:: PARSP_1 semantic presentation begin Lm1: for F being non empty right_complementable add-associative right_zeroed addLoopStr for a, b being Element of F holds - (a - b) = b - a proof let F be non empty right_complementable add-associative right_zeroed addLoopStr ; ::_thesis: for a, b being Element of F holds - (a - b) = b - a let a, b be Element of F; ::_thesis: - (a - b) = b - a thus - (a - b) = b + (- a) by RLVECT_1:33 .= b - a by RLVECT_1:def_11 ; ::_thesis: verum end; Lm2: for F being Field for a, b, c, d being Element of F holds ((a - b) * (c - d)) - ((b - a) * (d - c)) = 0. F proof let F be Field; ::_thesis: for a, b, c, d being Element of F holds ((a - b) * (c - d)) - ((b - a) * (d - c)) = 0. F let a, b, c, d be Element of F; ::_thesis: ((a - b) * (c - d)) - ((b - a) * (d - c)) = 0. F ( - (a - b) = b - a & - (c - d) = d - c ) by Lm1; then ((a - b) * (c - d)) - ((b - a) * (d - c)) = ((a - b) * (c - d)) - ((a - b) * (c - d)) by VECTSP_1:10; hence ((a - b) * (c - d)) - ((b - a) * (d - c)) = 0. F by RLVECT_1:15; ::_thesis: verum end; Lm3: for F being Field for a, b, c, d being Element of F holds (a * (b - b)) - ((c - c) * d) = 0. F proof let F be Field; ::_thesis: for a, b, c, d being Element of F holds (a * (b - b)) - ((c - c) * d) = 0. F let a, b, c, d be Element of F; ::_thesis: (a * (b - b)) - ((c - c) * d) = 0. F c - c = 0. F by RLVECT_1:15; then A1: (c - c) * d = 0. F by VECTSP_1:7; b - b = 0. F by RLVECT_1:15; then a * (b - b) = 0. F by VECTSP_1:7; hence (a * (b - b)) - ((c - c) * d) = 0. F by A1, RLVECT_1:15; ::_thesis: verum end; Lm4: for F being Field for a, e, d, b, c, h being Element of F st a <> 0. F & (a * e) - (d * b) = 0. F & (a * c) - (h * b) = 0. F holds (d * c) - (h * e) = 0. F proof let F be Field; ::_thesis: for a, e, d, b, c, h being Element of F st a <> 0. F & (a * e) - (d * b) = 0. F & (a * c) - (h * b) = 0. F holds (d * c) - (h * e) = 0. F let a, e, d, b, c, h be Element of F; ::_thesis: ( a <> 0. F & (a * e) - (d * b) = 0. F & (a * c) - (h * b) = 0. F implies (d * c) - (h * e) = 0. F ) assume that A1: a <> 0. F and A2: (a * e) - (d * b) = 0. F and A3: (a * c) - (h * b) = 0. F ; ::_thesis: (d * c) - (h * e) = 0. F c = (h * b) * (a ") by A1, A3, VECTSP_1:30; then c = h * (b * (a ")) by GROUP_1:def_3; then A4: d * c = (d * h) * (b * (a ")) by GROUP_1:def_3; e = (d * b) * (a ") by A1, A2, VECTSP_1:30; then e = d * (b * (a ")) by GROUP_1:def_3; then h * e = (h * d) * (b * (a ")) by GROUP_1:def_3; hence (d * c) - (h * e) = 0. F by A4, RLVECT_1:15; ::_thesis: verum end; Lm5: for F being Field for a, b, c, d being Element of F st (a * b) - (c * d) = 0. F holds (d * c) - (b * a) = 0. F proof let F be Field; ::_thesis: for a, b, c, d being Element of F st (a * b) - (c * d) = 0. F holds (d * c) - (b * a) = 0. F let a, b, c, d be Element of F; ::_thesis: ( (a * b) - (c * d) = 0. F implies (d * c) - (b * a) = 0. F ) assume (a * b) - (c * d) = 0. F ; ::_thesis: (d * c) - (b * a) = 0. F then A1: - ((a * b) - (c * d)) = 0. F by RLVECT_1:12; thus (d * c) - (b * a) = (d * c) + (- (b * a)) by RLVECT_1:def_11 .= 0. F by A1, RLVECT_1:33 ; ::_thesis: verum end; Lm6: for F being Field for b, a, e, d, c, h being Element of F st b <> 0. F & (a * e) - (d * b) = 0. F & (a * c) - (h * b) = 0. F holds (d * c) - (h * e) = 0. F proof let F be Field; ::_thesis: for b, a, e, d, c, h being Element of F st b <> 0. F & (a * e) - (d * b) = 0. F & (a * c) - (h * b) = 0. F holds (d * c) - (h * e) = 0. F let b, a, e, d, c, h be Element of F; ::_thesis: ( b <> 0. F & (a * e) - (d * b) = 0. F & (a * c) - (h * b) = 0. F implies (d * c) - (h * e) = 0. F ) assume b <> 0. F ; ::_thesis: ( not (a * e) - (d * b) = 0. F or not (a * c) - (h * b) = 0. F or (d * c) - (h * e) = 0. F ) then ( (b * d) - (e * a) = 0. F & (b * h) - (c * a) = 0. F implies (e * h) - (c * d) = 0. F ) by Lm4; hence ( not (a * e) - (d * b) = 0. F or not (a * c) - (h * b) = 0. F or (d * c) - (h * e) = 0. F ) by Lm5; ::_thesis: verum end; Lm7: for F being Field for c, d, a, b being Element of F holds (c * d) * (a * b) = ((a * c) * d) * b proof let F be Field; ::_thesis: for c, d, a, b being Element of F holds (c * d) * (a * b) = ((a * c) * d) * b let c, d, a, b be Element of F; ::_thesis: (c * d) * (a * b) = ((a * c) * d) * b thus (c * d) * (a * b) = (a * (c * d)) * b by GROUP_1:def_3 .= ((a * c) * d) * b by GROUP_1:def_3 ; ::_thesis: verum end; Lm8: for F being Field for a, b, c, d, f, g being Element of F st (a * b) - (c * d) = 0. F holds (((a * f) * g) * b) - (((c * f) * g) * d) = 0. F proof let F be Field; ::_thesis: for a, b, c, d, f, g being Element of F st (a * b) - (c * d) = 0. F holds (((a * f) * g) * b) - (((c * f) * g) * d) = 0. F let a, b, c, d, f, g be Element of F; ::_thesis: ( (a * b) - (c * d) = 0. F implies (((a * f) * g) * b) - (((c * f) * g) * d) = 0. F ) assume A1: (a * b) - (c * d) = 0. F ; ::_thesis: (((a * f) * g) * b) - (((c * f) * g) * d) = 0. F ( ((a * f) * g) * b = (f * g) * (a * b) & ((c * f) * g) * d = (f * g) * (c * d) ) by Lm7; hence (((a * f) * g) * b) - (((c * f) * g) * d) = (f * g) * ((a * b) - (c * d)) by VECTSP_1:11 .= 0. F by A1, VECTSP_1:7 ; ::_thesis: verum end; Lm9: for F being Field for a, b, c, d being Element of F holds (a - b) * (c - d) = (a * c) + ((- (a * d)) + (- (b * (c - d)))) proof let F be Field; ::_thesis: for a, b, c, d being Element of F holds (a - b) * (c - d) = (a * c) + ((- (a * d)) + (- (b * (c - d)))) let a, b, c, d be Element of F; ::_thesis: (a - b) * (c - d) = (a * c) + ((- (a * d)) + (- (b * (c - d)))) thus (a - b) * (c - d) = (a + (- b)) * (c - d) by RLVECT_1:def_11 .= (a * (c - d)) + ((- b) * (c - d)) by VECTSP_1:def_7 .= (a * (c - d)) + (- (b * (c - d))) by VECTSP_1:9 .= ((a * c) - (a * d)) + (- (b * (c - d))) by VECTSP_1:11 .= ((a * c) + (- (a * d))) + (- (b * (c - d))) by RLVECT_1:def_11 .= (a * c) + ((- (a * d)) + (- (b * (c - d)))) by RLVECT_1:def_3 ; ::_thesis: verum end; Lm10: for F being Field for a, b, c, d being Element of F holds (a + b) + (c + d) = (a + (b + c)) + d proof let F be Field; ::_thesis: for a, b, c, d being Element of F holds (a + b) + (c + d) = (a + (b + c)) + d let a, b, c, d be Element of F; ::_thesis: (a + b) + (c + d) = (a + (b + c)) + d thus (a + b) + (c + d) = ((a + b) + c) + d by RLVECT_1:def_3 .= (a + (b + c)) + d by RLVECT_1:def_3 ; ::_thesis: verum end; Lm11: for F being non empty right_complementable add-associative right_zeroed addLoopStr for a, b, c being Element of F holds (b + a) - (c + a) = b - c proof let F be non empty right_complementable add-associative right_zeroed addLoopStr ; ::_thesis: for a, b, c being Element of F holds (b + a) - (c + a) = b - c let a, b, c be Element of F; ::_thesis: (b + a) - (c + a) = b - c thus (b + a) - (c + a) = (b + a) + (- (c + a)) by RLVECT_1:def_11 .= (b + a) + ((- a) + (- c)) by RLVECT_1:31 .= ((b + a) + (- a)) + (- c) by RLVECT_1:def_3 .= (b + (a + (- a))) + (- c) by RLVECT_1:def_3 .= (b + (0. F)) + (- c) by RLVECT_1:def_10 .= b + (- c) by RLVECT_1:4 .