:: PARSP_2 semantic presentation begin Lm1: for F being non empty right_complementable add-associative right_zeroed addLoopStr for a, b being Element of F st a - b = 0. F holds a = b proof let F be non empty right_complementable add-associative right_zeroed addLoopStr ; ::_thesis: for a, b being Element of F st a - b = 0. F holds a = b let a, b be Element of F; ::_thesis: ( a - b = 0. F implies a = b ) assume a - b = 0. F ; ::_thesis: a = b then a + (- b) = 0. F by RLVECT_1:def_11; then a = - (- b) by RLVECT_1:6; hence a = b by RLVECT_1:17; ::_thesis: verum end; Lm2: for F being non empty right_complementable add-associative right_zeroed addLoopStr for x, y being Element of F holds ( ( x + (- y) = 0. F implies x = y ) & ( x = y implies x + (- y) = 0. F ) & ( x - y = 0. F implies x = y ) & ( x = y implies x - y = 0. F ) ) proof let F be non empty right_complementable add-associative right_zeroed addLoopStr ; ::_thesis: for x, y being Element of F holds ( ( x + (- y) = 0. F implies x = y ) & ( x = y implies x + (- y) = 0. F ) & ( x - y = 0. F implies x = y ) & ( x = y implies x - y = 0. F ) ) let x, y be Element of F; ::_thesis: ( ( x + (- y) = 0. F implies x = y ) & ( x = y implies x + (- y) = 0. F ) & ( x - y = 0. F implies x = y ) & ( x = y implies x - y = 0. F ) ) A1: ( x + (- y) = 0. F implies x = y ) proof assume x + (- y) = 0. F ; ::_thesis: x = y then x + ((- y) + y) = (0. F) + y by RLVECT_1:def_3; then x + (0. F) = (0. F) + y by RLVECT_1:5; then x = (0. F) + y by RLVECT_1:4; hence x = y by RLVECT_1:4; ::_thesis: verum end; A2: ( x - y = 0. F implies x = y ) proof assume x - y = 0. F ; ::_thesis: x = y then (x + (- y)) + y = (0. F) + y by RLVECT_1:def_11; then x + ((- y) + y) = (0. F) + y by RLVECT_1:def_3; then x + (0. F) = (0. F) + y by RLVECT_1:5; then x = (0. F) + y by RLVECT_1:4; hence x = y by RLVECT_1:4; ::_thesis: verum end; ( x = y implies x - y = 0. F ) proof assume x = y ; ::_thesis: x - y = 0. F then x - y = y + (- y) by RLVECT_1:def_11; hence x - y = 0. F by RLVECT_1:5; ::_thesis: verum end; hence ( ( x + (- y) = 0. F implies x = y ) & ( x = y implies x + (- y) = 0. F ) & ( x - y = 0. F implies x = y ) & ( x = y implies x - y = 0. F ) ) by A1, A2, RLVECT_1:5; ::_thesis: verum end; theorem Th1: :: PARSP_2:1 for F being Field holds MPS F is ParSp proof let F be Field; ::_thesis: MPS F is ParSp for a, b, c, d, p, q, r, s being Element of (MPS F) holds ( a,b '||' b,a & a,b '||' c,c & ( a,b '||' p,q & a,b '||' r,s & not p,q '||' r,s implies a = b ) & ( a,b '||' a,c implies b,a '||' b,c ) & ex x being Element of (MPS F) st ( a,b '||' c,x & a,c '||' b,x ) ) by PARSP_1:13, PARSP_1:14, PARSP_1:15, PARSP_1:16, PARSP_1:17; hence MPS F is ParSp by PARSP_1:def_12; ::_thesis: verum end; Lm3: for F being Field for e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds ( ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) iff ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) proof let F be Field; ::_thesis: for e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] holds ( ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) iff ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) let e, f, g, h be Element of [: the carrier of F, the carrier of F, the carrier of F:]; ::_thesis: ( ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) iff ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) A1: ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F & ( for K being Element of F holds ( not K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) or not K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) or not K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) ) implies ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) proof assume that A2: (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F and A3: (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F and A4: (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ; ::_thesis: ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) now__::_thesis:_(_ex_K_being_Element_of_F_st_ (_K_*_((e_`1_3)_-_(f_`1_3))_=_(g_`1_3)_-_(h_`1_3)_&_K_*_((e_`2_3)_-_(f_`2_3))_=_(g_`2_3)_-_(h_`2_3)_&_K_*_((e_`3_3)_-_(f_`3_3))_=_(g_`3_3)_-_(h_`3_3)_)_or_(_(e_`1_3)_-_(f_`1_3)_=_0._F_&_(e_`2_3)_-_(f_`2_3)_=_0._F_&_(e_`3_3)_-_(f_`3_3)_=_0._F_)_) A5: now__::_thesis:_(_(e_`3_3)_-_(f_`3_3)_<>_0._F_&_(_for_K_being_Element_of_F_holds_ (_not_K_*_((e_`1_3)_-_(f_`1_3))_=_(g_`1_3)_-_(h_`1_3)_or_not_K_*_((e_`2_3)_-_(f_`2_3))_=_(g_`2_3)_-_(h_`2_3)_or_not_K_*_((e_`3_3)_-_(f_`3_3))_=_(g_`3_3)_-_(h_`3_3)_)_)_implies_(_(e_`1_3)_-_(f_`1_3)_=_0._F_&_(e_`2_3)_-_(f_`2_3)_=_0._F_&_(e_`3_3)_-_(f_`3_3)_=_0._F_)_) assume A6: (e `3_3) - (f `3_3) <> 0. F ; ::_thesis: ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) A7: (((g `3_3) - (h `3_3)) * (((e `3_3) - (f `3_3)) ")) * ((e `3_3) - (f `3_3)) = ((g `3_3) - (h `3_3)) * ((((e `3_3) - (f `3_3)) ") * ((e `3_3) - (f `3_3))) by GROUP_1:def_3 .= ((g `3_3) - (h `3_3)) * (1_ F) by A6, VECTSP_1:def_10 .= (g `3_3) - (h `3_3) by VECTSP_1:def_8 ; A8: (((g `3_3) - (h `3_3)) * (((e `3_3) - (f `3_3)) ")) * ((e `2_3) - (f `2_3)) = (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) * (((e `3_3) - (f `3_3)) ") by GROUP_1:def_3 .= (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) * (((e `3_3) - (f `3_3)) ") by A4, Lm1 .= ((g `2_3) - (h `2_3)) * (((e `3_3) - (f `3_3)) * (((e `3_3) - (f `3_3)) ")) by GROUP_1:def_3 .= ((g `2_3) - (h `2_3)) * (1_ F) by A6, VECTSP_1:def_10 .= (g `2_3) - (h `2_3) by VECTSP_1:def_8 ; (((g `3_3) - (h `3_3)) * (((e `3_3) - (f `3_3)) ")) * ((e `1_3) - (f `1_3)) = (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) * (((e `3_3) - (f `3_3)) ") by GROUP_1:def_3 .= (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) * (((e `3_3) - (f `3_3)) ") by A3, Lm1 .= ((g `1_3) - (h `1_3)) * (((e `3_3) - (f `3_3)) * (((e `3_3) - (f `3_3)) ")) by GROUP_1:def_3 .= ((g `1_3) - (h `1_3)) * (1_ F) by A6, VECTSP_1:def_10 .= (g `1_3) - (h `1_3) by VECTSP_1:def_8 ; hence ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) by A8, A7; ::_thesis: verum end; A9: now__::_thesis:_(_(e_`2_3)_-_(f_`2_3)_<>_0._F_&_(_for_K_being_Element_of_F_holds_ (_not_K_*_((e_`1_3)_-_(f_`1_3))_=_(g_`1_3)_-_(h_`1_3)_or_not_K_*_((e_`2_3)_-_(f_`2_3))_=_(g_`2_3)_-_(h_`2_3)_or_not_K_*_((e_`3_3)_-_(f_`3_3))_=_(g_`3_3)_-_(h_`3_3)_)_)_implies_(_(e_`1_3)_-_(f_`1_3)_=_0._F_&_(e_`2_3)_-_(f_`2_3)_=_0._F_&_(e_`3_3)_-_(f_`3_3)_=_0._F_)_) assume A10: (e `2_3) - (f `2_3) <> 0. F ; ::_thesis: ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) A11: (((g `2_3) - (h `2_3)) * (((e `2_3) - (f `2_3)) ")) * ((e `2_3) - (f `2_3)) = ((g `2_3) - (h `2_3)) * ((((e `2_3) - (f `2_3)) ") * ((e `2_3) - (f `2_3))) by GROUP_1:def_3 .= ((g `2_3) - (h `2_3)) * (1_ F) by A10, VECTSP_1:def_10 .= (g `2_3) - (h `2_3) by VECTSP_1:def_8 ; A12: (((g `2_3) - (h `2_3)) * (((e `2_3) - (f `2_3)) ")) * ((e `3_3) - (f `3_3)) = (((e `2_3) - (f `2_3)) ") * (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) by GROUP_1:def_3 .= (((e `2_3) - (f `2_3)) ") * (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) by A4, Lm1 .= ((((e `2_3) - (f `2_3)) ") * ((e `2_3) - (f `2_3))) * ((g `3_3) - (h `3_3)) by GROUP_1:def_3 .= ((g `3_3) - (h `3_3)) * (1_ F) by A10, VECTSP_1:def_10 .= (g `3_3) - (h `3_3) by VECTSP_1:def_8 ; (((g `2_3) - (h `2_3)) * (((e `2_3) - (f `2_3)) ")) * ((e `1_3) - (f `1_3)) = (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) * (((e `2_3) - (f `2_3)) ") by GROUP_1:def_3 .= (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) * (((e `2_3) - (f `2_3)) ") by A2, Lm1 .= ((g `1_3) - (h `1_3)) * (((e `2_3) - (f `2_3)) * (((e `2_3) - (f `2_3)) ")) by GROUP_1:def_3 .= ((g `1_3) - (h `1_3)) * (1_ F) by A10, VECTSP_1:def_10 .= (g `1_3) - (h `1_3) by VECTSP_1:def_8 ; hence ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) by A11, A12; ::_thesis: verum end; now__::_thesis:_(_(e_`1_3)_-_(f_`1_3)_<>_0._F_&_(_for_K_being_Element_of_F_holds_ (_not_K_*_((e_`1_3)_-_(f_`1_3))_=_(g_`1_3)_-_(h_`1_3)_or_not_K_*_((e_`2_3)_-_(f_`2_3))_=_(g_`2_3)_-_(h_`2_3)_or_not_K_*_((e_`3_3)_-_(f_`3_3))_=_(g_`3_3)_-_(h_`3_3)_)_)_implies_(_(e_`1_3)_-_(f_`1_3)_=_0._F_&_(e_`2_3)_-_(f_`2_3)_=_0._F_&_(e_`3_3)_-_(f_`3_3)_=_0._F_)_) assume A13: (e `1_3) - (f `1_3) <> 0. F ; ::_thesis: ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) A14: (((g `1_3) - (h `1_3)) * (((e `1_3) - (f `1_3)) ")) * ((e `1_3) - (f `1_3)) = ((g `1_3) - (h `1_3)) * ((((e `1_3) - (f `1_3)) ") * ((e `1_3) - (f `1_3))) by GROUP_1:def_3 .= ((g `1_3) - (h `1_3)) * (1_ F) by A13, VECTSP_1:def_10 .= (g `1_3) - (h `1_3) by VECTSP_1:def_8 ; A15: (((g `1_3) - (h `1_3)) * (((e `1_3) - (f `1_3)) ")) * ((e `3_3) - (f `3_3)) = (((e `1_3) - (f `1_3)) ") * (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) by GROUP_1:def_3 .= (((e `1_3) - (f `1_3)) ") * (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) by A3, Lm1 .= ((((e `1_3) - (f `1_3)) ") * ((e `1_3) - (f `1_3))) * ((g `3_3) - (h `3_3)) by GROUP_1:def_3 .= ((g `3_3) - (h `3_3)) * (1_ F) by A13, VECTSP_1:def_10 .= (g `3_3) - (h `3_3) by VECTSP_1:def_8 ; (((g `1_3) - (h `1_3)) * (((e `1_3) - (f `1_3)) ")) * ((e `2_3) - (f `2_3)) = (((e `1_3) - (f `1_3)) ") * (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) by GROUP_1:def_3 .= (((e `1_3) - (f `1_3)) ") * (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) by A2, Lm1 .= ((((e `1_3) - (f `1_3)) ") * ((e `1_3) - (f `1_3))) * ((g `2_3) - (h `2_3)) by GROUP_1:def_3 .= ((g `2_3) - (h `2_3)) * (1_ F) by A13, VECTSP_1:def_10 .= (g `2_3) - (h `2_3) by VECTSP_1:def_8 ; hence ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) by A14, A15; ::_thesis: verum end; hence ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) by A9, A5; ::_thesis: verum end; hence ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ; ::_thesis: verum end; ( ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) implies ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) proof A16: now__::_thesis:_(_ex_K_being_Element_of_F_st_ (_K_*_((e_`1_3)_-_(f_`1_3))_=_(g_`1_3)_-_(h_`1_3)_&_K_*_((e_`2_3)_-_(f_`2_3))_=_(g_`2_3)_-_(h_`2_3)_&_K_*_((e_`3_3)_-_(f_`3_3))_=_(g_`3_3)_-_(h_`3_3)_)_&_(_ex_K_being_Element_of_F_st_ (_K_*_((e_`1_3)_-_(f_`1_3))_=_(g_`1_3)_-_(h_`1_3)_&_K_*_((e_`2_3)_-_(f_`2_3))_=_(g_`2_3)_-_(h_`2_3)_&_K_*_((e_`3_3)_-_(f_`3_3))_=_(g_`3_3)_-_(h_`3_3)_)_or_(_(e_`1_3)_-_(f_`1_3)_=_0._F_&_(e_`2_3)_-_(f_`2_3)_=_0._F_&_(e_`3_3)_-_(f_`3_3)_=_0._F_)_)_implies_(_(((e_`1_3)_-_(f_`1_3))_*_((g_`2_3)_-_(h_`2_3)))_-_(((g_`1_3)_-_(h_`1_3))_*_((e_`2_3)_-_(f_`2_3)))_=_0._F_&_(((e_`1_3)_-_(f_`1_3))_*_((g_`3_3)_-_(h_`3_3)))_-_(((g_`1_3)_-_(h_`1_3))_*_((e_`3_3)_-_(f_`3_3)))_=_0._F_&_(((e_`2_3)_-_(f_`2_3))_*_((g_`3_3)_-_(h_`3_3)))_-_(((g_`2_3)_-_(h_`2_3))_*_((e_`3_3)_-_(f_`3_3)))_=_0._F_)_) given K being Element of F such that A17: K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) and A18: ( K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) ; ::_thesis: ( ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) implies ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) A19: (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = ((K * ((e `2_3) - (f `2_3))) * ((e `3_3) - (f `3_3))) - ((K * ((e `2_3) - (f `2_3))) * ((e `3_3) - (f `3_3))) by A18, GROUP_1:def_3; ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = ((K * ((e `1_3) - (f `1_3))) * ((e `2_3) - (f `2_3))) - ((K * ((e `1_3) - (f `1_3))) * ((e `2_3) - (f `2_3))) & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = ((K * ((e `1_3) - (f `1_3))) * ((e `3_3) - (f `3_3))) - ((K * ((e `1_3) - (f `1_3))) * ((e `3_3) - (f `3_3))) ) by A17, A18, GROUP_1:def_3; hence ( ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) implies ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) by A19, RLVECT_1:15; ::_thesis: verum end; A20: now__::_thesis:_(_(e_`1_3)_-_(f_`1_3)_=_0._F_&_(e_`2_3)_-_(f_`2_3)_=_0._F_&_(e_`3_3)_-_(f_`3_3)_=_0._F_&_(_ex_K_being_Element_of_F_st_ (_K_*_((e_`1_3)_-_(f_`1_3))_=_(g_`1_3)_-_(h_`1_3)_&_K_*_((e_`2_3)_-_(f_`2_3))_=_(g_`2_3)_-_(h_`2_3)_&_K_*_((e_`3_3)_-_(f_`3_3))_=_(g_`3_3)_-_(h_`3_3)_)_or_(_(e_`1_3)_-_(f_`1_3)_=_0._F_&_(e_`2_3)_-_(f_`2_3)_=_0._F_&_(e_`3_3)_-_(f_`3_3)_=_0._F_)_)_implies_(_(((e_`1_3)_-_(f_`1_3))_*_((g_`2_3)_-_(h_`2_3)))_-_(((g_`1_3)_-_(h_`1_3))_*_((e_`2_3)_-_(f_`2_3)))_=_0._F_&_(((e_`1_3)_-_(f_`1_3))_*_((g_`3_3)_-_(h_`3_3)))_-_(((g_`1_3)_-_(h_`1_3))_*_((e_`3_3)_-_(f_`3_3)))_=_0._F_&_(((e_`2_3)_-_(f_`2_3))_*_((g_`3_3)_-_(h_`3_3)))_-_(((g_`2_3)_-_(h_`2_3))_*_((e_`3_3)_-_(f_`3_3)))_=_0._F_)_) assume that A21: (e `1_3) - (f `1_3) = 0. F and A22: (e `2_3) - (f `2_3) = 0. F and A23: (e `3_3) - (f `3_3) = 0. F ; ::_thesis: ( ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) implies ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) A24: ((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3)) = 0. F by A23, VECTSP_1:7; ( ((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3)) = 0. F & ((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3)) = 0. F ) by A21, VECTSP_1:7; hence ( ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) implies ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) ) by A21, A22, A24, RLVECT_1:15; ::_thesis: verum end; assume ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ; ::_thesis: ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) hence ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) by A20, A16; ::_thesis: verum end; hence ( ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) iff ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) by A1; ::_thesis: verum end; theorem Th2: :: PARSP_2:2 for F being Field for a, b, c, d being Element of (MPS F) holds ( a,b '||' c,d iff ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) ) proof let F be Field; ::_thesis: for a, b, c, d being Element of (MPS F) holds ( a,b '||' c,d iff ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) ) let a, b, c, d be Element of (MPS F); ::_thesis: ( a,b '||' c,d iff ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) ) A1: ( a,b '||' c,d implies ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) ) proof assume a,b '||' c,d ; ::_thesis: ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) then consider e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A2: [a,b,c,d] = [e,f,g,h] and A3: ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F & (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F ) by PARSP_1:12; ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) by A3, Lm3; hence ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) by A2; ::_thesis: verum end; ( ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) implies a,b '||' c,d ) proof given e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A4: [a,b,c,d] = [e,f,g,h] and A5: ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ; ::_thesis: a,b '||' c,d A6: (((e `2_3) - (f `2_3)) * ((g `3_3) - (h `3_3))) - (((g `2_3) - (h `2_3)) * ((e `3_3) - (f `3_3))) = 0. F by A5, Lm3; ( (((e `1_3) - (f `1_3)) * ((g `2_3) - (h `2_3))) - (((g `1_3) - (h `1_3)) * ((e `2_3) - (f `2_3))) = 0. F & (((e `1_3) - (f `1_3)) * ((g `3_3) - (h `3_3))) - (((g `1_3) - (h `1_3)) * ((e `3_3) - (f `3_3))) = 0. F ) by A5, Lm3; hence a,b '||' c,d by A4, A6, PARSP_1:12; ::_thesis: verum end; hence ( a,b '||' c,d iff ex e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st ( [a,b,c,d] = [e,f,g,h] & ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) ) ) by A1; ::_thesis: verum end; theorem Th3: :: PARSP_2:3 for F being Field for a, b, c being Element of (MPS F) for e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] st not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] holds ( e <> f & e <> g & f <> g ) proof let F be Field; ::_thesis: for a, b, c being Element of (MPS F) for e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] st not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] holds ( e <> f & e <> g & f <> g ) let a, b, c be Element of (MPS F); ::_thesis: for e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] st not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] holds ( e <> f & e <> g & f <> g ) let e, f, g be Element of [: the carrier of F, the carrier of F, the carrier of F:]; ::_thesis: ( not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] implies ( e <> f & e <> g & f <> g ) ) assume A1: ( not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] ) ; ::_thesis: ( e <> f & e <> g & f <> g ) then ( (0. F) * ((e `1_3) - (f `1_3)) <> (e `1_3) - (g `1_3) or (0. F) * ((e `2_3) - (f `2_3)) <> (e `2_3) - (g `2_3) or (0. F) * ((e `3_3) - (f `3_3)) <> (e `3_3) - (g `3_3) ) by Th2; then A2: ( 0. F <> (e `1_3) - (g `1_3) or 0. F <> (e `2_3) - (g `2_3) or 0. F <> (e `3_3) - (g `3_3) ) by VECTSP_1:12; A3: f <> g proof assume A4: not f <> g ; ::_thesis: contradiction ( ((e `1_3) - (f `1_3)) * (1_ F) <> (e `1_3) - (g `1_3) or ((e `2_3) - (f `2_3)) * (1_ F) <> (e `2_3) - (g `2_3) or ((e `3_3) - (f `3_3)) * (1_ F) <> (e `3_3) - (g `3_3) ) by A1, Th2; hence contradiction by A4, VECTSP_1:def_8; ::_thesis: verum end; ( (e `1_3) - (f `1_3) <> 0. F or (e `2_3) - (f `2_3) <> 0. F or (e `3_3) - (f `3_3) <> 0. F ) by A1, Th2; hence ( e <> f & e <> g & f <> g ) by A2, A3, RLVECT_1:15; ::_thesis: verum end; theorem Th4: :: PARSP_2:4 for F being Field for a, b, c being Element of (MPS F) for e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] for K, L being Element of F st not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] & K * ((e `1_3) - (f `1_3)) = L * ((e `1_3) - (g `1_3)) & K * ((e `2_3) - (f `2_3)) = L * ((e `2_3) - (g `2_3)) & K * ((e `3_3) - (f `3_3)) = L * ((e `3_3) - (g `3_3)) holds ( K = 0. F & L = 0. F ) proof let F be Field; ::_thesis: for a, b, c being Element of (MPS F) for e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] for K, L being Element of F st not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] & K * ((e `1_3) - (f `1_3)) = L * ((e `1_3) - (g `1_3)) & K * ((e `2_3) - (f `2_3)) = L * ((e `2_3) - (g `2_3)) & K * ((e `3_3) - (f `3_3)) = L * ((e `3_3) - (g `3_3)) holds ( K = 0. F & L = 0. F ) let a, b, c be Element of (MPS F); ::_thesis: for e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] for K, L being Element of F st not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] & K * ((e `1_3) - (f `1_3)) = L * ((e `1_3) - (g `1_3)) & K * ((e `2_3) - (f `2_3)) = L * ((e `2_3) - (g `2_3)) & K * ((e `3_3) - (f `3_3)) = L * ((e `3_3) - (g `3_3)) holds ( K = 0. F & L = 0. F ) let e, f, g be Element of [: the carrier of F, the carrier of F, the carrier of F:]; ::_thesis: for K, L being Element of F st not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] & K * ((e `1_3) - (f `1_3)) = L * ((e `1_3) - (g `1_3)) & K * ((e `2_3) - (f `2_3)) = L * ((e `2_3) - (g `2_3)) & K * ((e `3_3) - (f `3_3)) = L * ((e `3_3) - (g `3_3)) holds ( K = 0. F & L = 0. F ) let K, L be Element of F; ::_thesis: ( not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] & K * ((e `1_3) - (f `1_3)) = L * ((e `1_3) - (g `1_3)) & K * ((e `2_3) - (f `2_3)) = L * ((e `2_3) - (g `2_3)) & K * ((e `3_3) - (f `3_3)) = L * ((e `3_3) - (g `3_3)) implies ( K = 0. F & L = 0. F ) ) assume that A1: ( not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] ) and A2: K * ((e `1_3) - (f `1_3)) = L * ((e `1_3) - (g `1_3)) and A3: K * ((e `2_3) - (f `2_3)) = L * ((e `2_3) - (g `2_3)) and A4: K * ((e `3_3) - (f `3_3)) = L * ((e `3_3) - (g `3_3)) ; ::_thesis: ( K = 0. F & L = 0. F ) ( e = [(e `1_3),(e `2_3),(e `3_3)] & g = [(g `1_3),(g `2_3),(g `3_3)] ) by MCART_1:44; then ( e `1_3 <> g `1_3 or e `2_3 <> g `2_3 or e `3_3 <> g `3_3 ) by A1, Th3; then A5: ( (e `1_3) - (g `1_3) <> 0. F or (e `2_3) - (g `2_3) <> 0. F or (e `3_3) - (g `3_3) <> 0. F ) by Lm2; ( (K * ((e `1_3) - (f `1_3))) * ((e `2_3) - (g `2_3)) = L * (((e `1_3) - (g `1_3)) * ((e `2_3) - (g `2_3))) & (K * ((e `2_3) - (f `2_3))) * ((e `1_3) - (g `1_3)) = L * (((e `2_3) - (g `2_3)) * ((e `1_3) - (g `1_3))) ) by A2, A3, GROUP_1:def_3; then ((K * ((e `1_3) - (f `1_3))) * ((e `2_3) - (g `2_3))) - ((K * ((e `2_3) - (f `2_3))) * ((e `1_3) - (g `1_3))) = 0. F by RLVECT_1:15; then (K * (((e `1_3) - (f `1_3)) * ((e `2_3) - (g `2_3)))) - ((K * ((e `2_3) - (f `2_3))) * ((e `1_3) - (g `1_3))) = 0. F by GROUP_1:def_3; then (K * (((e `1_3) - (f `1_3)) * ((e `2_3) - (g `2_3)))) - (K * (((e `2_3) - (f `2_3)) * ((e `1_3) - (g `1_3)))) = 0. F by GROUP_1:def_3; then A6: K * ((((e `1_3) - (f `1_3)) * ((e `2_3) - (g `2_3))) - (((e `1_3) - (g `1_3)) * ((e `2_3) - (f `2_3)))) = 0. F by VECTSP_1:11; ( (K * ((e `1_3) - (f `1_3))) * ((e `3_3) - (g `3_3)) = L * (((e `1_3) - (g `1_3)) * ((e `3_3) - (g `3_3))) & (K * ((e `3_3) - (f `3_3))) * ((e `1_3) - (g `1_3)) = L * (((e `3_3) - (g `3_3)) * ((e `1_3) - (g `1_3))) ) by A2, A4, GROUP_1:def_3; then ((K * ((e `1_3) - (f `1_3))) * ((e `3_3) - (g `3_3))) - ((K * ((e `3_3) - (f `3_3))) * ((e `1_3) - (g `1_3))) = 0. F by RLVECT_1:15; then (K * (((e `1_3) - (f `1_3)) * ((e `3_3) - (g `3_3)))) - ((K * ((e `3_3) - (f `3_3))) * ((e `1_3) - (g `1_3))) = 0. F by GROUP_1:def_3; then (K * (((e `1_3) - (f `1_3)) * ((e `3_3) - (g `3_3)))) - (K * (((e `3_3) - (f `3_3)) * ((e `1_3) - (g `1_3)))) = 0. F by GROUP_1:def_3; then A7: K * ((((e `1_3) - (f `1_3)) * ((e `3_3) - (g `3_3))) - (((e `1_3) - (g `1_3)) * ((e `3_3) - (f `3_3)))) = 0. F by VECTSP_1:11; ( (K * ((e `2_3) - (f `2_3))) * ((e `3_3) - (g `3_3)) = L * (((e `2_3) - (g `2_3)) * ((e `3_3) - (g `3_3))) & (K * ((e `3_3) - (f `3_3))) * ((e `2_3) - (g `2_3)) = L * (((e `3_3) - (g `3_3)) * ((e `2_3) - (g `2_3))) ) by A3, A4, GROUP_1:def_3; then ((K * ((e `2_3) - (f `2_3))) * ((e `3_3) - (g `3_3))) - ((K * ((e `3_3) - (f `3_3))) * ((e `2_3) - (g `2_3))) = 0. F by RLVECT_1:15; then (K * (((e `2_3) - (f `2_3)) * ((e `3_3) - (g `3_3)))) - ((K * ((e `3_3) - (f `3_3))) * ((e `2_3) - (g `2_3))) = 0. F by GROUP_1:def_3; then (K * (((e `2_3) - (f `2_3)) * ((e `3_3) - (g `3_3)))) - (K * (((e `3_3) - (f `3_3)) * ((e `2_3) - (g `2_3)))) = 0. F by GROUP_1:def_3; then A8: K * ((((e `2_3) - (f `2_3)) * ((e `3_3) - (g `3_3))) - (((e `2_3) - (g `2_3)) * ((e `3_3) - (f `3_3)))) = 0. F by VECTSP_1:11; A9: ( (((e `1_3) - (f `1_3)) * ((e `2_3) - (g `2_3))) - (((e `1_3) - (g `1_3)) * ((e `2_3) - (f `2_3))) <> 0. F or (((e `2_3) - (f `2_3)) * ((e `3_3) - (g `3_3))) - (((e `2_3) - (g `2_3)) * ((e `3_3) - (f `3_3))) <> 0. F or (((e `1_3) - (f `1_3)) * ((e `3_3) - (g `3_3))) - (((e `1_3) - (g `1_3)) * ((e `3_3) - (f `3_3))) <> 0. F ) by A1, PARSP_1:12; then A10: K = 0. F by A6, A8, A7, VECTSP_1:12; then A11: 0. F = L * ((e `3_3) - (g `3_3)) by A4, VECTSP_1:7; ( 0. F = L * ((e `1_3) - (g `1_3)) & 0. F = L * ((e `2_3) - (g `2_3)) ) by A2, A3, A10, VECTSP_1:7; hence ( K = 0. F & L = 0. F ) by A6, A8, A7, A9, A11, A5, VECTSP_1:12; ::_thesis: verum end; Lm4: for F being non empty right_complementable add-associative right_zeroed addLoopStr for a, b, c being Element of F holds (b + a) - (c + a) = b - c proof let F be non empty right_complementable add-associative right_zeroed addLoopStr ; ::_thesis: for a, b, c being Element of F holds (b + a) - (c + a) = b - c let a, b, c be Element of F; ::_thesis: (b + a) - (c + a) = b - c thus (b + a) - (c + a) = (b + a) + (- (c + a)) by RLVECT_1:def_11 .= (b + a) + ((- a) + (- c)) by RLVECT_1:31 .= ((b + a) + (- a)) + (- c) by RLVECT_1:def_3 .= (b + (a + (- a))) + (- c) by RLVECT_1:def_3 .= (b + (0. F)) + (- c) by RLVECT_1:def_10 .= b + (- c) by RLVECT_1:4 .= b - c by RLVECT_1:def_11 ; ::_thesis: verum end; Lm5: for F being Field for K, L, R being Element of F holds (K - L) - (R - L) = K - R proof let F be Field; ::_thesis: for K, L, R being Element of F holds (K - L) - (R - L) = K - R let K, L, R be Element of F; ::_thesis: (K - L) - (R - L) = K - R thus (K - L) - (R - L) = (K + (- L)) - (R - L) by RLVECT_1:def_11 .= ((- L) + K) - (R + (- L)) by RLVECT_1:def_11 .= K - R by Lm4 ; ::_thesis: verum end; Lm6: for F being Field for K, N, M, L, S being Element of F st (K * (N - M)) - (L * (N - S)) = S - M holds (K + (- (1_ F))) * (N - M) = (L + (- (1_ F))) * (N - S) proof let F be Field; ::_thesis: for K, N, M, L, S being Element of F st (K * (N - M)) - (L * (N - S)) = S - M holds (K + (- (1_ F))) * (N - M) = (L + (- (1_ F))) * (N - S) let K, N, M, L, S be Element of F; ::_thesis: ( (K * (N - M)) - (L * (N - S)) = S - M implies (K + (- (1_ F))) * (N - M) = (L + (- (1_ F))) * (N - S) ) assume (K * (N - M)) - (L * (N - S)) = S - M ; ::_thesis: (K + (- (1_ F))) * (N - M) = (L + (- (1_ F))) * (N - S) then (K * (N - M)) - (L * (N - S)) = S + (- M) by RLVECT_1:def_11 .= (S + (- M)) + (0. F) by RLVECT_1:4 .= ((- M) + S) + ((- N) + N) by RLVECT_1:5 .= S + (((- N) + N) + (- M)) by RLVECT_1:def_3 .= S + ((- N) + (N + (- M))) by RLVECT_1:def_3 .= S + ((- N) + (N - M)) by RLVECT_1:def_11 .= (S + (- N)) + (N - M) by RLVECT_1:def_3 .= (S - N) + (N - M) by RLVECT_1:def_11 ; then ((K * (N - M)) + (- (L * (N - S)))) + (L * (N - S)) = ((S - N) + (N - M)) + (L * (N - S)) by RLVECT_1:def_11; then (K * (N - M)) + ((- (L * (N - S))) + (L * (N - S))) = ((S - N) + (N - M)) + (L * (N - S)) by RLVECT_1:def_3; then (K * (N - M)) + (0. F) = ((S - N) + (N - M)) + (L * (N - S)) by RLVECT_1:5; then K * (N - M) = ((S - N) + (N - M)) + (L * (N - S)) by RLVECT_1:4 .= ((S - N) + (L * (N - S))) + (N - M) by RLVECT_1:def_3 ; then (K * (N - M)) + (- (N - M)) = ((S - N) + (L * (N - S))) + ((N - M) + (- (N - M))) by RLVECT_1:def_3 .= ((S - N) + (L * (N - S))) + (0. F) by RLVECT_1:5 .= (S - N) + (L * (N - S)) by RLVECT_1:4 .= (S + (- N)) + (L * (N - S)) by RLVECT_1:def_11 .= (L * (N - S)) + (- (N - S)) by RLVECT_1:33 ; then (K * (N - M)) + (- ((1_ F) * (N - M))) = (L * (N - S)) + (- (N - S)) by VECTSP_1:def_8; then (K * (N - M)) + ((- (1_ F)) * (N - M)) = (L * (N - S)) + (- (N - S)) by VECTSP_1:9; then (K + (- (1_ F))) * (N - M) = (L * (N - S)) + (- (N - S)) by VECTSP_1:def_7 .= (L * (N - S)) + (- ((1_ F) * (N - S))) by VECTSP_1:def_8 .= (L * (N - S)) + ((- (1_ F)) * (N - S)) by VECTSP_1:9 ; hence (K + (- (1_ F))) * (N - M) = (L + (- (1_ F))) * (N - S) by VECTSP_1:def_7; ::_thesis: verum end; Lm7: for F being Field for K, L, N, M being Element of F st K - L = N - M holds M = (L + N) - K proof let F be Field; ::_thesis: for K, L, N, M being Element of F st K - L = N - M holds M = (L + N) - K let K, L, N, M be Element of F; ::_thesis: ( K - L = N - M implies M = (L + N) - K ) assume K - L = N - M ; ::_thesis: M = (L + N) - K then M + (K + (- L)) = M + (N - M) by RLVECT_1:def_11; then M + (K + (- L)) = M + (N + (- M)) by RLVECT_1:def_11; then (M + K) + (- L) = M + (N + (- M)) by RLVECT_1:def_3; then (M + K) + (- L) = (M + N) + (- M) by RLVECT_1:def_3; then (M + K) - L = (N + M) + (- M) by RLVECT_1:def_11; then (M + K) - L = N + (M + (- M)) by RLVECT_1:def_3; then (M + K) - L = N + (0. F) by RLVECT_1:5; then ((M + K) - L) + L = N + L by RLVECT_1:4; then ((M + K) + (- L)) + L = N + L by RLVECT_1:def_11; then (M + K) + ((- L) + L) = N + L by RLVECT_1:def_3; then (M + K) + (0. F) = L + N by RLVECT_1:5; then (M + K) + (- K) = (L + N) + (- K) by RLVECT_1:4; then (M + K) + (- K) = (L + N) - K by RLVECT_1:def_11; then M + (K + (- K)) = (L + N) - K by RLVECT_1:def_3; then M + (0. F) = (L + N) - K by RLVECT_1:5; hence M = (L + N) - K by RLVECT_1:4; ::_thesis: verum end; theorem Th5: :: PARSP_2:5 for F being Field for a, b, c, d being Element of (MPS F) for e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d & [a,b,c,d] = [e,f,g,h] holds ( h `1_3 = ((f `1_3) + (g `1_3)) - (e `1_3) & h `2_3 = ((f `2_3) + (g `2_3)) - (e `2_3) & h `3_3 = ((f `3_3) + (g `3_3)) - (e `3_3) ) proof let F be Field; ::_thesis: for a, b, c, d being Element of (MPS F) for e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d & [a,b,c,d] = [e,f,g,h] holds ( h `1_3 = ((f `1_3) + (g `1_3)) - (e `1_3) & h `2_3 = ((f `2_3) + (g `2_3)) - (e `2_3) & h `3_3 = ((f `3_3) + (g `3_3)) - (e `3_3) ) let a, b, c, d be Element of (MPS F); ::_thesis: for e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] st not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d & [a,b,c,d] = [e,f,g,h] holds ( h `1_3 = ((f `1_3) + (g `1_3)) - (e `1_3) & h `2_3 = ((f `2_3) + (g `2_3)) - (e `2_3) & h `3_3 = ((f `3_3) + (g `3_3)) - (e `3_3) ) let e, f, g, h be Element of [: the carrier of F, the carrier of F, the carrier of F:]; ::_thesis: ( not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d & [a,b,c,d] = [e,f,g,h] implies ( h `1_3 = ((f `1_3) + (g `1_3)) - (e `1_3) & h `2_3 = ((f `2_3) + (g `2_3)) - (e `2_3) & h `3_3 = ((f `3_3) + (g `3_3)) - (e `3_3) ) ) assume that A1: not a,b '||' a,c and A2: a,b '||' c,d and A3: a,c '||' b,d and A4: [a,b,c,d] = [e,f,g,h] ; ::_thesis: ( h `1_3 = ((f `1_3) + (g `1_3)) - (e `1_3) & h `2_3 = ((f `2_3) + (g `2_3)) - (e `2_3) & h `3_3 = ((f `3_3) + (g `3_3)) - (e `3_3) ) A5: e = [(e `1_3),(e `2_3),(e `3_3)] by MCART_1:44; consider m, n, o, w being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A6: [a,c,b,d] = [m,n,o,w] and A7: ( ex L being Element of F st ( L * ((m `1_3) - (n `1_3)) = (o `1_3) - (w `1_3) & L * ((m `2_3) - (n `2_3)) = (o `2_3) - (w `2_3) & L * ((m `3_3) - (n `3_3)) = (o `3_3) - (w `3_3) ) or ( (m `1_3) - (n `1_3) = 0. F & (m `2_3) - (n `2_3) = 0. F & (m `3_3) - (n `3_3) = 0. F ) ) by A3, Th2; A8: b = f by A4, XTUPLE_0:5; then A9: o = f by A6, XTUPLE_0:5; d = h by A4, XTUPLE_0:5; then A10: w = h by A6, XTUPLE_0:5; c = g by A4, XTUPLE_0:5; then A11: n = g by A6, XTUPLE_0:5; A12: a = e by A4, XTUPLE_0:5; then A13: [a,b,a,c] = [e,f,e,g] by A4, A8, XTUPLE_0:5; consider i, j, k, l being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A14: [a,b,c,d] = [i,j,k,l] and A15: ( ex K being Element of F st ( K * ((i `1_3) - (j `1_3)) = (k `1_3) - (l `1_3) & K * ((i `2_3) - (j `2_3)) = (k `2_3) - (l `2_3) & K * ((i `3_3) - (j `3_3)) = (k `3_3) - (l `3_3) ) or ( (i `1_3) - (j `1_3) = 0. F & (i `2_3) - (j `2_3) = 0. F & (i `3_3) - (j `3_3) = 0. F ) ) by A2, Th2; A16: ( e = i & f = j ) by A4, A14, XTUPLE_0:5; A17: ( g = k & h = l ) by A4, A14, XTUPLE_0:5; A18: e = m by A12, A6, XTUPLE_0:5; f = [(f `1_3),(f `2_3),(f `3_3)] by MCART_1:44; then ( e `1_3 <> f `1_3 or e `2_3 <> f `2_3 or e `3_3 <> f `3_3 ) by A1, A13, A5, Th3; then consider K being Element of F such that A19: K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) and A20: K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) and A21: K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) by A15, A16, A17, Lm2; g = [(g `1_3),(g `2_3),(g `3_3)] by MCART_1:44; then ( e `1_3 <> g `1_3 or e `2_3 <> g `2_3 or e `3_3 <> g `3_3 ) by A1, A13, A5, Th3; then consider L being Element of F such that A22: L * ((e `1_3) - (g `1_3)) = (f `1_3) - (h `1_3) and A23: L * ((e `2_3) - (g `2_3)) = (f `2_3) - (h `2_3) and A24: L * ((e `3_3) - (g `3_3)) = (f `3_3) - (h `3_3) by A7, A18, A11, A9, A10, Lm2; (K * ((e `2_3) - (f `2_3))) - (L * ((e `2_3) - (g `2_3))) = (g `2_3) - (f `2_3) by A20, A23, Lm5; then A25: (K + (- (1_ F))) * ((e `2_3) - (f `2_3)) = (L + (- (1_ F))) * ((e `2_3) - (g `2_3)) by Lm6; (K * ((e `3_3) - (f `3_3))) - (L * ((e `3_3) - (g `3_3))) = (g `3_3) - (f `3_3) by A21, A24, Lm5; then A26: (K + (- (1_ F))) * ((e `3_3) - (f `3_3)) = (L + (- (1_ F))) * ((e `3_3) - (g `3_3)) by Lm6; (K * ((e `1_3) - (f `1_3))) - (L * ((e `1_3) - (g `1_3))) = (g `1_3) - (f `1_3) by A19, A22, Lm5; then (K + (- (1_ F))) * ((e `1_3) - (f `1_3)) = (L + (- (1_ F))) * ((e `1_3) - (g `1_3)) by Lm6; then A27: K + (- (1_ F)) = 0. F by A1, A13, A25, A26, Th4; then ((e `2_3) - (f `2_3)) * (1_ F) = (g `2_3) - (h `2_3) by A20, Lm2; then A28: (e `2_3) - (f `2_3) = (g `2_3) - (h `2_3) by VECTSP_1:def_8; ((e `3_3) - (f `3_3)) * (1_ F) = (g `3_3) - (h `3_3) by A21, A27, Lm2; then A29: (e `3_3) - (f `3_3) = (g `3_3) - (h `3_3) by VECTSP_1:def_8; ((e `1_3) - (f `1_3)) * (1_ F) = (g `1_3) - (h `1_3) by A19, A27, Lm2; then (e `1_3) - (f `1_3) = (g `1_3) - (h `1_3) by VECTSP_1:def_8; hence ( h `1_3 = ((f `1_3) + (g `1_3)) - (e `1_3) & h `2_3 = ((f `2_3) + (g `2_3)) - (e `2_3) & h `3_3 = ((f `3_3) + (g `3_3)) - (e `3_3) ) by A28, A29, Lm7; ::_thesis: verum end; Lm8: for F being Field for L, K, R being Element of F st (L * K) - (L * R) = R + K holds (L - (1_ F)) * K = (L + (1_ F)) * R proof let F be Field; ::_thesis: for L, K, R being Element of F st (L * K) - (L * R) = R + K holds (L - (1_ F)) * K = (L + (1_ F)) * R let L, K, R be Element of F; ::_thesis: ( (L * K) - (L * R) = R + K implies (L - (1_ F)) * K = (L + (1_ F)) * R ) assume (L * K) - (L * R) = R + K ; ::_thesis: (L - (1_ F)) * K = (L + (1_ F)) * R then ((L * K) + (- (L * R))) + (- K) = (R + K) + (- K) by RLVECT_1:def_11 .= R + (K + (- K)) by RLVECT_1:def_3 .= R + (0. F) by RLVECT_1:5 .= R by RLVECT_1:4 ; then ((L * K) + (- K)) + (- (L * R)) = R by RLVECT_1:def_3; then ((L * K) + (- ((1_ F) * K))) + (- (L * R)) = R by VECTSP_1:def_8; then ((L * K) + ((- (1_ F)) * K)) + (- (L * R)) = R by VECTSP_1:9; then ((L + (- (1_ F))) * K) + (- (L * R)) = R by VECTSP_1:def_7; then (((L - (1_ F)) * K) + (- (L * R))) + (L * R) = R + (L * R) by RLVECT_1:def_11; then ((L - (1_ F)) * K) + ((- (L * R)) + (L * R)) = R + (L * R) by RLVECT_1:def_3; then ((L - (1_ F)) * K) + (0. F) = R + (L * R) by RLVECT_1:5; then (L - (1_ F)) * K = (L * R) + R by RLVECT_1:4 .= (L * R) + ((1_ F) * R) by VECTSP_1:def_8 ; hence (L - (1_ F)) * K = (L + (1_ F)) * R by VECTSP_1:def_7; ::_thesis: verum end; Lm9: for F being Field for L, K, N, R, S being Element of F st L * (K - N) = R - S & S = (K + N) - R holds (L - (1_ F)) * (R - N) = (L + (1_ F)) * (R - K) proof let F be Field; ::_thesis: for L, K, N, R, S being Element of F st L * (K - N) = R - S & S = (K + N) - R holds (L - (1_ F)) * (R - N) = (L + (1_ F)) * (R - K) let L, K, N, R, S be Element of F; ::_thesis: ( L * (K - N) = R - S & S = (K + N) - R implies (L - (1_ F)) * (R - N) = (L + (1_ F)) * (R - K) ) assume ( L * (K - N) = R - S & S = (K + N) - R ) ; ::_thesis: (L - (1_ F)) * (R - N) = (L + (1_ F)) * (R - K) then A1: L * (K - N) = R + (- ((K + N) - R)) by RLVECT_1:def_11 .= R + (R + (- (K + N))) by RLVECT_1:33 .= R + (R + ((- K) + (- N))) by RLVECT_1:31 .= R + ((- N) + (R + (- K))) by RLVECT_1:def_3 .= (R + (- N)) + (R + (- K)) by RLVECT_1:def_3 .= (R - N) + (R + (- K)) by RLVECT_1:def_11 .= (R - K) + (R - N) by RLVECT_1:def_11 ; (L * (R - N)) - (L * (R - K)) = (L * (R + (- N))) - (L * (R - K)) by RLVECT_1:def_11 .= (L * (R + (- N))) - (L * (R + (- K))) by RLVECT_1:def_11 .= (L * (R + (- N))) + (- (L * (R + (- K)))) by RLVECT_1:def_11 .= ((L * R) + (L * (- N))) + (- (L * (R + (- K)))) by VECTSP_1:def_7 .= ((L * R) + (L * (- N))) + ((- L) * (R + (- K))) by VECTSP_1:9 .= ((L * R) + (L * (- N))) + (((- L) * R) + ((- L) * (- K))) by VECTSP_1:def_7 .= ((L * R) + (L * (- N))) + (((- L) * R) + (L * K)) by VECTSP_1:10 .= ((L * (- N)) + (L * R)) + ((- (L * R)) + (L * K)) by VECTSP_1:9 .= (((L * (- N)) + (L * R)) + (- (L * R))) + (L * K) by RLVECT_1:def_3 .= ((L * (- N)) + ((L * R) + (- (L * R)))) + (L * K) by RLVECT_1:def_3 .= ((L * (- N)) + (0. F)) + (L * K) by RLVECT_1:5 .= (L * K) + (L * (- N)) by RLVECT_1:4 .= L * (K + (- N)) by VECTSP_1:def_7 .= L * (K - N) by RLVECT_1:def_11 ; hence (L - (1_ F)) * (R - N) = (L + (1_ F)) * (R - K) by A1, Lm8; ::_thesis: verum end; Lm10: for F being Field for K, L, M, N, R, S being Element of F st K = (L + M) - N & R = (L + S) - N holds (1_ F) * (M - S) = K - R proof let F be Field; ::_thesis: for K, L, M, N, R, S being Element of F st K = (L + M) - N & R = (L + S) - N holds (1_ F) * (M - S) = K - R let K, L, M, N, R, S be Element of F; ::_thesis: ( K = (L + M) - N & R = (L + S) - N implies (1_ F) * (M - S) = K - R ) assume that A1: K = (L + M) - N and A2: R = (L + S) - N ; ::_thesis: (1_ F) * (M - S) = K - R - R = - ((L + S) + (- N)) by A2, RLVECT_1:def_11 .= (- (L + S)) + (- (- N)) by RLVECT_1:31 .= (- (L + S)) + N by RLVECT_1:17 .= ((- L) + (- S)) + N by RLVECT_1:31 ; then K - R = ((L + M) - N) + (((- L) + (- S)) + N) by A1, RLVECT_1:def_11 .= ((M + L) + (- N)) + (((- L) + (- S)) + N) by RLVECT_1:def_11 .= ((M + L) + (- N)) + ((- S) + ((- L) + N)) by RLVECT_1:def_3 .= (M + (L + (- N))) + ((- S) + ((- L) + N)) by RLVECT_1:def_3 .= (M + (L - N)) + ((- S) + ((- L) + N)) by RLVECT_1:def_11 .= (M + (L - N)) + ((- S) + ((- L) + (- (- N)))) by RLVECT_1:17 .= (M + (L - N)) + ((- S) + (- (L + (- N)))) by RLVECT_1:31 .= (M + (L - N)) + ((- (L - N)) + (- S)) by RLVECT_1:def_11 .= ((M + (L - N)) + (- (L - N))) + (- S) by RLVECT_1:def_3 .= (M + ((L - N) + (- (L - N)))) + (- S) by RLVECT_1:def_3 .= (M + (0. F)) + (- S) by RLVECT_1:5 .= M + (- S) by RLVECT_1:4 .= (M * (1_ F)) + (- S) by VECTSP_1:def_8 .= (M * (1_ F)) + ((- S) * (1_ F)) by VECTSP_1:def_8 .= (M + (- S)) * (1_ F) by VECTSP_1:def_7 .= (M - S) * (1_ F) by RLVECT_1:def_11 ; hence (1_ F) * (M - S) = K - R ; ::_thesis: verum end; theorem Th6: :: PARSP_2:6 for F being Field holds not for a, b, c being Element of (MPS F) holds a,b '||' a,c proof let F be Field; ::_thesis: not for a, b, c being Element of (MPS F) holds a,b '||' a,c consider e, f, g being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A1: e = [(1_ F),(1_ F),(0. F)] and A2: f = [(- (0. F)),(1_ F),(0. F)] and A3: g = [(1_ F),(- (0. F)),(0. F)] ; A4: ( f `1_3 = - (0. F) & f `2_3 = 1_ F ) by A2, MCART_1:def_5, MCART_1:def_6; A5: ( g `1_3 = 1_ F & g `2_3 = - (0. F) ) by A3, MCART_1:def_5, MCART_1:def_6; the carrier of (MPS F) = [: the carrier of F, the carrier of F, the carrier of F:] by PARSP_1:10; then consider a, b, c being Element of (MPS F) such that A6: [a,b,a,c] = [e,f,e,g] ; take a ; ::_thesis: not for b, c being Element of (MPS F) holds a,b '||' a,c take b ; ::_thesis: not for c being Element of (MPS F) holds a,b '||' a,c take c ; ::_thesis: not a,b '||' a,c ( e `1_3 = 1_ F & e `2_3 = 1_ F ) by A1, MCART_1:def_5, MCART_1:def_6; then A7: (((e `1_3) - (f `1_3)) * ((e `2_3) - (g `2_3))) - (((e `1_3) - (g `1_3)) * ((e `2_3) - (f `2_3))) = (((1. F) + (- (- (0. F)))) * ((1. F) - (- (0. F)))) - (((1. F) - (1. F)) * ((1. F) - (1. F))) by A4, A5, RLVECT_1:def_11 .= (((1. F) + (- (- (0. F)))) * ((1. F) + (- (- (0. F))))) - (((1. F) - (1. F)) * ((1. F) - (1. F))) by RLVECT_1:def_11 .= (((1. F) + (0. F)) * ((1. F) + (- (- (0. F))))) - (((1. F) - (1. F)) * ((1. F) - (1. F))) by RLVECT_1:17 .= (((1. F) + (0. F)) * ((1. F) + (0. F))) - (((1. F) - (1. F)) * ((1. F) - (1. F))) by RLVECT_1:17 .= ((1. F) * ((1. F) + (0. F))) - (((1. F) - (1. F)) * ((1. F) - (1. F))) by RLVECT_1:4 .= ((1. F) * (1. F)) - (((1. F) - (1. F)) * ((1. F) - (1. F))) by RLVECT_1:4 .= ((1. F) * (1. F)) - ((0. F) * ((1. F) - (1. F))) by RLVECT_1:15 .= ((1. F) * (1. F)) - (0. F) by VECTSP_1:12 .= (1. F) - (0. F) by VECTSP_1:def_8 ; now__::_thesis:_for_e9,_f9,_g9,_h9_being_Element_of_[:_the_carrier_of_F,_the_carrier_of_F,_the_carrier_of_F:]_holds_ (_not_[e9,f9,g9,h9]_=_[a,b,a,c]_or_(((e9_`1_3)_-_(f9_`1_3))_*_((g9_`2_3)_-_(h9_`2_3)))_-_(((g9_`1_3)_-_(h9_`1_3))_*_((e9_`2_3)_-_(f9_`2_3)))_<>_0._F_or_(((e9_`1_3)_-_(f9_`1_3))_*_((g9_`3_3)_-_(h9_`3_3)))_-_(((g9_`1_3)_-_(h9_`1_3))_*_((e9_`3_3)_-_(f9_`3_3)))_<>_0._F_or_(((e9_`2_3)_-_(f9_`2_3))_*_((g9_`3_3)_-_(h9_`3_3)))_-_(((g9_`2_3)_-_(h9_`2_3))_*_((e9_`3_3)_-_(f9_`3_3)))_<>_0._F_) let e9, f9, g9, h9 be Element of [: the carrier of F, the carrier of F, the carrier of F:]; ::_thesis: ( not [e9,f9,g9,h9] = [a,b,a,c] or (((e9 `1_3) - (f9 `1_3)) * ((g9 `2_3) - (h9 `2_3))) - (((g9 `1_3) - (h9 `1_3)) * ((e9 `2_3) - (f9 `2_3))) <> 0. F or (((e9 `1_3) - (f9 `1_3)) * ((g9 `3_3) - (h9 `3_3))) - (((g9 `1_3) - (h9 `1_3)) * ((e9 `3_3) - (f9 `3_3))) <> 0. F or (((e9 `2_3) - (f9 `2_3)) * ((g9 `3_3) - (h9 `3_3))) - (((g9 `2_3) - (h9 `2_3)) * ((e9 `3_3) - (f9 `3_3))) <> 0. F ) assume A8: [e9,f9,g9,h9] = [a,b,a,c] ; ::_thesis: ( (((e9 `1_3) - (f9 `1_3)) * ((g9 `2_3) - (h9 `2_3))) - (((g9 `1_3) - (h9 `1_3)) * ((e9 `2_3) - (f9 `2_3))) <> 0. F or (((e9 `1_3) - (f9 `1_3)) * ((g9 `3_3) - (h9 `3_3))) - (((g9 `1_3) - (h9 `1_3)) * ((e9 `3_3) - (f9 `3_3))) <> 0. F or (((e9 `2_3) - (f9 `2_3)) * ((g9 `3_3) - (h9 `3_3))) - (((g9 `2_3) - (h9 `2_3)) * ((e9 `3_3) - (f9 `3_3))) <> 0. F ) then A9: ( g9 = e & h9 = g ) by A6, XTUPLE_0:5; ( e9 = e & f9 = f ) by A6, A8, XTUPLE_0:5; hence ( (((e9 `1_3) - (f9 `1_3)) * ((g9 `2_3) - (h9 `2_3))) - (((g9 `1_3) - (h9 `1_3)) * ((e9 `2_3) - (f9 `2_3))) <> 0. F or (((e9 `1_3) - (f9 `1_3)) * ((g9 `3_3) - (h9 `3_3))) - (((g9 `1_3) - (h9 `1_3)) * ((e9 `3_3) - (f9 `3_3))) <> 0. F or (((e9 `2_3) - (f9 `2_3)) * ((g9 `3_3) - (h9 `3_3))) - (((g9 `2_3) - (h9 `2_3)) * ((e9 `3_3) - (f9 `3_3))) <> 0. F ) by A7, A9, Lm2; ::_thesis: verum end; hence not a,b '||' a,c by PARSP_1:12; ::_thesis: verum end; theorem Th7: :: PARSP_2:7 for F being Field for b, c, a, d being Element of (MPS F) st (1_ F) + (1_ F) <> 0. F & b,c '||' a,d & a,b '||' c,d & a,c '||' b,d holds a,b '||' a,c proof let F be Field; ::_thesis: for b, c, a, d being Element of (MPS F) st (1_ F) + (1_ F) <> 0. F & b,c '||' a,d & a,b '||' c,d & a,c '||' b,d holds a,b '||' a,c let b, c, a, d be Element of (MPS F); ::_thesis: ( (1_ F) + (1_ F) <> 0. F & b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b '||' a,c ) assume that A1: (1_ F) + (1_ F) <> 0. F and A2: b,c '||' a,d and A3: a,b '||' c,d and A4: a,c '||' b,d ; ::_thesis: a,b '||' a,c assume A5: not a,b '||' a,c ; ::_thesis: contradiction consider i, j, k, l being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A6: [b,c,a,d] = [i,j,k,l] and A7: ( ex L being Element of F st ( L * ((i `1_3) - (j `1_3)) = (k `1_3) - (l `1_3) & L * ((i `2_3) - (j `2_3)) = (k `2_3) - (l `2_3) & L * ((i `3_3) - (j `3_3)) = (k `3_3) - (l `3_3) ) or ( (i `1_3) - (j `1_3) = 0. F & (i `2_3) - (j `2_3) = 0. F & (i `3_3) - (j `3_3) = 0. F ) ) by A2, Th2; A8: ( b = i & c = j ) by A6, XTUPLE_0:5; A9: ( a = k & d = l ) by A6, XTUPLE_0:5; consider e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A10: [a,b,c,d] = [e,f,g,h] and ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) by A3, Th2; A11: b = f by A10, XTUPLE_0:5; A12: d = h by A10, XTUPLE_0:5; A13: c = g by A10, XTUPLE_0:5; A14: a = e by A10, XTUPLE_0:5; then A15: [a,b,a,c] = [e,f,e,g] by A10, A11, XTUPLE_0:5; ( f = [(f `1_3),(f `2_3),(f `3_3)] & g = [(g `1_3),(g `2_3),(g `3_3)] ) by MCART_1:44; then ( i `1_3 <> j `1_3 or i `2_3 <> j `2_3 or i `3_3 <> j `3_3 ) by A5, A11, A13, A15, A8, Th3; then consider L being Element of F such that A16: L * ((f `1_3) - (g `1_3)) = (e `1_3) - (h `1_3) and A17: L * ((f `2_3) - (g `2_3)) = (e `2_3) - (h `2_3) and A18: L * ((f `3_3) - (g `3_3)) = (e `3_3) - (h `3_3) by A14, A11, A13, A12, A7, A8, A9, Lm2; h `2_3 = ((f `2_3) + (g `2_3)) - (e `2_3) by A3, A4, A5, A10, Th5; then A19: (L - (1_ F)) * ((e `2_3) - (g `2_3)) = (L + (1_ F)) * ((e `2_3) - (f `2_3)) by A17, Lm9; h `3_3 = ((f `3_3) + (g `3_3)) - (e `3_3) by A3, A4, A5, A10, Th5; then A20: (L - (1_ F)) * ((e `3_3) - (g `3_3)) = (L + (1_ F)) * ((e `3_3) - (f `3_3)) by A18, Lm9; h `1_3 = ((f `1_3) + (g `1_3)) - (e `1_3) by A3, A4, A5, A10, Th5; then (L - (1_ F)) * ((e `1_3) - (g `1_3)) = (L + (1_ F)) * ((e `1_3) - (f `1_3)) by A16, Lm9; then ( L + (1_ F) = 0. F & L - (1_ F) = 0. F ) by A5, A15, A19, A20, Th4; then (L + (1_ F)) - (L - (1_ F)) = (0. F) + (- (0. F)) by RLVECT_1:def_11; then (L + (1_ F)) - (L - (1_ F)) = 0. F by RLVECT_1:5; then (L + (1_ F)) + (- (L - (1_ F))) = 0. F by RLVECT_1:def_11; then (L + (1_ F)) + ((1_ F) + (- L)) = 0. F by RLVECT_1:33; then ((L + (1_ F)) + (1_ F)) + (- L) = 0. F by RLVECT_1:def_3; then (((1_ F) + (1_ F)) + L) + (- L) = 0. F by RLVECT_1:def_3; then ((1_ F) + (1_ F)) + (L + (- L)) = 0. F by RLVECT_1:def_3; then ((1_ F) + (1_ F)) + (0. F) = 0. F by RLVECT_1:5; hence contradiction by A1, RLVECT_1:4; ::_thesis: verum end; theorem Th8: :: PARSP_2:8 for F being Field for a, p, b, c, q, r being Element of (MPS F) st not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r holds b,c '||' q,r proof let F be Field; ::_thesis: for a, p, b, c, q, r being Element of (MPS F) st not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r holds b,c '||' q,r let a, p, b, c, q, r be Element of (MPS F); ::_thesis: ( not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r implies b,c '||' q,r ) assume that A1: not a,p '||' a,b and A2: not a,p '||' a,c and A3: a,p '||' b,q and A4: a,p '||' c,r and A5: a,b '||' p,q and A6: a,c '||' p,r ; ::_thesis: b,c '||' q,r consider i, j, k, l being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A7: [a,p,c,r] = [i,j,k,l] and ( ex L being Element of F st ( L * ((i `1_3) - (j `1_3)) = (k `1_3) - (l `1_3) & L * ((i `2_3) - (j `2_3)) = (k `2_3) - (l `2_3) & L * ((i `3_3) - (j `3_3)) = (k `3_3) - (l `3_3) ) or ( (i `1_3) - (j `1_3) = 0. F & (i `2_3) - (j `2_3) = 0. F & (i `3_3) - (j `3_3) = 0. F ) ) by A4, Th2; consider e, f, g, h being Element of [: the carrier of F, the carrier of F, the carrier of F:] such that A8: [a,b,p,q] = [e,f,g,h] and ( ex K being Element of F st ( K * ((e `1_3) - (f `1_3)) = (g `1_3) - (h `1_3) & K * ((e `2_3) - (f `2_3)) = (g `2_3) - (h `2_3) & K * ((e `3_3) - (f `3_3)) = (g `3_3) - (h `3_3) ) or ( (e `1_3) - (f `1_3) = 0. F & (e `2_3) - (f `2_3) = 0. F & (e `3_3) - (f `3_3) = 0. F ) ) by A5, Th2; A9: ( a = e & p = g ) by A8, XTUPLE_0:5; A10: c = k by A7, XTUPLE_0:5; then A11: [a,p,c,r] = [e,g,k,l] by A9, A7, XTUPLE_0:5; then A12: l `1_3 = ((g `1_3) + (k `1_3)) - (e `1_3) by A2, A4, A6, Th5; A13: b = f by A8, XTUPLE_0:5; then A14: [a,p,b,q] = [e,g,f,h] by A8, A9, XTUPLE_0:5; then h `1_3 = ((g `1_3) + (f `1_3)) - (e `1_3) by A1, A3, A5, Th5; then A15: (1_ F) * ((f `1_3) - (k `1_3)) = (h `1_3) - (l `1_3) by A12, Lm10; A16: l `3_3 = ((g `3_3) + (k `3_3)) - (e `3_3) by A2, A4, A6, A11, Th5; A17: l `2_3 = ((g `2_3) + (k `2_3)) - (e `2_3) by A2, A4, A6, A11, Th5; h `3_3 = ((g `3_3) + (f `3_3)) - (e `3_3) by A1, A3, A5, A14, Th5; then A18: (1_ F) * ((f `3_3) - (k `3_3)) = (h `3_3) - (l `3_3) by A16, Lm10; h `2_3 = ((g `2_3) + (f `2_3)) - (e `2_3) by A1, A3, A5, A14, Th5; then A19: (1_ F) * ((f `2_3) - (k `2_3)) = (h `2_3) - (l `2_3) by A17, Lm10; q = h by A8, XTUPLE_0:5; then [b,c,q,r] = [f,k,h,l] by A13, A7, A10, XTUPLE_0:5; hence b,c '||' q,r by A15, A19, A18, Th2; ::_thesis: verum end; definition let IT be ParSp; attrIT is FanodesSp-like means :Def1: :: PARSP_2:def 1 ( not for a, b, c being Element of IT holds a,b '||' a,c & ( for a, b, c, d being Element of IT st b,c '||' a,d & a,b '||' c,d & a,c '||' b,d holds a,b '||' a,c ) & ( for a, b, c, p, q, r being Element of IT st not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r holds b,c '||' q,r ) ); end; :: deftheorem Def1 defines FanodesSp-like PARSP_2:def_1_:_ for IT being ParSp holds ( IT is FanodesSp-like iff ( not for a, b, c being Element of IT holds a,b '||' a,c & ( for a, b, c, d being Element of IT st b,c '||' a,d & a,b '||' c,d & a,c '||' b,d holds a,b '||' a,c ) & ( for a, b, c, p, q, r being Element of IT st not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r holds b,c '||' q,r ) ) ); registration cluster non empty strict ParSp-like FanodesSp-like for ParStr ; existence ex b1 being ParSp st ( b1 is strict & b1 is FanodesSp-like ) proof set FF = the Fanoian Field; reconsider FdSp = MPS the Fanoian Field as ParSp by Th1; (1_ the Fanoian Field) + (1_ the Fanoian Field) <> 0. the Fanoian Field by VECTSP_1:def_19; then A1: for a, b, c, d being Element of FdSp st b,c '||' a,d & a,b '||' c,d & a,c '||' b,d holds a,b '||' a,c by Th7; ( not for a, b, c being Element of FdSp holds a,b '||' a,c & ( for a, b, c, p, q, r being Element of FdSp st not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r holds b,c '||' q,r ) ) by Th6, Th8; then FdSp is FanodesSp-like by A1, Def1; hence ex b1 being ParSp st ( b1 is strict & b1 is FanodesSp-like ) ; ::_thesis: verum end; end; definition mode FanodesSp is FanodesSp-like ParSp; end; theorem Th9: :: PARSP_2:9 for FdSp being FanodesSp for p, q being Element of FdSp st p <> q holds ex r being Element of FdSp st not p,q '||' p,r proof let FdSp be FanodesSp; ::_thesis: for p, q being Element of FdSp st p <> q holds ex r being Element of FdSp st not p,q '||' p,r let p, q be Element of FdSp; ::_thesis: ( p <> q implies ex r being Element of FdSp st not p,q '||' p,r ) consider a, b, c being Element of FdSp such that A1: not a,b '||' a,c by Def1; assume p <> q ; ::_thesis: not for r being Element of FdSp holds p,q '||' p,r then ( not p,q '||' p,a or not p,q '||' p,b or not p,q '||' p,c ) by A1, PARSP_1:38; hence not for r being Element of FdSp holds p,q '||' p,r ; ::_thesis: verum end; definition let FdSp be FanodesSp; let a, b, c be Element of FdSp; preda,b,c is_collinear means :Def2: :: PARSP_2:def 2 a,b '||' a,c; end; :: deftheorem Def2 defines is_collinear PARSP_2:def_2_:_ for FdSp being FanodesSp for a, b, c being Element of FdSp holds ( a,b,c is_collinear iff a,b '||' a,c ); theorem Th10: :: PARSP_2:10 for FdSp being FanodesSp for a, b, c being Element of FdSp st a,b,c is_collinear holds ( a,c,b is_collinear & c,b,a is_collinear & b,a,c is_collinear & b,c,a is_collinear & c,a,b is_collinear ) proof let FdSp be FanodesSp; ::_thesis: for a, b, c being Element of FdSp st a,b,c is_collinear holds ( a,c,b is_collinear & c,b,a is_collinear & b,a,c is_collinear & b,c,a is_collinear & c,a,b is_collinear ) let a, b, c be Element of FdSp; ::_thesis: ( a,b,c is_collinear implies ( a,c,b is_collinear & c,b,a is_collinear & b,a,c is_collinear & b,c,a is_collinear & c,a,b is_collinear ) ) assume a,b,c is_collinear ; ::_thesis: ( a,c,b is_collinear & c,b,a is_collinear & b,a,c is_collinear & b,c,a is_collinear & c,a,b is_collinear ) then A1: a,b '||' a,c by Def2; then A2: ( b,a '||' b,c & b,c '||' b,a ) by PARSP_1:24; A3: c,a '||' c,b by A1, PARSP_1:24; ( a,c '||' a,b & c,b '||' c,a ) by A1, PARSP_1:24; hence ( a,c,b is_collinear & c,b,a is_collinear & b,a,c is_collinear & b,c,a is_collinear & c,a,b is_collinear ) by A2, A3, Def2; ::_thesis: verum end; theorem Th11: :: PARSP_2:11 for FdSp being FanodesSp for a, b, c, p, q, r being Element of FdSp st not a,b,c is_collinear & a,b '||' p,q & a,c '||' p,r & p <> q & p <> r holds not p,q,r is_collinear proof let FdSp be FanodesSp; ::_thesis: for a, b, c, p, q, r being Element of FdSp st not a,b,c is_collinear & a,b '||' p,q & a,c '||' p,r & p <> q & p <> r holds not p,q,r is_collinear let a, b, c, p, q, r be Element of FdSp; ::_thesis: ( not a,b,c is_collinear & a,b '||' p,q & a,c '||' p,r & p <> q & p <> r implies not p,q,r is_collinear ) assume that A1: not a,b,c is_collinear and A2: ( a,b '||' p,q & a,c '||' p,r & p <> q & p <> r ) ; ::_thesis: not p,q,r is_collinear not a,b '||' a,c by A1, Def2; then not p,q '||' p,r by A2, PARSP_1:30; hence not p,q,r is_collinear by Def2; ::_thesis: verum end; theorem Th12: :: PARSP_2:12 for FdSp being FanodesSp for a, b, c being Element of FdSp st ( a = b or b = c or c = a ) holds a,b,c is_collinear proof let FdSp be FanodesSp; ::_thesis: for a, b, c being Element of FdSp st ( a = b or b = c or c = a ) holds a,b,c is_collinear let a, b, c be Element of FdSp; ::_thesis: ( ( a = b or b = c or c = a ) implies a,b,c is_collinear ) assume ( a = b or b = c or c = a ) ; ::_thesis: a,b,c is_collinear then a,b '||' a,c by PARSP_1:25; hence a,b,c is_collinear by Def2; ::_thesis: verum end; theorem Th13: :: PARSP_2:13 for FdSp being FanodesSp for a, b, p, q, r being Element of FdSp st a <> b & a,b,p is_collinear & a,b,q is_collinear & a,b,r is_collinear holds p,q,r is_collinear proof let FdSp be FanodesSp; ::_thesis: for a, b, p, q, r being Element of FdSp st a <> b & a,b,p is_collinear & a,b,q is_collinear & a,b,r is_collinear holds p,q,r is_collinear let a, b, p, q, r be Element of FdSp; ::_thesis: ( a <> b & a,b,p is_collinear & a,b,q is_collinear & a,b,r is_collinear implies p,q,r is_collinear ) assume that A1: a <> b and A2: a,b,p is_collinear and A3: a,b,q is_collinear and A4: a,b,r is_collinear ; ::_thesis: p,q,r is_collinear A5: a,b '||' a,p by A2, Def2; a,b '||' a,r by A4, Def2; then A6: a,b '||' p,r by A5, PARSP_1:35; a,b '||' a,q by A3, Def2; then a,b '||' p,q by A5, PARSP_1:35; then p,q '||' p,r by A1, A6, PARSP_1:def_12; hence p,q,r is_collinear by Def2; ::_thesis: verum end; theorem Th14: :: PARSP_2:14 for FdSp being FanodesSp for p, q being Element of FdSp st p <> q holds ex r being Element of FdSp st not p,q,r is_collinear proof let FdSp be FanodesSp; ::_thesis: for p, q being Element of FdSp st p <> q holds ex r being Element of FdSp st not p,q,r is_collinear let p, q be Element of FdSp; ::_thesis: ( p <> q implies ex r being Element of FdSp st not p,q,r is_collinear ) assume p <> q ; ::_thesis: not for r being Element of FdSp holds p,q,r is_collinear then consider r being Element of FdSp such that A1: not p,q '||' p,r by Th9; not p,q,r is_collinear by A1, Def2; hence not for r being Element of FdSp holds p,q,r is_collinear ; ::_thesis: verum end; theorem Th15: :: PARSP_2:15 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a,b,c is_collinear & a,b,d is_collinear holds a,b '||' c,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a,b,c is_collinear & a,b,d is_collinear holds a,b '||' c,d let a, b, c, d be Element of FdSp; ::_thesis: ( a,b,c is_collinear & a,b,d is_collinear implies a,b '||' c,d ) assume ( a,b,c is_collinear & a,b,d is_collinear ) ; ::_thesis: a,b '||' c,d then ( a,b '||' a,c & a,b '||' a,d ) by Def2; hence a,b '||' c,d by PARSP_1:35; ::_thesis: verum end; theorem Th16: :: PARSP_2:16 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st not a,b,c is_collinear & a,b '||' c,d holds not a,b,d is_collinear proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st not a,b,c is_collinear & a,b '||' c,d holds not a,b,d is_collinear let a, b, c, d be Element of FdSp; ::_thesis: ( not a,b,c is_collinear & a,b '||' c,d implies not a,b,d is_collinear ) assume that A1: not a,b,c is_collinear and A2: a,b '||' c,d ; ::_thesis: not a,b,d is_collinear A3: now__::_thesis:_(_c_<>_d_&_a_<>_d_implies_not_a,b,d_is_collinear_) assume that A4: c <> d and A5: a <> d ; ::_thesis: not a,b,d is_collinear ( a,c '||' c,a & c <> a ) by A1, Th12, PARSP_1:25; then not c,d,a is_collinear by A1, A2, A4, Th11; then A6: not d,c,a is_collinear by Th10; A7: d,a '||' a,d by PARSP_1:25; ( a <> b & d,c '||' a,b ) by A1, A2, Th12, PARSP_1:23; hence not a,b,d is_collinear by A5, A6, A7, Th11; ::_thesis: verum end; now__::_thesis:_not_a_=_d assume a = d ; ::_thesis: contradiction then a,b '||' a,c by A2, PARSP_1:23; hence contradiction by A1, Def2; ::_thesis: verum end; hence not a,b,d is_collinear by A1, A3; ::_thesis: verum end; theorem Th17: :: PARSP_2:17 for FdSp being FanodesSp for a, b, c, d, x being Element of FdSp st not a,b,c is_collinear & a,b '||' c,d & c <> d & a,b,x is_collinear holds not c,d,x is_collinear proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d, x being Element of FdSp st not a,b,c is_collinear & a,b '||' c,d & c <> d & a,b,x is_collinear holds not c,d,x is_collinear let a, b, c, d, x be Element of FdSp; ::_thesis: ( not a,b,c is_collinear & a,b '||' c,d & c <> d & a,b,x is_collinear implies not c,d,x is_collinear ) assume A1: ( not a,b,c is_collinear & a,b '||' c,d & c <> d ) ; ::_thesis: ( not a,b,x is_collinear or not c,d,x is_collinear ) now__::_thesis:_(_c,d,x_is_collinear_&_a,b,x_is_collinear_implies_not_c,d,x_is_collinear_) assume c,d,x is_collinear ; ::_thesis: ( not a,b,x is_collinear or not c,d,x is_collinear ) then c,d '||' c,x by Def2; hence ( not a,b,x is_collinear or not c,d,x is_collinear ) by A1, Th16, PARSP_1:26; ::_thesis: verum end; hence ( not a,b,x is_collinear or not c,d,x is_collinear ) ; ::_thesis: verum end; theorem :: PARSP_2:18 for FdSp being FanodesSp for o, a, b, x being Element of FdSp holds ( o,a,b is_collinear or not o,a,x is_collinear or not o,b,x is_collinear or o = x ) proof let FdSp be FanodesSp; ::_thesis: for o, a, b, x being Element of FdSp holds ( o,a,b is_collinear or not o,a,x is_collinear or not o,b,x is_collinear or o = x ) let o, a, b, x be Element of FdSp; ::_thesis: ( o,a,b is_collinear or not o,a,x is_collinear or not o,b,x is_collinear or o = x ) assume A1: not o,a,b is_collinear ; ::_thesis: ( not o,a,x is_collinear or not o,b,x is_collinear or o = x ) now__::_thesis:_(_o,a,x_is_collinear_&_o,b,x_is_collinear_&_o,a,x_is_collinear_&_o,b,x_is_collinear_implies_o_=_x_) assume that A2: o,a,x is_collinear and A3: o,b,x is_collinear ; ::_thesis: ( not o,a,x is_collinear or not o,b,x is_collinear or o = x ) a,o,x is_collinear by A2, Th10; then A4: a,o '||' a,x by Def2; b,o,x is_collinear by A3, Th10; then A5: b,o '||' b,x by Def2; not a,b,o is_collinear by A1, Th10; then not a,b '||' a,o by Def2; hence ( not o,a,x is_collinear or not o,b,x is_collinear or o = x ) by A4, A5, PARSP_1:33; ::_thesis: verum end; hence ( not o,a,x is_collinear or not o,b,x is_collinear or o = x ) ; ::_thesis: verum end; theorem :: PARSP_2:19 for FdSp being FanodesSp for o, a, b, p, q being Element of FdSp st o <> a & o <> b & o,a,b is_collinear & o,a,p is_collinear & o,b,q is_collinear holds a,b '||' p,q proof let FdSp be FanodesSp; ::_thesis: for o, a, b, p, q being Element of FdSp st o <> a & o <> b & o,a,b is_collinear & o,a,p is_collinear & o,b,q is_collinear holds a,b '||' p,q let o, a, b, p, q be Element of FdSp; ::_thesis: ( o <> a & o <> b & o,a,b is_collinear & o,a,p is_collinear & o,b,q is_collinear implies a,b '||' p,q ) assume that A1: o <> a and A2: o <> b and A3: o,a,b is_collinear and A4: o,a,p is_collinear and A5: o,b,q is_collinear ; ::_thesis: a,b '||' p,q A6: now__::_thesis:_(_o_<>_p_implies_a,b_'||'_p,q_) A7: o,a '||' o,b by A3, Def2; o,a '||' o,p by A4, Def2; then A8: o,b '||' o,p by A1, A7, PARSP_1:def_12; o,b '||' o,q by A5, Def2; then o,p '||' o,q by A2, A8, PARSP_1:def_12; then A9: o,p '||' p,q by PARSP_1:24; o,b '||' a,b by A7, PARSP_1:24; then A10: a,b '||' o,p by A2, A8, PARSP_1:def_12; assume o <> p ; ::_thesis: a,b '||' p,q hence a,b '||' p,q by A10, A9, PARSP_1:26; ::_thesis: verum end; now__::_thesis:_(_o_=_p_implies_a,b_'||'_p,q_) assume A11: o = p ; ::_thesis: a,b '||' p,q then p,a '||' p,b by A3, Def2; then A12: a,b '||' p,b by PARSP_1:24; p,b '||' p,q by A5, A11, Def2; hence a,b '||' p,q by A2, A11, A12, PARSP_1:26; ::_thesis: verum end; hence a,b '||' p,q by A6; ::_thesis: verum end; theorem :: PARSP_2:20 for FdSp being FanodesSp for a, b, c, d, p, q being Element of FdSp st not a,b '||' c,d & a,b,p is_collinear & a,b,q is_collinear & c,d,p is_collinear & c,d,q is_collinear holds p = q proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d, p, q being Element of FdSp st not a,b '||' c,d & a,b,p is_collinear & a,b,q is_collinear & c,d,p is_collinear & c,d,q is_collinear holds p = q let a, b, c, d, p, q be Element of FdSp; ::_thesis: ( not a,b '||' c,d & a,b,p is_collinear & a,b,q is_collinear & c,d,p is_collinear & c,d,q is_collinear implies p = q ) assume that A1: not a,b '||' c,d and A2: ( a,b,p is_collinear & a,b,q is_collinear ) and A3: ( c,d,p is_collinear & c,d,q is_collinear ) ; ::_thesis: p = q c,d '||' p,q by A3, Th15; then A4: p,q '||' c,d by PARSP_1:23; a,b '||' p,q by A2, Th15; then p,q '||' a,b by PARSP_1:23; hence p = q by A1, A4, PARSP_1:def_12; ::_thesis: verum end; theorem :: PARSP_2:21 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a <> b & a,b,c is_collinear & a,b '||' c,d holds a,c '||' b,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a <> b & a,b,c is_collinear & a,b '||' c,d holds a,c '||' b,d let a, b, c, d be Element of FdSp; ::_thesis: ( a <> b & a,b,c is_collinear & a,b '||' c,d implies a,c '||' b,d ) assume that A1: a <> b and A2: a,b,c is_collinear and A3: a,b '||' c,d ; ::_thesis: a,c '||' b,d now__::_thesis:_(_b_<>_c_implies_a,c_'||'_b,d_) A4: a,b '||' a,c by A2, Def2; then a,b '||' c,b by PARSP_1:24; then c,b '||' c,d by A1, A3, PARSP_1:def_12; then A5: b,c '||' b,d by PARSP_1:24; assume A6: b <> c ; ::_thesis: a,c '||' b,d b,c '||' a,c by A4, PARSP_1:24; hence a,c '||' b,d by A6, A5, PARSP_1:def_12; ::_thesis: verum end; hence a,c '||' b,d by A3; ::_thesis: verum end; theorem :: PARSP_2:22 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a <> b & a,b,c is_collinear & a,b '||' c,d holds c,b '||' c,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a <> b & a,b,c is_collinear & a,b '||' c,d holds c,b '||' c,d let a, b, c, d be Element of FdSp; ::_thesis: ( a <> b & a,b,c is_collinear & a,b '||' c,d implies c,b '||' c,d ) assume that A1: a <> b and A2: a,b,c is_collinear and A3: a,b '||' c,d ; ::_thesis: c,b '||' c,d now__::_thesis:_(_a_<>_c_implies_c,b_'||'_c,d_) a,b '||' a,c by A2, Def2; then A4: ( a,c '||' c,b & a,c '||' c,d ) by A1, A3, PARSP_1:24, PARSP_1:def_12; assume a <> c ; ::_thesis: c,b '||' c,d hence c,b '||' c,d by A4, PARSP_1:def_12; ::_thesis: verum end; hence c,b '||' c,d by A3; ::_thesis: verum end; theorem :: PARSP_2:23 for FdSp being FanodesSp for o, a, c, b, p, q being Element of FdSp st not o,a,c is_collinear & o,a,b is_collinear & o,c,p is_collinear & o,c,q is_collinear & a,c '||' b,p & a,c '||' b,q holds p = q proof let FdSp be FanodesSp; ::_thesis: for o, a, c, b, p, q being Element of FdSp st not o,a,c is_collinear & o,a,b is_collinear & o,c,p is_collinear & o,c,q is_collinear & a,c '||' b,p & a,c '||' b,q holds p = q let o, a, c, b, p, q be Element of FdSp; ::_thesis: ( not o,a,c is_collinear & o,a,b is_collinear & o,c,p is_collinear & o,c,q is_collinear & a,c '||' b,p & a,c '||' b,q implies p = q ) assume that A1: ( not o,a,c is_collinear & o,a,b is_collinear ) and A2: ( o,c,p is_collinear & o,c,q is_collinear ) and A3: ( a,c '||' b,p & a,c '||' b,q ) ; ::_thesis: p = q A4: ( o,c '||' o,p & o,c '||' o,q ) by A2, Def2; ( not o,a '||' o,c & o,a '||' o,b ) by A1, Def2; hence p = q by A3, A4, PARSP_1:34; ::_thesis: verum end; theorem :: PARSP_2:24 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a <> b & a,b,c is_collinear & a,b,d is_collinear holds a,c,d is_collinear proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a <> b & a,b,c is_collinear & a,b,d is_collinear holds a,c,d is_collinear let a, b, c, d be Element of FdSp; ::_thesis: ( a <> b & a,b,c is_collinear & a,b,d is_collinear implies a,c,d is_collinear ) assume that A1: a <> b and A2: ( a,b,c is_collinear & a,b,d is_collinear ) ; ::_thesis: a,c,d is_collinear ( a,b '||' a,c & a,b '||' a,d ) by A2, Def2; then a,c '||' a,d by A1, PARSP_1:def_12; hence a,c,d is_collinear by Def2; ::_thesis: verum end; theorem :: PARSP_2:25 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a,b,c is_collinear & a,c,d is_collinear & a <> c holds b,c,d is_collinear proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a,b,c is_collinear & a,c,d is_collinear & a <> c holds b,c,d is_collinear let a, b, c, d be Element of FdSp; ::_thesis: ( a,b,c is_collinear & a,c,d is_collinear & a <> c implies b,c,d is_collinear ) assume that A1: a,b,c is_collinear and A2: ( a,c,d is_collinear & a <> c ) ; ::_thesis: b,c,d is_collinear A3: a,c,c is_collinear by Th12; a,c,b is_collinear by A1, Th10; hence b,c,d is_collinear by A2, A3, Th13; ::_thesis: verum end; definition let FdSp be FanodesSp; let a, b, c, d be Element of FdSp; pred parallelogram a,b,c,d means :Def3: :: PARSP_2:def 3 ( not a,b,c is_collinear & a,b '||' c,d & a,c '||' b,d ); end; :: deftheorem Def3 defines parallelogram PARSP_2:def_3_:_ for FdSp being FanodesSp for a, b, c, d being Element of FdSp holds ( parallelogram a,b,c,d iff ( not a,b,c is_collinear & a,b '||' c,d & a,c '||' b,d ) ); theorem Th26: :: PARSP_2:26 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds ( a <> b & b <> c & c <> a & a <> d & b <> d & c <> d ) proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds ( a <> b & b <> c & c <> a & a <> d & b <> d & c <> d ) let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies ( a <> b & b <> c & c <> a & a <> d & b <> d & c <> d ) ) assume A1: parallelogram a,b,c,d ; ::_thesis: ( a <> b & b <> c & c <> a & a <> d & b <> d & c <> d ) A2: now__::_thesis:_not_a_=_d assume a = d ; ::_thesis: contradiction then a,b '||' c,a by A1, Def3; then A3: a,b '||' a,c by PARSP_1:23; not a,b,c is_collinear by A1, Def3; hence contradiction by A3, Def2; ::_thesis: verum end; A4: now__::_thesis:_not_c_=_d assume c = d ; ::_thesis: contradiction then a,c '||' b,c by A1, Def3; then c,a '||' c,b by PARSP_1:23; then A5: a,b '||' a,c by PARSP_1:24; not a,b,c is_collinear by A1, Def3; hence contradiction by A5, Def2; ::_thesis: verum end; A6: now__::_thesis:_not_b_=_d assume b = d ; ::_thesis: contradiction then a,b '||' c,b by A1, Def3; then b,a '||' b,c by PARSP_1:23; then A7: a,b '||' a,c by PARSP_1:24; not a,b,c is_collinear by A1, Def3; hence contradiction by A7, Def2; ::_thesis: verum end; not a,b,c is_collinear by A1, Def3; hence ( a <> b & b <> c & c <> a & a <> d & b <> d & c <> d ) by A2, A6, A4, Th12; ::_thesis: verum end; theorem Th27: :: PARSP_2:27 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear ) proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear ) let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear ) ) A1: ( a,b '||' b,a & a,c '||' c,a ) by PARSP_1:25; assume A2: parallelogram a,b,c,d ; ::_thesis: ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear ) then A3: d <> b by Th26; a,c '||' b,d by A2, Def3; then A4: a,c '||' d,b by PARSP_1:23; a,b '||' c,d by A2, Def3; then A5: a,b '||' d,c by PARSP_1:23; A6: ( not a,b,c is_collinear & d <> c ) by A2, Def3, Th26; A7: ( a,b '||' c,d & c <> a ) by A2, Def3, Th26; ( a,c '||' b,d & b <> a ) by A2, Def3, Th26; hence ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear ) by A1, A7, A5, A4, A6, A3, Th11; ::_thesis: verum end; theorem Th28: :: PARSP_2:28 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear & not a,c,b is_collinear & not b,a,c is_collinear & not b,c,a is_collinear & not c,a,b is_collinear & not c,b,a is_collinear & not b,d,a is_collinear & not a,b,d is_collinear & not a,d,b is_collinear & not d,a,b is_collinear & not d,b,a is_collinear & not c,a,d is_collinear & not a,c,d is_collinear & not a,d,c is_collinear & not d,a,c is_collinear & not d,c,a is_collinear & not d,b,c is_collinear & not b,c,d is_collinear & not b,d,c is_collinear & not c,b,d is_collinear & not c,d,b is_collinear ) proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear & not a,c,b is_collinear & not b,a,c is_collinear & not b,c,a is_collinear & not c,a,b is_collinear & not c,b,a is_collinear & not b,d,a is_collinear & not a,b,d is_collinear & not a,d,b is_collinear & not d,a,b is_collinear & not d,b,a is_collinear & not c,a,d is_collinear & not a,c,d is_collinear & not a,d,c is_collinear & not d,a,c is_collinear & not d,c,a is_collinear & not d,b,c is_collinear & not b,c,d is_collinear & not b,d,c is_collinear & not c,b,d is_collinear & not c,d,b is_collinear ) let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear & not a,c,b is_collinear & not b,a,c is_collinear & not b,c,a is_collinear & not c,a,b is_collinear & not c,b,a is_collinear & not b,d,a is_collinear & not a,b,d is_collinear & not a,d,b is_collinear & not d,a,b is_collinear & not d,b,a is_collinear & not c,a,d is_collinear & not a,c,d is_collinear & not a,d,c is_collinear & not d,a,c is_collinear & not d,c,a is_collinear & not d,b,c is_collinear & not b,c,d is_collinear & not b,d,c is_collinear & not c,b,d is_collinear & not c,d,b is_collinear ) ) assume A1: parallelogram a,b,c,d ; ::_thesis: ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear & not a,c,b is_collinear & not b,a,c is_collinear & not b,c,a is_collinear & not c,a,b is_collinear & not c,b,a is_collinear & not b,d,a is_collinear & not a,b,d is_collinear & not a,d,b is_collinear & not d,a,b is_collinear & not d,b,a is_collinear & not c,a,d is_collinear & not a,c,d is_collinear & not a,d,c is_collinear & not d,a,c is_collinear & not d,c,a is_collinear & not d,b,c is_collinear & not b,c,d is_collinear & not b,d,c is_collinear & not c,b,d is_collinear & not c,d,b is_collinear ) then A2: ( not c,d,a is_collinear & not d,c,b is_collinear ) by Th27; ( not a,b,c is_collinear & not b,a,d is_collinear ) by A1, Th27; hence ( not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear & not a,c,b is_collinear & not b,a,c is_collinear & not b,c,a is_collinear & not c,a,b is_collinear & not c,b,a is_collinear & not b,d,a is_collinear & not a,b,d is_collinear & not a,d,b is_collinear & not d,a,b is_collinear & not d,b,a is_collinear & not c,a,d is_collinear & not a,c,d is_collinear & not a,d,c is_collinear & not d,a,c is_collinear & not d,c,a is_collinear & not d,b,c is_collinear & not b,c,d is_collinear & not b,d,c is_collinear & not c,b,d is_collinear & not c,d,b is_collinear ) by A2, Th10; ::_thesis: verum end; theorem Th29: :: PARSP_2:29 for FdSp being FanodesSp for a, b, c, d, x being Element of FdSp holds ( not parallelogram a,b,c,d or not a,b,x is_collinear or not c,d,x is_collinear ) proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d, x being Element of FdSp holds ( not parallelogram a,b,c,d or not a,b,x is_collinear or not c,d,x is_collinear ) let a, b, c, d, x be Element of FdSp; ::_thesis: ( not parallelogram a,b,c,d or not a,b,x is_collinear or not c,d,x is_collinear ) assume A1: parallelogram a,b,c,d ; ::_thesis: ( not a,b,x is_collinear or not c,d,x is_collinear ) then A2: c <> d by Th26; ( not a,b,c is_collinear & a,b '||' c,d ) by A1, Def3; hence ( not a,b,x is_collinear or not c,d,x is_collinear ) by A2, Th17; ::_thesis: verum end; theorem Th30: :: PARSP_2:30 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds parallelogram a,c,b,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds parallelogram a,c,b,d let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies parallelogram a,c,b,d ) assume A1: parallelogram a,b,c,d ; ::_thesis: parallelogram a,c,b,d then A2: a,c '||' b,d by Def3; ( not a,c,b is_collinear & a,b '||' c,d ) by A1, Def3, Th28; hence parallelogram a,c,b,d by A2, Def3; ::_thesis: verum end; theorem Th31: :: PARSP_2:31 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds parallelogram c,d,a,b proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds parallelogram c,d,a,b let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies parallelogram c,d,a,b ) assume A1: parallelogram a,b,c,d ; ::_thesis: parallelogram c,d,a,b then a,b '||' c,d by Def3; then A2: c,d '||' a,b by PARSP_1:23; a,c '||' b,d by A1, Def3; then A3: c,a '||' d,b by PARSP_1:23; not c,d,a is_collinear by A1, Th28; hence parallelogram c,d,a,b by A2, A3, Def3; ::_thesis: verum end; theorem Th32: :: PARSP_2:32 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds parallelogram b,a,d,c proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds parallelogram b,a,d,c let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies parallelogram b,a,d,c ) assume A1: parallelogram a,b,c,d ; ::_thesis: parallelogram b,a,d,c then a,b '||' c,d by Def3; then A2: b,a '||' d,c by PARSP_1:23; a,c '||' b,d by A1, Def3; then A3: b,d '||' a,c by PARSP_1:23; not b,a,d is_collinear by A1, Th28; hence parallelogram b,a,d,c by A2, A3, Def3; ::_thesis: verum end; theorem Th33: :: PARSP_2:33 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds ( parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram d,b,c,a & parallelogram b,d,a,c & parallelogram d,c,b,a ) proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds ( parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram d,b,c,a & parallelogram b,d,a,c & parallelogram d,c,b,a ) let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies ( parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram d,b,c,a & parallelogram b,d,a,c & parallelogram d,c,b,a ) ) assume A1: parallelogram a,b,c,d ; ::_thesis: ( parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram d,b,c,a & parallelogram b,d,a,c & parallelogram d,c,b,a ) then parallelogram c,d,a,b by Th31; then A2: parallelogram c,a,d,b by Th30; parallelogram b,a,d,c by A1, Th32; hence ( parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram d,b,c,a & parallelogram b,d,a,c & parallelogram d,c,b,a ) by A1, A2, Th30, Th31; ::_thesis: verum end; theorem Th34: :: PARSP_2:34 for FdSp being FanodesSp for a, b, c being Element of FdSp st not a,b,c is_collinear holds ex d being Element of FdSp st parallelogram a,b,c,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c being Element of FdSp st not a,b,c is_collinear holds ex d being Element of FdSp st parallelogram a,b,c,d let a, b, c be Element of FdSp; ::_thesis: ( not a,b,c is_collinear implies ex d being Element of FdSp st parallelogram a,b,c,d ) consider d being Element of FdSp such that A1: ( a,b '||' c,d & a,c '||' b,d ) by PARSP_1:def_12; assume not a,b,c is_collinear ; ::_thesis: ex d being Element of FdSp st parallelogram a,b,c,d then parallelogram a,b,c,d by A1, Def3; hence ex d being Element of FdSp st parallelogram a,b,c,d ; ::_thesis: verum end; theorem Th35: :: PARSP_2:35 for FdSp being FanodesSp for a, b, c, p, q being Element of FdSp st parallelogram a,b,c,p & parallelogram a,b,c,q holds p = q proof let FdSp be FanodesSp; ::_thesis: for a, b, c, p, q being Element of FdSp st parallelogram a,b,c,p & parallelogram a,b,c,q holds p = q let a, b, c, p, q be Element of FdSp; ::_thesis: ( parallelogram a,b,c,p & parallelogram a,b,c,q implies p = q ) assume that A1: parallelogram a,b,c,p and A2: parallelogram a,b,c,q ; ::_thesis: p = q a,b '||' c,p by A1, Def3; then A3: ( b,c '||' c,b & b,a '||' c,p ) by PARSP_1:23, PARSP_1:25; a,b '||' c,q by A2, Def3; then A4: b,a '||' c,q by PARSP_1:23; a,c '||' b,p by A1, Def3; then A5: c,a '||' b,p by PARSP_1:23; a,c '||' b,q by A2, Def3; then A6: c,a '||' b,q by PARSP_1:23; not b,c,a is_collinear by A1, Th28; then not b,c '||' b,a by Def2; hence p = q by A3, A4, A5, A6, PARSP_1:34; ::_thesis: verum end; theorem Th36: :: PARSP_2:36 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds not a,d '||' b,c proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds not a,d '||' b,c let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies not a,d '||' b,c ) assume A1: parallelogram a,b,c,d ; ::_thesis: not a,d '||' b,c then not a,b,c is_collinear by Def3; then A2: not a,b '||' a,c by Def2; ( a,b '||' c,d & a,c '||' b,d ) by A1, Def3; then not b,c '||' a,d by A2, Def1; hence not a,d '||' b,c by PARSP_1:19; ::_thesis: verum end; theorem Th37: :: PARSP_2:37 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds not parallelogram a,b,d,c proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds not parallelogram a,b,d,c let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies not parallelogram a,b,d,c ) assume parallelogram a,b,c,d ; ::_thesis: not parallelogram a,b,d,c then not a,d '||' b,c by Th36; hence not parallelogram a,b,d,c by Def3; ::_thesis: verum end; theorem Th38: :: PARSP_2:38 for FdSp being FanodesSp for a, b being Element of FdSp st a <> b holds ex c being Element of FdSp st ( a,b,c is_collinear & c <> a & c <> b ) proof let FdSp be FanodesSp; ::_thesis: for a, b being Element of FdSp st a <> b holds ex c being Element of FdSp st ( a,b,c is_collinear & c <> a & c <> b ) let a, b be Element of FdSp; ::_thesis: ( a <> b implies ex c being Element of FdSp st ( a,b,c is_collinear & c <> a & c <> b ) ) assume a <> b ; ::_thesis: ex c being Element of FdSp st ( a,b,c is_collinear & c <> a & c <> b ) then consider p being Element of FdSp such that A1: not a,b,p is_collinear by Th14; consider q being Element of FdSp such that A2: parallelogram a,b,p,q by A1, Th34; not p,q,b is_collinear by A2, Th28; then consider c being Element of FdSp such that A3: parallelogram p,q,b,c by Th34; A4: p,q '||' b,c by A3, Def3; ( p <> q & a,b '||' p,q ) by A2, Def3, Th26; then a,b '||' b,c by A4, PARSP_1:26; then b,a '||' b,c by PARSP_1:23; then b,a,c is_collinear by Def2; then A5: a,b,c is_collinear by Th10; A6: not a,q '||' b,p by A2, Th36; p,b '||' q,c by A3, Def3; then A7: a <> c by A6, PARSP_1:23; b <> c by A3, Th26; hence ex c being Element of FdSp st ( a,b,c is_collinear & c <> a & c <> b ) by A7, A5; ::_thesis: verum end; theorem Th39: :: PARSP_2:39 for FdSp being FanodesSp for a, p, b, q, c, r being Element of FdSp st parallelogram a,p,b,q & parallelogram a,p,c,r holds b,c '||' q,r proof let FdSp be FanodesSp; ::_thesis: for a, p, b, q, c, r being Element of FdSp st parallelogram a,p,b,q & parallelogram a,p,c,r holds b,c '||' q,r let a, p, b, q, c, r be Element of FdSp; ::_thesis: ( parallelogram a,p,b,q & parallelogram a,p,c,r implies b,c '||' q,r ) assume that A1: parallelogram a,p,b,q and A2: parallelogram a,p,c,r ; ::_thesis: b,c '||' q,r A3: ( a,p '||' c,r & a,c '||' p,r ) by A2, Def3; not a,p,c is_collinear by A2, Def3; then A4: not a,p '||' a,c by Def2; not a,p,b is_collinear by A1, Def3; then A5: not a,p '||' a,b by Def2; ( a,p '||' b,q & a,b '||' p,q ) by A1, Def3; hence b,c '||' q,r by A5, A4, A3, Def1; ::_thesis: verum end; theorem Th40: :: PARSP_2:40 for FdSp being FanodesSp for b, q, c, a, p, r being Element of FdSp st not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r holds parallelogram b,q,c,r proof let FdSp be FanodesSp; ::_thesis: for b, q, c, a, p, r being Element of FdSp st not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r holds parallelogram b,q,c,r let b, q, c, a, p, r be Element of FdSp; ::_thesis: ( not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r implies parallelogram b,q,c,r ) assume that A1: not b,q,c is_collinear and A2: parallelogram a,p,b,q and A3: parallelogram a,p,c,r ; ::_thesis: parallelogram b,q,c,r A4: a,p '||' c,r by A3, Def3; ( a <> p & a,p '||' b,q ) by A2, Def3, Th26; then A5: b,q '||' c,r by A4, PARSP_1:def_12; b,c '||' q,r by A2, A3, Th39; hence parallelogram b,q,c,r by A1, A5, Def3; ::_thesis: verum end; theorem Th41: :: PARSP_2:41 for FdSp being FanodesSp for a, b, c, p, q, r being Element of FdSp st a,b,c is_collinear & b <> c & parallelogram a,p,b,q & parallelogram a,p,c,r holds parallelogram b,q,c,r proof let FdSp be FanodesSp; ::_thesis: for a, b, c, p, q, r being Element of FdSp st a,b,c is_collinear & b <> c & parallelogram a,p,b,q & parallelogram a,p,c,r holds parallelogram b,q,c,r let a, b, c, p, q, r be Element of FdSp; ::_thesis: ( a,b,c is_collinear & b <> c & parallelogram a,p,b,q & parallelogram a,p,c,r implies parallelogram b,q,c,r ) assume that A1: a,b,c is_collinear and A2: b <> c and A3: parallelogram a,p,b,q and A4: parallelogram a,p,c,r ; ::_thesis: parallelogram b,q,c,r A5: b <> q by A3, Th26; a,b '||' a,c by A1, Def2; then A6: a,b '||' b,c by PARSP_1:24; ( not a,p,b is_collinear & a,p '||' b,q ) by A3, Def3; hence parallelogram b,q,c,r by A2, A3, A4, A5, A6, Th11, Th40; ::_thesis: verum end; theorem Th42: :: PARSP_2:42 for FdSp being FanodesSp for a, p, b, q, c, r, d, s being Element of FdSp st parallelogram a,p,b,q & parallelogram a,p,c,r & parallelogram b,q,d,s holds c,d '||' r,s proof let FdSp be FanodesSp; ::_thesis: for a, p, b, q, c, r, d, s being Element of FdSp st parallelogram a,p,b,q & parallelogram a,p,c,r & parallelogram b,q,d,s holds c,d '||' r,s let a, p, b, q, c, r, d, s be Element of FdSp; ::_thesis: ( parallelogram a,p,b,q & parallelogram a,p,c,r & parallelogram b,q,d,s implies c,d '||' r,s ) assume that A1: parallelogram a,p,b,q and A2: parallelogram a,p,c,r and A3: parallelogram b,q,d,s ; ::_thesis: c,d '||' r,s A4: now__::_thesis:_(_not_a,p,d_is_collinear_implies_c,d_'||'_r,s_) assume A5: not a,p,d is_collinear ; ::_thesis: c,d '||' r,s parallelogram b,q,a,p by A1, Th33; then parallelogram a,p,d,s by A3, A5, Th40; hence c,d '||' r,s by A2, Th39; ::_thesis: verum end; A6: now__::_thesis:_(_b,q,c_is_collinear_&_a,p,d_is_collinear_implies_c,d_'||'_r,s_) A7: a <> p by A1, Th26; A8: ( not a,p,b is_collinear & a,p '||' a,p ) by A1, Th28, PARSP_1:25; assume that A9: b,q,c is_collinear and A10: a,p,d is_collinear ; ::_thesis: c,d '||' r,s a <> b by A1, Th26; then consider x being Element of FdSp such that A11: a,b,x is_collinear and A12: x <> a and A13: x <> b by Th38; a,b '||' a,x by A11, Def2; then consider y being Element of FdSp such that A14: parallelogram a,p,x,y by A12, A8, A7, