:: LP_SPACE semantic presentation begin definition let x be Real_Sequence; let p be Real; funcx rto_power p -> Real_Sequence means :Def1: :: LP_SPACE:def 1 for n being Element of NAT holds it . n = (abs (x . n)) to_power p; existence ex b1 being Real_Sequence st for n being Element of NAT holds b1 . n = (abs (x . n)) to_power p proof deffunc H1( set ) -> Element of REAL = (abs (x . $1)) to_power p; ex q1 being Real_Sequence st for n being Element of NAT holds q1 . n = H1(n) from SEQ_1:sch_1(); then consider q1 being Real_Sequence such that A1: for n being Element of NAT holds q1 . n = (abs (x . n)) to_power p ; take q1 ; ::_thesis: for n being Element of NAT holds q1 . n = (abs (x . n)) to_power p thus for n being Element of NAT holds q1 . n = (abs (x . n)) to_power p by A1; ::_thesis: verum end; uniqueness for b1, b2 being Real_Sequence st ( for n being Element of NAT holds b1 . n = (abs (x . n)) to_power p ) & ( for n being Element of NAT holds b2 . n = (abs (x . n)) to_power p ) holds b1 = b2 proof let a1, a2 be Real_Sequence; ::_thesis: ( ( for n being Element of NAT holds a1 . n = (abs (x . n)) to_power p ) & ( for n being Element of NAT holds a2 . n = (abs (x . n)) to_power p ) implies a1 = a2 ) assume that A2: for n being Element of NAT holds a1 . n = (abs (x . n)) to_power p and A3: for n being Element of NAT holds a2 . n = (abs (x . n)) to_power p ; ::_thesis: a1 = a2 for s being set st s in NAT holds a1 . s = a2 . s proof let s be set ; ::_thesis: ( s in NAT implies a1 . s = a2 . s ) assume A4: s in NAT ; ::_thesis: a1 . s = a2 . s a1 . s = (abs (x . s)) to_power p by A2, A4 .= a2 . s by A3, A4 ; hence a1 . s = a2 . s ; ::_thesis: verum end; hence a1 = a2 by FUNCT_2:12; ::_thesis: verum end; end; :: deftheorem Def1 defines rto_power LP_SPACE:def_1_:_ for x being Real_Sequence for p being Real for b3 being Real_Sequence holds ( b3 = x rto_power p iff for n being Element of NAT holds b3 . n = (abs (x . n)) to_power p ); definition let p be Real; assume A1: p >= 1 ; func the_set_of_RealSequences_l^ p -> non empty Subset of Linear_Space_of_RealSequences means :Def2: :: LP_SPACE:def 2 for x being set holds ( x in it iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ); existence ex b1 being non empty Subset of Linear_Space_of_RealSequences st for x being set holds ( x in b1 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) proof defpred S1[ set ] means (seq_id $1) rto_power p is summable ; consider IT being set such that A2: for x being set holds ( x in IT iff ( x in the_set_of_RealSequences & S1[x] ) ) from XBOOLE_0:sch_1(); for x being set st x in IT holds x in the_set_of_RealSequences by A2; then A3: IT is Subset of the_set_of_RealSequences by TARSKI:def_3; (seq_id Zeroseq) rto_power p is absolutely_summable proof reconsider rseq = (seq_id Zeroseq) rto_power p as Real_Sequence ; now__::_thesis:_for_n_being_Element_of_NAT_holds_rseq_._n_=_0 let n be Element of NAT ; ::_thesis: rseq . n = 0 thus rseq . n = (abs ((seq_id Zeroseq) . n)) to_power p by Def1 .= (abs 0) to_power p by RSSPACE:def_6 .= 0 to_power p by ABSVALUE:2 .= 0 by A1, POWER:def_2 ; ::_thesis: verum end; hence (seq_id Zeroseq) rto_power p is absolutely_summable by COMSEQ_3:3; ::_thesis: verum end; then not IT is empty by A2; hence ex b1 being non empty Subset of Linear_Space_of_RealSequences st for x being set holds ( x in b1 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) by A2, A3, RSSPACE:def_7; ::_thesis: verum end; uniqueness for b1, b2 being non empty Subset of Linear_Space_of_RealSequences st ( for x being set holds ( x in b1 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) ) & ( for x being set holds ( x in b2 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) ) holds b1 = b2 proof let X1, X2 be non empty Subset of Linear_Space_of_RealSequences; ::_thesis: ( ( for x being set holds ( x in X1 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) ) & ( for x being set holds ( x in X2 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) ) implies X1 = X2 ) assume that A4: for x being set holds ( x in X1 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) and A5: for x being set holds ( x in X2 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) ; ::_thesis: X1 = X2 A6: X2 c= X1 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in X2 or x in X1 ) assume A7: x in X2 ; ::_thesis: x in X1 then A8: (seq_id x) rto_power p is summable by A5; x in the_set_of_RealSequences by A5, A7; hence x in X1 by A4, A8; ::_thesis: verum end; X1 c= X2 proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in X1 or x in X2 ) assume A9: x in X1 ; ::_thesis: x in X2 then A10: (seq_id x) rto_power p is summable by A4; x in the_set_of_RealSequences by A4, A9; hence x in X2 by A5, A10; ::_thesis: verum end; hence X1 = X2 by A6, XBOOLE_0:def_10; ::_thesis: verum end; end; :: deftheorem Def2 defines the_set_of_RealSequences_l^ LP_SPACE:def_2_:_ for p being Real st p >= 1 holds for b2 being non empty Subset of Linear_Space_of_RealSequences holds ( b2 = the_set_of_RealSequences_l^ p iff for x being set holds ( x in b2 iff ( x in the_set_of_RealSequences & (seq_id x) rto_power p is summable ) ) ); Lm1: for x1, y1 being Real st x1 >= 0 & y1 > 0 holds x1 to_power y1 >= 0 proof let x1, y1 be Real; ::_thesis: ( x1 >= 0 & y1 > 0 implies x1 to_power y1 >= 0 ) assume that A1: x1 >= 0 and A2: y1 > 0 ; ::_thesis: x1 to_power y1 >= 0 ( x1 > 0 or x1 = 0 ) by A1; hence x1 to_power y1 >= 0 by A2, POWER:34, POWER:def_2; ::_thesis: verum end; Lm2: for y1, x1, x2 being Real st y1 > 0 & x1 >= 0 & x2 >= 0 holds (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) proof let y1, x1, x2 be Real; ::_thesis: ( y1 > 0 & x1 >= 0 & x2 >= 0 implies (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) ) assume that A1: y1 > 0 and A2: x1 >= 0 and A3: x2 >= 0 ; ::_thesis: (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) percases ( ( x1 > 0 & x2 > 0 ) or ( x1 > 0 & x2 = 0 ) or ( x1 = 0 & x2 > 0 ) or ( x1 = 0 & x2 = 0 ) ) by A2, A3; suppose ( x1 > 0 & x2 > 0 ) ; ::_thesis: (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) hence (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) by POWER:30; ::_thesis: verum end; supposeA4: ( x1 > 0 & x2 = 0 ) ; ::_thesis: (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) then x2 to_power y1 = 0 by A1, POWER:def_2; hence (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) by A4; ::_thesis: verum end; supposeA5: ( x1 = 0 & x2 > 0 ) ; ::_thesis: (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) then x1 to_power y1 = 0 by A1, POWER:def_2; hence (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) by A5; ::_thesis: verum end; supposeA6: ( x1 = 0 & x2 = 0 ) ; ::_thesis: (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) then x2 to_power y1 = 0 by A1, POWER:def_2; hence (x1 * x2) to_power y1 = (x1 to_power y1) * (x2 to_power y1) by A6; ::_thesis: verum end; end; end; theorem Th1: :: LP_SPACE:1 for a, b, c being Real st a >= 0 & a < b & c > 0 holds a to_power c < b to_power c proof let a, b, c be Real; ::_thesis: ( a >= 0 & a < b & c > 0 implies a to_power c < b to_power c ) ( a = 0 & c > 0 implies a to_power c = 0 ) by POWER:def_2; hence ( a >= 0 & a < b & c > 0 implies a to_power c < b to_power c ) by POWER:34, POWER:37; ::_thesis: verum end; Lm3: for p being Real st 1 = p holds for a, b being Real_Sequence for n being Element of NAT holds ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) proof let p be Real; ::_thesis: ( 1 = p implies for a, b being Real_Sequence for n being Element of NAT holds ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) ) assume A1: p = 1 ; ::_thesis: for a, b being Real_Sequence for n being Element of NAT holds ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) let a, b be Real_Sequence; ::_thesis: for n being Element of NAT holds ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) let n be Element of NAT ; ::_thesis: ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) A2: now__::_thesis:_for_n_being_Element_of_NAT_holds_ (_((a_+_b)_rto_power_p)_._n_=_abs_((a_+_b)_._n)_&_(a_rto_power_p)_._n_=_abs_(a_._n)_&_(b_rto_power_p)_._n_=_abs_(b_._n)_) let n be Element of NAT ; ::_thesis: ( ((a + b) rto_power p) . n = abs ((a + b) . n) & (a rto_power p) . n = abs (a . n) & (b rto_power p) . n = abs (b . n) ) thus ((a + b) rto_power p) . n = (abs ((a + b) . n)) to_power p by Def1 .= abs ((a + b) . n) by A1, POWER:25 ; ::_thesis: ( (a rto_power p) . n = abs (a . n) & (b rto_power p) . n = abs (b . n) ) thus (a rto_power p) . n = (abs (a . n)) to_power p by Def1 .= abs (a . n) by A1, POWER:25 ; ::_thesis: (b rto_power p) . n = abs (b . n) thus (b rto_power p) . n = (abs (b . n)) to_power p by Def1 .= abs (b . n) by A1, POWER:25 ; ::_thesis: verum end; then (a + b) rto_power p = abs (a + b) by SEQ_1:12; then A3: ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) = (Partial_Sums (abs (a + b))) . n by A1, POWER:25; a rto_power p = abs a by A2, SEQ_1:12; then A4: ((Partial_Sums (a rto_power p)) . n) to_power (1 / p) = (Partial_Sums (abs a)) . n by A1, POWER:25; deffunc H1( Element of NAT ) -> Element of REAL = (abs (a . $1)) + (abs (b . $1)); consider c being Real_Sequence such that A5: for n being Element of NAT holds c . n = H1(n) from SEQ_1:sch_1(); A6: for n being Element of NAT holds abs ((a + b) . n) <= (abs (b . n)) + (abs (a . n)) proof let n be Element of NAT ; ::_thesis: abs ((a + b) . n) <= (abs (b . n)) + (abs (a . n)) abs ((a + b) . n) = abs ((a . n) + (b . n)) by SEQ_1:7; hence abs ((a + b) . n) <= (abs (b . n)) + (abs (a . n)) by COMPLEX1:56; ::_thesis: verum end; now__::_thesis:_for_n_being_Element_of_NAT_holds_(abs_(a_+_b))_._n_<=_c_._n let n be Element of NAT ; ::_thesis: (abs (a + b)) . n <= c . n A7: abs ((a + b) . n) = (abs (a + b)) . n by SEQ_1:12; abs ((a + b) . n) <= (abs (b . n)) + (abs (a . n)) by A6; hence (abs (a + b)) . n <= c . n by A5, A7; ::_thesis: verum end; then A8: (Partial_Sums (abs (a + b))) . n <= (Partial_Sums c) . n by SERIES_1:14; now__::_thesis:_for_n_being_Element_of_NAT_holds_c_._n_=_((abs_a)_+_(abs_b))_._n let n be Element of NAT ; ::_thesis: c . n = ((abs a) + (abs b)) . n A9: abs (a . n) = (abs a) . n by SEQ_1:12; abs (b . n) = (abs b) . n by SEQ_1:12; hence c . n = ((abs a) . n) + ((abs b) . n) by A5, A9 .= ((abs a) + (abs b)) . n by SEQ_1:7 ; ::_thesis: verum end; then for n being set st n in NAT holds c . n = ((abs a) + (abs b)) . n ; then A10: c = (abs a) + (abs b) by FUNCT_2:12; b rto_power p = abs b by A2, SEQ_1:12; then A11: ((Partial_Sums (b rto_power p)) . n) to_power (1 / p) = (Partial_Sums (abs b)) . n by A1, POWER:25; Partial_Sums ((abs a) + (abs b)) = (Partial_Sums (abs a)) + (Partial_Sums (abs b)) by SERIES_1:5; hence ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) by A3, A4, A11, A10, A8, SEQ_1:7; ::_thesis: verum end; theorem Th2: :: LP_SPACE:2 for p being Real st 1 <= p holds for a, b being Real_Sequence for n being Element of NAT holds ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) proof let p be Real; ::_thesis: ( 1 <= p implies for a, b being Real_Sequence for n being Element of NAT holds ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) ) assume A1: 1 <= p ; ::_thesis: for a, b being Real_Sequence for n being Element of NAT holds ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) let a, b be Real_Sequence; ::_thesis: for n being Element of NAT holds ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) set ap = a rto_power p; set bp = b rto_power p; set ab = (a + b) rto_power p; let n be Element of NAT ; ::_thesis: ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) now__::_thesis:_(_(_p_>_1_&_((Partial_Sums_((a_+_b)_rto_power_p))_._n)_to_power_(1_/_p)_<=_(((Partial_Sums_(a_rto_power_p))_._n)_to_power_(1_/_p))_+_(((Partial_Sums_(b_rto_power_p))_._n)_to_power_(1_/_p))_)_or_(_p_=_1_&_((Partial_Sums_((a_+_b)_rto_power_p))_._n)_to_power_(1_/_p)_<=_(((Partial_Sums_(a_rto_power_p))_._n)_to_power_(1_/_p))_+_(((Partial_Sums_(b_rto_power_p))_._n)_to_power_(1_/_p))_)_) percases ( p > 1 or p = 1 ) by A1, XXREAL_0:1; caseA2: p > 1 ; ::_thesis: ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) now__::_thesis:_for_n_being_Element_of_NAT_holds_ (_(a_rto_power_p)_._n_=_(abs_(a_._n))_to_power_p_&_(b_rto_power_p)_._n_=_(abs_(b_._n))_to_power_p_&_((a_+_b)_rto_power_p)_._n_=_(abs_((a_._n)_+_(b_._n)))_to_power_p_) let n be Element of NAT ; ::_thesis: ( (a rto_power p) . n = (abs (a . n)) to_power p & (b rto_power p) . n = (abs (b . n)) to_power p & ((a + b) rto_power p) . n = (abs ((a . n) + (b . n))) to_power p ) thus (a rto_power p) . n = (abs (a . n)) to_power p by Def1; ::_thesis: ( (b rto_power p) . n = (abs (b . n)) to_power p & ((a + b) rto_power p) . n = (abs ((a . n) + (b . n))) to_power p ) thus (b rto_power p) . n = (abs (b . n)) to_power p by Def1; ::_thesis: ((a + b) rto_power p) . n = (abs ((a . n) + (b . n))) to_power p ((a + b) rto_power p) . n = (abs ((a + b) . n)) to_power p by Def1 .