= b - c by RLVECT_1:def_11 ; ::_thesis: verum end; Lm12: for F being non empty right_complementable add-associative right_zeroed addLoopStr for a, b being Element of F holds a + b = - ((- b) + (- a)) proof let F be non empty right_complementable add-associative right_zeroed addLoopStr ; ::_thesis: for a, b being Element of F holds a + b = - ((- b) + (- a)) let a, b be Element of F; ::_thesis: a + b = - ((- b) + (- a)) thus a + b = - (- (a + b)) by RLVECT_1:17 .= - ((- b) + (- a)) by RLVECT_1:31 ; ::_thesis: verum end; Lm13: for F being Field for a, b, c, d, e, f being Element of F st ((a - b) * (c - d)) - ((a - e) * (c - f)) = 0. F holds ((b - a) * (f - d)) - ((b - e) * (f - c)) = 0. F proof let F be Field; ::_thesis: for a, b, c, d, e, f being Element of F st ((a - b) * (c - d)) - ((a - e) * (c - f)) = 0. F holds ((b - a) * (f - d)) - ((b - e) * (f - c)) = 0. F let a, b, c, d, e, f be Element of F; ::_thesis: ( ((a - b) * (c - d)) - ((a - e) * (c - f)) = 0. F implies ((b - a) * (f - d)) - ((b - e) * (f - c)) = 0. F ) assume A1: ((a - b) * (c - d)) - ((a - e) * (c - f)) = 0. F ; ::_thesis: ((b - a) * (f - d)) - ((b - e) * (f - c)) = 0. F A2: ( (a - b) * (c - d) = (a * c) + ((- (a * d)) + (- (b * (c - d)))) & (a - e) * (c - f) = (a * c) + ((- (a * f)) + (- (e * (c - f)))) ) by Lm9; ( (b - a) * (f - d) = (b * f) + ((- (b * d)) + (- (a * (f - d)))) & (b - e) * (f - c) = (b * f) + ((- (b * c)) + (- (e * (f - c)))) ) by Lm9; hence ((b - a) * (f - d)) - ((b - e) * (f - c)) = ((- (b * d)) + (- (a * (f - d)))) - ((- (b * c)) + (- (e * (f - c)))) by Lm11 .= ((- (b * d)) + (- ((a * f) - (a * d)))) - ((- (b * c)) + (- (e * (f - c)))) by VECTSP_1:11 .= ((- (b * d)) + ((- (a * f)) + (a * d))) - ((- (b * c)) + (- (e * (f - c)))) by RLVECT_1:33 .= (((- (b * d)) + (a * d)) + (- (a * f))) - ((- (b * c)) + (- (e * (f - c)))) by RLVECT_1:def_3 .= (((a * d) + (- (b * d))) + (- (a * f))) + (- ((- (b * c)) + (- (e * (f - c))))) by RLVECT_1:def_11 .= (((a * d) + (- (b * d))) + (- (a * f))) + ((- (- (b * c))) + (- (- (e * (f - c))))) by RLVECT_1:31 .= (((a * d) + (- (b * d))) + (- (a * f))) + ((b * c) + (- (- (e * (f - c))))) by RLVECT_1:17 .= (((a * d) + (- (b * d))) + (- (a * f))) + ((b * c) + (e * (f - c))) by RLVECT_1:17 .= (((a * d) + (- (b * d))) + ((- (a * f)) + (b * c))) + (e * (f - c)) by Lm10 .= (((a * d) + (- (b * d))) + (b * c)) + ((- (a * f)) + (e * (f - c))) by Lm10 .= ((a * d) + ((- (b * d)) + (b * c))) + ((- (a * f)) + (e * (f - c))) by RLVECT_1:def_3 .= ((a * d) + ((b * c) - (b * d))) + ((- (a * f)) + (e * (f - c))) by RLVECT_1:def_11 .= ((a * d) + (b * (c - d))) + ((- (a * f)) + (e * (f - c))) by VECTSP_1:11 .= (- ((- (a * d)) + (- (b * (c - d))))) + ((- (a * f)) + (e * (f - c))) by Lm12 .= (- ((- (a * d)) + (- (b * (c - d))))) + (- ((- (- (a * f))) + (- (e * (f - c))))) by Lm12 .= (- ((- (a * d)) + (- (b * (c - d))))) + (- ((a * f) + (- (e * (f - c))))) by RLVECT_1:17 .= - (((- (a * d)) + (- (b * (c - d)))) + ((a * f) + (- (e * (f - c))))) by RLVECT_1:31 .= - (((- (a * d)) + (- (b * (c - d)))) + (- ((- (a * f)) + (- (- (e * (f - c))))))) by Lm12 .= - (((- (a * d)) + (- (b * (c - d)))) - ((- (a * f)) + (- (- (e * (f - c)))))) by RLVECT_1:def_11 .= - (((- (a * d)) + (- (b * (c - d)))) - ((- (a * f)) + (- ((- (f - c)) * e)))) by VECTSP_1:9 .= - (((- (a * d)) + (- (b * (c - d)))) - ((- (a * f)) + (- (e * (c - f))))) by Lm1 .= - (0. F) by A1, A2, Lm11 .= 0. F by RLVECT_1:12 ; ::_thesis: verum end; Lm14: for F being Field for a, b, c being Element of F holds a - ((a + b) + (- c)) = c - b proof let F be Field; ::_thesis: for a, b, c being Element of F holds a - ((a + b) + (- c)) = c - b let a, b, c be Element of F; ::_thesis: a - ((a + b) + (- c)) = c - b thus a - ((a + b) + (- c)) = a - (a + (b + (- c))) by RLVECT_1:def_3 .= a - (a + (b - c)) by RLVECT_1:def_11 .= a + (- (a + (b - c))) by RLVECT_1:def_11 .= a + ((- a) + (- (b - c))) by RLVECT_1:31 .= (a + (- a)) + (- (b - c)) by RLVECT_1:def_3 .= (0. F) + (- (b - c)) by RLVECT_1:def_10 .= - (b - c) by RLVECT_1:4 .= c - b by Lm1 ; ::_thesis: verum end; Lm15: for F being Field for a, b, c, h, g, e being Element of F holds ((a - b) * (c - ((c + h) + (- g)))) - ((e - ((e + b) + (- a))) * (g - h)) = 0. F proof let F be Field; ::_thesis: for a, b, c, h, g, e being Element of F holds ((a - b) * (c - ((c + h) + (- g)))) - ((e - ((e + b) + (- a))) * (g - h)) = 0. F let a, b, c, h, g, e be Element of F; ::_thesis: ((a - b) * (c - ((c + h) + (- g)))) - ((e - ((e + b) + (- a))) * (g - h)) = 0. F ( c - ((c + h) + (- g)) = g - h & e - ((e + b) + (- a)) = a - b ) by Lm14; hence ((a - b) * (c - ((c + h) + (- g)))) - ((e - ((e + b) + (- a))) * (g - h)) = 0. F by RLVECT_1:15; ::_thesis: verum end; deffunc H1( Field) -> set = [: the carrier of $1, the carrier of $1, the carrier of $1:]; definition let F be Field; func c3add F -> BinOp of [: the carrier of F, the carrier of F, the carrier of F:] means :Def1: :: PARSP_1:def 1 for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds it . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))]; existence ex b1 being BinOp of [: the carrier of F, the carrier of F, the carrier of F:] st for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds b1 . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] proof deffunc H2( Element of H1(F), Element of H1(F)) -> Element of [: the carrier of F, the carrier of F, the carrier of F:] = [(($1 `1_3) + ($2 `1_3)),(($1 `2_3) + ($2 `2_3)),(($1 `3_3) + ($2 `3_3))]; consider f being BinOp of H1(F) such that A1: for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . (x,y) = H2(x,y) from BINOP_1:sch_4(); take f ; ::_thesis: for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] thus for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] by A1; ::_thesis: verum end; uniqueness for b1, b2 being BinOp of [: the carrier of F, the carrier of F, the carrier of F:] st ( for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds b1 . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] ) & ( for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds b2 . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] ) holds b1 = b2 proof let f, g be BinOp of H1(F); ::_thesis: ( ( for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] ) & ( for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds g . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] ) implies f = g ) assume that A2: for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] and A3: for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds g . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] ; ::_thesis: f = g for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . (x,y) = g . (x,y) proof let x, y be Element of [: the carrier of F, the carrier of F, the carrier of F:]; ::_thesis: f . (x,y) = g . (x,y) thus f . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] by A2 .= g . (x,y) by A3 ; ::_thesis: verum end; hence f = g by BINOP_1:2; ::_thesis: verum end; end; :: deftheorem Def1 defines c3add PARSP_1:def_1_:_ for F being Field for b2 being BinOp of [: the carrier of F, the carrier of F, the carrier of F:] holds ( b2 = c3add F iff for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds b2 . (x,y) = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] ); definition let F be Field; let x, y be Element of [: the carrier of F, the carrier of F, the carrier of F:]; funcx + y -> Element of [: the carrier of F, the carrier of F, the carrier of F:] equals :: PARSP_1:def 2 (c3add F) . (x,y); coherence (c3add F) . (x,y) is Element of [: the carrier of F, the carrier of F, the carrier of F:] ; end; :: deftheorem defines + PARSP_1:def_2_:_ for F being Field for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds x + y = (c3add F) . (x,y); theorem :: PARSP_1:1 for F being Field for x, y being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds x + y = [((x `1_3) + (y `1_3)),((x `2_3) + (y `2_3)),((x `3_3) + (y `3_3))] by Def1; theorem Th2: :: PARSP_1:2 for F being Field for a, b, c, f, g, h being Element of F holds [a,b,c] + [f,g,h] = [(a + f),(b + g),(c + h)] proof let F be Field; ::_thesis: for a, b, c, f, g, h being Element of F holds [a,b,c] + [f,g,h] = [(a + f),(b + g),(c + h)] let a, b, c, f, g, h be Element of F; ::_thesis: [a,b,c] + [f,g,h] = [(a + f),(b + g),(c + h)] set abc = [a,b,c]; set fgh = [f,g,h]; A1: ( [a,b,c] `3_3 = c & [f,g,h] `1_3 = f ) by MCART_1:def_5, MCART_1:def_7; A2: ( [f,g,h] `2_3 = g & [f,g,h] `3_3 = h ) by MCART_1:def_6, MCART_1:def_7; ( [a,b,c] `1_3 = a & [a,b,c] `2_3 = b ) by MCART_1:def_5, MCART_1:def_6; hence [a,b,c] + [f,g,h] = [(a + f),(b + g),(c + h)] by A1, A2, Def1; ::_thesis: verum end; definition let F be Field; func c3compl F -> UnOp of [: the carrier of F, the carrier of F, the carrier of F:] means :Def3: :: PARSP_1:def 3 for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds it . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))]; existence ex b1 being UnOp of [: the carrier of F, the carrier of F, the carrier of F:] st for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds b1 . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] proof deffunc H2( Element of H1(F)) -> Element of [: the carrier of F, the carrier of F, the carrier of F:] = [(- ($1 `1_3)),(- ($1 `2_3)),(- ($1 `3_3))]; consider f being UnOp of H1(F) such that A1: for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . x = H2(x) from FUNCT_2:sch_4(); take f ; ::_thesis: for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] thus for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] by A1; ::_thesis: verum end; uniqueness for b1, b2 being UnOp of [: the carrier of F, the carrier of F, the carrier of F:] st ( for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds b1 . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] ) & ( for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds b2 . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] ) holds b1 = b2 proof let f, g be UnOp of H1(F); ::_thesis: ( ( for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] ) & ( for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds g . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] ) implies f = g ) assume that A2: for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] and A3: for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds g . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] ; ::_thesis: f = g for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds f . x = g . x proof let x be Element of [: the carrier of F, the carrier of F, the carrier of F:]; ::_thesis: f . x = g . x thus f . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] by A2 .= g . x by A3 ; ::_thesis: verum end; hence f = g by FUNCT_2:63; ::_thesis: verum end; end; :: deftheorem Def3 defines c3compl PARSP_1:def_3_:_ for F being Field for b2 being UnOp of [: the carrier of F, the carrier of F, the carrier of F:] holds ( b2 = c3compl F iff for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds b2 . x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] ); definition let F be Field; let x be Element of [: the carrier of F, the carrier of F, the carrier of F:]; func - x -> Element of [: the carrier of F, the carrier of F, the carrier of F:] equals :: PARSP_1:def 4 (c3compl F) . x; coherence (c3compl F) . x is Element of [: the carrier of F, the carrier of F, the carrier of F:] ; end; :: deftheorem defines - PARSP_1:def_4_:_ for F being Field for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds - x = (c3compl F) . x; theorem :: PARSP_1:3 for F being Field for x being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds - x = [(- (x `1_3)),(- (x `2_3)),(- (x `3_3))] by Def3; definition let S be set ; mode Relation4 of S -> set means :Def5: :: PARSP_1:def 5 it c= [:S,S,S,S:]; existence ex b1 being set st b1 c= [:S,S,S,S:] ; end; :: deftheorem Def5 defines Relation4 PARSP_1:def_5_:_ for S, b2 being set holds ( b2 is Relation4 of S iff b2 c= [:S,S,S,S:] ); definition attrc1 is strict ; struct ParStr -> 1-sorted ; aggrParStr(# carrier, 4_arg_relation #) -> ParStr ; sel 4_arg_relation c1 -> Relation4 of the carrier of c1; end; registration cluster non empty for ParStr ; existence not for b1 being ParStr holds b1 is empty proof set A = the non empty set ; set R = the Relation4 of the non empty set ; take ParStr(# the non empty set , the Relation4 of the non empty set #) ; ::_thesis: not ParStr(# the non empty set , the Relation4 of the non empty set #) is empty thus not the carrier of ParStr(# the non empty set , the Relation4 of the non empty set #) is empty ; :: according to STRUCT_0:def_1 ::_thesis: verum end; end; definition let PS be non empty ParStr ; let a, b, c, d be Element of PS; preda,b '||' c,d means :Def6: :: PARSP_1:def 6 [a,b,c,d] in the 4_arg_relation of PS; end; :: deftheorem Def6 defines '||' PARSP_1:def_6_:_ for PS being non empty ParStr for a, b, c, d being Element of PS holds ( a,b '||' c,d iff [a,b,c,d] in the 4_arg_relation of PS ); definition let F be Field; func C_3 F -> set equals :: PARSP_1:def 7 [: the carrier of F, the carrier of F, the carrier of F:]; coherence [: the carrier of F, the carrier of F, the carrier of F:] is set ; end; :: deftheorem defines C_3 PARSP_1:def_7_:_ for F being Field holds C_3 F = [: the carrier of F, the carrier of F, the carrier of F:]; registration let F be Field; cluster C_3 F -> non empty ; coherence not C_3 F is empty ; end; definition let F be Field; func 4C_3 F -> set equals :: PARSP_1:def 8 [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):]; coherence [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):] is set ; end; :: deftheorem defines 4C_3 PARSP_1:def_8_:_ for F being Field holds 4C_3 F = [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):]; registration let F be Field; cluster 4C_3 F -> non empty ; coherence not 4C_3 F is empty ; end; definition let F be Field; func PRs F -> set means :Def9: :: PARSP_1:def 9 for x being set holds ( x in it iff ( x in 4C_3 F & ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( x = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ) ) ); existence ex b1 being set st for x being set holds ( x in b1 iff ( x in 4C_3 F & ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( x = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ) ) ) proof defpred S1[ set ] means ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( $1 = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ); thus ex X being set st for x being set holds ( x in X iff ( x in 4C_3 F & S1[x] ) ) from XBOOLE_0:sch_1(); ::_thesis: verum end; uniqueness for b1, b2 being set st ( for x being set holds ( x in b1 iff ( x in 4C_3 F & ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( x = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ) ) ) ) & ( for x being set holds ( x in b2 iff ( x in 4C_3 F & ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( x = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ) ) ) ) holds b1 = b2 proof defpred S1[ set ] means ( $1 in 4C_3 F & ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( $1 = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ) ); let H1, H2 be set ; ::_thesis: ( ( for x being set holds ( x in H1 iff ( x in 4C_3 F & ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( x = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ) ) ) ) & ( for x being set holds ( x in H2 iff ( x in 4C_3 F & ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( x = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ) ) ) ) implies H1 = H2 ) assume that A1: for x being set holds ( x in H1 iff S1[x] ) and A2: for x being set holds ( x in H2 iff S1[x] ) ; ::_thesis: H1 = H2 for x being set holds ( x in H1 iff x in H2 ) proof let x be set ; ::_thesis: ( x in H1 iff x in H2 ) ( x in H1 iff S1[x] ) by A1; hence ( x in H1 iff x in H2 ) by A2; ::_thesis: verum end; hence H1 = H2 by TARSKI:1; ::_thesis: verum end; end; :: deftheorem Def9 defines PRs PARSP_1:def_9_:_ for F being Field for b2 being set holds ( b2 = PRs F iff for x being set holds ( x in b2 iff ( x in 4C_3 F & ex a, b, c, d being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( x = [a,b,c,d] & (((a `1_3) - (b `1_3)) * ((c `2_3) - (d `2_3))) - (((c `1_3) - (d `1_3)) * ((a `2_3) - (b `2_3))) = 0. F & (((a `1_3) - (b `1_3)) * ((c `3_3) - (d `3_3))) - (((c `1_3) - (d `1_3)) * ((a `3_3) - (b `3_3))) = 0. F & (((a `2_3) - (b `2_3)) * ((c `3_3) - (d `3_3))) - (((c `2_3) - (d `2_3)) * ((a `3_3) - (b `3_3))) = 0. F ) ) ) ); theorem Th4: :: PARSP_1:4 for F being Field holds PRs F c= [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):] proof let F be Field; ::_thesis: PRs F c= [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):] let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in PRs F or x in [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):] ) 4C_3 F = [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):] ; hence ( not x in PRs F or x in [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):] ) by Def9; ::_thesis: verum end; definition let F be Field; func PR F -> Relation4 of C_3 F equals :: PARSP_1:def 10 PRs F; coherence PRs F is Relation4 of C_3 F proof PRs F c= [:(C_3 F),(C_3 F),(C_3 F),(C_3 F):] by Th4; hence PRs F is Relation4 of C_3 F by Def5; ::_thesis: verum end; end; :: deftheorem defines PR PARSP_1:def_10_:_ for F being Field holds PR F = PRs F; definition let F be Field; func MPS F -> ParStr equals :: PARSP_1:def 11 ParStr(# (C_3 F),(PR F) #); correctness coherence ParStr(# (C_3 F),(PR F) #) is ParStr ; ; end; :: deftheorem defines MPS PARSP_1:def_11_:_ for F being Field holds MPS F = ParStr(# (C_3 F),(PR F) #); registration let F be Field; cluster MPS F -> non empty strict ; coherence ( MPS F is strict & not MPS F is empty ) ; end; theorem :: PARSP_1:5 for F being Field holds the carrier of (MPS F) = C_3 F ; theorem :: PARSP_1:6 for F being Field holds the 4_arg_relation of (MPS F) = PR F ; theorem :: PARSP_1:7 for F being Field for a, b, c, d being Element of (MPS F) holds ( a,b '||' c,d iff [a,b,c,d] in PR F ) by Def6; theorem :: PARSP_1:8 for F being Field for a, b, c, d being Element of (MPS F) holds ( [a,b,c,d] in PR F iff ( [a,b,c,d] in 4C_3 F & ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) ) by Def9; theorem Th9: :: PARSP_1:9 for F being Field for a, b, c, d being Element of (MPS F) holds ( a,b '||' c,d iff ( [a,b,c,d] in 4C_3 F & ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) ) proof let F be Field; ::_thesis: for a, b, c, d being Element of (MPS F) holds ( a,b '||' c,d iff ( [a,b,c,d] in 4C_3 F & ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) ) let a, b, c, d be Element of (MPS F); ::_thesis: ( a,b '||' c,d iff ( [a,b,c,d] in 4C_3 F & ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) ) ( a,b '||' c,d iff [a,b,c,d] in PR F ) by Def6; hence ( a,b '||' c,d iff ( [a,b,c,d] in 4C_3 F & ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) ) by Def9; ::_thesis: verum end; theorem :: PARSP_1:10 for F being Field holds the carrier of (MPS F) = [: the carrier of F, the carrier of F, the carrier of F:] ; theorem :: PARSP_1:11 for F being Field for a, b, c, d being Element of (MPS F) holds [a,b,c,d] in 4C_3 F ; theorem Th12: :: PARSP_1:12 for F being Field for a, b, c, d being Element of (MPS F) holds ( a,b '||' c,d iff ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) proof let F be Field; ::_thesis: for a, b, c, d being Element of (MPS F) holds ( a,b '||' c,d iff ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) let a, b, c, d be Element of (MPS F); ::_thesis: ( a,b '||' c,d iff ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) [a,b,c,d] in 4C_3 F ; hence ( a,b '||' c,d iff ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) by Th9; ::_thesis: verum end; theorem Th13: :: PARSP_1:13 for F being Field for a, b being Element of (MPS F) holds a,b '||' b,a proof let F be Field; ::_thesis: for a, b being Element of (MPS F) holds a,b '||' b,a let a, b be Element of (MPS F); ::_thesis: a,b '||' b,a consider e, f being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A1: [e,f,f,e] = [a,b,b,a] ; A2: (((e `2_3) - (f `2_3)) * ((f `3_3) - (e `3_3))) - (((f `2_3) - (e `2_3)) * ((e `3_3) - (f `3_3))) = 0. F by Lm2; ( (((e `1_3) - (f `1_3)) * ((f `2_3) - (e `2_3))) - (((f `1_3) - (e `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((f `3_3) - (e `3_3))) - (((f `1_3) - (e `1_3)) * ((e `3_3) - (f `3_3))) = 0. F ) by Lm2; hence a,b '||' b,a by A1, A2, Th12; ::_thesis: verum end; theorem Th14: :: PARSP_1:14 for F being Field for a, b, c being Element of (MPS F) holds a,b '||' c,c proof let F be Field; ::_thesis: for a, b, c being Element of (MPS F) holds a,b '||' c,c let a, b, c be Element of (MPS F); ::_thesis: a,b '||' c,c consider e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A1: [e,f,g,g] = [a,b,c,c] ; A2: (((e `2_3) - (f `2_3)) * ((g `3_3) - (g `3_3))) - (((g `2_3) - (g `2_3)) * ((e `3_3) - (f `3_3))) = 0. F by Lm3; ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (g `2_3))) - (((g `1_3) - (g `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (g `3_3))) - (((g `1_3) - (g `1_3)) * ((e `3_3) - (f `3_3))) = 0. F ) by Lm3; hence a,b '||' c,c by A1, A2, Th12; ::_thesis: verum end; theorem Th15: :: PARSP_1:15 for F being Field for a, b, p, q, r, s being Element of (MPS F) st a,b '||' p,q & a,b '||' r,s & not p,q '||' r,s holds a = b proof let F be Field; ::_thesis: for a, b, p, q, r, s being Element of (MPS F) st a,b '||' p,q & a,b '||' r,s & not p,q '||' r,s holds a = b let a, b, p, q, r, s be Element of (MPS F); ::_thesis: ( a,b '||' p,q & a,b '||' r,s & not p,q '||' r,s implies a = b ) defpred S1[ Element of H1(F), Element of H1(F), Element of H1(F), Element of H1(F)] means ( ((($1 `1_3) - ($2 `1_3)) * (($3 `2_3) - ($4 `2_3))) - ((($3 `1_3) - ($4 `1_3)) * (($1 `2_3) - ($2 `2_3))) = 0. F & ((($1 `1_3) - ($2 `1_3)) * (($3 `3_3) - ($4 `3_3))) - ((($3 `1_3) - ($4 `1_3)) * (($1 `3_3) - ($2 `3_3))) = 0. F & ((($1 `2_3) - ($2 `2_3)) * (($3 `3_3) - ($4 `3_3))) - ((($3 `2_3) - ($4 `2_3)) * (($1 `3_3) - ($2 `3_3))) = 0. F ); assume that A1: a,b '||' p,q and A2: a,b '||' r,s ; ::_thesis: ( p,q '||' r,s or a = b ) consider e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A3: [e,f,g,h] = [a,b,p,q] and A4: S1[e,f,g,h] by A1, Th12; consider i, j, k, l being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A5: [i,j,k,l] = [a,b,r,s] and A6: S1[i,j,k,l] by A2, Th12; A7: ( i = a & j = b ) by A5, XTUPLE_0:5; A8: ( k = r & l = s ) by A5, XTUPLE_0:5; set A = (e `1_3) - (f `1_3); set B = (e `2_3) - (f `2_3); set C = (e `3_3) - (f `3_3); set D = (g `1_3) - (h `1_3); set E = (g `2_3) - (h `2_3); set K = (g `3_3) - (h `3_3); set G = (k `1_3) - (l `1_3); set H = (k `2_3) - (l `2_3); set I = (k `3_3) - (l `3_3); A9: ( e = a & f = b ) by A3, XTUPLE_0:5; A10: ( g = p & h = q ) by A3, XTUPLE_0:5; now__::_thesis:_(_a_<>_b_implies_ex_g,_h,_k,_l_being_Element_of_[:_the_carrier_of_F,_the_carrier_of_F,_the_carrier_of_F:]_st_ (_[g,h,k,l]_=_[p,q,r,s]_&_S1[g,h,k,l]_)_) assume A11: a <> b ; ::_thesis: ex g, h, k, l being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [g,h,k,l] = [p,q,r,s] & S1[g,h,k,l] ) now__::_thesis:_(_(_(e_`1_3)_-_(f_`1_3)_<>_0._F_&_(((g_`1_3)_-_(h_`1_3))_*_((k_`2_3)_-_(l_`2_3)))_-_(((k_`1_3)_-_(l_`1_3))_*_((g_`2_3)_-_(h_`2_3)))_=_0._F_&_(((g_`1_3)_-_(h_`1_3))_*_((k_`3_3)_-_(l_`3_3)))_-_(((k_`1_3)_-_(l_`1_3))_*_((g_`3_3)_-_(h_`3_3)))_=_0._F_&_(((g_`2_3)_-_(h_`2_3))_*_((k_`3_3)_-_(l_`3_3)))_-_(((k_`2_3)_-_(l_`2_3))_*_((g_`3_3)_-_(h_`3_3)))_=_0._F_)_or_(_(e_`2_3)_-_(f_`2_3)_<>_0._F_&_(((g_`1_3)_-_(h_`1_3))_*_((k_`2_3)_-_(l_`2_3)))_-_(((k_`1_3)_-_(l_`1_3))_*_((g_`2_3)_-_(h_`2_3)))_=_0._F_&_(((g_`2_3)_-_(h_`2_3))_*_((k_`3_3)_-_(l_`3_3)))_-_(((k_`2_3)_-_(l_`2_3))_*_((g_`3_3)_-_(h_`3_3)))_=_0._F_&_(((g_`1_3)_-_(h_`1_3))_*_((k_`3_3)_-_(l_`3_3)))_-_(((k_`1_3)_-_(l_`1_3))_*_((g_`3_3)_-_(h_`3_3)))_=_0._F_)_or_(_(e_`3_3)_-_(f_`3_3)_<>_0._F_&_(((g_`2_3)_-_(h_`2_3))_*_((k_`3_3)_-_(l_`3_3)))_-_(((k_`2_3)_-_(l_`2_3))_*_((g_`3_3)_-_(h_`3_3)))_=_0._F_&_(((g_`1_3)_-_(h_`1_3))_*_((k_`2_3)_-_(l_`2_3)))_-_(((k_`1_3)_-_(l_`1_3))_*_((g_`2_3)_-_(h_`2_3)))_=_0._F_&_(((g_`1_3)_-_(h_`1_3))_*_((k_`3_3)_-_(l_`3_3)))_-_(((k_`1_3)_-_(l_`1_3))_*_((g_`3_3)_-_(h_`3_3)))_=_0._F_)_) e = [(e `1_3),(e `2_3),(e `3_3)] by MCART_1:44; then A12: ( e `1_3 <> f `1_3 or e `2_3 <> f `2_3 or e `3_3 <> f `3_3 ) by A9, A11, MCART_1:44; percases ( (e `1_3) - (f `1_3) <> 0. F or (e `2_3) - (f `2_3) <> 0. F or (e `3_3) - (f `3_3) <> 0. F ) by A12, RLVECT_1:21; caseA13: (e `1_3) - (f `1_3) <> 0. F ; ::_thesis: ( (((g `1_3) - (h `1_3)) * ((k `2_3) - (l `2_3))) - (((k `1_3) - (l `1_3)) * ((g `2_3) - (h `2_3))) = 0. F & (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F & (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F ) hence (((g `1_3) - (h `1_3)) * ((k `2_3) - (l `2_3))) - (((k `1_3) - (l `1_3)) * ((g `2_3) - (h `2_3))) = 0. F by A4, A6, A9, A7, Lm4; ::_thesis: ( (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F & (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F ) thus A14: (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F by A4, A6, A9, A7, A13, Lm4; ::_thesis: (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F ( ((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3)) = ((((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) * (((e `1_3) - (f `1_3)) ")) * ((k `3_3) - (l `3_3)) & ((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3)) = ((((k `1_3) - (l `1_3)) * ((e `2_3) - (f `2_3))) * (((e `1_3) - (f `1_3)) ")) * ((g `3_3) - (h `3_3)) ) by A4, A6, A9, A7, A13, VECTSP_1:30; hence (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F by A14, Lm8; ::_thesis: verum end; caseA15: (e `2_3) - (f `2_3) <> 0. F ; ::_thesis: ( (((g `1_3) - (h `1_3)) * ((k `2_3) - (l `2_3))) - (((k `1_3) - (l `1_3)) * ((g `2_3) - (h `2_3))) = 0. F & (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F & (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F ) hence (((g `1_3) - (h `1_3)) * ((k `2_3) - (l `2_3))) - (((k `1_3) - (l `1_3)) * ((g `2_3) - (h `2_3))) = 0. F by A4, A6, A9, A7, Lm6; ::_thesis: ( (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F & (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F ) thus A16: (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F by A4, A6, A9, A7, A15, Lm4; ::_thesis: (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F ( ((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3)) = ((((g `2_3) - (h `2_3)) * ((e `1_3) - (f `1_3))) * (((e `2_3) - (f `2_3)) ")) * ((k `3_3) - (l `3_3)) & ((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3)) = ((((k `2_3) - (l `2_3)) * ((e `1_3) - (f `1_3))) * (((e `2_3) - (f `2_3)) ")) * ((g `3_3) - (h `3_3)) ) by A4, A6, A9, A7, A15, VECTSP_1:30; hence (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F by A16, Lm8; ::_thesis: verum end; caseA17: (e `3_3) - (f `3_3) <> 0. F ; ::_thesis: ( (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F & (((g `1_3) - (h `1_3)) * ((k `2_3) - (l `2_3))) - (((k `1_3) - (l `1_3)) * ((g `2_3) - (h `2_3))) = 0. F & (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F ) hence (((g `2_3) - (h `2_3)) * ((k `3_3) - (l `3_3))) - (((k `2_3) - (l `2_3)) * ((g `3_3) - (h `3_3))) = 0. F by A4, A6, A9, A7, Lm6; ::_thesis: ( (((g `1_3) - (h `1_3)) * ((k `2_3) - (l `2_3))) - (((k `1_3) - (l `1_3)) * ((g `2_3) - (h `2_3))) = 0. F & (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F ) A18: ( ((g `1_3) - (h `1_3)) * ((k `2_3) - (l `2_3)) = ((((g `3_3) - (h `3_3)) * ((e `1_3) - (f `1_3))) * (((e `3_3) - (f `3_3)) ")) * ((k `2_3) - (l `2_3)) & ((k `1_3) - (l `1_3)) * ((g `2_3) - (h `2_3)) = ((((k `3_3) - (l `3_3)) * ((e `1_3) - (f `1_3))) * (((e `3_3) - (f `3_3)) ")) * ((g `2_3) - (h `2_3)) ) by A4, A6, A9, A7, A17, VECTSP_1:30; (((g `3_3) - (h `3_3)) * ((k `2_3) - (l `2_3))) - (((k `3_3) - (l `3_3)) * ((g `2_3) - (h `2_3))) = 0. F by A4, A6, A9, A7, A17, Lm6; hence (((g `1_3) - (h `1_3)) * ((k `2_3) - (l `2_3))) - (((k `1_3) - (l `1_3)) * ((g `2_3) - (h `2_3))) = 0. F by A18, Lm8; ::_thesis: (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F thus (((g `1_3) - (h `1_3)) * ((k `3_3) - (l `3_3))) - (((k `1_3) - (l `1_3)) * ((g `3_3) - (h `3_3))) = 0. F by A4, A6, A9, A7, A17, Lm6; ::_thesis: verum end; end; end; hence ex g, h, k, l being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [g,h,k,l] = [p,q,r,s] & S1[g,h,k,l] ) by A10, A8; ::_thesis: verum end; hence ( p,q '||' r,s or a = b ) by Th12; ::_thesis: verum end; theorem Th16: :: PARSP_1:16 for F being Field for a, b, c being Element of (MPS F) st a,b '||' a,c holds b,a '||' b,c proof let F be Field; ::_thesis: for a, b, c being Element of (MPS F) st a,b '||' a,c holds b,a '||' b,c let a, b, c be Element of (MPS F); ::_thesis: ( a,b '||' a,c implies b,a '||' b,c ) assume a,b '||' a,c ; ::_thesis: b,a '||' b,c then consider e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A1: [e,f,g,h] = [a,b,a,c] and A2: ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F ) and A3: (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F by Th12; A4: e = a by A1, XTUPLE_0:5; A5: g = a by A1, XTUPLE_0:5; then A6: (((f `2_3) - (e `2_3)) * ((f `3_3) - (h `3_3))) - (((f `2_3) - (h `2_3)) * ((f `3_3) - (e `3_3))) = 0. F by A3, A4, Lm13; f = b by A1, XTUPLE_0:5; then A7: [f,e,f,h] = [b,a,b,c] by A1, A4, XTUPLE_0:5; ( (((f `1_3) - (e `1_3)) * ((f `2_3) - (h `2_3))) - (((f `1_3) - (h `1_3)) * ((f `2_3) - (e `2_3))) = 0. F & (((f `1_3) - (e `1_3)) * ((f `3_3) - (h `3_3))) - (((f `1_3) - (h `1_3)) * ((f `3_3) - (e `3_3))) = 0. F ) by A2, A4, A5, Lm13; hence b,a '||' b,c by A7, A6, Th12; ::_thesis: verum end; theorem Th17: :: PARSP_1:17 for F being Field for a, b, c being Element of (MPS F) ex d being Element of (MPS F) st ( a,b '||' c,d & a,c '||' b,d ) proof let F be Field; ::_thesis: for a, b, c being Element of (MPS F) ex d being Element of (MPS F) st ( a,b '||' c,d & a,c '||' b,d ) let a, b, c be Element of (MPS F); ::_thesis: ex d being Element of (MPS F) st ( a,b '||' c,d & a,c '||' b,d ) consider e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A1: ( e = a & f = b & g = c ) ; set h = (g + f) + (- e); reconsider d = (g + f) + (- e) as Element of (MPS F) ; A2: [e,f,g,((g + f) + (- e))] = [a,b,c,d] by A1; take d ; ::_thesis: ( a,b '||' c,d & a,c '||' b,d ) ( g + f = [((g `1_3) + (f `1_3)),((g `2_3) + (f `2_3)),((g `3_3) + (f `3_3))] & - e = [(- (e `1_3)),(- (e `2_3)),(- (e `3_3))] ) by Def1, Def3; then A3: (g + f) + (- e) = [(((g `1_3) + (f `1_3)) + (- (e `1_3))),(((g `2_3) + (f `2_3)) + (- (e `2_3))),(((g `3_3) + (f `3_3)) + (- (e `3_3)))] by Th2; then A4: ((g + f) + (- e)) `1_3 = ((g `1_3) + (f `1_3)) + (- (e `1_3)) by MCART_1:def_5; A5: ((g + f) + (- e)) `3_3 = ((g `3_3) + (f `3_3)) + (- (e `3_3)) by A3, MCART_1:def_7; then A6: (((e `1_3) - (f `1_3)) * ((g `3_3) - (((g + f) + (- e)) `3_3))) - (((g `1_3) - (((g + f) + (- e)) `1_3)) * ((e `3_3) - (f `3_3))) = 0. F by A4, Lm15; A7: (((e `1_3) - (g `1_3)) * ((f `3_3) - (((g + f) + (- e)) `3_3))) - (((f `1_3) - (((g + f) + (- e)) `1_3)) * ((e `3_3) - (g `3_3))) = 0. F by A4, A5, Lm15; A8: ((g + f) + (- e)) `2_3 = ((g `2_3) + (f `2_3)) + (- (e `2_3)) by A3, MCART_1:def_6; then A9: (((e `2_3) - (f `2_3)) * ((g `3_3) - (((g + f) + (- e)) `3_3))) - (((g `2_3) - (((g + f) + (- e)) `2_3)) * ((e `3_3) - (f `3_3))) = 0. F by A5, Lm15; (((e `1_3) - (f `1_3)) * ((g `2_3) - (((g + f) + (- e)) `2_3))) - (((g `1_3) - (((g + f) + (- e)) `1_3)) * ((e `2_3) - (f `2_3))) = 0. F by A4, A8, Lm15; hence a,b '||' c,d by A2, A6, A9, Th12; ::_thesis: a,c '||' b,d A10: [e,g,f,((g + f) + (- e))] = [a,c,b,d] by A1; A11: (((e `2_3) - (g `2_3)) * ((f `3_3) - (((g + f) + (- e)) `3_3))) - (((f `2_3) - (((g + f) + (- e)) `2_3)) * ((e `3_3) - (g `3_3))) = 0. F by A8, A5, Lm15; (((e `1_3) - (g `1_3)) * ((f `2_3) - (((g + f) + (- e)) `2_3))) - (((f `1_3) - (((g + f) + (- e)) `1_3)) * ((e `2_3) - (g `2_3))) = 0. F by A4, A8, Lm15; hence a,c '||' b,d by A10, A7, A11, Th12; ::_thesis: verum end; definition let IT be non empty ParStr ; attrIT is ParSp-like means :Def12: :: PARSP_1:def 12 for a, b, c, d, p, q, r, s being Element of IT holds ( a,b '||' b,a & a,b '||' c,c & ( a,b '||' p,q & a,b '||' r,s & not p,q '||' r,s implies a = b ) & ( a,b '||' a,c implies b,a '||' b,c ) & ex x being Element of IT st ( a,b '||' c,x & a,c '||' b,x ) ); end; :: deftheorem Def12 defines ParSp-like PARSP_1:def_12_:_ for IT being non empty ParStr holds ( IT is ParSp-like iff for a, b, c, d, p, q, r, s being Element of IT holds ( a,b '||' b,a & a,b '||' c,c & ( a,b '||' p,q & a,b '||' r,s & not p,q '||' r,s implies a = b ) & ( a,b '||' a,c implies b,a '||' b,c ) & ex x being Element of IT st ( a,b '||' c,x & a,c '||' b,x ) ) ); registration cluster non empty strict ParSp-like for ParStr ; existence ex b1 being non empty ParStr st ( b1 is strict & b1 is ParSp-like ) proof set F = the Field; for a, b, c, d, p, q, r, s being Element of (MPS the Field) holds ( a,b '||' b,a & a,b '||' c,c & ( a,b '||' p,q & a,b '||' r,s & not p,q '||' r,s implies a = b ) & ( a,b '||' a,c implies b,a '||' b,c ) & ex x being Element of (MPS the Field) st ( a,b '||' c,x & a,c '||' b,x ) ) by Th13, Th14, Th15, Th16, Th17; then MPS the Field is ParSp-like by Def12; hence ex b1 being non empty ParStr st ( b1 is strict & b1 is ParSp-like ) ; ::_thesis: verum end; end; definition mode ParSp is non empty ParSp-like ParStr ; end; theorem Th18: :: PARSP_1:18 for PS being ParSp for a, b being Element of PS holds a,b '||' a,b proof let PS be ParSp; ::_thesis: for a, b being Element of PS holds a,b '||' a,b let a, b be Element of PS; ::_thesis: a,b '||' a,b b,a '||' b,b by Def12; hence a,b '||' a,b by Def12; ::_thesis: verum end; theorem Th19: :: PARSP_1:19 for PS being ParSp for a, b, c, d being Element of PS st a,b '||' c,d holds c,d '||' a,b proof let PS be ParSp; ::_thesis: for a, b, c, d being Element of PS st a,b '||' c,d holds c,d '||' a,b let a, b, c, d be Element of PS; ::_thesis: ( a,b '||' c,d implies c,d '||' a,b ) assume A1: a,b '||' c,d ; ::_thesis: c,d '||' a,b a,b '||' a,b by Th18; then ( a <> b implies c,d '||' a,b ) by A1, Def12; hence c,d '||' a,b by Def12; ::_thesis: verum end; theorem Th20: :: PARSP_1:20 for PS being ParSp for a, b, c being Element of PS holds a,a '||' b,c proof let PS be ParSp; ::_thesis: for a, b, c being Element of PS holds a,a '||' b,c let a, b, c be Element of PS; ::_thesis: a,a '||' b,c b,c '||' a,a by Def12; hence a,a '||' b,c by Th19; ::_thesis: verum end; theorem Th21: :: PARSP_1:21 for PS being ParSp for a, b, c, d being Element of PS st a,b '||' c,d holds b,a '||' c,d proof let PS be ParSp; ::_thesis: for a, b, c, d being Element of PS st a,b '||' c,d holds b,a '||' c,d let a, b, c, d be Element of PS; ::_thesis: ( a,b '||' c,d implies b,a '||' c,d ) assume A1: a,b '||' c,d ; ::_thesis: b,a '||' c,d a,b '||' b,a by Def12; then ( a <> b implies b,a '||' c,d ) by A1, Def12; hence b,a '||' c,d by A1; ::_thesis: verum end; theorem Th22: :: PARSP_1:22 for PS being ParSp for a, b, c, d being Element of PS st a,b '||' c,d holds a,b '||' d,c proof let PS be ParSp; ::_thesis: for a, b, c, d being Element of PS st a,b '||' c,d holds a,b '||' d,c let a, b, c, d be Element of PS; ::_thesis: ( a,b '||' c,d implies a,b '||' d,c ) assume a,b '||' c,d ; ::_thesis: a,b '||' d,c then c,d '||' a,b by Th19; then d,c '||' a,b by Th21; hence a,b '||' d,c by Th19; ::_thesis: verum end; theorem Th23: :: PARSP_1:23 for PS being ParSp for a, b, c, d being Element of