `1) ) ) ; ::_thesis: ( - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) set pz = gg . r; A39: (Sq_Circ ") . p2 = |[((p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))))]| by A38, Th28; then A40: (gg . r) `2 = (p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by A17, A15, EUCLID:52; A41: (gg . r) `1 = (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) by A17, A15, A39, EUCLID:52; A42: sqrt (1 + (((p2 `1) / (p2 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; ( ( p2 `1 <= p2 `2 & - (p2 `2) <= p2 `1 ) or ( p2 `1 >= p2 `2 & p2 `1 <= - (p2 `2) ) ) by A38, JGRAPH_2:13; then ( ( p2 `1 <= p2 `2 & - (p2 `2) <= p2 `1 ) or ( p2 `1 >= p2 `2 & (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) <= (- (p2 `2)) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ) ) by A42, XREAL_1:64; then A43: ( ( p2 `1 <= p2 `2 & (- (p2 `2)) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) <= (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) ) or ( (gg . r) `1 >= (gg . r) `2 & (gg . r) `1 <= - ((gg . r) `2) ) ) by A40, A41, A42, XREAL_1:64; then A44: ( ( (p2 `1) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) <= (p2 `2) * (sqrt (1 + (((p2 `1) / (p2 `2)) ^2))) & - ((gg . r) `2) <= (gg . r) `1 ) or ( (gg . r) `1 >= (gg . r) `2 & (gg . r) `1 <= - ((gg . r) `2) ) ) by A17, A15, A39, A40, A42, EUCLID:52, XREAL_1:64; A45: now__::_thesis:_(_(gg_._r)_`2_=_0_implies_not_(gg_._r)_`1_=_0_) assume that A46: (gg . r) `2 = 0 and (gg . r) `1 = 0 ; ::_thesis: contradiction p2 `2 = 0 by A40, A42, A46, XCMPLX_1:6; hence contradiction by A38; ::_thesis: verum end; then A47: (gg . r) `2 <> 0 by A40, A41, A42, A43, XREAL_1:64; A48: ( p2 = Sq_Circ . (gg . r) & |[(((gg . r) `1) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)))),(((gg . r) `2) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))))]| `2 = ((gg . r) `2) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) ) by A17, A15, Th43, EUCLID:52, FUNCT_1:32; A49: ((gg . r) `2) ^2 >= 0 by XREAL_1:63; |.p2.| ^2 <= |.p2.| by A16, SQUARE_1:42; then A50: |.p2.| ^2 <= 1 by A16, XXREAL_0:2; A51: ((gg . r) `1) ^2 >= 0 by XREAL_1:63; A52: |[(((gg . r) `1) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)))),(((gg . r) `2) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))))]| `1 = ((gg . r) `1) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) by EUCLID:52; A53: 1 + ((((gg . r) `1) / ((gg . r) `2)) ^2) > 0 by Lm1; Sq_Circ . (gg . r) = |[(((gg . r) `1) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)))),(((gg . r) `2) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))))]| by A40, A41, A45, A44, Th4, JGRAPH_2:3; then |.p2.| ^2 = ((((gg . r) `2) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)))) ^2) + ((((gg . r) `1) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)))) ^2) by A48, A52, JGRAPH_1:29 .= ((((gg . r) `2) ^2) / ((sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) ^2)) + ((((gg . r) `1) / (sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)))) ^2) by XCMPLX_1:76 .= ((((gg . r) `2) ^2) / ((sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) ^2)) + ((((gg . r) `1) ^2) / ((sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) ^2)) by XCMPLX_1:76 .= ((((gg . r) `2) ^2) / (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) + ((((gg . r) `1) ^2) / ((sqrt (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) ^2)) by A53, SQUARE_1:def_2 .= ((((gg . r) `2) ^2) / (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) + ((((gg . r) `1) ^2) / (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) by A53, SQUARE_1:def_2 .= ((((gg . r) `2) ^2) + (((gg . r) `1) ^2)) / (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)) by XCMPLX_1:62 ; then (((((gg . r) `2) ^2) + (((gg . r) `1) ^2)) / (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2))) * (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)) <= 1 * (1 + ((((gg . r) `1) / ((gg . r) `2)) ^2)) by A53, A50, XREAL_1:64; then (((gg . r) `2) ^2) + (((gg . r) `1) ^2) <= 1 + ((((gg . r) `1) / ((gg . r) `2)) ^2) by A53, XCMPLX_1:87; then (((gg . r) `2) ^2) + (((gg . r) `1) ^2) <= 1 + ((((gg . r) `1) ^2) / (((gg . r) `2) ^2)) by XCMPLX_1:76; then ((((gg . r) `2) ^2) + (((gg . r) `1) ^2)) - 1 <= (((gg . r) `1) ^2) / (((gg . r) `2) ^2) by XREAL_1:20; then (((((gg . r) `2) ^2) + (((gg . r) `1) ^2)) - 1) * (((gg . r) `2) ^2) <= ((((gg . r) `1) ^2) / (((gg . r) `2) ^2)) * (((gg . r) `2) ^2) by A49, XREAL_1:64; then (((((gg . r) `2) ^2) + (((gg . r) `1) ^2)) - 1) * (((gg . r) `2) ^2) <= ((gg . r) `1) ^2 by A47, XCMPLX_1:6, XCMPLX_1:87; then A54: ((((gg . r) `2) ^2) - 1) * ((((gg . r) `2) ^2) + (((gg . r) `1) ^2)) <= 0 by Lm19; (((gg . r) `2) ^2) + (((gg . r) `1) ^2) <> 0 by A45, COMPLEX1:1; then A55: (((gg . r) `2) ^2) - 1 <= 0 by A49, A54, A51, XREAL_1:129; then A56: (gg . r) `2 >= - 1 by SQUARE_1:43; A57: (gg . r) `2 <= 1 by A55, SQUARE_1:43; then ( ( (gg . r) `1 <= 1 & - (- ((gg . r) `2)) >= - ((gg . r) `1) ) or ( (gg . r) `1 >= - 1 & (gg . r) `1 <= - ((gg . r) `2) ) ) by A40, A41, A44, A56, XREAL_1:24, XXREAL_0:2; then ( ( (gg . r) `1 <= 1 & 1 >= - ((gg . r) `1) ) or ( (gg . r) `1 >= - 1 & - ((gg . r) `1) >= - (- ((gg . r) `2)) ) ) by A57, XREAL_1:24, XXREAL_0:2; then ( ( (gg . r) `1 <= 1 & 1 >= - ((gg . r) `1) ) or ( (gg . r) `1 >= - 1 & - ((gg . r) `1) >= - 1 ) ) by A56, XXREAL_0:2; then ( ( (gg . r) `1 <= 1 & - 1 <= - (- ((gg . r) `1)) ) or ( (gg . r) `1 >= - 1 & (gg . r) `1 <= 1 ) ) by XREAL_1:24; hence ( - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) by A55, SQUARE_1:43; ::_thesis: verum end; end; end; A58: ff . r = (Sq_Circ ") . (f . r) by A9, FUNCT_1:12; now__::_thesis:_(_(_p1_=_0._(TOP-REAL_2)_&_-_1_<=_(ff_._r)_`1_&_(ff_._r)_`1_<=_1_&_-_1_<=_(ff_._r)_`2_&_(ff_._r)_`2_<=_1_)_or_(_p1_<>_0._(TOP-REAL_2)_&_(_(_p1_`2_<=_p1_`1_&_-_(p1_`1)_<=_p1_`2_)_or_(_p1_`2_>=_p1_`1_&_p1_`2_<=_-_(p1_`1)_)_)_&_-_1_<=_(ff_._r)_`1_&_(ff_._r)_`1_<=_1_&_-_1_<=_(ff_._r)_`2_&_(ff_._r)_`2_<=_1_)_or_(_p1_<>_0._(TOP-REAL_2)_&_not_(_p1_`2_<=_p1_`1_&_-_(p1_`1)_<=_p1_`2_)_&_not_(_p1_`2_>=_p1_`1_&_p1_`2_<=_-_(p1_`1)_)_&_-_1_<=_(ff_._r)_`1_&_(ff_._r)_`1_<=_1_&_-_1_<=_(ff_._r)_`2_&_(ff_._r)_`2_<=_1_)_) percases ( p1 = 0. (TOP-REAL 2) or ( p1 <> 0. (TOP-REAL 2) & ( ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) or ( p1 `2 >= p1 `1 & p1 `2 <= - (p1 `1) ) ) ) or ( p1 <> 0. (TOP-REAL 2) & not ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) & not ( p1 `2 >= p1 `1 & p1 `2 <= - (p1 `1) ) ) ) ; case p1 = 0. (TOP-REAL 2) ; ::_thesis: ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 ) hence ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 ) by A58, A13, Th28, JGRAPH_2:3; ::_thesis: verum end; caseA59: ( p1 <> 0. (TOP-REAL 2) & ( ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) or ( p1 `2 >= p1 `1 & p1 `2 <= - (p1 `1) ) ) ) ; ::_thesis: ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 ) set px = ff . r; (Sq_Circ ") . p1 = |[((p1 `1) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))),((p1 `2) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))))]| by A59, Th28; then A60: ( (ff . r) `1 = (p1 `1) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) & (ff . r) `2 = (p1 `2) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ) by A58, A13, EUCLID:52; A61: sqrt (1 + (((p1 `2) / (p1 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; then ( ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) or ( p1 `2 >= p1 `1 & (p1 `2) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) <= (- (p1 `1)) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ) ) by A59, XREAL_1:64; then A62: ( ( p1 `2 <= p1 `1 & (- (p1 `1)) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) <= (p1 `2) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ) or ( (ff . r) `2 >= (ff . r) `1 & (ff . r) `2 <= - ((ff . r) `1) ) ) by A60, A61, XREAL_1:64; then A63: ( ( (ff . r) `2 <= (ff . r) `1 & - ((ff . r) `1) <= (ff . r) `2 ) or ( (ff . r) `2 >= (ff . r) `1 & (ff . r) `2 <= - ((ff . r) `1) ) ) by A60, A61, XREAL_1:64; A64: now__::_thesis:_(_(ff_._r)_`1_=_0_implies_not_(ff_._r)_`2_=_0_) assume ( (ff . r) `1 = 0 & (ff . r) `2 = 0 ) ; ::_thesis: contradiction then ( p1 `1 = 0 & p1 `2 = 0 ) by A60, A61, XCMPLX_1:6; hence contradiction by A59, EUCLID:53, EUCLID:54; ::_thesis: verum end; then A65: (ff . r) `1 <> 0 by A60, A61, A62, XREAL_1:64; |.p1.| ^2 <= |.p1.| by A14, SQUARE_1:42; then A66: |.p1.| ^2 <= 1 by A14, XXREAL_0:2; A67: ((ff . r) `1) ^2 >= 0 by XREAL_1:63; A68: ((ff . r) `2) ^2 >= 0 by XREAL_1:63; set q = ff . r; A69: |[(((ff . r) `1) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)))),(((ff . r) `2) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))))]| `2 = ((ff . r) `2) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) by EUCLID:52; A70: 1 + ((((ff . r) `2) / ((ff . r) `1)) ^2) > 0 by Lm1; A71: ( p1 = Sq_Circ . (ff . r) & |[(((ff . r) `1) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)))),(((ff . r) `2) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))))]| `1 = ((ff . r) `1) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) ) by A58, A13, Th43, EUCLID:52, FUNCT_1:32; Sq_Circ . (ff . r) = |[(((ff . r) `1) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)))),(((ff . r) `2) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))))]| by A64, A63, Def1, JGRAPH_2:3; then |.p1.| ^2 = ((((ff . r) `1) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)))) ^2) + ((((ff . r) `2) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)))) ^2) by A71, A69, JGRAPH_1:29 .= ((((ff . r) `1) ^2) / ((sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) ^2)) + ((((ff . r) `2) / (sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)))) ^2) by XCMPLX_1:76 .= ((((ff . r) `1) ^2) / ((sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) ^2)) + ((((ff . r) `2) ^2) / ((sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) ^2)) by XCMPLX_1:76 .= ((((ff . r) `1) ^2) / (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) + ((((ff . r) `2) ^2) / ((sqrt (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) ^2)) by A70, SQUARE_1:def_2 .= ((((ff . r) `1) ^2) / (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) + ((((ff . r) `2) ^2) / (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) by A70, SQUARE_1:def_2 .= ((((ff . r) `1) ^2) + (((ff . r) `2) ^2)) / (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)) by XCMPLX_1:62 ; then (((((ff . r) `1) ^2) + (((ff . r) `2) ^2)) / (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2))) * (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)) <= 1 * (1 + ((((ff . r) `2) / ((ff . r) `1)) ^2)) by A70, A66, XREAL_1:64; then (((ff . r) `1) ^2) + (((ff . r) `2) ^2) <= 1 + ((((ff . r) `2) / ((ff . r) `1)) ^2) by A70, XCMPLX_1:87; then (((ff . r) `1) ^2) + (((ff . r) `2) ^2) <= 1 + ((((ff . r) `2) ^2) / (((ff . r) `1) ^2)) by XCMPLX_1:76; then ((((ff . r) `1) ^2) + (((ff . r) `2) ^2)) - 1 <= (((ff . r) `2) ^2) / (((ff . r) `1) ^2) by XREAL_1:20; then (((((ff . r) `1) ^2) + (((ff . r) `2) ^2)) - 1) * (((ff . r) `1) ^2) <= ((((ff . r) `2) ^2) / (((ff . r) `1) ^2)) * (((ff . r) `1) ^2) by A67, XREAL_1:64; then (((((ff . r) `1) ^2) + (((ff . r) `2) ^2)) - 1) * (((ff . r) `1) ^2) <= ((ff . r) `2) ^2 by A65, XCMPLX_1:6, XCMPLX_1:87; then A72: ((((ff . r) `1) ^2) - 1) * ((((ff . r) `1) ^2) + (((ff . r) `2) ^2)) <= 0 by Lm19; (((ff . r) `1) ^2) + (((ff . r) `2) ^2) <> 0 by A64, COMPLEX1:1; then A73: (((ff . r) `1) ^2) - 1 <= 0 by A67, A72, A68, XREAL_1:129; then A74: (ff . r) `1 >= - 1 by SQUARE_1:43; A75: (ff . r) `1 <= 1 by A73, SQUARE_1:43; then ( ( (ff . r) `2 <= 1 & - (- ((ff . r) `1)) >= - ((ff . r) `2) ) or ( (ff . r) `2 >= - 1 & (ff . r) `2 <= - ((ff . r) `1) ) ) by A63, A74, XREAL_1:24, XXREAL_0:2; then ( ( (ff . r) `2 <= 1 & (ff . r) `1 >= - ((ff . r) `2) ) or ( (ff . r) `2 >= - 1 & - ((ff . r) `2) >= - (- ((ff . r) `1)) ) ) by XREAL_1:24; then ( ( (ff . r) `2 <= 1 & 1 >= - ((ff . r) `2) ) or ( (ff . r) `2 >= - 1 & - ((ff . r) `2) >= (ff . r) `1 ) ) by A75, XXREAL_0:2; then ( ( (ff . r) `2 <= 1 & - 1 <= - (- ((ff . r) `2)) ) or ( (ff . r) `2 >= - 1 & - ((ff . r) `2) >= - 1 ) ) by A74, XREAL_1:24, XXREAL_0:2; hence ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 ) by A73, SQUARE_1:43, XREAL_1:24; ::_thesis: verum end; caseA76: ( p1 <> 0. (TOP-REAL 2) & not ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) & not ( p1 `2 >= p1 `1 & p1 `2 <= - (p1 `1) ) ) ; ::_thesis: ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 ) set pz = ff . r; A77: (Sq_Circ ") . p1 = |[((p1 `1) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2)))),((p1 `2) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))))]| by A76, Th28; then A78: (ff . r) `2 = (p1 `2) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A58, A13, EUCLID:52; A79: (ff . r) `1 = (p1 `1) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) by A58, A13, A77, EUCLID:52; A80: sqrt (1 + (((p1 `1) / (p1 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; ( ( p1 `1 <= p1 `2 & - (p1 `2) <= p1 `1 ) or ( p1 `1 >= p1 `2 & p1 `1 <= - (p1 `2) ) ) by A76, JGRAPH_2:13; then ( ( p1 `1 <= p1 `2 & - (p1 `2) <= p1 `1 ) or ( p1 `1 >= p1 `2 & (p1 `1) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) <= (- (p1 `2)) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ) ) by A80, XREAL_1:64; then A81: ( ( p1 `1 <= p1 `2 & (- (p1 `2)) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) <= (p1 `1) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) ) or ( (ff . r) `1 >= (ff . r) `2 & (ff . r) `1 <= - ((ff . r) `2) ) ) by A78, A79, A80, XREAL_1:64; then A82: ( ( (p1 `1) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) <= (p1 `2) * (sqrt (1 + (((p1 `1) / (p1 `2)) ^2))) & - ((ff . r) `2) <= (ff . r) `1 ) or ( (ff . r) `1 >= (ff . r) `2 & (ff . r) `1 <= - ((ff . r) `2) ) ) by A58, A13, A77, A78, A80, EUCLID:52, XREAL_1:64; A83: now__::_thesis:_(_(ff_._r)_`2_=_0_implies_not_(ff_._r)_`1_=_0_) assume that A84: (ff . r) `2 = 0 and (ff . r) `1 = 0 ; ::_thesis: contradiction p1 `2 = 0 by A78, A80, A84, XCMPLX_1:6; hence contradiction by A76; ::_thesis: verum end; then A85: (ff . r) `2 <> 0 by A78, A79, A80, A81, XREAL_1:64; A86: ( p1 = Sq_Circ . (ff . r) & |[(((ff . r) `1) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)))),(((ff . r) `2) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))))]| `2 = ((ff . r) `2) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) ) by A58, A13, Th43, EUCLID:52, FUNCT_1:32; A87: ((ff . r) `2) ^2 >= 0 by XREAL_1:63; |.p1.| ^2 <= |.p1.| by A14, SQUARE_1:42; then A88: |.p1.| ^2 <= 1 by A14, XXREAL_0:2; A89: ((ff . r) `1) ^2 >= 0 by XREAL_1:63; A90: |[(((ff . r) `1) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)))),(((ff . r) `2) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))))]| `1 = ((ff . r) `1) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) by EUCLID:52; A91: 1 + ((((ff . r) `1) / ((ff . r) `2)) ^2) > 0 by Lm1; Sq_Circ . (ff . r) = |[(((ff . r) `1) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)))),(((ff . r) `2) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))))]| by A78, A79, A83, A82, Th4, JGRAPH_2:3; then |.p1.| ^2 = ((((ff . r) `2) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)))) ^2) + ((((ff . r) `1) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)))) ^2) by A86, A90, JGRAPH_1:29 .= ((((ff . r) `2) ^2) / ((sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) ^2)) + ((((ff . r) `1) / (sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)))) ^2) by XCMPLX_1:76 .= ((((ff . r) `2) ^2) / ((sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) ^2)) + ((((ff . r) `1) ^2) / ((sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) ^2)) by XCMPLX_1:76 .= ((((ff . r) `2) ^2) / (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) + ((((ff . r) `1) ^2) / ((sqrt (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) ^2)) by A91, SQUARE_1:def_2 .= ((((ff . r) `2) ^2) / (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) + ((((ff . r) `1) ^2) / (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) by A91, SQUARE_1:def_2 .= ((((ff . r) `2) ^2) + (((ff . r) `1) ^2)) / (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)) by XCMPLX_1:62 ; then (((((ff . r) `2) ^2) + (((ff . r) `1) ^2)) / (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2))) * (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)) <= 1 * (1 + ((((ff . r) `1) / ((ff . r) `2)) ^2)) by A91, A88, XREAL_1:64; then (((ff . r) `2) ^2) + (((ff . r) `1) ^2) <= 1 + ((((ff . r) `1) / ((ff . r) `2)) ^2) by A91, XCMPLX_1:87; then (((ff . r) `2) ^2) + (((ff . r) `1) ^2) <= 1 + ((((ff . r) `1) ^2) / (((ff . r) `2) ^2)) by XCMPLX_1:76; then ((((ff . r) `2) ^2) + (((ff . r) `1) ^2)) - 1 <= (((ff . r) `1) ^2) / (((ff . r) `2) ^2) by XREAL_1:20; then (((((ff . r) `2) ^2) + (((ff . r) `1) ^2)) - 1) * (((ff . r) `2) ^2) <= ((((ff . r) `1) ^2) / (((ff . r) `2) ^2)) * (((ff . r) `2) ^2) by A87, XREAL_1:64; then (((((ff . r) `2) ^2) + (((ff . r) `1) ^2)) - 1) * (((ff . r) `2) ^2) <= ((ff . r) `1) ^2 by A85, XCMPLX_1:6, XCMPLX_1:87; then A92: ((((ff . r) `2) ^2) - 1) * ((((ff . r) `2) ^2) + (((ff . r) `1) ^2)) <= 0 by Lm19; (((ff . r) `2) ^2) + (((ff . r) `1) ^2) <> 0 by A83, COMPLEX1:1; then A93: (((ff . r) `2) ^2) - 1 <= 0 by A87, A92, A89, XREAL_1:129; then A94: (ff . r) `2 >= - 1 by SQUARE_1:43; A95: (ff . r) `2 <= 1 by A93, SQUARE_1:43; then ( ( (ff . r) `1 <= 1 & - (- ((ff . r) `2)) >= - ((ff . r) `1) ) or ( (ff . r) `1 >= - 1 & (ff . r) `1 <= - ((ff . r) `2) ) ) by A78, A79, A82, A94, XREAL_1:24, XXREAL_0:2; then ( ( (ff . r) `1 <= 1 & 1 >= - ((ff . r) `1) ) or ( (ff . r) `1 >= - 1 & - ((ff . r) `1) >= - (- ((ff . r) `2)) ) ) by A95, XREAL_1:24, XXREAL_0:2; then ( ( (ff . r) `1 <= 1 & 1 >= - ((ff . r) `1) ) or ( (ff . r) `1 >= - 1 & - ((ff . r) `1) >= - 1 ) ) by A94, XXREAL_0:2; then ( ( (ff . r) `1 <= 1 & - 1 <= - (- ((ff . r) `1)) ) or ( (ff . r) `1 >= - 1 & (ff . r) `1 <= 1 ) ) by XREAL_1:24; hence ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 ) by A93, SQUARE_1:43; ::_thesis: verum end; end; end; hence ( - 1 <= (ff . r) `1 & (ff . r) `1 <= 1 & - 1 <= (gg . r) `1 & (gg . r) `1 <= 1 & - 1 <= (ff . r) `2 & (ff . r) `2 <= 1 & - 1 <= (gg . r) `2 & (gg . r) `2 <= 1 ) by A18; ::_thesis: verum end; set y = the Element of (rng ff) /\ (rng gg); A96: p1 <> 0. (TOP-REAL 2) by A4, TOPRNS_1:23; then A97: (Sq_Circ ") . p1 = |[((p1 `1) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2)))),((p1 `2) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))))]| by A5, A6, Th28; ( (ff . O) `1 = - 1 & (ff . I) `1 = 1 & (gg . O) `2 = - 1 & (gg . I) `2 = 1 ) proof set pz = gg . O; set py = ff . I; set px = ff . O; set q = ff . O; A98: |[(((ff . O) `1) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)))),(((ff . O) `2) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))))]| `1 = ((ff . O) `1) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) by EUCLID:52; set pu = gg . I; A99: |[(((ff . I) `1) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)))),(((ff . I) `2) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))))]| `1 = ((ff . I) `1) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) by EUCLID:52; A100: |[(((gg . I) `1) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)))),(((gg . I) `2) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))))]| `2 = ((gg . I) `2) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) by EUCLID:52; A101: 1 + ((((gg . I) `1) / ((gg . I) `2)) ^2) > 0 by Lm1; (Sq_Circ ") . p1 = ff . O by A9, A3, FUNCT_1:12; then A102: p1 = Sq_Circ . (ff . O) by Th43, FUNCT_1:32; consider p4 being Point of (TOP-REAL 2) such that A103: g . I = p4 and A104: |.p4.| = 1 and A105: p4 `2 >= p4 `1 and A106: p4 `2 >= - (p4 `1) by A2; A107: sqrt (1 + (((p4 `1) / (p4 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A108: - (p4 `2) <= - (- (p4 `1)) by A106, XREAL_1:24; then A109: ( ( p4 `1 <= p4 `2 & (- (p4 `2)) * (sqrt (1 + (((p4 `1) / (p4 `2)) ^2))) <= (p4 `1) * (sqrt (1 + (((p4 `1) / (p4 `2)) ^2))) ) or ( (gg . I) `1 >= (gg . I) `2 & (gg . I) `1 <= - ((gg . I) `2) ) ) by A105, A107, XREAL_1:64; A110: gg . I = (Sq_Circ ") . (g . I) by A8, FUNCT_1:12; then A111: p4 = Sq_Circ . (gg . I) by A103, Th43, FUNCT_1:32; A112: p4 <> 0. (TOP-REAL 2) by A104, TOPRNS_1:23; then A113: (Sq_Circ ") . p4 = |[((p4 `1) * (sqrt (1 + (((p4 `1) / (p4 `2)) ^2)))),((p4 `2) * (sqrt (1 + (((p4 `1) / (p4 `2)) ^2))))]| by A105, A108, Th30; then A114: (gg . I) `2 = (p4 `2) * (sqrt (1 + (((p4 `1) / (p4 `2)) ^2))) by A110, A103, EUCLID:52; A115: (gg . I) `1 = (p4 `1) * (sqrt (1 + (((p4 `1) / (p4 `2)) ^2))) by A110, A103, A113, EUCLID:52; A116: now__::_thesis:_(_(gg_._I)_`2_=_0_implies_not_(gg_._I)_`1_=_0_) assume ( (gg . I) `2 = 0 & (gg . I) `1 = 0 ) ; ::_thesis: contradiction then ( p4 `2 = 0 & p4 `1 = 0 ) by A114, A115, A107, XCMPLX_1:6; hence contradiction by A112, EUCLID:53, EUCLID:54; ::_thesis: verum end; ( ( (p4 `1) * (sqrt (1 + (((p4 `1) / (p4 `2)) ^2))) <= (p4 `2) * (sqrt (1 + (((p4 `1) / (p4 `2)) ^2))) & - ((gg . I) `2) <= (gg . I) `1 ) or ( (gg . I) `1 >= (gg . I) `2 & (gg . I) `1 <= - ((gg . I) `2) ) ) by A110, A103, A113, A114, A107, A109, EUCLID:52, XREAL_1:64; then A117: Sq_Circ . (gg . I) = |[(((gg . I) `1) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)))),(((gg . I) `2) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))))]| by A114, A115, A116, Th4, JGRAPH_2:3; |[(((gg . I) `1) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)))),(((gg . I) `2) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))))]| `1 = ((gg . I) `1) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) by EUCLID:52; then |.p4.| ^2 = ((((gg . I) `2) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)))) ^2) + ((((gg . I) `1) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)))) ^2) by A111, A117, A100, JGRAPH_1:29 .= ((((gg . I) `2) ^2) / ((sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) ^2)) + ((((gg . I) `1) / (sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)))) ^2) by XCMPLX_1:76 .= ((((gg . I) `2) ^2) / ((sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) ^2)) + ((((gg . I) `1) ^2) / ((sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) ^2)) by XCMPLX_1:76 .= ((((gg . I) `2) ^2) / (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) + ((((gg . I) `1) ^2) / ((sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) ^2)) by A101, SQUARE_1:def_2 .= ((((gg . I) `2) ^2) / (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) + ((((gg . I) `1) ^2) / (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) by A101, SQUARE_1:def_2 .= ((((gg . I) `2) ^2) + (((gg . I) `1) ^2)) / (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)) by XCMPLX_1:62 ; then (((((gg . I) `2) ^2) + (((gg . I) `1) ^2)) / (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2))) * (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)) = 1 * (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)) by A104; then (((gg . I) `2) ^2) + (((gg . I) `1) ^2) = 1 + ((((gg . I) `1) / ((gg . I) `2)) ^2) by A101, XCMPLX_1:87; then A118: ((((gg . I) `2) ^2) + (((gg . I) `1) ^2)) - 1 = (((gg . I) `1) ^2) / (((gg . I) `2) ^2) by XCMPLX_1:76; (gg . I) `2 <> 0 by A114, A115, A107, A116, A109, XREAL_1:64; then (((((gg . I) `2) ^2) + (((gg . I) `1) ^2)) - 1) * (((gg . I) `2) ^2) = ((gg . I) `1) ^2 by A118, XCMPLX_1:6, XCMPLX_1:87; then A119: ((((gg . I) `2) ^2) - 1) * ((((gg . I) `2) ^2) + (((gg . I) `1) ^2)) = 0 ; (((gg . I) `2) ^2) + (((gg . I) `1) ^2) <> 0 by A116, COMPLEX1:1; then A120: (((gg . I) `2) ^2) - 1 = 0 by A119, XCMPLX_1:6; A121: sqrt (1 + (((p1 `2) / (p1 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A122: sqrt (1 + ((((gg . I) `1) / ((gg . I) `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A123: now__::_thesis:_not_(gg_._I)_`2_=_-_1 assume A124: (gg . I) `2 = - 1 ; ::_thesis: contradiction then - (p4 `1) < 0 by A106, A111, A117, A100, A122, XREAL_1:141; then - (- (p4 `1)) > - 0 ; hence contradiction by A105, A111, A117, A122, A124, EUCLID:52; ::_thesis: verum end; A125: 1 + ((((gg . O) `1) / ((gg . O) `2)) ^2) > 0 by Lm1; A126: ( (ff . O) `1 = (p1 `1) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) & (ff . O) `2 = (p1 `2) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ) by A10, A3, A97, EUCLID:52; A127: now__::_thesis:_(_(ff_._O)_`1_=_0_implies_not_(ff_._O)_`2_=_0_) assume ( (ff . O) `1 = 0 & (ff . O) `2 = 0 ) ; ::_thesis: contradiction then ( p1 `1 = 0 & p1 `2 = 0 ) by A126, A121, XCMPLX_1:6; hence contradiction by A96, EUCLID:53, EUCLID:54; ::_thesis: verum end; ( ( p1 `2 <= p1 `1 & - (p1 `1) <= p1 `2 ) or ( p1 `2 >= p1 `1 & (p1 `2) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) <= (- (p1 `1)) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ) ) by A5, A6, A121, XREAL_1:64; then A128: ( ( p1 `2 <= p1 `1 & (- (p1 `1)) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) <= (p1 `2) * (sqrt (1 + (((p1 `2) / (p1 `1)) ^2))) ) or ( (ff . O) `2 >= (ff . O) `1 & (ff . O) `2 <= - ((ff . O) `1) ) ) by A126, A121, XREAL_1:64; then ( ( (ff . O) `2 <= (ff . O) `1 & - ((ff . O) `1) <= (ff . O) `2 ) or ( (ff . O) `2 >= (ff . O) `1 & (ff . O) `2 <= - ((ff . O) `1) ) ) by A126, A121, XREAL_1:64; then A129: Sq_Circ . (ff . O) = |[(((ff . O) `1) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)))),(((ff . O) `2) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))))]| by A127, Def1, JGRAPH_2:3; A130: sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A131: now__::_thesis:_not_(ff_._O)_`1_=_1 assume A132: (ff . O) `1 = 1 ; ::_thesis: contradiction - (p1 `2) >= - (- (p1 `1)) by A6, XREAL_1:24; then - (p1 `2) > 0 by A102, A129, A98, A130, A132, XREAL_1:139; then - (- (p1 `2)) < - 0 ; hence contradiction by A5, A102, A129, A130, A132, EUCLID:52; ::_thesis: verum end; consider p2 being Point of (TOP-REAL 2) such that A133: f . I = p2 and A134: |.p2.| = 1 and A135: p2 `2 <= p2 `1 and A136: p2 `2 >= - (p2 `1) by A2; A137: ff . I = (Sq_Circ ") . (f . I) by A9, FUNCT_1:12; then A138: p2 = Sq_Circ . (ff . I) by A133, Th43, FUNCT_1:32; A139: p2 <> 0. (TOP-REAL 2) by A134, TOPRNS_1:23; then A140: (Sq_Circ ") . p2 = |[((p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2)))),((p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))))]| by A135, A136, Th28; then A141: (ff . I) `1 = (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by A137, A133, EUCLID:52; A142: sqrt (1 + (((p2 `2) / (p2 `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A143: (ff . I) `2 = (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) by A137, A133, A140, EUCLID:52; A144: now__::_thesis:_(_(ff_._I)_`1_=_0_implies_not_(ff_._I)_`2_=_0_) assume ( (ff . I) `1 = 0 & (ff . I) `2 = 0 ) ; ::_thesis: contradiction then ( p2 `1 = 0 & p2 `2 = 0 ) by A141, A143, A142, XCMPLX_1:6; hence contradiction by A139, EUCLID:53, EUCLID:54; ::_thesis: verum end; A145: ( ( p2 `2 <= p2 `1 & (- (p2 `1)) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) ) or ( (ff . I) `2 >= (ff . I) `1 & (ff . I) `2 <= - ((ff . I) `1) ) ) by A135, A136, A142, XREAL_1:64; then ( ( (p2 `2) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) <= (p2 `1) * (sqrt (1 + (((p2 `2) / (p2 `1)) ^2))) & - ((ff . I) `1) <= (ff . I) `2 ) or ( (ff . I) `2 >= (ff . I) `1 & (ff . I) `2 <= - ((ff . I) `1) ) ) by A137, A133, A140, A141, A142, EUCLID:52, XREAL_1:64; then A146: Sq_Circ . (ff . I) = |[(((ff . I) `1) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)))),(((ff . I) `2) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))))]| by A141, A143, A144, Def1, JGRAPH_2:3; A147: sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)) > 0 by Lm1, SQUARE_1:25; A148: now__::_thesis:_not_(ff_._I)_`1_=_-_1 assume A149: (ff . I) `1 = - 1 ; ::_thesis: contradiction - (p2 `2) <= - (- (p2 `1)) by A136, XREAL_1:24; then - (p2 `2) < 0 by A138, A146, A99, A147, A149, XREAL_1:141; then - (- (p2 `2)) > - 0 ; hence contradiction by A135, A138, A146, A147, A149, EUCLID:52; ::_thesis: verum end; A150: 1 + ((((ff . I) `2) / ((ff . I) `1)) ^2) > 0 by Lm1; |[(((ff . I) `1) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)))),(((ff . I) `2) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))))]| `2 = ((ff . I) `2) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) by EUCLID:52; then |.p2.| ^2 = ((((ff . I) `1) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)))) ^2) + ((((ff . I) `2) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)))) ^2) by A138, A146, A99, JGRAPH_1:29 .= ((((ff . I) `1) ^2) / ((sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) ^2)) + ((((ff . I) `2) / (sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)))) ^2) by XCMPLX_1:76 .= ((((ff . I) `1) ^2) / ((sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) ^2)) + ((((ff . I) `2) ^2) / ((sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) ^2)) by XCMPLX_1:76 .= ((((ff . I) `1) ^2) / (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) + ((((ff . I) `2) ^2) / ((sqrt (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) ^2)) by A150, SQUARE_1:def_2 .= ((((ff . I) `1) ^2) / (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) + ((((ff . I) `2) ^2) / (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) by A150, SQUARE_1:def_2 .= ((((ff . I) `1) ^2) + (((ff . I) `2) ^2)) / (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)) by XCMPLX_1:62 ; then (((((ff . I) `1) ^2) + (((ff . I) `2) ^2)) / (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2))) * (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)) = 1 * (1 + ((((ff . I) `2) / ((ff . I) `1)) ^2)) by A134; then (((ff . I) `1) ^2) + (((ff . I) `2) ^2) = 1 + ((((ff . I) `2) / ((ff . I) `1)) ^2) by A150, XCMPLX_1:87; then A151: ((((ff . I) `1) ^2) + (((ff . I) `2) ^2)) - 1 = (((ff . I) `2) ^2) / (((ff . I) `1) ^2) by XCMPLX_1:76; (ff . I) `1 <> 0 by A141, A143, A142, A144, A145, XREAL_1:64; then (((((ff . I) `1) ^2) + (((ff . I) `2) ^2)) - 1) * (((ff . I) `1) ^2) = ((ff . I) `2) ^2 by A151, XCMPLX_1:6, XCMPLX_1:87; then A152: ((((ff . I) `1) ^2) - 1) * ((((ff . I) `1) ^2) + (((ff . I) `2) ^2)) = 0 ; (((ff . I) `1) ^2) + (((ff . I) `2) ^2) <> 0 by A144, COMPLEX1:1; then A153: (((ff . I) `1) ^2) - 1 = 0 by A152, XCMPLX_1:6; A154: |[(((gg . O) `1) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)))),(((gg . O) `2) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))))]| `2 = ((gg . O) `2) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) by EUCLID:52; A155: 1 + ((((ff . O) `2) / ((ff . O) `1)) ^2) > 0 by Lm1; |[(((ff . O) `1) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)))),(((ff . O) `2) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))))]| `2 = ((ff . O) `2) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) by EUCLID:52; then |.p1.| ^2 = ((((ff . O) `1) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)))) ^2) + ((((ff . O) `2) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)))) ^2) by A102, A129, A98, JGRAPH_1:29 .= ((((ff . O) `1) ^2) / ((sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) ^2)) + ((((ff . O) `2) / (sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)))) ^2) by XCMPLX_1:76 .= ((((ff . O) `1) ^2) / ((sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) ^2)) + ((((ff . O) `2) ^2) / ((sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) ^2)) by XCMPLX_1:76 .= ((((ff . O) `1) ^2) / (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) + ((((ff . O) `2) ^2) / ((sqrt (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) ^2)) by A155, SQUARE_1:def_2 .= ((((ff . O) `1) ^2) / (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) + ((((ff . O) `2) ^2) / (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) by A155, SQUARE_1:def_2 .= ((((ff . O) `1) ^2) + (((ff . O) `2) ^2)) / (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)) by XCMPLX_1:62 ; then (((((ff . O) `1) ^2) + (((ff . O) `2) ^2)) / (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2))) * (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)) = 1 * (1 + ((((ff . O) `2) / ((ff . O) `1)) ^2)) by A4; then (((ff . O) `1) ^2) + (((ff . O) `2) ^2) = 1 + ((((ff . O) `2) / ((ff . O) `1)) ^2) by A155, XCMPLX_1:87; then A156: ((((ff . O) `1) ^2) + (((ff . O) `2) ^2)) - 1 = (((ff . O) `2) ^2) / (((ff . O) `1) ^2) by XCMPLX_1:76; (ff . O) `1 <> 0 by A126, A121, A127, A128, XREAL_1:64; then (((((ff . O) `1) ^2) + (((ff . O) `2) ^2)) - 1) * (((ff . O) `1) ^2) = ((ff . O) `2) ^2 by A156, XCMPLX_1:6, XCMPLX_1:87; then A157: ((((ff . O) `1) ^2) - 1) * ((((ff . O) `1) ^2) + (((ff . O) `2) ^2)) = 0 ; consider p3 being Point of (TOP-REAL 2) such that A158: g . O = p3 and A159: |.p3.| = 1 and A160: p3 `2 <= p3 `1 and A161: p3 `2 <= - (p3 `1) by A2; A162: p3 <> 0. (TOP-REAL 2) by A159, TOPRNS_1:23; A163: gg . O = (Sq_Circ ") . (g . O) by A8, FUNCT_1:12; then A164: p3 = Sq_Circ . (gg . O) by A158, Th43, FUNCT_1:32; A165: - (p3 `2) >= - (- (p3 `1)) by A161, XREAL_1:24; then A166: (Sq_Circ ") . p3 = |[((p3 `1) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2)))),((p3 `2) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))))]| by A160, A162, Th30; then A167: (gg . O) `2 = (p3 `2) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))) by A163, A158, EUCLID:52; A168: sqrt (1 + (((p3 `1) / (p3 `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A169: (gg . O) `1 = (p3 `1) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))) by A163, A158, A166, EUCLID:52; A170: now__::_thesis:_(_(gg_._O)_`2_=_0_implies_not_(gg_._O)_`1_=_0_) assume ( (gg . O) `2 = 0 & (gg . O) `1 = 0 ) ; ::_thesis: contradiction then ( p3 `2 = 0 & p3 `1 = 0 ) by A167, A169, A168, XCMPLX_1:6; hence contradiction by A162, EUCLID:53, EUCLID:54; ::_thesis: verum end; ( ( p3 `1 <= p3 `2 & - (p3 `2) <= p3 `1 ) or ( p3 `1 >= p3 `2 & (p3 `1) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))) <= (- (p3 `2)) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))) ) ) by A160, A165, A168, XREAL_1:64; then A171: ( ( p3 `1 <= p3 `2 & (- (p3 `2)) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))) <= (p3 `1) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))) ) or ( (gg . O) `1 >= (gg . O) `2 & (gg . O) `1 <= - ((gg . O) `2) ) ) by A167, A169, A168, XREAL_1:64; then ( ( (p3 `1) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))) <= (p3 `2) * (sqrt (1 + (((p3 `1) / (p3 `2)) ^2))) & - ((gg . O) `2) <= (gg . O) `1 ) or ( (gg . O) `1 >= (gg . O) `2 & (gg . O) `1 <= - ((gg . O) `2) ) ) by A163, A158, A166, A167, A168, EUCLID:52, XREAL_1:64; then A172: Sq_Circ . (gg . O) = |[(((gg . O) `1) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)))),(((gg . O) `2) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))))]| by A167, A169, A170, Th4, JGRAPH_2:3; A173: sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)) > 0 by Lm1, SQUARE_1:25; A174: now__::_thesis:_not_(gg_._O)_`2_=_1 assume A175: (gg . O) `2 = 1 ; ::_thesis: contradiction then - (p3 `1) > 0 by A161, A164, A172, A154, A173, XREAL_1:139; then - (- (p3 `1)) < - 0 ; hence contradiction by A160, A164, A172, A173, A175, EUCLID:52; ::_thesis: verum end; |[(((gg . O) `1) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)))),(((gg . O) `2) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))))]| `1 = ((gg . O) `1) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) by EUCLID:52; then |.p3.| ^2 = ((((gg . O) `2) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)))) ^2) + ((((gg . O) `1) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)))) ^2) by A164, A172, A154, JGRAPH_1:29 .= ((((gg . O) `2) ^2) / ((sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) ^2)) + ((((gg . O) `1) / (sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)))) ^2) by XCMPLX_1:76 .= ((((gg . O) `2) ^2) / ((sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) ^2)) + ((((gg . O) `1) ^2) / ((sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) ^2)) by XCMPLX_1:76 .= ((((gg . O) `2) ^2) / (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) + ((((gg . O) `1) ^2) / ((sqrt (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) ^2)) by A125, SQUARE_1:def_2 .= ((((gg . O) `2) ^2) / (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) + ((((gg . O) `1) ^2) / (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) by A125, SQUARE_1:def_2 .= ((((gg . O) `2) ^2) + (((gg . O) `1) ^2)) / (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)) by XCMPLX_1:62 ; then (((((gg . O) `2) ^2) + (((gg . O) `1) ^2)) / (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2))) * (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)) = 1 * (1 + ((((gg . O) `1) / ((gg . O) `2)) ^2)) by A159; then (((gg . O) `2) ^2) + (((gg . O) `1) ^2) = 1 + ((((gg . O) `1) / ((gg . O) `2)) ^2) by A125, XCMPLX_1:87; then A176: ((((gg . O) `2) ^2) + (((gg . O) `1) ^2)) - 1 = (((gg . O) `1) ^2) / (((gg . O) `2) ^2) by XCMPLX_1:76; (gg . O) `2 <> 0 by A167, A169, A168, A170, A171, XREAL_1:64; then (((((gg . O) `2) ^2) + (((gg . O) `1) ^2)) - 1) * (((gg . O) `2) ^2) = ((gg . O) `1) ^2 by A176, XCMPLX_1:6, XCMPLX_1:87; then A177: ((((gg . O) `2) ^2) - 1) * ((((gg . O) `2) ^2) + (((gg . O) `1) ^2)) = 0 ; (((gg . O) `2) ^2) + (((gg . O) `1) ^2) <> 0 by A170, COMPLEX1:1; then A178: (((gg . O) `2) ^2) - 1 = 0 by A177, XCMPLX_1:6; (((ff . O) `1) ^2) + (((ff . O) `2) ^2) <> 0 by A127, COMPLEX1:1; then (((ff . O) `1) ^2) - 1 = 0 by A157, XCMPLX_1:6; hence ( (ff . O) `1 = - 1 & (ff . I) `1 = 1 & (gg . O) `2 = - 1 & (gg . I) `2 = 1 ) by A131, A153, A148, A178, A174, A120, A123, Lm20; ::_thesis: verum end; then rng ff meets rng gg by A2, A12, Th42, JGRAPH_1:47; then A179: (rng ff) /\ (rng gg) <> {} by XBOOLE_0:def_7; then the Element of (rng ff) /\ (rng gg) in rng ff by XBOOLE_0:def_4; then consider x1 being set such that A180: x1 in dom ff and A181: the Element of (rng ff) /\ (rng gg) = ff . x1 by FUNCT_1:def_3; x1 in dom f by A180, FUNCT_1:11; then A182: f . x1 in rng f by FUNCT_1:def_3; the Element of (rng ff) /\ (rng gg) in rng gg by A179, XBOOLE_0:def_4; then consider x2 being set such that A183: x2 in dom gg and A184: the Element of (rng ff) /\ (rng gg) = gg . x2 by FUNCT_1:def_3; A185: gg . x2 = (Sq_Circ ") . (g . x2) by A183, FUNCT_1:12; x2 in dom g by A183, FUNCT_1:11; then A186: g . x2 in rng g by FUNCT_1:def_3; ff . x1 = (Sq_Circ ") . (f . x1) by A180, FUNCT_1:12; then f . x1 = g . x2 by A181, A184, A1, A182, A186, A185, FUNCT_1:def_4; then (rng f) /\ (rng g) <> {} by A182, A186, XBOOLE_0:def_4; hence rng f meets rng g by XBOOLE_0:def_7; ::_thesis: verum end;