= (abs ((a . n) + (b . n))) to_power p by SEQ_1:7 ; hence ((a + b) rto_power p) . n = (abs ((a . n) + (b . n))) to_power p ; ::_thesis: verum end; hence ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) by A2, HOLDER_1:7; ::_thesis: verum end; case p = 1 ; ::_thesis: ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) hence ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) by Lm3; ::_thesis: verum end; end; end; hence ((Partial_Sums ((a + b) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums (a rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums (b rto_power p)) . n) to_power (1 / p)) ; ::_thesis: verum end; Lm4: for a, b being Real_Sequence for p being Real st 1 = p & a rto_power p is summable & b rto_power p is summable holds ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) proof let a, b be Real_Sequence; ::_thesis: for p being Real st 1 = p & a rto_power p is summable & b rto_power p is summable holds ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) let p be Real; ::_thesis: ( 1 = p & a rto_power p is summable & b rto_power p is summable implies ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) ) assume that A1: p = 1 and A2: a rto_power p is summable and A3: b rto_power p is summable ; ::_thesis: ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) A4: now__::_thesis:_for_n_being_Element_of_NAT_holds_ (_((a_+_b)_rto_power_p)_._n_=_abs_((a_+_b)_._n)_&_(a_rto_power_p)_._n_=_abs_(a_._n)_&_(b_rto_power_p)_._n_=_abs_(b_._n)_) let n be Element of NAT ; ::_thesis: ( ((a + b) rto_power p) . n = abs ((a + b) . n) & (a rto_power p) . n = abs (a . n) & (b rto_power p) . n = abs (b . n) ) thus ((a + b) rto_power p) . n = (abs ((a + b) . n)) to_power p by Def1 .= abs ((a + b) . n) by A1, POWER:25 ; ::_thesis: ( (a rto_power p) . n = abs (a . n) & (b rto_power p) . n = abs (b . n) ) thus (a rto_power p) . n = (abs (a . n)) to_power p by Def1 .= abs (a . n) by A1, POWER:25 ; ::_thesis: (b rto_power p) . n = abs (b . n) thus (b rto_power p) . n = (abs (b . n)) to_power p by Def1 .= abs (b . n) by A1, POWER:25 ; ::_thesis: verum end; then A5: (a + b) rto_power p = abs (a + b) by SEQ_1:12; A6: a = seq_id a by RSSPACE:1; A7: a rto_power p = abs a by A4, SEQ_1:12; then a is absolutely_summable by A2, SERIES_1:def_4; then reconsider a1 = a as VECTOR of l1_Space by A6, RSSPACE3:6; abs b is summable by A3, A4, SEQ_1:12; then A8: (abs a) + (abs b) is summable by A2, A7, SERIES_1:7; A9: b rto_power p = abs b by A4, SEQ_1:12; then A10: (Sum (b rto_power p)) to_power (1 / p) = Sum (abs b) by A1, POWER:25; A11: b = seq_id b by RSSPACE:1; b is absolutely_summable by A3, A9, SERIES_1:def_4; then reconsider b1 = b as VECTOR of l1_Space by A11, RSSPACE3:6; A12: ||.b1.|| = the normF of l1_Space . b1 .= Sum (abs (seq_id b1)) by RSSPACE3:def_2, RSSPACE3:def_3 ; A13: seq_id b1 = b by RSSPACE:1; deffunc H1( Element of NAT ) -> Element of REAL = (abs (a . $1)) + (abs (b . $1)); consider c being Real_Sequence such that A14: for n being Element of NAT holds c . n = H1(n) from SEQ_1:sch_1(); A15: now__::_thesis:_for_n_being_Element_of_NAT_holds_ (_(abs_(a_+_b))_._n_>=_0_&_c_._n_=_(abs_(a_._n))_+_(abs_(b_._n))_&_c_._n_=_((abs_a)_._n)_+_((abs_b)_._n)_&_(abs_(a_+_b))_._n_<=_c_._n_) let n be Element of NAT ; ::_thesis: ( (abs (a + b)) . n >= 0 & c . n = (abs (a . n)) + (abs (b . n)) & c . n = ((abs a) . n) + ((abs b) . n) & (abs (a + b)) . n <= c . n ) A16: (abs (a + b)) . n = abs ((a + b) . n) by SEQ_1:12; hence (abs (a + b)) . n >= 0 by COMPLEX1:46; ::_thesis: ( c . n = (abs (a . n)) + (abs (b . n)) & c . n = ((abs a) . n) + ((abs b) . n) & (abs (a + b)) . n <= c . n ) thus c . n = (abs (a . n)) + (abs (b . n)) by A14; ::_thesis: ( c . n = ((abs a) . n) + ((abs b) . n) & (abs (a + b)) . n <= c . n ) (abs (a . n)) + (abs (b . n)) = ((abs a) . n) + (abs (b . n)) by SEQ_1:12 .= ((abs a) . n) + ((abs b) . n) by SEQ_1:12 ; hence c . n = ((abs a) . n) + ((abs b) . n) by A14; ::_thesis: (abs (a + b)) . n <= c . n abs ((a + b) . n) = abs ((a . n) + (b . n)) by SEQ_1:7; then (abs (a + b)) . n <= (abs (a . n)) + (abs (b . n)) by A16, COMPLEX1:56; hence (abs (a + b)) . n <= c . n by A14; ::_thesis: verum end; then c = (abs a) + (abs b) by SEQ_1:7; hence (a + b) rto_power p is summable by A5, A8, A15, SERIES_1:20; ::_thesis: (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) A17: ||.a1.|| = the normF of l1_Space . a1 .= Sum (abs (seq_id a1)) by RSSPACE3:def_2, RSSPACE3:def_3 ; A18: seq_id a1 = a by RSSPACE:1; A19: ||.(a1 + b1).|| = the normF of l1_Space . (a1 + b1) .= Sum (abs (seq_id (a1 + b1))) by RSSPACE3:def_2, RSSPACE3:def_3 .= Sum (abs (seq_id ((seq_id a1) + (seq_id b1)))) by RSSPACE3:6 .= Sum (abs ((seq_id a1) + (seq_id b1))) by RSSPACE:1 ; A20: ||.(a1 + b1).|| <= ||.a1.|| + ||.b1.|| by RSSPACE3:7; (Sum (a rto_power p)) to_power (1 / p) = Sum (abs a) by A1, A7, POWER:25; hence (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) by A1, A5, A10, A20, A19, A17, A12, A18, A13, POWER:25; ::_thesis: verum end; theorem Th3: :: LP_SPACE:3 for a, b being Real_Sequence for p being Real st 1 <= p & a rto_power p is summable & b rto_power p is summable holds ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) proof let a, b be Real_Sequence; ::_thesis: for p being Real st 1 <= p & a rto_power p is summable & b rto_power p is summable holds ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) let p be Real; ::_thesis: ( 1 <= p & a rto_power p is summable & b rto_power p is summable implies ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) ) assume that A1: 1 <= p and A2: a rto_power p is summable and A3: b rto_power p is summable ; ::_thesis: ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) set ab = (a + b) rto_power p; set bp = b rto_power p; set ap = a rto_power p; A4: now__::_thesis:_for_n_being_Element_of_NAT_holds_ (_(a_rto_power_p)_._n_=_(abs_(a_._n))_to_power_p_&_(b_rto_power_p)_._n_=_(abs_(b_._n))_to_power_p_&_((a_+_b)_rto_power_p)_._n_=_(abs_((a_._n)_+_(b_._n)))_to_power_p_) let n be Element of NAT ; ::_thesis: ( (a rto_power p) . n = (abs (a . n)) to_power p & (b rto_power p) . n = (abs (b . n)) to_power p & ((a + b) rto_power p) . n = (abs ((a . n) + (b . n))) to_power p ) thus (a rto_power p) . n = (abs (a . n)) to_power p by Def1; ::_thesis: ( (b rto_power p) . n = (abs (b . n)) to_power p & ((a + b) rto_power p) . n = (abs ((a . n) + (b . n))) to_power p ) thus (b rto_power p) . n = (abs (b . n)) to_power p by Def1; ::_thesis: ((a + b) rto_power p) . n = (abs ((a . n) + (b . n))) to_power p ((a + b) rto_power p) . n = (abs ((a + b) . n)) to_power p by Def1 .= (abs ((a . n) + (b . n))) to_power p by SEQ_1:7 ; hence ((a + b) rto_power p) . n = (abs ((a . n) + (b . n))) to_power p ; ::_thesis: verum end; now__::_thesis:_(_(_p_>_1_&_(Sum_((a_+_b)_rto_power_p))_to_power_(1_/_p)_<=_((Sum_(a_rto_power_p))_to_power_(1_/_p))_+_((Sum_(b_rto_power_p))_to_power_(1_/_p))_&_(a_+_b)_rto_power_p_is_summable_)_or_(_p_=_1_&_(Sum_((a_+_b)_rto_power_p))_to_power_(1_/_p)_<=_((Sum_(a_rto_power_p))_to_power_(1_/_p))_+_((Sum_(b_rto_power_p))_to_power_(1_/_p))_&_(a_+_b)_rto_power_p_is_summable_)_) percases ( p > 1 or p = 1 ) by A1, XXREAL_0:1; case p > 1 ; ::_thesis: ( (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) & (a + b) rto_power p is summable ) hence ( (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) & (a + b) rto_power p is summable ) by A2, A3, A4, HOLDER_1:13; ::_thesis: verum end; case p = 1 ; ::_thesis: ( (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) & (a + b) rto_power p is summable ) hence ( (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) & (a + b) rto_power p is summable ) by A2, A3, Lm4; ::_thesis: verum end; end; end; hence ( (a + b) rto_power p is summable & (Sum ((a + b) rto_power p)) to_power (1 / p) <= ((Sum (a rto_power p)) to_power (1 / p)) + ((Sum (b rto_power p)) to_power (1 / p)) ) ; ::_thesis: verum end; theorem Th4: :: LP_SPACE:4 for p being Real st 1 <= p holds the_set_of_RealSequences_l^ p is linearly-closed proof let p be Real; ::_thesis: ( 1 <= p implies the_set_of_RealSequences_l^ p is linearly-closed ) assume A1: p >= 1 ; ::_thesis: the_set_of_RealSequences_l^ p is linearly-closed set W = the_set_of_RealSequences_l^ p; A2: for v, u being VECTOR of Linear_Space_of_RealSequences st v in the_set_of_RealSequences_l^ p & u in the_set_of_RealSequences_l^ p holds v + u in the_set_of_RealSequences_l^ p proof let v, u be VECTOR of Linear_Space_of_RealSequences; ::_thesis: ( v in the_set_of_RealSequences_l^ p & u in the_set_of_RealSequences_l^ p implies v + u in the_set_of_RealSequences_l^ p ) assume that A3: v in the_set_of_RealSequences_l^ p and A4: u in the_set_of_RealSequences_l^ p ; ::_thesis: v + u in the_set_of_RealSequences_l^ p A5: (seq_id (v + u)) rto_power p is summable proof v in the_set_of_RealSequences by A1, A3, Def2; then reconsider vq = v as Real_Sequence by RSSPACE:def_1; set up = (seq_id u) rto_power p; set vp = (seq_id v) rto_power p; set p1 = 1 / p; A6: (seq_id v) rto_power p = vq rto_power p by RSSPACE:1; A7: now__::_thesis:_for_n_being_Element_of_NAT_holds_ (_((seq_id_v)_rto_power_p)_._n_=_(abs_((seq_id_v)_._n))_to_power_p_&_((seq_id_u)_rto_power_p)_._n_=_(abs_((seq_id_u)_._n))_to_power_p_&_0_<=_abs_((seq_id_v)_._n)_&_(_0_<_abs_((seq_id_v)_._n)_or_0_=_abs_((seq_id_v)_._n)_)_&_0_<=_((seq_id_v)_rto_power_p)_._n_&_0_<=_abs_((seq_id_u)_._n)_&_(_0_<_abs_((seq_id_u)_._n)_or_0_=_abs_((seq_id_u)_._n)_)_&_0_<=_((seq_id_u)_rto_power_p)_._n_) let n be Element of NAT ; ::_thesis: ( ((seq_id v) rto_power p) . n = (abs ((seq_id v) . n)) to_power p & ((seq_id u) rto_power p) . n = (abs ((seq_id u) . n)) to_power p & 0 <= abs ((seq_id v) . n) & ( 0 < abs ((seq_id v) . n) or 0 = abs ((seq_id v) . n) ) & 0 <= ((seq_id v) rto_power p) . n & 0 <= abs ((seq_id u) . n) & ( 0 < abs ((seq_id u) . n) or 0 = abs ((seq_id u) . n) ) & 0 <= ((seq_id u) rto_power p) . n ) thus A8: ((seq_id v) rto_power p) . n = (abs ((seq_id v) . n)) to_power p by Def1; ::_thesis: ( ((seq_id u) rto_power p) . n = (abs ((seq_id u) . n)) to_power p & 0 <= abs ((seq_id v) . n) & ( 0 < abs ((seq_id v) . n) or 0 = abs ((seq_id v) . n) ) & 0 <= ((seq_id v) rto_power p) . n & 0 <= abs ((seq_id u) . n) & ( 0 < abs ((seq_id u) . n) or 0 = abs ((seq_id u) . n) ) & 0 <= ((seq_id u) rto_power p) . n ) thus A9: ((seq_id u) rto_power p) . n = (abs ((seq_id u) . n)) to_power p by Def1; ::_thesis: ( 0 <= abs ((seq_id v) . n) & ( 0 < abs ((seq_id v) . n) or 0 = abs ((seq_id v) . n) ) & 0 <= ((seq_id v) rto_power p) . n & 0 <= abs ((seq_id u) . n) & ( 0 < abs ((seq_id u) . n) or 0 = abs ((seq_id u) . n) ) & 0 <= ((seq_id u) rto_power p) . n ) thus 0 <= abs ((seq_id v) . n) by COMPLEX1:46; ::_thesis: ( ( 0 < abs ((seq_id v) . n) or 0 = abs ((seq_id v) . n) ) & 0 <= ((seq_id v) rto_power p) . n & 0 <= abs ((seq_id u) . n) & ( 0 < abs ((seq_id u) . n) or 0 = abs ((seq_id u) . n) ) & 0 <= ((seq_id u) rto_power p) . n ) thus ( 0 < abs ((seq_id v) . n) or 0 = abs ((seq_id v) . n) ) by COMPLEX1:46; ::_thesis: ( 0 <= ((seq_id v) rto_power p) . n & 0 <= abs ((seq_id u) . n) & ( 0 < abs ((seq_id u) . n) or 0 = abs ((seq_id u) . n) ) & 0 <= ((seq_id u) rto_power p) . n ) hence 0 <= ((seq_id v) rto_power p) . n by A1, A8, POWER:34, POWER:def_2; ::_thesis: ( 0 <= abs ((seq_id u) . n) & ( 0 < abs ((seq_id u) . n) or 0 = abs ((seq_id u) . n) ) & 0 <= ((seq_id u) rto_power p) . n ) thus 0 <= abs ((seq_id u) . n) by COMPLEX1:46; ::_thesis: ( ( 0 < abs ((seq_id u) . n) or 0 = abs ((seq_id u) . n) ) & 0 <= ((seq_id u) rto_power p) . n ) thus ( 0 < abs ((seq_id u) . n) or 0 = abs ((seq_id u) . n) ) by COMPLEX1:46; ::_thesis: 0 <= ((seq_id u) rto_power p) . n hence 0 <= ((seq_id u) rto_power p) . n by A1, A9, POWER:34, POWER:def_2; ::_thesis: verum end; (seq_id v) rto_power p is summable by A1, A3, Def2; then Partial_Sums ((seq_id v) rto_power p) is bounded_above by A7, SERIES_1:17; then consider r being real number such that A10: for n being set st n in dom (Partial_Sums ((seq_id v) rto_power p)) holds (Partial_Sums ((seq_id v) rto_power p)) . n < r by SEQ_2:def_1; A11: 1 / p > 0 by A1, XREAL_1:139; reconsider r = r as Real by XREAL_0:def_1; A12: Partial_Sums ((seq_id v) rto_power p) is V39() by A7, SERIES_1:16; now__::_thesis:_for_n_being_set_st_n_in_dom_(Partial_Sums_((seq_id_v)_rto_power_p))_holds_ ((Partial_Sums_((seq_id_v)_rto_power_p))_._n)_to_power_(1_/_p)_<_r_to_power_(1_/_p) let n be set ; ::_thesis: ( n in dom (Partial_Sums ((seq_id v) rto_power p)) implies ((Partial_Sums ((seq_id v) rto_power p)) . n) to_power (1 / p) < r to_power (1 / p) ) assume A13: n in dom (Partial_Sums ((seq_id v) rto_power p)) ; ::_thesis: ((Partial_Sums ((seq_id v) rto_power p)) . n) to_power (1 / p) < r to_power (1 / p) reconsider n1 = n as Element of NAT by A13, SEQ_1:2; 0 <= ((seq_id v) rto_power p) . 0 by A7; then A14: 0 <= (Partial_Sums ((seq_id v) rto_power p)) . 0 by SERIES_1:def_1; (Partial_Sums ((seq_id v) rto_power p)) . 0 <= (Partial_Sums ((seq_id v) rto_power p)) . n1 by A12, SEQM_3:11; hence ((Partial_Sums ((seq_id v) rto_power p)) . n) to_power (1 / p) < r to_power (1 / p) by A11, A10, A13, A14, Th1; ::_thesis: verum end; then consider q being Real such that A15: for n being set st n in dom (Partial_Sums ((seq_id v) rto_power p)) holds ((Partial_Sums ((seq_id v) rto_power p)) . n) to_power (1 / p) < q ; u in the_set_of_RealSequences by A1, A4, Def2; then reconsider uq = u as Real_Sequence by RSSPACE:def_1; A16: seq_id u = uq by RSSPACE:1; A17: (seq_id v) + (seq_id u) = seq_id ((seq_id v) + (seq_id u)) by RSSPACE:1 .= seq_id (v + u) by RSSPACE:2, RSSPACE:def_7 ; (seq_id u) rto_power p is summable by A1, A4, Def2; then Partial_Sums ((seq_id u) rto_power p) is bounded_above by A7, SERIES_1:17; then consider r1 being real number such that A18: for n being set st n in dom (Partial_Sums ((seq_id u) rto_power p)) holds (Partial_Sums ((seq_id u) rto_power p)) . n < r1 by SEQ_2:def_1; reconsider r1 = r1 as Real by XREAL_0:def_1; A19: Partial_Sums ((seq_id u) rto_power p) is V39() by A7, SERIES_1:16; now__::_thesis:_for_n_being_set_st_n_in_dom_(Partial_Sums_((seq_id_u)_rto_power_p))_holds_ ((Partial_Sums_((seq_id_u)_rto_power_p))_._n)_to_power_(1_/_p)_<_r1_to_power_(1_/_p) let n be set ; ::_thesis: ( n in dom (Partial_Sums ((seq_id u) rto_power p)) implies ((Partial_Sums ((seq_id u) rto_power p)) . n) to_power (1 / p) < r1 to_power (1 / p) ) assume A20: n in dom (Partial_Sums ((seq_id u) rto_power p)) ; ::_thesis: ((Partial_Sums ((seq_id u) rto_power p)) . n) to_power (1 / p) < r1 to_power (1 / p) reconsider n1 = n as Element of NAT by A20, SEQ_1:2; 0 <= ((seq_id u) rto_power p) . 0 by A7; then A21: 0 <= (Partial_Sums ((seq_id u) rto_power p)) . 0 by SERIES_1:def_1; (Partial_Sums ((seq_id u) rto_power p)) . 0 <= (Partial_Sums ((seq_id u) rto_power p)) . n1 by A19, SEQM_3:11; hence ((Partial_Sums ((seq_id u) rto_power p)) . n) to_power (1 / p) < r1 to_power (1 / p) by A11, A18, A20, A21, Th1; ::_thesis: verum end; then consider q1 being Real such that A22: for n being set st n in dom (Partial_Sums ((seq_id u) rto_power p)) holds ((Partial_Sums ((seq_id u) rto_power p)) . n) to_power (1 / p) < q1 ; A23: (seq_id u) rto_power p = uq rto_power p by RSSPACE:1; set g = q + q1; A24: p * (1 / p) = (p * 1) / p by XCMPLX_1:74 .= 1 by A1, XCMPLX_1:60 ; now__::_thesis:_for_n_being_Element_of_NAT_holds_ (_(_for_n_being_Element_of_NAT_holds_ (_(_0_<_abs_((vq_+_uq)_._n)_or_0_=_abs_((vq_+_uq)_._n)_)_&_0_<=_((vq_+_uq)_rto_power_p)_._n_)_)_&_(Partial_Sums_((vq_+_uq)_rto_power_p))_._n_<_(q_+_q1)_to_power_p_) let n be Element of NAT ; ::_thesis: ( ( for n being Element of NAT holds ( ( 0 < abs ((vq + uq) . n) or 0 = abs ((vq + uq) . n) ) & 0 <= ((vq + uq) rto_power p) . n ) ) & (Partial_Sums ((vq + uq) rto_power p)) . n < (q + q1) to_power p ) A25: now__::_thesis:_(_(Partial_Sums_((vq_+_uq)_rto_power_p))_._n_>_0_implies_(((Partial_Sums_((vq_+_uq)_rto_power_p))_._n)_to_power_(1_/_p))_to_power_p_=_(Partial_Sums_((vq_+_uq)_rto_power_p))_._n_) assume (Partial_Sums ((vq + uq) rto_power p)) . n > 0 ; ::_thesis: (((Partial_Sums ((vq + uq) rto_power p)) . n) to_power (1 / p)) to_power p = (Partial_Sums ((vq + uq) rto_power p)) . n hence (((Partial_Sums ((vq + uq) rto_power p)) . n) to_power (1 / p)) to_power p = ((Partial_Sums ((vq + uq) rto_power p)) . n) to_power ((1 / p) * p) by POWER:33 .= (Partial_Sums ((vq + uq) rto_power p)) . n by A24, POWER:25 ; ::_thesis: verum end; NAT = dom (Partial_Sums ((seq_id u) rto_power p)) by SEQ_1:2; then A26: ((Partial_Sums ((seq_id u) rto_power p)) . n) to_power (1 / p) < q1 by A22; NAT = dom (Partial_Sums ((seq_id v) rto_power p)) by SEQ_1:2; then A27: (((Partial_Sums ((seq_id u) rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums ((seq_id v) rto_power p)) . n) to_power (1 / p)) < q + q1 by A15, A26, XREAL_1:8; ((Partial_Sums ((vq + uq) rto_power p)) . n) to_power (1 / p) <= (((Partial_Sums ((seq_id u) rto_power p)) . n) to_power (1 / p)) + (((Partial_Sums ((seq_id v) rto_power p)) . n) to_power (1 / p)) by A1, A6, A23, Th2; then A28: ((Partial_Sums ((vq + uq) rto_power p)) . n) to_power (1 / p) < q + q1 by A27, XXREAL_0:2; A29: now__::_thesis:_(_(Partial_Sums_((vq_+_uq)_rto_power_p))_._n_=_0_implies_(((Partial_Sums_((vq_+_uq)_rto_power_p))_._n)_to_power_(1_/_p))_to_power_p_=_(Partial_Sums_((vq_+_uq)_rto_power_p))_._n_) assume A30: (Partial_Sums ((vq + uq) rto_power p)) . n = 0 ; ::_thesis: (((Partial_Sums ((vq + uq) rto_power p)) . n) to_power (1 / p)) to_power p = (Partial_Sums ((vq + uq) rto_power p)) . n hence (((Partial_Sums ((vq + uq) rto_power p)) . n) to_power (1 / p)) to_power p = 0 to_power p by A11, POWER:def_2 .= (Partial_Sums ((vq + uq) rto_power p)) . n by A1, A30, POWER:def_2 ; ::_thesis: verum end; hereby ::_thesis: (Partial_Sums ((vq + uq) rto_power p)) . n < (q + q1) to_power p let n be Element of NAT ; ::_thesis: ( ( 0 < abs ((vq + uq) . n) or 0 = abs ((vq + uq) . n) ) & 0 <= ((vq + uq) rto_power p) . n ) thus A32: ( 0 < abs ((vq + uq) . n) or 0 = abs ((vq + uq) . n) ) by COMPLEX1:46; ::_thesis: 0 <= ((vq + uq) rto_power p) . n ((vq + uq) rto_power p) . n = (abs ((vq + uq) . n)) to_power p by Def1; hence 0 <= ((vq + uq) rto_power p) . n by A1, A32, POWER:34, POWER:def_2; ::_thesis: verum end; then A33: 0 <= ((vq + uq) rto_power p) . 0 ; A34: (Partial_Sums ((vq + uq) rto_power p)) . 0 <= (Partial_Sums ((vq + uq) rto_power p)) . n by A31, SEQM_3:11, SERIES_1:16; then 0 <= (Partial_Sums ((vq + uq) rto_power p)) . n by A33, SERIES_1:def_1; then ((Partial_Sums ((vq + uq) rto_power p)) . n) to_power (1 / p) >= 0 by A11, Lm1; hence (Partial_Sums ((vq + uq) rto_power p)) . n < (q + q1) to_power p by A1, A28, A25, A29, A34, A33, Th1, SERIES_1:def_1; ::_thesis: verum end; then A35: for n being Element of NAT holds ( Partial_Sums ((vq + uq) rto_power p) is bounded_above & 0 <= ((vq + uq) rto_power p) . n ) by SEQ_2:def_3; seq_id v = vq by RSSPACE:1; hence (seq_id (v + u)) rto_power p is summable by A35, A16, A17, SERIES_1:17; ::_thesis: verum end; v + u = (seq_id v) + (seq_id u) by RSSPACE:2, RSSPACE:def_7 .= seq_id ((seq_id v) + (seq_id u)) by RSSPACE:1 .= seq_id (v + u) by RSSPACE:2, RSSPACE:def_7 ; then reconsider w = v + u as Real_Sequence ; reconsider w = w as set ; w in the_set_of_RealSequences by RSSPACE:def_1; hence v + u in the_set_of_RealSequences_l^ p by A1, A5, Def2; ::_thesis: verum end; for a being Real for v being VECTOR of Linear_Space_of_RealSequences st v in the_set_of_RealSequences_l^ p holds a * v in the_set_of_RealSequences_l^ p proof let a be Real; ::_thesis: for v being VECTOR of Linear_Space_of_RealSequences st v in the_set_of_RealSequences_l^ p holds a * v in the_set_of_RealSequences_l^ p let v be VECTOR of Linear_Space_of_RealSequences; ::_thesis: ( v in the_set_of_RealSequences_l^ p implies a * v in the_set_of_RealSequences_l^ p ) assume A36: v in the_set_of_RealSequences_l^ p ; ::_thesis: a * v in the_set_of_RealSequences_l^ p (seq_id (a * v)) rto_power p is summable proof set vp = (seq_id v) rto_power p; A37: now__::_thesis:_for_n_being_Element_of_NAT_holds_ (_0_<=_abs_((seq_id_v)_._n)_&_(_0_<_abs_((seq_id_v)_._n)_or_0_=_abs_((seq_id_v)_._n)_)_&_0_<=_((seq_id_v)_rto_power_p)_._n_) let n be Element of NAT ; ::_thesis: ( 0 <= abs ((seq_id v) . n) & ( 0 < abs ((seq_id v) . n) or 0 = abs ((seq_id v) . n) ) & 0 <= ((seq_id v) rto_power p) . n ) thus 0 <= abs ((seq_id v) . n) by COMPLEX1:46; ::_thesis: ( ( 0 < abs ((seq_id v) . n) or 0 = abs ((seq_id v) . n) ) & 0 <= ((seq_id v) rto_power p) . n ) thus A38: ( 0 < abs ((seq_id v) . n) or 0 = abs ((seq_id v) . n) ) by COMPLEX1:46; ::_thesis: 0 <= ((seq_id v) rto_power p) . n ((seq_id v) rto_power p) . n = (abs ((seq_id v) . n)) to_power p by Def1; hence 0 <= ((seq_id v) rto_power p) . n by A1, A38, POWER:34, POWER:def_2; ::_thesis: verum end; (seq_id v) rto_power p is summable by A1, A36, Def2; then Partial_Sums ((seq_id v) rto_power p) is bounded_above by A37, SERIES_1:17; then consider r being real number such that A39: for n being set st n in dom (Partial_Sums ((seq_id v) rto_power p)) holds (Partial_Sums ((seq_id v) rto_power p)) . n < r by SEQ_2:def_1; A40: seq_id (a * v) = seq_id (a (#) (seq_id v)) by RSSPACE:3, RSSPACE:def_7 .= a (#) (seq_id v) by RSSPACE:1 ; A41: for n being Element of NAT holds (Partial_Sums ((seq_id (a * v)) rto_power p)) . n = ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) proof let n be Element of NAT ; ::_thesis: (Partial_Sums ((seq_id (a * v)) rto_power p)) . n = ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) now__::_thesis:_for_n_being_Element_of_NAT_holds_((seq_id_(a_*_v))_rto_power_p)_._n_=_(((abs_a)_to_power_p)_(#)_((seq_id_v)_rto_power_p))_._n let n be Element of NAT ; ::_thesis: ((seq_id (a * v)) rto_power p) . n = (((abs a) to_power p) (#) ((seq_id v) rto_power p)) . n A42: abs a >= 0 by COMPLEX1:46; A43: abs ((seq_id v) . n) >= 0 by COMPLEX1:46; A44: (a (#) (seq_id v)) . n = a * ((seq_id v) . n) by SEQ_1:9; ((a (#) (seq_id v)) rto_power p) . n = (abs ((a (#) (seq_id v)) . n)) to_power p by Def1 .= ((abs a) * (abs ((seq_id v) . n))) to_power p by A44, COMPLEX1:65 .= ((abs a) to_power p) * ((abs ((seq_id v) . n)) to_power p) by A1, A42, A43, Lm2 ; hence ((seq_id (a * v)) rto_power p) . n = ((abs a) to_power p) * (((seq_id v) rto_power p) . n) by A40, Def1 .= (((abs a) to_power p) (#) ((seq_id v) rto_power p)) . n by SEQ_1:9 ; ::_thesis: verum end; then for n being set st n in NAT holds ((seq_id (a * v)) rto_power p) . n = (((abs a) to_power p) (#) ((seq_id v) rto_power p)) . n ; then A45: (seq_id (a * v)) rto_power p = ((abs a) to_power p) (#) ((seq_id v) rto_power p) by FUNCT_2:12; Partial_Sums (((abs a) to_power p) (#) ((seq_id v) rto_power p)) = ((abs a) to_power p) (#) (Partial_Sums ((seq_id v) rto_power p)) by SERIES_1:9; hence (Partial_Sums ((seq_id (a * v)) rto_power p)) . n = ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) by A45, SEQ_1:9; ::_thesis: verum end; A46: ( 0 < (abs a) to_power p or 0 = (abs a) to_power p ) by A1, Lm1, COMPLEX1:46; A47: now__::_thesis:_for_n_being_set_st_n_in_dom_(Partial_Sums_((seq_id_v)_rto_power_p))_holds_ (_n_in_dom_(Partial_Sums_((seq_id_(a_*_v))_rto_power_p))_&_(_((abs_a)_to_power_p)_*_((Partial_Sums_((seq_id_v)_rto_power_p))_._n)_<_((abs_a)_to_power_p)_*_r_or_((abs_a)_to_power_p)_*_((Partial_Sums_((seq_id_v)_rto_power_p))_._n)_=_((abs_a)_to_power_p)_*_r_)_) let n be set ; ::_thesis: ( n in dom (Partial_Sums ((seq_id v) rto_power p)) implies ( n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) & ( ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) < ((abs a) to_power p) * r or ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) = ((abs a) to_power p) * r ) ) ) assume A48: n in dom (Partial_Sums ((seq_id v) rto_power p)) ; ::_thesis: ( n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) & ( ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) < ((abs a) to_power p) * r or ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) = ((abs a) to_power p) * r ) ) dom (Partial_Sums ((seq_id v) rto_power p)) = NAT by SEQ_1:1; hence n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) by A48, SEQ_1:1; ::_thesis: ( ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) < ((abs a) to_power p) * r or ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) = ((abs a) to_power p) * r ) thus ( ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) < ((abs a) to_power p) * r or ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) = ((abs a) to_power p) * r ) by A39, A46, A48, XREAL_1:68; ::_thesis: verum end; A49: for n being set holds ( not n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) or (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < ((abs a) to_power p) * r or (Partial_Sums ((seq_id (a * v)) rto_power p)) . n = ((abs a) to_power p) * r ) proof let n be set ; ::_thesis: ( not n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) or (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < ((abs a) to_power p) * r or (Partial_Sums ((seq_id (a * v)) rto_power p)) . n = ((abs a) to_power p) * r ) assume A50: n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) ; ::_thesis: ( (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < ((abs a) to_power p) * r or (Partial_Sums ((seq_id (a * v)) rto_power p)) . n = ((abs a) to_power p) * r ) reconsider n1 = n as Element of NAT by A50, SEQ_1:1; n in NAT by A50, SEQ_1:1; then n in dom (Partial_Sums ((seq_id v) rto_power p)) by SEQ_1:1; then ( ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) < ((abs a) to_power p) * r or ((abs a) to_power p) * ((Partial_Sums ((seq_id v) rto_power p)) . n) = ((abs a) to_power p) * r ) by A47; then ( (Partial_Sums ((seq_id (a * v)) rto_power p)) . n1 < ((abs a) to_power p) * r or (Partial_Sums ((seq_id (a * v)) rto_power p)) . n1 = ((abs a) to_power p) * r ) by A41; hence ( (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < ((abs a) to_power p) * r or (Partial_Sums ((seq_id (a * v)) rto_power p)) . n = ((abs a) to_power p) * r ) ; ::_thesis: verum end; ex r1 being real number st for n being set st n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) holds (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < r1 proof take r1 = (((abs a) to_power p) * r) + 1; ::_thesis: for n being set st n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) holds (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < r1 reconsider r1 = r1 as real number ; for n being set st n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) holds (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < r1 proof A51: ((abs a) to_power p) * r < (((abs a) to_power p) * r) + 1 by XREAL_1:29; let n be set ; ::_thesis: ( n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) implies (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < r1 ) assume n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) ; ::_thesis: (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < r1 hence (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < r1 by A49, A51, XXREAL_0:2; ::_thesis: verum end; hence for n being set st n in dom (Partial_Sums ((seq_id (a * v)) rto_power p)) holds (Partial_Sums ((seq_id (a * v)) rto_power p)) . n < r1 ; ::_thesis: verum end; then A52: Partial_Sums ((seq_id (a * v)) rto_power p) is bounded_above by SEQ_2:def_1; for n being Element of NAT holds ((seq_id (a * v)) rto_power p) . n >= 0 proof set b = a (#) (seq_id v); let n be Element of NAT ; ::_thesis: ((seq_id (a * v)) rto_power p) . n >= 0 (a (#) (seq_id v)) . n = a * ((seq_id v) . n) by SEQ_1:9; then ((a (#) (seq_id v)) rto_power p) . n = (abs (a * ((seq_id v) . n))) to_power p by Def1; hence ((seq_id (a * v)) rto_power p) . n >= 0 by A1, A40, Lm1, COMPLEX1:46; ::_thesis: verum end; hence (seq_id (a * v)) rto_power p is summable by A52, SERIES_1:17; ::_thesis: verum end; hence a * v in the_set_of_RealSequences_l^ p by A1, Def2, RSSPACE:def_7; ::_thesis: verum end; hence the_set_of_RealSequences_l^ p is linearly-closed by A2, RLSUB_1:def_1; ::_thesis: verum end; theorem Th5: :: LP_SPACE:5 for p being Real st 1 <= p holds RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is Subspace of Linear_Space_of_RealSequences proof let p be Real; ::_thesis: ( 1 <= p implies RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is Subspace of Linear_Space_of_RealSequences ) assume 1 <= p ; ::_thesis: RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is Subspace of Linear_Space_of_RealSequences then the_set_of_RealSequences_l^ p is linearly-closed by Th4; hence RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is Subspace of Linear_Space_of_RealSequences by RSSPACE:11; ::_thesis: verum end; theorem :: LP_SPACE:6 for p being Real st 1 <= p holds ( RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is Abelian & RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is add-associative & RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is right_zeroed & RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is right_complementable & RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is vector-distributive & RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is scalar-distributive & RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is scalar-associative & RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is scalar-unital ) by Th5; theorem :: LP_SPACE:7 for p being Real st 1 <= p holds RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is RealLinearSpace by Th5; definition let p be Real; func l_norm^ p -> Function of (the_set_of_RealSequences_l^ p),REAL means :Def3: :: LP_SPACE:def 3 for x being set st x in the_set_of_RealSequences_l^ p holds it . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p); existence ex b1 being Function of (the_set_of_RealSequences_l^ p),REAL st for x being set st x in the_set_of_RealSequences_l^ p holds b1 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) proof deffunc H1( set ) -> Element of REAL = (Sum ((seq_id $1) rto_power p)) to_power (1 / p); A1: for z being set st z in the_set_of_RealSequences_l^ p holds H1(z) in REAL ; ex f being Function of (the_set_of_RealSequences_l^ p),REAL st for x being set st x in the_set_of_RealSequences_l^ p holds f . x = H1(x) from FUNCT_2:sch_2(A1); hence ex b1 being Function of (the_set_of_RealSequences_l^ p),REAL st for x being set st x in the_set_of_RealSequences_l^ p holds b1 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ; ::_thesis: verum end; uniqueness for b1, b2 being Function of (the_set_of_RealSequences_l^ p),REAL st ( for x being set st x in the_set_of_RealSequences_l^ p holds b1 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) & ( for x being set st x in the_set_of_RealSequences_l^ p holds b2 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) holds b1 = b2 proof let NORM1, NORM2 be Function of (the_set_of_RealSequences_l^ p),REAL; ::_thesis: ( ( for x being set st x in the_set_of_RealSequences_l^ p holds NORM1 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) & ( for x being set st x in the_set_of_RealSequences_l^ p holds NORM2 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) implies NORM1 = NORM2 ) assume that A2: for x being set st x in the_set_of_RealSequences_l^ p holds NORM1 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) and A3: for x being set st x in the_set_of_RealSequences_l^ p holds NORM2 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ; ::_thesis: NORM1 = NORM2 A4: for z being set st z in the_set_of_RealSequences_l^ p holds NORM1 . z = NORM2 . z proof let z be set ; ::_thesis: ( z in the_set_of_RealSequences_l^ p implies NORM1 . z = NORM2 . z ) assume A5: z in the_set_of_RealSequences_l^ p ; ::_thesis: NORM1 . z = NORM2 . z NORM1 . z = (Sum ((seq_id z) rto_power p)) to_power (1 / p) by A2, A5; hence NORM1 . z = NORM2 . z by A3, A5; ::_thesis: verum end; A6: dom NORM2 = the_set_of_RealSequences_l^ p by FUNCT_2:def_1; dom NORM1 = the_set_of_RealSequences_l^ p by FUNCT_2:def_1; hence NORM1 = NORM2 by A6, A4, FUNCT_1:2; ::_thesis: verum end; end; :: deftheorem Def3 defines l_norm^ LP_SPACE:def_3_:_ for p being Real for b2 being Function of (the_set_of_RealSequences_l^ p),REAL holds ( b2 = l_norm^ p iff for x being set st x in the_set_of_RealSequences_l^ p holds b2 . x = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ); theorem Th8: :: LP_SPACE:8 for p being Real st 1 <= p holds NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is RealLinearSpace proof let p be Real; ::_thesis: ( 1 <= p implies NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is RealLinearSpace ) assume 1 <= p ; ::_thesis: NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is RealLinearSpace then RLSStruct(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)) #) is RealLinearSpace by Th5; hence NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is RealLinearSpace by RSSPACE3:2; ::_thesis: verum end; theorem Th9: :: LP_SPACE:9 for p being Real st p >= 1 holds NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is Subspace of Linear_Space_of_RealSequences proof set V = Linear_Space_of_RealSequences ; let p be Real; ::_thesis: ( p >= 1 implies NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is Subspace of Linear_Space_of_RealSequences ) assume A1: 1 <= p ; ::_thesis: NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is Subspace of Linear_Space_of_RealSequences set lSpacep = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #); reconsider lSpacep = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) as RealLinearSpace by A1, Th8; set w1 = RLSStruct(# the carrier of lSpacep, the ZeroF of lSpacep, the addF of lSpacep, the Mult of lSpacep #); A2: RLSStruct(# the carrier of lSpacep, the ZeroF of lSpacep, the addF of lSpacep, the Mult of lSpacep #) is Subspace of Linear_Space_of_RealSequences by A1, Th5; then A3: the Mult of lSpacep = the Mult of Linear_Space_of_RealSequences | [:REAL, the carrier of lSpacep:] by RLSUB_1:def_2; 0. RLSStruct(# the carrier of lSpacep, the ZeroF of lSpacep, the addF of lSpacep, the Mult of lSpacep #) = 0. Linear_Space_of_RealSequences by A2, RLSUB_1:def_2; then A4: 0. lSpacep = 0. Linear_Space_of_RealSequences ; the addF of lSpacep = the addF of Linear_Space_of_RealSequences || the carrier of lSpacep by A2, RLSUB_1:def_2; hence NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is Subspace of Linear_Space_of_RealSequences by A4, A3, RLSUB_1:def_2; ::_thesis: verum end; begin theorem Th10: :: LP_SPACE:10 for p being Real st 1 <= p holds for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds ( the carrier of lp = the_set_of_RealSequences_l^ p & ( for x being set holds ( x is VECTOR of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) ) & 0. lp = Zeroseq & ( for x being VECTOR of lp holds x = seq_id x ) & ( for x, y being VECTOR of lp holds x + y = (seq_id x) + (seq_id y) ) & ( for r being Real for x being VECTOR of lp holds r * x = r (#) (seq_id x) ) & ( for x being VECTOR of lp holds ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) ) & ( for x, y being VECTOR of lp holds x - y = (seq_id x) - (seq_id y) ) & ( for x being VECTOR of lp holds (seq_id x) rto_power p is summable ) & ( for x being VECTOR of lp holds ||.x.|| = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) ) proof let p be Real; ::_thesis: ( 1 <= p implies for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds ( the carrier of lp = the_set_of_RealSequences_l^ p & ( for x being set holds ( x is VECTOR of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) ) & 0. lp = Zeroseq & ( for x being VECTOR of lp holds x = seq_id x ) & ( for x, y being VECTOR of lp holds x + y = (seq_id x) + (seq_id y) ) & ( for r being Real for x being VECTOR of lp holds r * x = r (#) (seq_id x) ) & ( for x being VECTOR of lp holds ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) ) & ( for x, y being VECTOR of lp holds x - y = (seq_id x) - (seq_id y) ) & ( for x being VECTOR of lp holds (seq_id x) rto_power p is summable ) & ( for x being VECTOR of lp holds ||.x.|| = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) ) ) assume A1: 1 <= p ; ::_thesis: for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds ( the carrier of lp = the_set_of_RealSequences_l^ p & ( for x being set holds ( x is VECTOR of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) ) & 0. lp = Zeroseq & ( for x being VECTOR of lp holds x = seq_id x ) & ( for x, y being VECTOR of lp holds x + y = (seq_id x) + (seq_id y) ) & ( for r being Real for x being VECTOR of lp holds r * x = r (#) (seq_id x) ) & ( for x being VECTOR of lp holds ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) ) & ( for x, y being VECTOR of lp holds x - y = (seq_id x) - (seq_id y) ) & ( for x being VECTOR of lp holds (seq_id x) rto_power p is summable ) & ( for x being VECTOR of lp holds ||.x.|| = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) ) let lp be non empty NORMSTR ; ::_thesis: ( lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) implies ( the carrier of lp = the_set_of_RealSequences_l^ p & ( for x being set holds ( x is VECTOR of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) ) & 0. lp = Zeroseq & ( for x being VECTOR of lp holds x = seq_id x ) & ( for x, y being VECTOR of lp holds x + y = (seq_id x) + (seq_id y) ) & ( for r being Real for x being VECTOR of lp holds r * x = r (#) (seq_id x) ) & ( for x being VECTOR of lp holds ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) ) & ( for x, y being VECTOR of lp holds x - y = (seq_id x) - (seq_id y) ) & ( for x being VECTOR of lp holds (seq_id x) rto_power p is summable ) & ( for x being VECTOR of lp holds ||.x.|| = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) ) ) assume A2: lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) ; ::_thesis: ( the carrier of lp = the_set_of_RealSequences_l^ p & ( for x being set holds ( x is VECTOR of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) ) & 0. lp = Zeroseq & ( for x being VECTOR of lp holds x = seq_id x ) & ( for x, y being VECTOR of lp holds x + y = (seq_id x) + (seq_id y) ) & ( for r being Real for x being VECTOR of lp holds r * x = r (#) (seq_id x) ) & ( for x being VECTOR of lp holds ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) ) & ( for x, y being VECTOR of lp holds x - y = (seq_id x) - (seq_id y) ) & ( for x being VECTOR of lp holds (seq_id x) rto_power p is summable ) & ( for x being VECTOR of lp holds ||.x.|| = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) ) A3: for x being VECTOR of lp holds ||.x.|| = (Sum ((seq_id x) rto_power p)) to_power (1 / p) by A2, Def3; A4: for x, y being VECTOR of lp holds x + y = (seq_id x) + (seq_id y) proof let x, y be VECTOR of lp; ::_thesis: x + y = (seq_id x) + (seq_id y) A5: lp is Subspace of Linear_Space_of_RealSequences by A1, A2, Th9; then reconsider x1 = x as VECTOR of Linear_Space_of_RealSequences by RLSUB_1:10; reconsider y1 = y as VECTOR of Linear_Space_of_RealSequences by A5, RLSUB_1:10; set L1 = Linear_Space_of_RealSequences ; set W = the_set_of_RealSequences_l^ p; dom the addF of Linear_Space_of_RealSequences = [: the carrier of Linear_Space_of_RealSequences, the carrier of Linear_Space_of_RealSequences:] by FUNCT_2:def_1; then A6: dom ( the addF of Linear_Space_of_RealSequences || (the_set_of_RealSequences_l^ p)) = [:(the_set_of_RealSequences_l^ p),(the_set_of_RealSequences_l^ p):] by RELAT_1:62; the_set_of_RealSequences_l^ p is linearly-closed by A1, Th4; then x + y = ( the addF of Linear_Space_of_RealSequences || (the_set_of_RealSequences_l^ p)) . [x,y] by A2, RSSPACE:def_8 .= x1 + y1 by A2, A6, FUNCT_1:47 ; hence x + y = (seq_id x) + (seq_id y) by RSSPACE:2, RSSPACE:def_7; ::_thesis: verum end; A7: for r being Real for x being VECTOR of lp holds r * x = r (#) (seq_id x) proof set W = the_set_of_RealSequences_l^ p; set L1 = Linear_Space_of_RealSequences ; let r be Real; ::_thesis: for x being VECTOR of lp holds r * x = r (#) (seq_id x) let x be VECTOR of lp; ::_thesis: r * x = r (#) (seq_id x) dom the Mult of Linear_Space_of_RealSequences = [:REAL, the carrier of Linear_Space_of_RealSequences:] by FUNCT_2:def_1; then A8: dom ( the Mult of Linear_Space_of_RealSequences | [:REAL,(the_set_of_RealSequences_l^ p):]) = [:REAL,(the_set_of_RealSequences_l^ p):] by RELAT_1:62, ZFMISC_1:96; lp is Subspace of Linear_Space_of_RealSequences by A1, A2, Th9; then reconsider x1 = x as VECTOR of Linear_Space_of_RealSequences by RLSUB_1:10; the_set_of_RealSequences_l^ p is linearly-closed by A1, Th4; then r * x = ( the Mult of Linear_Space_of_RealSequences | [:REAL,(the_set_of_RealSequences_l^ p):]) . [r,x] by A2, RSSPACE:def_9 .= r * x1 by A2, A8, FUNCT_1:47 ; hence r * x = r (#) (seq_id x) by RSSPACE:3, RSSPACE:def_7; ::_thesis: verum end; the_set_of_RealSequences_l^ p is linearly-closed by A1, Th4; then A9: 0. lp = 0. Linear_Space_of_RealSequences by A2, RSSPACE:def_10 .= Zeroseq by RSSPACE:def_7 ; A10: for x being set holds ( x is Element of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) proof let x be set ; ::_thesis: ( x is Element of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) ( x in the_set_of_RealSequences_l^ p iff ( (seq_id x) rto_power p is summable & x in the_set_of_RealSequences ) ) by A1, Def2; hence ( x is Element of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) by A2, RSSPACE:def_1; ::_thesis: verum end; A11: for x being set st x is VECTOR of lp holds x = seq_id x proof let x be set ; ::_thesis: ( x is VECTOR of lp implies x = seq_id x ) ( x in the_set_of_RealSequences iff x is Real_Sequence ) by RSSPACE:def_1; hence ( x is VECTOR of lp implies x = seq_id x ) by A1, A2, Def2, RSSPACE:1; ::_thesis: verum end; A12: for x being VECTOR of lp holds ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) proof let x be VECTOR of lp; ::_thesis: ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) lp is Subspace of Linear_Space_of_RealSequences by A1, A2, Th9; then - x = (- 1) * x by RLVECT_1:16 .= - (seq_id x) by A7 ; hence ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) by A11; ::_thesis: verum end; for x, y being VECTOR of lp holds x - y = (seq_id x) - (seq_id y) proof let x, y be VECTOR of lp; ::_thesis: x - y = (seq_id x) - (seq_id y) thus x - y = (seq_id x) + (seq_id (- y)) by A4 .= (seq_id x) - (seq_id y) by A12 ; ::_thesis: verum end; hence ( the carrier of lp = the_set_of_RealSequences_l^ p & ( for x being set holds ( x is VECTOR of lp iff ( x is Real_Sequence & (seq_id x) rto_power p is summable ) ) ) & 0. lp = Zeroseq & ( for x being VECTOR of lp holds x = seq_id x ) & ( for x, y being VECTOR of lp holds x + y = (seq_id x) + (seq_id y) ) & ( for r being Real for x being VECTOR of lp holds r * x = r (#) (seq_id x) ) & ( for x being VECTOR of lp holds ( - x = - (seq_id x) & seq_id (- x) = - (seq_id x) ) ) & ( for x, y being VECTOR of lp holds x - y = (seq_id x) - (seq_id y) ) & ( for x being VECTOR of lp holds (seq_id x) rto_power p is summable ) & ( for x being VECTOR of lp holds ||.x.|| = (Sum ((seq_id x) rto_power p)) to_power (1 / p) ) ) by A2, A10, A11, A9, A4, A7, A12, A3; ::_thesis: verum end; theorem Th11: :: LP_SPACE:11 for p being Real st p >= 1 holds for rseq being Real_Sequence st ( for n being Element of NAT holds rseq . n = 0 ) holds ( rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 ) proof let p be Real; ::_thesis: ( p >= 1 implies for rseq being Real_Sequence st ( for n being Element of NAT holds rseq . n = 0 ) holds ( rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 ) ) assume A1: p >= 1 ; ::_thesis: for rseq being Real_Sequence st ( for n being Element of NAT holds rseq . n = 0 ) holds ( rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 ) A2: 1 / p > 0 by A1, XREAL_1:139; let rseq be Real_Sequence; ::_thesis: ( ( for n being Element of NAT holds rseq . n = 0 ) implies ( rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 ) ) assume A3: for n being Element of NAT holds rseq . n = 0 ; ::_thesis: ( rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 ) A4: for n being Element of NAT holds (rseq rto_power p) . n = 0 proof let n be Element of NAT ; ::_thesis: (rseq rto_power p) . n = 0 rseq . n = 0 by A3; then abs (rseq . n) = 0 by ABSVALUE:2; then (abs (rseq . n)) to_power p = 0 by A1, POWER:def_2; hence (rseq rto_power p) . n = 0 by Def1; ::_thesis: verum end; A5: for m being Element of NAT holds (Partial_Sums (rseq rto_power p)) . m = 0 proof defpred S1[ Element of NAT ] means (rseq rto_power p) . $1 = (Partial_Sums (rseq rto_power p)) . $1; let m be Element of NAT ; ::_thesis: (Partial_Sums (rseq rto_power p)) . m = 0 A6: for k being Element of NAT st S1[k] holds S1[k + 1] proof let k be Element of NAT ; ::_thesis: ( S1[k] implies S1[k + 1] ) assume A7: (rseq rto_power p) . k = (Partial_Sums (rseq rto_power p)) . k ; ::_thesis: S1[k + 1] thus (rseq rto_power p) . (k + 1) = 0 + ((rseq rto_power p) . (k + 1)) .= ((rseq rto_power p) . k) + ((rseq rto_power p) . (k + 1)) by A4 .= (Partial_Sums (rseq rto_power p)) . (k + 1) by A7, SERIES_1:def_1 ; ::_thesis: verum end; A8: S1[ 0 ] by SERIES_1:def_1; for n being Element of NAT holds S1[n] from NAT_1:sch_1(A8, A6); hence (Partial_Sums (rseq rto_power p)) . m = (rseq rto_power p) . m .= 0 by A4 ; ::_thesis: verum end; A9: for e being real number st 0 < e holds ex n being Element of NAT st for m being Element of NAT st n <= m holds abs (((Partial_Sums (rseq rto_power p)) . m) - 0) < e proof let e be real number ; ::_thesis: ( 0 < e implies ex n being Element of NAT st for m being Element of NAT st n <= m holds abs (((Partial_Sums (rseq rto_power p)) . m) - 0) < e ) assume A10: 0 < e ; ::_thesis: ex n being Element of NAT st for m being Element of NAT st n <= m holds abs (((Partial_Sums (rseq rto_power p)) . m) - 0) < e take 0 ; ::_thesis: for m being Element of NAT st 0 <= m holds abs (((Partial_Sums (rseq rto_power p)) . m) - 0) < e let m be Element of NAT ; ::_thesis: ( 0 <= m implies abs (((Partial_Sums (rseq rto_power p)) . m) - 0) < e ) assume 0 <= m ; ::_thesis: abs (((Partial_Sums (rseq rto_power p)) . m) - 0) < e abs (((Partial_Sums (rseq rto_power p)) . m) - 0) = abs (0 - 0) by A5 .= 0 by ABSVALUE:def_1 ; hence abs (((Partial_Sums (rseq rto_power p)) . m) - 0) < e by A10; ::_thesis: verum end; then A11: Partial_Sums (rseq rto_power p) is convergent by SEQ_2:def_6; then lim (Partial_Sums (rseq rto_power p)) = 0 by A9, SEQ_2:def_7; then Sum (rseq rto_power p) = 0 by SERIES_1:def_3; hence ( rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 ) by A2, A11, POWER:def_2, SERIES_1:def_2; ::_thesis: verum end; theorem Th12: :: LP_SPACE:12 for p being Real st 1 <= p holds for rseq being Real_Sequence st rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 holds for n being natural number holds rseq . n = 0 proof let p be Real; ::_thesis: ( 1 <= p implies for rseq being Real_Sequence st rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 holds for n being natural number holds rseq . n = 0 ) assume A1: 1 <= p ; ::_thesis: for rseq being Real_Sequence st rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 holds for n being natural number holds rseq . n = 0 A2: 1 / p > 0 by A1, XREAL_1:139; let rseq be Real_Sequence; ::_thesis: ( rseq rto_power p is summable & (Sum (rseq rto_power p)) to_power (1 / p) = 0 implies for n being natural number holds rseq . n = 0 ) assume that A3: rseq rto_power p is summable and A4: (Sum (rseq rto_power p)) to_power (1 / p) = 0 ; ::_thesis: for n being natural number holds rseq . n = 0 A5: for i being Element of NAT holds (rseq rto_power p) . i >= 0 proof let i be Element of NAT ; ::_thesis: (rseq rto_power p) . i >= 0 (rseq rto_power p) . i = (abs (rseq . i)) to_power p by Def1; hence (rseq rto_power p) . i >= 0 by A1, Lm1, COMPLEX1:46; ::_thesis: verum end; then ((Sum (rseq rto_power p)) to_power (1 / p)) to_power p = (Sum (rseq rto_power p)) to_power ((1 / p) * p) by A1, A2, A3, HOLDER_1:2, SERIES_1:18 .= (Sum (rseq rto_power p)) to_power 1 by A1, XCMPLX_1:106 .= Sum (rseq rto_power p) by POWER:25 ; then A6: Sum (rseq rto_power p) = 0 by A1, A4, POWER:def_2; now__::_thesis:_for_n_being_natural_number_holds_rseq_._n_=_0 let n be natural number ; ::_thesis: rseq . n = 0 reconsider n9 = n as Element of NAT by ORDINAL1:def_12; A7: 0 to_power (1 / p) = 0 by A2, POWER:def_2; (rseq rto_power p) . n9 = (abs (rseq . n9)) to_power p by Def1; then A8: (abs (rseq . n)) to_power p = 0 by A3, A5, A6, RSSPACE:17; ((abs (rseq . n)) to_power p) to_power (1 / p) = (abs (rseq . n)) to_power (p * (1 / p)) by A1, A2, COMPLEX1:46, HOLDER_1:2 .= (abs (rseq . n)) to_power 1 by A1, XCMPLX_1:106 .= abs (rseq . n) by POWER:25 ; hence rseq . n = 0 by A8, A7, ABSVALUE:2; ::_thesis: verum end; hence for n being natural number holds rseq . n = 0 ; ::_thesis: verum end; Lm5: for p being Real st 1 <= p holds for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds (seq_id (a * x)) rto_power p = ((abs a) to_power p) (#) ((seq_id x) rto_power p) proof let p be Real; ::_thesis: ( 1 <= p implies for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds (seq_id (a * x)) rto_power p = ((abs a) to_power p) (#) ((seq_id x) rto_power p) ) assume A1: 1 <= p ; ::_thesis: for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds (seq_id (a * x)) rto_power p = ((abs a) to_power p) (#) ((seq_id x) rto_power p) let lp be non empty NORMSTR ; ::_thesis: ( lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) implies for x being Point of lp for a being Real holds (seq_id (a * x)) rto_power p = ((abs a) to_power p) (#) ((seq_id x) rto_power p) ) assume A2: lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) ; ::_thesis: for x being Point of lp for a being Real holds (seq_id (a * x)) rto_power p = ((abs a) to_power p) (#) ((seq_id x) rto_power p) let x be Point of lp; ::_thesis: for a being Real holds (seq_id (a * x)) rto_power p = ((abs a) to_power p) (#) ((seq_id x) rto_power p) let a be Real; ::_thesis: (seq_id (a * x)) rto_power p = ((abs a) to_power p) (#) ((seq_id x) rto_power p) now__::_thesis:_for_n1_being_set_st_n1_in_NAT_holds_ ((seq_id_(a_*_x))_rto_power_p)_._n1_=_(((abs_a)_to_power_p)_(#)_((seq_id_x)_rto_power_p))_._n1 let n1 be set ; ::_thesis: ( n1 in NAT implies ((seq_id (a * x)) rto_power p) . n1 = (((abs a) to_power p) (#) ((seq_id x) rto_power p)) . n1 ) assume n1 in NAT ; ::_thesis: ((seq_id (a * x)) rto_power p) . n1 = (((abs a) to_power p) (#) ((seq_id x) rto_power p)) . n1 then reconsider n = n1 as Element of NAT ; A3: abs a >= 0 by COMPLEX1:46; A4: abs ((seq_id x) . n) >= 0 by COMPLEX1:46; ((seq_id (a * x)) rto_power p) . n = (abs ((seq_id (a * x)) . n)) to_power p by Def1 .= (abs ((seq_id (a (#) (seq_id x))) . n)) to_power p by A1, A2, Th10 .= (abs ((a (#) (seq_id x)) . n)) to_power p by RSSPACE:1 .= (abs (a * ((seq_id x) . n))) to_power p by SEQ_1:9 .= ((abs a) * (abs ((seq_id x) . n))) to_power p by COMPLEX1:65 .= ((abs a) to_power p) * ((abs ((seq_id x) . n)) to_power p) by A1, A3, A4, Lm2 .= ((abs a) to_power p) * (((seq_id x) rto_power p) . n) by Def1 .= (((abs a) to_power p) (#) ((seq_id x) rto_power p)) . n by SEQ_1:9 ; hence ((seq_id (a * x)) rto_power p) . n1 = (((abs a) to_power p) (#) ((seq_id x) rto_power p)) . n1 ; ::_thesis: verum end; hence (seq_id (a * x)) rto_power p = ((abs a) to_power p) (#) ((seq_id x) rto_power p) by FUNCT_2:12; ::_thesis: verum end; Lm6: for p being Real st 1 <= p holds for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds Sum ((seq_id (a * x)) rto_power p) = ((abs a) to_power p) * (Sum ((seq_id x) rto_power p)) proof let p be Real; ::_thesis: ( 1 <= p implies for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds Sum ((seq_id (a * x)) rto_power p) = ((abs a) to_power p) * (Sum ((seq_id x) rto_power p)) ) assume A1: 1 <= p ; ::_thesis: for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds Sum ((seq_id (a * x)) rto_power p) = ((abs a) to_power p) * (Sum ((seq_id x) rto_power p)) let lp be non empty NORMSTR ; ::_thesis: ( lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) implies for x being Point of lp for a being Real holds Sum ((seq_id (a * x)) rto_power p) = ((abs a) to_power p) * (Sum ((seq_id x) rto_power p)) ) assume A2: lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) ; ::_thesis: for x being Point of lp for a being Real holds Sum ((seq_id (a * x)) rto_power p) = ((abs a) to_power p) * (Sum ((seq_id x) rto_power p)) let x be Point of lp; ::_thesis: for a being Real holds Sum ((seq_id (a * x)) rto_power p) = ((abs a) to_power p) * (Sum ((seq_id x) rto_power p)) A3: (seq_id x) rto_power p is summable by A1, A2, Th10; let a be Real; ::_thesis: Sum ((seq_id (a * x)) rto_power p) = ((abs a) to_power p) * (Sum ((seq_id x) rto_power p)) thus Sum ((seq_id (a * x)) rto_power p) = Sum (((abs a) to_power p) (#) ((seq_id x) rto_power p)) by A1, A2, Lm5 .= ((abs a) to_power p) * (Sum ((seq_id x) rto_power p)) by A3, SERIES_1:10 ; ::_thesis: verum end; Lm7: for p being Real st 1 <= p holds for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) = (abs a) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) proof let p be Real; ::_thesis: ( 1 <= p implies for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) = (abs a) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) ) assume A1: 1 <= p ; ::_thesis: for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x being Point of lp for a being Real holds (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) = (abs a) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) A2: 1 / p > 0 by A1, XREAL_1:139; let lp be non empty NORMSTR ; ::_thesis: ( lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) implies for x being Point of lp for a being Real holds (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) = (abs a) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) ) assume A3: lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) ; ::_thesis: for x being Point of lp for a being Real holds (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) = (abs a) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) let x be Point of lp; ::_thesis: for a being Real holds (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) = (abs a) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) A4: now__::_thesis:_for_n_being_Element_of_NAT_holds_((seq_id_x)_rto_power_p)_._n_>=_0 let n be Element of NAT ; ::_thesis: ((seq_id x) rto_power p) . n >= 0 ((seq_id x) rto_power p) . n = (abs ((seq_id x) . n)) to_power p by Def1; hence ((seq_id x) rto_power p) . n >= 0 by A1, Lm1, COMPLEX1:46; ::_thesis: verum end; (seq_id x) rto_power p is summable by A1, A3, Th10; then A5: 0 <= Sum ((seq_id x) rto_power p) by A4, SERIES_1:18; let a be Real; ::_thesis: (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) = (abs a) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) A6: (abs a) to_power p >= 0 by A1, Lm1, COMPLEX1:46; thus (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) = (((abs a) to_power p) * (Sum ((seq_id x) rto_power p))) to_power (1 / p) by A1, A3, Lm6 .= (((abs a) to_power p) to_power (1 / p)) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) by A2, A5, A6, Lm2 .= ((abs a) to_power (p * (1 / p))) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) by A1, A2, COMPLEX1:46, HOLDER_1:2 .= ((abs a) to_power 1) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) by A1, XCMPLX_1:106 .= (abs a) * ((Sum ((seq_id x) rto_power p)) to_power (1 / p)) by POWER:25 ; ::_thesis: verum end; theorem Th13: :: LP_SPACE:13 for p being Real st 1 <= p holds for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x, y being Point of lp for a being Real holds ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) proof let p be Real; ::_thesis: ( 1 <= p implies for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x, y being Point of lp for a being Real holds ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) ) assume A1: 1 <= p ; ::_thesis: for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for x, y being Point of lp for a being Real holds ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) A2: 1 / p > 0 by A1, XREAL_1:139; let lp be non empty NORMSTR ; ::_thesis: ( lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) implies for x, y being Point of lp for a being Real holds ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) ) assume A3: lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) ; ::_thesis: for x, y being Point of lp for a being Real holds ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) let x, y be Point of lp; ::_thesis: for a being Real holds ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) A4: (seq_id y) rto_power p is summable by A1, A3, Th10; A5: ||.y.|| = the normF of lp . y .= (Sum ((seq_id y) rto_power p)) to_power (1 / p) by A3, Def3 ; A6: ||.x.|| = the normF of lp . x .= (Sum ((seq_id x) rto_power p)) to_power (1 / p) by A3, Def3 ; A7: now__::_thesis:_(_||.x.||_=_0_implies_x_=_0._lp_) A8: ||.x.|| = the normF of lp . x .= (Sum ((seq_id x) rto_power p)) to_power (1 / p) by A3, Def3 ; A9: x in the_set_of_RealSequences by A1, A3, Def2; assume A10: ||.x.|| = 0 ; ::_thesis: x = 0. lp (seq_id x) rto_power p is summable by A1, A3, Th10; then for n being Element of NAT holds 0 = (seq_id x) . n by A1, A10, A8, Th12; hence x = Zeroseq by A9, RSSPACE:def_6 .= 0. lp by A1, A3, Th10 ; ::_thesis: verum end; A11: (seq_id x) rto_power p is summable by A1, A3, Def2; A12: (Sum ((seq_id x) rto_power p)) to_power (1 / p) = the normF of lp . x by A3, Def3 .= ||.x.|| ; A13: now__::_thesis:_(_x_=_0._lp_implies_||.x.||_=_0_) assume x = 0. lp ; ::_thesis: ||.x.|| = 0 then x = Zeroseq by A1, A3, Th10; then A14: for n being Element of NAT holds (seq_id x) . n = 0 by RSSPACE:def_6; thus ||.x.|| = the normF of lp . x .= (Sum ((seq_id x) rto_power p)) to_power (1 / p) by A3, Def3 .= 0 by A1, A14, Th11 ; ::_thesis: verum end; let a be Real; ::_thesis: ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) A15: for n being Element of NAT holds 0 <= ((seq_id x) rto_power p) . n proof set xp = (seq_id x) rto_power p; let n be Element of NAT ; ::_thesis: 0 <= ((seq_id x) rto_power p) . n A16: ( 0 < abs ((seq_id x) . n) or 0 = abs ((seq_id x) . n) ) by COMPLEX1:46; ((seq_id x) rto_power p) . n = (abs ((seq_id x) . n)) to_power p by Def1; hence 0 <= ((seq_id x) rto_power p) . n by A1, A16, POWER:34, POWER:def_2; ::_thesis: verum end; (seq_id x) + (seq_id y) = seq_id ((seq_id x) + (seq_id y)) by RSSPACE:1 .= seq_id (x + y) by A1, A3, Th10 ; then A17: (Sum (((seq_id x) + (seq_id y)) rto_power p)) to_power (1 / p) = the normF of lp . (x + y) by A3, Def3 .= ||.(x + y).|| ; (seq_id x) rto_power p is summable by A1, A3, Th10; then A18: ||.(x + y).|| <= ||.x.|| + ||.y.|| by A1, A6, A5, A17, A4, Th3; A19: ||.x.|| = the normF of lp . x .= (Sum ((seq_id x) rto_power p)) to_power (1 / p) by A3, Def3 ; ||.(a * x).|| = the normF of lp . (a * x) .= (Sum ((seq_id (a * x)) rto_power p)) to_power (1 / p) by A3, Def3 .= (abs a) * ||.x.|| by A1, A3, A19, Lm7 ; hence ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) by A2, A7, A13, A15, A11, A12, A18, Lm1, SERIES_1:18; ::_thesis: verum end; theorem Th14: :: LP_SPACE:14 for p being Real st p >= 1 holds for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds ( lp is reflexive & lp is discerning & lp is RealNormSpace-like ) proof let p be Real; ::_thesis: ( p >= 1 implies for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds ( lp is reflexive & lp is discerning & lp is RealNormSpace-like ) ) assume A1: p >= 1 ; ::_thesis: for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds ( lp is reflexive & lp is discerning & lp is RealNormSpace-like ) let lp be non empty NORMSTR ; ::_thesis: ( lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) implies ( lp is reflexive & lp is discerning & lp is RealNormSpace-like ) ) assume A2: lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) ; ::_thesis: ( lp is reflexive & lp is discerning & lp is RealNormSpace-like ) hence ||.(0. lp).|| = 0 by A1, Th13; :: according to NORMSP_0:def_6 ::_thesis: ( lp is discerning & lp is RealNormSpace-like ) for x, y being Point of lp for a being Real holds ( ( ||.x.|| = 0 implies x = 0. lp ) & ( x = 0. lp implies ||.x.|| = 0 ) & 0 <= ||.x.|| & ||.(x + y).|| <= ||.x.|| + ||.y.|| & ||.(a * x).|| = (abs a) * ||.x.|| ) by A1, Th13, A2; hence ( lp is discerning & lp is RealNormSpace-like ) by NORMSP_0:def_5, NORMSP_1:def_1; ::_thesis: verum end; theorem :: LP_SPACE:15 for p being Real st p >= 1 holds for lp being non empty NORMSTR st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds lp is RealNormSpace by Th9, Th14; Lm8: for p being Real st 0 < p holds for c being Real for seq being Real_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (abs ((seq . i) - c)) to_power p ) holds ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) proof let p be Real; ::_thesis: ( 0 < p implies for c being Real for seq being Real_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (abs ((seq . i) - c)) to_power p ) holds ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) ) assume A1: 0 < p ; ::_thesis: for c being Real for seq being Real_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (abs ((seq . i) - c)) to_power p ) holds ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) let c be Real; ::_thesis: for seq being Real_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (abs ((seq . i) - c)) to_power p ) holds ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) let seq be Real_Sequence; ::_thesis: ( seq is convergent implies for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (abs ((seq . i) - c)) to_power p ) holds ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) ) assume A2: seq is convergent ; ::_thesis: for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (abs ((seq . i) - c)) to_power p ) holds ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) deffunc H1( set ) -> Element of REAL = abs ((seq . $1) - c); consider b being Real_Sequence such that A3: for n being Element of NAT holds b . n = H1(n) from SEQ_1:sch_1(); let rseq be Real_Sequence; ::_thesis: ( ( for i being Element of NAT holds rseq . i = (abs ((seq . i) - c)) to_power p ) implies ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) ) assume A4: for i being Element of NAT holds rseq . i = (abs ((seq . i) - c)) to_power p ; ::_thesis: ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) A5: for n being Element of NAT holds rseq . n = (b . n) to_power p proof let n be Element of NAT ; ::_thesis: rseq . n = (b . n) to_power p rseq . n = (abs ((seq . n) - c)) to_power p by A4 .= (b . n) to_power p by A3 ; hence rseq . n = (b . n) to_power p ; ::_thesis: verum end; A6: for n being Element of NAT holds 0 <= b . n proof let n be Element of NAT ; ::_thesis: 0 <= b . n b . n = abs ((seq . n) - c) by A3; hence 0 <= b . n by COMPLEX1:46; ::_thesis: verum end; A7: lim b = abs ((lim seq) - c) by A2, A3, RSSPACE3:1; b is convergent by A2, A3, RSSPACE3:1; hence ( rseq is convergent & lim rseq = (abs ((lim seq) - c)) to_power p ) by A1, A7, A6, A5, HOLDER_1:10; ::_thesis: verum end; Lm9: for p being Real st 0 < p holds for c being Real for seq, seq1 being Real_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((abs ((seq . i) - c)) to_power p) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) ) proof let p be Real; ::_thesis: ( 0 < p implies for c being Real for seq, seq1 being Real_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((abs ((seq . i) - c)) to_power p) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) ) ) assume A1: 0 < p ; ::_thesis: for c being Real for seq, seq1 being Real_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((abs ((seq . i) - c)) to_power p) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) ) let c be Real; ::_thesis: for seq, seq1 being Real_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((abs ((seq . i) - c)) to_power p) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) ) let seq, seq1 be Real_Sequence; ::_thesis: ( seq is convergent & seq1 is convergent implies for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((abs ((seq . i) - c)) to_power p) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) ) ) assume that A2: seq is convergent and A3: seq1 is convergent ; ::_thesis: for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((abs ((seq . i) - c)) to_power p) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) ) deffunc H1( set ) -> Element of REAL = (abs ((seq . $1) - c)) to_power p; consider b being Real_Sequence such that A4: for n being Element of NAT holds b . n = H1(n) from SEQ_1:sch_1(); let rseq be Real_Sequence; ::_thesis: ( ( for i being Element of NAT holds rseq . i = ((abs ((seq . i) - c)) to_power p) + (seq1 . i) ) implies ( rseq is convergent & lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) ) ) assume A5: for i being Element of NAT holds rseq . i = ((abs ((seq . i) - c)) to_power p) + (seq1 . i) ; ::_thesis: ( rseq is convergent & lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) ) now__::_thesis:_for_n_being_Element_of_NAT_holds_rseq_._n_=_(b_._n)_+_(seq1_._n) let n be Element of NAT ; ::_thesis: rseq . n = (b . n) + (seq1 . n) thus rseq . n = ((abs ((seq . n) - c)) to_power p) + (seq1 . n) by A5 .= (b . n) + (seq1 . n) by A4 ; ::_thesis: verum end; then A6: rseq = b + seq1 by SEQ_1:7; A7: b is convergent by A1, A2, A4, Lm8; hence rseq is convergent by A3, A6, SEQ_2:5; ::_thesis: lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) lim b = (abs ((lim seq) - c)) to_power p by A1, A2, A4, Lm8; hence lim rseq = ((abs ((lim seq) - c)) to_power p) + (lim seq1) by A3, A7, A6, SEQ_2:6; ::_thesis: verum end; Lm10: for a, b being Real_Sequence holds a = (a + b) - b proof let a, b be Real_Sequence; ::_thesis: a = (a + b) - b now__::_thesis:_for_n_being_Element_of_NAT_holds_((a_+_b)_-_b)_._n_=_a_._n let n be Element of NAT ; ::_thesis: ((a + b) - b) . n = a . n (a + (b + (- b))) . n = (a . n) + ((b + (- b)) . n) by SEQ_1:7 .= (a . n) + ((b . n) + ((- b) . n)) by SEQ_1:7 .= (a . n) + ((b . n) + (- (b . n))) by SEQ_1:10 .= a . n ; hence ((a + b) - b) . n = a . n by SEQ_1:13; ::_thesis: verum end; hence a = (a + b) - b by FUNCT_2:63; ::_thesis: verum end; Lm11: for p being Real st p >= 1 holds for a, b being Real_Sequence st a rto_power p is summable & b rto_power p is summable holds (a + b) rto_power p is summable proof let p be Real; ::_thesis: ( p >= 1 implies for a, b being Real_Sequence st a rto_power p is summable & b rto_power p is summable holds (a + b) rto_power p is summable ) assume A1: p >= 1 ; ::_thesis: for a, b being Real_Sequence st a rto_power p is summable & b rto_power p is summable holds (a + b) rto_power p is summable let a, b be Real_Sequence; ::_thesis: ( a rto_power p is summable & b rto_power p is summable implies (a + b) rto_power p is summable ) assume that A2: a rto_power p is summable and A3: b rto_power p is summable ; ::_thesis: (a + b) rto_power p is summable reconsider a1 = a, b1 = b as set ; A4: a1 in the_set_of_RealSequences by RSSPACE:def_1; then A5: seq_id a1 = a by RSSPACE:def_2; then A6: a1 in the_set_of_RealSequences_l^ p by A1, A2, A4, Def2; A7: b1 in the_set_of_RealSequences by RSSPACE:def_1; then A8: seq_id b1 = b by RSSPACE:def_2; then A9: b1 in the_set_of_RealSequences_l^ p by A1, A3, A7, Def2; then reconsider b1 = b1 as VECTOR of Linear_Space_of_RealSequences ; reconsider a1 = a1 as VECTOR of Linear_Space_of_RealSequences by A6; A10: seq_id (a1 + b1) = seq_id ((seq_id a1) + (seq_id b1)) by RSSPACE:2, RSSPACE:def_7 .= a + b by A5, A8, RSSPACE:1 ; the_set_of_RealSequences_l^ p is linearly-closed by A1, Th4; then a1 + b1 in the_set_of_RealSequences_l^ p by A6, A9, RLSUB_1:def_1; hence (a + b) rto_power p is summable by A1, A10, Def2; ::_thesis: verum end; theorem Th16: :: LP_SPACE:16 for p being Real st 1 <= p holds for lp being RealNormSpace st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for vseq being sequence of lp st vseq is Cauchy_sequence_by_Norm holds vseq is convergent proof let p be Real; ::_thesis: ( 1 <= p implies for lp being RealNormSpace st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for vseq being sequence of lp st vseq is Cauchy_sequence_by_Norm holds vseq is convergent ) assume A1: 1 <= p ; ::_thesis: for lp being RealNormSpace st lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) holds for vseq being sequence of lp st vseq is Cauchy_sequence_by_Norm holds vseq is convergent A2: 1 / p > 0 by A1, XREAL_1:139; let lp be RealNormSpace; ::_thesis: ( lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) implies for vseq being sequence of lp st vseq is Cauchy_sequence_by_Norm holds vseq is convergent ) assume A3: lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) ; ::_thesis: for vseq being sequence of lp st vseq is Cauchy_sequence_by_Norm holds vseq is convergent let vseq be sequence of lp; ::_thesis: ( vseq is Cauchy_sequence_by_Norm implies vseq is convergent ) assume A4: vseq is Cauchy_sequence_by_Norm ; ::_thesis: vseq is convergent defpred S1[ set , set ] means ex i being Element of NAT st ( $1 = i & ex rseqi being Real_Sequence st ( ( for n being Element of NAT holds rseqi . n = (seq_id (vseq . n)) . i ) & rseqi is convergent & $2 = lim rseqi ) ); A5: p * (1 / p) = (p * 1) / p by XCMPLX_1:74 .= 1 by A1, XCMPLX_1:60 ; A6: for x being set st x in NAT holds ex y being set st ( y in REAL & S1[x,y] ) proof let x be set ; ::_thesis: ( x in NAT implies ex y being set st ( y in REAL & S1[x,y] ) ) assume x in NAT ; ::_thesis: ex y being set st ( y in REAL & S1[x,y] ) then reconsider i = x as Element of NAT ; deffunc H1( Element of NAT ) -> Element of REAL = (seq_id (vseq . $1)) . i; consider rseqi being Real_Sequence such that A7: for n being Element of NAT holds rseqi . n = H1(n) from SEQ_1:sch_1(); take lim rseqi ; ::_thesis: ( lim rseqi in REAL & S1[x, lim rseqi] ) now__::_thesis:_for_e1_being_real_number_st_e1_>_0_holds_ ex_k_being_Element_of_NAT_st_ for_m_being_Element_of_NAT_st_k_<=_m_holds_ abs_((rseqi_._m)_-_(rseqi_._k))_<_e1 let e1 be real number ; ::_thesis: ( e1 > 0 implies ex k being Element of NAT st for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e1 ) assume A8: e1 > 0 ; ::_thesis: ex k being Element of NAT st for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e1 reconsider e = e1 as Real by XREAL_0:def_1; thus ex k being Element of NAT st for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e1 ::_thesis: verum proof consider k being Element of NAT such that A9: for n, m being Element of NAT st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < e by A4, A8, RSSPACE3:8; for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e proof let m be Element of NAT ; ::_thesis: ( k <= m implies abs ((rseqi . m) - (rseqi . k)) < e ) assume A10: k <= m ; ::_thesis: abs ((rseqi . m) - (rseqi . k)) < e A11: ||.((vseq . m) - (vseq . k)).|| = the normF of lp . ((vseq . m) - (vseq . k)) .= (Sum ((seq_id ((vseq . m) - (vseq . k))) rto_power p)) to_power (1 / p) by A3, Def3 ; then (Sum ((seq_id ((vseq . m) - (vseq . k))) rto_power p)) to_power (1 / p) < e by A9, A10; then A12: ((Sum ((seq_id ((vseq . m) - (vseq . k))) rto_power p)) to_power (1 / p)) to_power p < e to_power p by A1, A11, Th1, NORMSP_1:4; A13: now__::_thesis:_for_i_being_Element_of_NAT_holds_((seq_id_((vseq_._m)_-_(vseq_._k)))_rto_power_p)_._i_>=_0 let i be Element of NAT ; ::_thesis: ((seq_id ((vseq . m) - (vseq . k))) rto_power p) . i >= 0 ((seq_id ((vseq . m) - (vseq . k))) rto_power p) . i = (abs ((seq_id ((vseq . m) - (vseq . k))) . i)) to_power p by Def1; hence ((seq_id ((vseq . m) - (vseq . k))) rto_power p) . i >= 0 by A1, Lm1, COMPLEX1:46; ::_thesis: verum end; reconsider vsem = vseq . m, vsek = vseq . k as VECTOR of lp ; A14: now__::_thesis:_for_a,_b,_c_being_Real_st_a_=_0_&_b_>_0_&_c_>_0_holds_ a_to_power_(b_*_c)_=_0 let a, b, c be Real; ::_thesis: ( a = 0 & b > 0 & c > 0 implies a to_power (b * c) = 0 ) assume that A15: a = 0 and A16: b > 0 and A17: c > 0 ; ::_thesis: a to_power (b * c) = 0 b * c > 0 by A16, A17, XREAL_1:129; hence a to_power (b * c) = 0 by A15, POWER:def_2; ::_thesis: verum end; A18: now__::_thesis:_for_a,_b,_c_being_Real_st_a_=_0_&_b_>_0_&_c_>_0_holds_ (a_to_power_b)_to_power_c_=_0 let a, b, c be Real; ::_thesis: ( a = 0 & b > 0 & c > 0 implies (a to_power b) to_power c = 0 ) assume that A19: a = 0 and A20: b > 0 and A21: c > 0 ; ::_thesis: (a to_power b) to_power c = 0 a to_power b = 0 by A19, A20, POWER:def_2; hence (a to_power b) to_power c = 0 by A21, POWER:def_2; ::_thesis: verum end; A22: now__::_thesis:_for_a,_b,_c_being_Real_st_a_=_0_&_b_>_0_&_c_>_0_holds_ (a_to_power_b)_to_power_c_=_a_to_power_(b_*_c) let a, b, c be Real; ::_thesis: ( a = 0 & b > 0 & c > 0 implies (a to_power b) to_power c = a to_power (b * c) ) assume that A23: a = 0 and A24: b > 0 and A25: c > 0 ; ::_thesis: (a to_power b) to_power c = a to_power (b * c) thus (a to_power b) to_power c = 0 by A18, A23, A24, A25 .= a to_power (b * c) by A14, A23, A24, A25 ; ::_thesis: verum end; A26: for a, b, c being Real st a >= 0 & b > 0 & c > 0 holds (a to_power b) to_power c = a to_power (b * c) proof let a, b, c be Real; ::_thesis: ( a >= 0 & b > 0 & c > 0 implies (a to_power b) to_power c = a to_power (b * c) ) assume that A27: a >= 0 and A28: b > 0 and A29: c > 0 ; ::_thesis: (a to_power b) to_power c = a to_power (b * c) ( a > 0 or a = 0 ) by A27; hence (a to_power b) to_power c = a to_power (b * c) by A22, A28, A29, POWER:33; ::_thesis: verum end; ((seq_id ((vseq . m) - (vseq . k))) rto_power p) . i = (abs ((seq_id ((vseq . m) - (vseq . k))) . i)) to_power p by Def1; then A30: (((seq_id ((vseq . m) - (vseq . k))) rto_power p) . i) to_power (1 / p) = (abs ((seq_id ((vseq . m) - (vseq . k))) . i)) to_power 1 by A1, A2, A5, A26, COMPLEX1:46 .= abs ((seq_id ((vseq . m) - (vseq . k))) . i) by POWER:25 ; A31: rseqi . m = (seq_id (vseq . m)) . i by A7; A32: (seq_id ((vseq . m) - (vseq . k))) rto_power p is summable by A1, A3, Th10; then A33: ((seq_id ((vseq . m) - (vseq . k))) rto_power p) . i <= Sum ((seq_id ((vseq . m) - (vseq . k))) rto_power p) by A13, RSSPACE2:3; ((Sum ((seq_id ((vseq . m) - (vseq . k))) rto_power p)) to_power (1 / p)) to_power p = (Sum ((seq_id ((vseq . m) - (vseq . k))) rto_power p)) to_power ((1 / p) * p) by A1, A2, A32, A13, HOLDER_1:2, SERIES_1:18 .= Sum ((seq_id ((vseq . m) - (vseq . k))) rto_power p) by A5, POWER:25 ; then A34: ((seq_id ((vseq . m) - (vseq . k))) rto_power p) . i < e to_power p by A12, A33, XXREAL_0:2; A35: rseqi . k = (seq_id (vseq . k)) . i by A7; vsem - vsek = (seq_id vsem) - (seq_id vsek) by A1, A3, Th10; then A36: abs ((seq_id ((vseq . m) - (vseq . k))) . i) = abs (((seq_id (vseq . m)) + (- (seq_id (vseq . k)))) . i) by RSSPACE:1 .= abs (((seq_id (vseq . m)) . i) + ((- (seq_id (vseq . k))) . i)) by SEQ_1:7 .= abs (((seq_id (vseq . m)) . i) + (- ((seq_id (vseq . k)) . i))) by SEQ_1:10 .= abs ((rseqi . m) - (rseqi . k)) by A31, A35 ; (e to_power p) to_power (1 / p) = e to_power ((1 / p) * p) by A8, POWER:33 .= e to_power 1 by A1, XCMPLX_1:106 .= e by POWER:25 ; hence abs ((rseqi . m) - (rseqi . k)) < e by A2, A13, A30, A34, A36, Th1; ::_thesis: verum end; hence ex k being Element of NAT st for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e1 ; ::_thesis: verum end; end; then rseqi is convergent by SEQ_4:41; hence ( lim rseqi in REAL & S1[x, lim rseqi] ) by A7; ::_thesis: verum end; consider f being Function of NAT,REAL such that A37: for x being set st x in NAT holds S1[x,f . x] from FUNCT_2:sch_1(A6); reconsider tseq = f as Real_Sequence ; A38: now__::_thesis:_for_i_being_Element_of_NAT_ex_rseqi_being_Real_Sequence_st_ (_(_for_n_being_Element_of_NAT_holds_rseqi_._n_=_(seq_id_(vseq_._n))_._i_)_&_rseqi_is_convergent_&_tseq_._i_=_lim_rseqi_) let i be Element of NAT ; ::_thesis: ex rseqi being Real_Sequence st ( ( for n being Element of NAT holds rseqi . n = (seq_id (vseq . n)) . i ) & rseqi is convergent & tseq . i = lim rseqi ) reconsider x = i as set ; ex i0 being Element of NAT st ( x = i0 & ex rseqi being Real_Sequence st ( ( for n being Element of NAT holds rseqi . n = (seq_id (vseq . n)) . i0 ) & rseqi is convergent & f . x = lim rseqi ) ) by A37; hence ex rseqi being Real_Sequence st ( ( for n being Element of NAT holds rseqi . n = (seq_id (vseq . n)) . i ) & rseqi is convergent & tseq . i = lim rseqi ) ; ::_thesis: verum end; A39: for e being Real st e > 0 holds ex k being Element of NAT st for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e ) proof A40: for n, i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i ) proof let n be Element of NAT ; ::_thesis: for i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i ) defpred S2[ Element of NAT ] means for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . $1 ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . $1 ); A41: for m, k being Element of NAT holds seq_id ((vseq . m) - (vseq . k)) = (seq_id (vseq . m)) - (seq_id (vseq . k)) proof let m, k be Element of NAT ; ::_thesis: seq_id ((vseq . m) - (vseq . k)) = (seq_id (vseq . m)) - (seq_id (vseq . k)) seq_id ((vseq . m) - (vseq . k)) = seq_id ((seq_id (vseq . m)) - (seq_id (vseq . k))) by A1, A3, Th10; hence seq_id ((vseq . m) - (vseq . k)) = (seq_id (vseq . m)) - (seq_id (vseq . k)) by RSSPACE:1; ::_thesis: verum end; now__::_thesis:_for_i_being_Element_of_NAT_st_(_for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_((seq_id_((vseq_._m)_-_(vseq_._n)))_rto_power_p))_._i_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(((seq_id_tseq)_-_(seq_id_(vseq_._n)))_rto_power_p))_._i_)_)_holds_ for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_((seq_id_((vseq_._m)_-_(vseq_._n)))_rto_power_p))_._(i_+_1)_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(((seq_id_tseq)_-_(seq_id_(vseq_._n)))_rto_power_p))_._(i_+_1)_) let i be Element of NAT ; ::_thesis: ( ( for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i ) ) implies for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . (i + 1) ) ) assume A42: for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i ) ; ::_thesis: for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . (i + 1) ) thus for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . (i + 1) ) ::_thesis: verum proof deffunc H1( Element of NAT ) -> Element of REAL = (Partial_Sums ((seq_id ((vseq . $1) - (vseq . n))) rto_power p)) . i; consider rseqb being Real_Sequence such that A43: for m being Element of NAT holds rseqb . m = H1(m) from SEQ_1:sch_1(); consider rseq0 being Real_Sequence such that A44: for m being Element of NAT holds rseq0 . m = (seq_id (vseq . m)) . (i + 1) and A45: rseq0 is convergent and A46: tseq . (i + 1) = lim rseq0 by A38; let rseq be Real_Sequence; ::_thesis: ( ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . (i + 1) ) implies ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . (i + 1) ) ) assume A47: for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . (i + 1) ; ::_thesis: ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . (i + 1) ) A48: now__::_thesis:_for_m_being_Element_of_NAT_holds_rseq_._m_=_((abs_((rseq0_._m)_-_((seq_id_(vseq_._n))_._(i_+_1))))_to_power_p)_+_(rseqb_._m) let m be Element of NAT ; ::_thesis: rseq . m = ((abs ((rseq0 . m) - ((seq_id (vseq . n)) . (i + 1)))) to_power p) + (rseqb . m) thus rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . (i + 1) by A47 .= (((seq_id ((vseq . m) - (vseq . n))) rto_power p) . (i + 1)) + ((Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i) by SERIES_1:def_1 .= ((((seq_id (vseq . m)) - (seq_id (vseq . n))) rto_power p) . (i + 1)) + ((Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i) by A41 .= ((((seq_id (vseq . m)) - (seq_id (vseq . n))) rto_power p) . (i + 1)) + (rseqb . m) by A43 .= ((abs (((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1))) to_power p) + (rseqb . m) by Def1 .= ((abs (((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1)))) to_power p) + (rseqb . m) by SEQ_1:7 .= ((abs (((seq_id (vseq . m)) . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1))))) to_power p) + (rseqb . m) by SEQ_1:10 .= ((abs (((seq_id (vseq . m)) . (i + 1)) - ((seq_id (vseq . n)) . (i + 1)))) to_power p) + (rseqb . m) .= ((abs ((rseq0 . m) - ((seq_id (vseq . n)) . (i + 1)))) to_power p) + (rseqb . m) by A44 ; ::_thesis: verum end; A49: lim rseqb = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i by A42, A43; A50: rseqb is convergent by A42, A43; then lim rseq = ((abs ((lim rseq0) - ((seq_id (vseq . n)) . (i + 1)))) to_power p) + (lim rseqb) by A1, A45, A48, Lm9 .= ((abs ((tseq . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1))))) to_power p) + (lim rseqb) by A46 .= ((abs ((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1)))) to_power p) + (lim rseqb) by SEQ_1:10 .= ((abs ((tseq - (seq_id (vseq . n))) . (i + 1))) to_power p) + (lim rseqb) by SEQ_1:7 .= (((tseq - (seq_id (vseq . n))) rto_power p) . (i + 1)) + ((Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i) by A49, Def1 .= ((((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . (i + 1)) + ((Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i) by RSSPACE:1 .= (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . (i + 1) by SERIES_1:def_1 ; hence ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . (i + 1) ) by A1, A50, A45, A48, Lm9; ::_thesis: verum end; end; then A51: for i being Element of NAT st S2[i] holds S2[i + 1] ; now__::_thesis:_for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_((seq_id_((vseq_._m)_-_(vseq_._n)))_rto_power_p))_._0_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(((seq_id_tseq)_-_(seq_id_(vseq_._n)))_rto_power_p))_._0_) let rseq be Real_Sequence; ::_thesis: ( ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . 0 ) implies ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . 0 ) ) assume A52: for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . 0 ; ::_thesis: ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . 0 ) thus ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . 0 ) ::_thesis: verum proof consider rseq0 being Real_Sequence such that A53: for m being Element of NAT holds rseq0 . m = (seq_id (vseq . m)) . 0 and A54: rseq0 is convergent and A55: tseq . 0 = lim rseq0 by A38; A56: for m being Element of NAT holds rseq . m = (abs ((rseq0 . m) - ((seq_id (vseq . n)) . 0))) to_power p proof let m be Element of NAT ; ::_thesis: rseq . m = (abs ((rseq0 . m) - ((seq_id (vseq . n)) . 0))) to_power p rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . 0 by A52 .= ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . 0 by SERIES_1:def_1 .= (((seq_id (vseq . m)) - (seq_id (vseq . n))) rto_power p) . 0 by A41 .= (abs (((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0)) to_power p by Def1 .= (abs (((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0))) to_power p by SEQ_1:7 .= (abs (((seq_id (vseq . m)) . 0) + (- ((seq_id (vseq . n)) . 0)))) to_power p by SEQ_1:10 .= (abs (((seq_id (vseq . m)) . 0) - ((seq_id (vseq . n)) . 0))) to_power p ; hence rseq . m = (abs ((rseq0 . m) - ((seq_id (vseq . n)) . 0))) to_power p by A53; ::_thesis: verum end; then lim rseq = (abs ((lim rseq0) - ((seq_id (vseq . n)) . 0))) to_power p by A1, A54, Lm8 .= (abs ((tseq . 0) + (- ((seq_id (vseq . n)) . 0)))) to_power p by A55 .= (abs ((tseq . 0) + ((- (seq_id (vseq . n))) . 0))) to_power p by SEQ_1:10 .= (abs ((tseq - (seq_id (vseq . n))) . 0)) to_power p by SEQ_1:7 .= (abs (((seq_id tseq) + (- (seq_id (vseq . n)))) . 0)) to_power p by RSSPACE:1 .= (((seq_id tseq) + (- (seq_id (vseq . n)))) rto_power p) . 0 by Def1 .= (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . 0 by SERIES_1:def_1 ; hence ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . 0 ) by A1, A54, A56, Lm8; ::_thesis: verum end; end; then A57: S2[ 0 ] ; for i being Element of NAT holds S2[i] from NAT_1:sch_1(A57, A51); hence for i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i ) ; ::_thesis: verum end; let e2 be Real; ::_thesis: ( e2 > 0 implies ex k being Element of NAT st for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e2 ) ) assume A58: e2 > 0 ; ::_thesis: ex k being Element of NAT st for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e2 ) set e = e2 / 2; set e1 = (e2 / 2) to_power (1 / p); e2 / 2 > 0 by A58, XREAL_1:215; then (e2 / 2) to_power (1 / p) > 0 by POWER:34; then consider k being Element of NAT such that A59: for n, m being Element of NAT st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < (e2 / 2) to_power (1 / p) by A4, RSSPACE3:8; A60: for m, n being Element of NAT st n >= k & m >= k holds ( (seq_id ((vseq . m) - (vseq . n))) rto_power p is summable & Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p) < e2 / 2 & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i ) ) proof let m, n be Element of NAT ; ::_thesis: ( n >= k & m >= k implies ( (seq_id ((vseq . m) - (vseq . n))) rto_power p is summable & Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p) < e2 / 2 & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i ) ) ) assume that A61: n >= k and A62: m >= k ; ::_thesis: ( (seq_id ((vseq . m) - (vseq . n))) rto_power p is summable & Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p) < e2 / 2 & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i ) ) ||.((vseq . m) - (vseq . n)).|| < (e2 / 2) to_power (1 / p) by A59, A61, A62; then the normF of lp . ((vseq . m) - (vseq . n)) < (e2 / 2) to_power (1 / p) ; then A63: (Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) to_power (1 / p) < (e2 / 2) to_power (1 / p) by A3, Def3; A64: for i being Element of NAT holds ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i >= 0 proof let i be Element of NAT ; ::_thesis: ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i >= 0 ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i = (abs ((seq_id ((vseq . m) - (vseq . n))) . i)) to_power p by Def1; hence ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i >= 0 by A1, Lm1, COMPLEX1:46; ::_thesis: verum end; A65: (seq_id ((vseq . m) - (vseq . n))) rto_power p is summable by A1, A3, Th10; then A66: (Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) to_power (1 / p) >= 0 by A2, A64, Lm1, SERIES_1:18; A67: ((e2 / 2) to_power (1 / p)) to_power p = (e2 / 2) to_power ((1 / p) * p) by A58, POWER:33, XREAL_1:215 .= (e2 / 2) to_power 1 by A1, XCMPLX_1:106 .= e2 / 2 by POWER:25 ; ((Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) to_power (1 / p)) to_power p = (Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) to_power ((1 / p) * p) by A1, A2, A64, A65, HOLDER_1:2, SERIES_1:18 .= Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p) by A5, POWER:25 ; hence ( (seq_id ((vseq . m) - (vseq . n))) rto_power p is summable & Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p) < e2 / 2 & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i ) ) by A1, A3, A64, A63, A67, A66, Th1, Th10; ::_thesis: verum end; A68: e2 > e2 / 2 by A58, XREAL_1:216; for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e2 ) proof let n be Element of NAT ; ::_thesis: ( n >= k implies ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e2 ) ) assume A69: n >= k ; ::_thesis: ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e2 ) A70: for i being Element of NAT st 0 <= i holds (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i <= e2 / 2 proof let i be Element of NAT ; ::_thesis: ( 0 <= i implies (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i <= e2 / 2 ) assume 0 <= i ; ::_thesis: (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i <= e2 / 2 deffunc H1( Element of NAT ) -> Element of REAL = (Partial_Sums ((seq_id ((vseq . $1) - (vseq . n))) rto_power p)) . i; consider rseq being Real_Sequence such that A71: for m being Element of NAT holds rseq . m = H1(m) from SEQ_1:sch_1(); A72: for m being Element of NAT st m >= k holds rseq . m <= e2 / 2 proof let m be Element of NAT ; ::_thesis: ( m >= k implies rseq . m <= e2 / 2 ) A73: rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i by A71; assume A74: m >= k ; ::_thesis: rseq . m <= e2 / 2 then A75: for i being Element of NAT holds 0 <= ((seq_id ((vseq . m) - (vseq . n))) rto_power p) . i by A60, A69; (seq_id ((vseq . m) - (vseq . n))) rto_power p is summable by A60, A69, A74; then A76: (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) rto_power p)) . i <= Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p) by A75, RSSPACE2:3; Sum ((seq_id ((vseq . m) - (vseq . n))) rto_power p) < e2 / 2 by A60, A69, A74; hence rseq . m <= e2 / 2 by A76, A73, XXREAL_0:2; ::_thesis: verum end; A77: lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i by A40, A71; rseq is convergent by A40, A71; hence (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i <= e2 / 2 by A77, A72, RSSPACE2:5; ::_thesis: verum end; now__::_thesis:_ex_e2_being_Element_of_REAL_st_ for_i_being_Element_of_NAT_holds_(Partial_Sums_(((seq_id_tseq)_-_(seq_id_(vseq_._n)))_rto_power_p))_._i_<_e2 take e2 = (e2 / 2) + 1; ::_thesis: for i being Element of NAT holds (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i < e2 A78: e2 > e2 / 2 by XREAL_1:29; let i be Element of NAT ; ::_thesis: (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i < e2 (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i <= e2 / 2 by A70, NAT_1:2; hence (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) . i < e2 by A78, XXREAL_0:2; ::_thesis: verum end; then A79: Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) is bounded_above by SEQ_2:def_3; A80: Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) = lim (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) by SERIES_1:def_3; A81: for i being Element of NAT holds 0 <= (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . i proof let i be Element of NAT ; ::_thesis: 0 <= (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . i (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . i = (abs (((seq_id tseq) - (seq_id (vseq . n))) . i)) to_power p by Def1; hence 0 <= (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . i by A1, Lm1, COMPLEX1:46; ::_thesis: verum end; then ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable by A79, SERIES_1:17; then Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) is convergent by SERIES_1:def_2; then lim (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) rto_power p)) <= e2 / 2 by A70, RSSPACE2:5; hence ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e2 ) by A68, A81, A79, A80, SERIES_1:17, XXREAL_0:2; ::_thesis: verum end; hence ex k being Element of NAT st for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e2 ) ; ::_thesis: verum end; (seq_id tseq) rto_power p is summable proof consider m being Element of NAT such that A82: for n being Element of NAT st n >= m holds ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < 1 ) by A39; A83: ((seq_id tseq) - (seq_id (vseq . m))) rto_power p is summable by A82; set d = seq_id tseq; set b = seq_id (vseq . m); set a = (seq_id tseq) - (seq_id (vseq . m)); A84: ((seq_id tseq) - (seq_id (vseq . m))) + (seq_id (vseq . m)) = ((seq_id tseq) + (seq_id (vseq . m))) + (- (seq_id (vseq . m))) by SEQ_1:13 .= ((seq_id tseq) + (seq_id (vseq . m))) - (seq_id (vseq . m)) .= seq_id tseq by Lm10 ; (seq_id (vseq . m)) rto_power p is summable by A1, A3, Def2; hence (seq_id tseq) rto_power p is summable by A1, A83, A84, Lm11; ::_thesis: verum end; then reconsider tv = tseq as Point of lp by A1, A3, Th10; for e being Real st e > 0 holds ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e proof let e be Real; ::_thesis: ( e > 0 implies ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e ) assume A85: e > 0 ; ::_thesis: ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e set e1 = e to_power p; consider m being Element of NAT such that A86: for n being Element of NAT st n >= m holds ( ((seq_id tseq) - (seq_id (vseq . n))) rto_power p is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e to_power p ) by A39, A85, POWER:34; now__::_thesis:_for_n_being_Element_of_NAT_st_n_>=_m_holds_ ||.((vseq_._n)_-_tv).||_<_e let n be Element of NAT ; ::_thesis: ( n >= m implies ||.((vseq . n) - tv).|| < e ) assume A87: n >= m ; ::_thesis: ||.((vseq . n) - tv).|| < e A88: Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) < e to_power p by A86, A87; for i being Element of NAT holds (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . i >= 0 proof let i be Element of NAT ; ::_thesis: (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . i >= 0 (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . i = (abs (((seq_id tseq) - (seq_id (vseq . n))) . i)) to_power p by Def1; hence (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) . i >= 0 by A1, Lm1, COMPLEX1:46; ::_thesis: verum end; then A89: Sum (((seq_id tseq) - (seq_id (vseq . n))) rto_power p) >= 0 by A86, A87, SERIES_1:18; A90: (e to_power p) to_power (1 / p) = e to_power (p * (1 / p)) by A85, POWER:33 .= e to_power 1 by A1, XCMPLX_1:106 .= e by POWER:25 ; (Sum (((seq_id tv) - (seq_id (vseq . n))) rto_power p)) to_power (1 / p) = (Sum ((seq_id ((seq_id tv) - (seq_id (vseq . n)))) rto_power p)) to_power (1 / p) by RSSPACE:1 .= (Sum ((seq_id (tv - (vseq . n))) rto_power p)) to_power (1 / p) by A1, A3, Th10 .= the normF of lp . (tv - (vseq . n)) by A3, Def3 .= ||.(tv + (- (vseq . n))).|| .= ||.(- ((vseq . n) - tv)).|| by RLVECT_1:33 .= ||.((vseq . n) - tv).|| by NORMSP_1:2 ; hence ||.((vseq . n) - tv).|| < e by A2, A89, A88, A90, Th1; ::_thesis: verum end; hence ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e ; ::_thesis: verum end; hence vseq is convergent by NORMSP_1:def_6; ::_thesis: verum end; definition let p be Real; assume A1: 1 <= p ; func l_Space^ p -> RealBanachSpace equals :: LP_SPACE:def 4 NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #); coherence NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is RealBanachSpace proof set lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #); reconsider lp = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) as RealNormSpace by A1, Th9, Th14; for vseq being sequence of lp st vseq is Cauchy_sequence_by_Norm holds vseq is convergent by A1, Th16; hence NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #) is RealBanachSpace by LOPBAN_1:def_15; ::_thesis: verum end; end; :: deftheorem defines l_Space^ LP_SPACE:def_4_:_ for p being Real st 1 <= p holds l_Space^ p = NORMSTR(# (the_set_of_RealSequences_l^ p),(Zero_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Add_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(Mult_ ((the_set_of_RealSequences_l^ p),Linear_Space_of_RealSequences)),(l_norm^ p) #);