PS st a,b '||' c,d holds ( b,a '||' c,d & a,b '||' d,c & b,a '||' d,c & c,d '||' a,b & d,c '||' a,b & c,d '||' b,a & d,c '||' b,a ) proof let PS be ParSp; ::_thesis: for a, b, c, d being Element of PS st a,b '||' c,d holds ( b,a '||' c,d & a,b '||' d,c & b,a '||' d,c & c,d '||' a,b & d,c '||' a,b & c,d '||' b,a & d,c '||' b,a ) let a, b, c, d be Element of PS; ::_thesis: ( a,b '||' c,d implies ( b,a '||' c,d & a,b '||' d,c & b,a '||' d,c & c,d '||' a,b & d,c '||' a,b & c,d '||' b,a & d,c '||' b,a ) ) assume a,b '||' c,d ; ::_thesis: ( b,a '||' c,d & a,b '||' d,c & b,a '||' d,c & c,d '||' a,b & d,c '||' a,b & c,d '||' b,a & d,c '||' b,a ) then c,d '||' a,b by Th19; then A1: d,c '||' a,b by Th21; then A2: d,c '||' b,a by Th22; then c,d '||' b,a by Th21; hence ( b,a '||' c,d & a,b '||' d,c & b,a '||' d,c & c,d '||' a,b & d,c '||' a,b & c,d '||' b,a & d,c '||' b,a ) by A1, A2, Th19, Th21; ::_thesis: verum end; theorem Th24: :: PARSP_1:24 for PS being ParSp for a, b, c being Element of PS st a,b '||' a,c holds ( a,c '||' a,b & b,a '||' a,c & a,b '||' c,a & a,c '||' b,a & b,a '||' c,a & c,a '||' a,b & c,a '||' b,a & b,a '||' b,c & a,b '||' b,c & b,a '||' c,b & b,c '||' b,a & a,b '||' c,b & c,b '||' b,a & b,c '||' a,b & c,b '||' a,b & c,a '||' c,b & a,c '||' c,b & c,a '||' b,c & a,c '||' b,c & c,b '||' c,a & b,c '||' c,a & c,b '||' a,c & b,c '||' a,c ) proof let PS be ParSp; ::_thesis: for a, b, c being Element of PS st a,b '||' a,c holds ( a,c '||' a,b & b,a '||' a,c & a,b '||' c,a & a,c '||' b,a & b,a '||' c,a & c,a '||' a,b & c,a '||' b,a & b,a '||' b,c & a,b '||' b,c & b,a '||' c,b & b,c '||' b,a & a,b '||' c,b & c,b '||' b,a & b,c '||' a,b & c,b '||' a,b & c,a '||' c,b & a,c '||' c,b & c,a '||' b,c & a,c '||' b,c & c,b '||' c,a & b,c '||' c,a & c,b '||' a,c & b,c '||' a,c ) let a, b, c be Element of PS; ::_thesis: ( a,b '||' a,c implies ( a,c '||' a,b & b,a '||' a,c & a,b '||' c,a & a,c '||' b,a & b,a '||' c,a & c,a '||' a,b & c,a '||' b,a & b,a '||' b,c & a,b '||' b,c & b,a '||' c,b & b,c '||' b,a & a,b '||' c,b & c,b '||' b,a & b,c '||' a,b & c,b '||' a,b & c,a '||' c,b & a,c '||' c,b & c,a '||' b,c & a,c '||' b,c & c,b '||' c,a & b,c '||' c,a & c,b '||' a,c & b,c '||' a,c ) ) assume A1: a,b '||' a,c ; ::_thesis: ( a,c '||' a,b & b,a '||' a,c & a,b '||' c,a & a,c '||' b,a & b,a '||' c,a & c,a '||' a,b & c,a '||' b,a & b,a '||' b,c & a,b '||' b,c & b,a '||' c,b & b,c '||' b,a & a,b '||' c,b & c,b '||' b,a & b,c '||' a,b & c,b '||' a,b & c,a '||' c,b & a,c '||' c,b & c,a '||' b,c & a,c '||' b,c & c,b '||' c,a & b,c '||' c,a & c,b '||' a,c & b,c '||' a,c ) then a,c '||' a,b by Th19; then A2: c,a '||' c,b by Def12; b,a '||' b,c by A1, Def12; hence ( a,c '||' a,b & b,a '||' a,c & a,b '||' c,a & a,c '||' b,a & b,a '||' c,a & c,a '||' a,b & c,a '||' b,a & b,a '||' b,c & a,b '||' b,c & b,a '||' c,b & b,c '||' b,a & a,b '||' c,b & c,b '||' b,a & b,c '||' a,b & c,b '||' a,b & c,a '||' c,b & a,c '||' c,b & c,a '||' b,c & a,c '||' b,c & c,b '||' c,a & b,c '||' c,a & c,b '||' a,c & b,c '||' a,c ) by A1, A2, Th23; ::_thesis: verum end; theorem :: PARSP_1:25 for PS being ParSp for a, b, c, d being Element of PS st ( a = b or c = d or ( a = c & b = d ) or ( a = d & b = c ) ) holds a,b '||' c,d by Def12, Th18, Th20; theorem Th26: :: PARSP_1:26 for PS being ParSp for a, b, p, q, r, s being Element of PS st a <> b & p,q '||' a,b & a,b '||' r,s holds p,q '||' r,s proof let PS be ParSp; ::_thesis: for a, b, p, q, r, s being Element of PS st a <> b & p,q '||' a,b & a,b '||' r,s holds p,q '||' r,s let a, b, p, q, r, s be Element of PS; ::_thesis: ( a <> b & p,q '||' a,b & a,b '||' r,s implies p,q '||' r,s ) assume that A1: a <> b and A2: p,q '||' a,b and A3: a,b '||' r,s ; ::_thesis: p,q '||' r,s a,b '||' p,q by A2, Th23; hence p,q '||' r,s by A1, A3, Def12; ::_thesis: verum end; theorem :: PARSP_1:27 for PS being ParSp for a, b, c being Element of PS st not a,b '||' a,c holds ( a <> b & b <> c & c <> a ) by Def12, Th18, Th20; theorem :: PARSP_1:28 for PS being ParSp for a, b, c, d being Element of PS st not a,b '||' c,d holds ( a <> b & c <> d ) by Def12, Th20; theorem Th29: :: PARSP_1:29 for PS being ParSp for a, b, c being Element of PS st not a,b '||' a,c holds ( not a,c '||' a,b & not b,a '||' a,c & not a,b '||' c,a & not a,c '||' b,a & not b,a '||' c,a & not c,a '||' a,b & not c,a '||' b,a & not b,a '||' b,c & not a,b '||' b,c & not b,a '||' c,b & not b,c '||' b,a & not b,a '||' c,b & not c,b '||' b,a & not b,c '||' a,b & not c,b '||' a,b & not c,a '||' c,b & not a,c '||' c,b & not c,a '||' b,c & not a,c '||' b,c & not c,b '||' c,a & not b,c '||' c,a & not c,b '||' a,c & not b,c '||' a,c ) proof let PS be ParSp; ::_thesis: for a, b, c being Element of PS st not a,b '||' a,c holds ( not a,c '||' a,b & not b,a '||' a,c & not a,b '||' c,a & not a,c '||' b,a & not b,a '||' c,a & not c,a '||' a,b & not c,a '||' b,a & not b,a '||' b,c & not a,b '||' b,c & not b,a '||' c,b & not b,c '||' b,a & not b,a '||' c,b & not c,b '||' b,a & not b,c '||' a,b & not c,b '||' a,b & not c,a '||' c,b & not a,c '||' c,b & not c,a '||' b,c & not a,c '||' b,c & not c,b '||' c,a & not b,c '||' c,a & not c,b '||' a,c & not b,c '||' a,c ) let a, b, c be Element of PS; ::_thesis: ( not a,b '||' a,c implies ( not a,c '||' a,b & not b,a '||' a,c & not a,b '||' c,a & not a,c '||' b,a & not b,a '||' c,a & not c,a '||' a,b & not c,a '||' b,a & not b,a '||' b,c & not a,b '||' b,c & not b,a '||' c,b & not b,c '||' b,a & not b,a '||' c,b & not c,b '||' b,a & not b,c '||' a,b & not c,b '||' a,b & not c,a '||' c,b & not a,c '||' c,b & not c,a '||' b,c & not a,c '||' b,c & not c,b '||' c,a & not b,c '||' c,a & not c,b '||' a,c & not b,c '||' a,c ) ) assume A1: not a,b '||' a,c ; ::_thesis: ( not a,c '||' a,b & not b,a '||' a,c & not a,b '||' c,a & not a,c '||' b,a & not b,a '||' c,a & not c,a '||' a,b & not c,a '||' b,a & not b,a '||' b,c & not a,b '||' b,c & not b,a '||' c,b & not b,c '||' b,a & not b,a '||' c,b & not c,b '||' b,a & not b,c '||' a,b & not c,b '||' a,b & not c,a '||' c,b & not a,c '||' c,b & not c,a '||' b,c & not a,c '||' b,c & not c,b '||' c,a & not b,c '||' c,a & not c,b '||' a,c & not b,c '||' a,c ) assume ( a,c '||' a,b or b,a '||' a,c or a,b '||' c,a or a,c '||' b,a or b,a '||' c,a or c,a '||' a,b or c,a '||' b,a or b,a '||' b,c or a,b '||' b,c or b,a '||' c,b or b,c '||' b,a or b,a '||' c,b or c,b '||' b,a or b,c '||' a,b or c,b '||' a,b or c,a '||' c,b or a,c '||' c,b or c,a '||' b,c or a,c '||' b,c or c,b '||' c,a or b,c '||' c,a or c,b '||' a,c or b,c '||' a,c ) ; ::_thesis: contradiction then ( a,c '||' a,b or a,b '||' a,c or a,b '||' a,c or a,c '||' a,b or a,b '||' a,c or a,c '||' a,b or a,c '||' a,b or b,a '||' b,c or b,a '||' b,c or b,a '||' b,c or b,c '||' b,a or b,a '||' b,c or b,c '||' b,a or b,c '||' b,a or b,c '||' b,a or c,a '||' c,b or c,a '||' c,b or c,a '||' c,b or c,a '||' c,b or c,b '||' c,a or c,b '||' c,a or c,b '||' c,a or c,b '||' c,a ) by Th23; hence contradiction by A1, Th24; ::_thesis: verum end; theorem Th30: :: PARSP_1:30 for PS being ParSp for a, b, c, d, p, q, r, s being Element of PS st not a,b '||' c,d & a,b '||' p,q & c,d '||' r,s & p <> q & r <> s holds not p,q '||' r,s proof let PS be ParSp; ::_thesis: for a, b, c, d, p, q, r, s being Element of PS st not a,b '||' c,d & a,b '||' p,q & c,d '||' r,s & p <> q & r <> s holds not p,q '||' r,s let a, b, c, d, p, q, r, s be Element of PS; ::_thesis: ( not a,b '||' c,d & a,b '||' p,q & c,d '||' r,s & p <> q & r <> s implies not p,q '||' r,s ) assume that A1: not a,b '||' c,d and A2: a,b '||' p,q and A3: c,d '||' r,s and A4: p <> q and A5: r <> s ; ::_thesis: not p,q '||' r,s assume p,q '||' r,s ; ::_thesis: contradiction then a,b '||' r,s by A2, A4, Th26; then A6: r,s '||' a,b by Th23; r,s '||' c,d by A3, Th23; hence contradiction by A1, A5, A6, Def12; ::_thesis: verum end; theorem Th31: :: PARSP_1:31 for PS being ParSp for a, b, c, p, q, r being Element of PS st not a,b '||' a,c & a,b '||' p,q & a,c '||' p,r & b,c '||' q,r & p <> q holds not p,q '||' p,r proof let PS be ParSp; ::_thesis: for a, b, c, p, q, r being Element of PS st not a,b '||' a,c & a,b '||' p,q & a,c '||' p,r & b,c '||' q,r & p <> q holds not p,q '||' p,r let a, b, c, p, q, r be Element of PS; ::_thesis: ( not a,b '||' a,c & a,b '||' p,q & a,c '||' p,r & b,c '||' q,r & p <> q implies not p,q '||' p,r ) assume that A1: not a,b '||' a,c and A2: a,b '||' p,q and A3: a,c '||' p,r and A4: b,c '||' q,r and A5: p <> q ; ::_thesis: not p,q '||' p,r now__::_thesis:_not_p_=_r assume p = r ; ::_thesis: contradiction then A6: p,q '||' b,c by A4, Th23; p,q '||' b,a by A2, Th23; then b,a '||' b,c by A5, A6, Def12; hence contradiction by A1, Th24; ::_thesis: verum end; hence not p,q '||' p,r by A1, A2, A3, A5, Th30; ::_thesis: verum end; theorem Th32: :: PARSP_1:32 for PS being ParSp for a, b, c, p, r being Element of PS st not a,b '||' a,c & a,c '||' p,r & b,c '||' p,r holds p = r proof let PS be ParSp; ::_thesis: for a, b, c, p, r being Element of PS st not a,b '||' a,c & a,c '||' p,r & b,c '||' p,r holds p = r let a, b, c, p, r be Element of PS; ::_thesis: ( not a,b '||' a,c & a,c '||' p,r & b,c '||' p,r implies p = r ) assume that A1: ( not a,b '||' a,c & a,c '||' p,r ) and A2: b,c '||' p,r ; ::_thesis: p = r A3: p,r '||' b,c by A2, Th23; ( not a,c '||' b,c & p,r '||' a,c ) by A1, Th23, Th29; hence p = r by A3, Def12; ::_thesis: verum end; theorem Th33: :: PARSP_1:33 for PS being ParSp for p, q, r, s being Element of PS st not p,q '||' p,r & p,r '||' p,s & q,r '||' q,s holds r = s proof let PS be ParSp; ::_thesis: for p, q, r, s being Element of PS st not p,q '||' p,r & p,r '||' p,s & q,r '||' q,s holds r = s let p, q, r, s be Element of PS; ::_thesis: ( not p,q '||' p,r & p,r '||' p,s & q,r '||' q,s implies r = s ) assume that A1: ( not p,q '||' p,r & p,r '||' p,s ) and A2: q,r '||' q,s ; ::_thesis: r = s A3: r,s '||' r,q by A2, Th29; ( not r,p '||' r,q & r,s '||' r,p ) by A1, Th29; hence r = s by A3, Def12; ::_thesis: verum end; theorem :: PARSP_1:34 for PS being ParSp for a, b, c, p, q, r, s being Element of PS st not a,b '||' a,c & a,b '||' p,q & a,c '||' p,r & a,c '||' p,s & b,c '||' q,r & b,c '||' q,s holds r = s proof let PS be ParSp; ::_thesis: for a, b, c, p, q, r, s being Element of PS st not a,b '||' a,c & a,b '||' p,q & a,c '||' p,r & a,c '||' p,s & b,c '||' q,r & b,c '||' q,s holds r = s let a, b, c, p, q, r, s be Element of PS; ::_thesis: ( not a,b '||' a,c & a,b '||' p,q & a,c '||' p,r & a,c '||' p,s & b,c '||' q,r & b,c '||' q,s implies r = s ) assume that A1: not a,b '||' a,c and A2: a,b '||' p,q and A3: a,c '||' p,r and A4: a,c '||' p,s and A5: b,c '||' q,r and A6: b,c '||' q,s ; ::_thesis: r = s A7: now__::_thesis:_(_p_<>_q_implies_r_=_s_) b <> c by A1, Th18; then A8: q,r '||' q,s by A5, A6, Def12; a <> c by A1, Def12; then A9: p,r '||' p,s by A3, A4, Def12; assume p <> q ; ::_thesis: r = s then not p,q '||' p,r by A1, A2, A3, A5, Th31; hence r = s by A9, A8, Th33; ::_thesis: verum end; ( p = q implies ( p = r & p = s ) ) by A1, A3, A4, A5, A6, Th32; hence r = s by A7; ::_thesis: verum end; theorem Th35: :: PARSP_1:35 for PS being ParSp for a, b, c, d being Element of PS st a,b '||' a,c & a,b '||' a,d holds a,b '||' c,d proof let PS be ParSp; ::_thesis: for a, b, c, d being Element of PS st a,b '||' a,c & a,b '||' a,d holds a,b '||' c,d let a, b, c, d be Element of PS; ::_thesis: ( a,b '||' a,c & a,b '||' a,d implies a,b '||' c,d ) assume that A1: a,b '||' a,c and A2: a,b '||' a,d ; ::_thesis: a,b '||' c,d now__::_thesis:_(_a_<>_b_&_a_<>_c_implies_a,b_'||'_c,d_) assume that A3: a <> b and A4: a <> c ; ::_thesis: a,b '||' c,d a,c '||' a,d by A1, A2, A3, Def12; then a,c '||' c,d by Th24; hence a,b '||' c,d by A1, A4, Th26; ::_thesis: verum end; hence a,b '||' c,d by A2, Th20; ::_thesis: verum end; theorem :: PARSP_1:36 for PS being ParSp st ( for a, b being Element of PS holds a = b ) holds for p, q, r, s being Element of PS holds p,q '||' r,s proof let PS be ParSp; ::_thesis: ( ( for a, b being Element of PS holds a = b ) implies for p, q, r, s being Element of PS holds p,q '||' r,s ) assume A1: for a, b being Element of PS holds a = b ; ::_thesis: for p, q, r, s being Element of PS holds p,q '||' r,s let p, q, r, s be Element of PS; ::_thesis: p,q '||' r,s r = s by A1; hence p,q '||' r,s by Def12; ::_thesis: verum end; theorem :: PARSP_1:37 for PS being ParSp st ex a, b being Element of PS st ( a <> b & ( for c being Element of PS holds a,b '||' a,c ) ) holds for p, q, r, s being Element of PS holds p,q '||' r,s proof let PS be ParSp; ::_thesis: ( ex a, b being Element of PS st ( a <> b & ( for c being Element of PS holds a,b '||' a,c ) ) implies for p, q, r, s being Element of PS holds p,q '||' r,s ) assume ex a, b being Element of PS st ( a <> b & ( for c being Element of PS holds a,b '||' a,c ) ) ; ::_thesis: for p, q, r, s being Element of PS holds p,q '||' r,s then consider a, b being Element of PS such that A1: a <> b and A2: for c being Element of PS holds a,b '||' a,c ; let p, q, r, s be Element of PS; ::_thesis: p,q '||' r,s ( a,b '||' a,r & a,b '||' a,s ) by A2; then A3: a,b '||' r,s by Th35; ( a,b '||' a,p & a,b '||' a,q ) by A2; then a,b '||' p,q by Th35; hence p,q '||' r,s by A1, A3, Def12; ::_thesis: verum end; theorem :: PARSP_1:38 for PS being ParSp for a, b, c, p, q being Element of PS st not a,b '||' a,c & p <> q & p,q '||' p,a & p,q '||' p,b holds not p,q '||' p,c proof let PS be ParSp; ::_thesis: for a, b, c, p, q being Element of PS st not a,b '||' a,c & p <> q & p,q '||' p,a & p,q '||' p,b holds not p,q '||' p,c let a, b, c, p, q be Element of PS; ::_thesis: ( not a,b '||' a,c & p <> q & p,q '||' p,a & p,q '||' p,b implies not p,q '||' p,c ) assume that A1: not a,b '||' a,c and A2: p <> q ; ::_thesis: ( not p,q '||' p,a or not p,q '||' p,b or not p,q '||' p,c ) assume A3: ( p,q '||' p,a & p,q '||' p,b & p,q '||' p,c ) ; ::_thesis: contradiction then p,a '||' p,b by A2, Def12; then A4: a,p '||' a,b by Th24; p,a '||' p,c by A2, A3, Def12; then A5: a,p '||' a,c by Th24; a <> p by A1, A2, A3, Def12; hence contradiction by A1, A4, A5, Def12; ::_thesis: verum end;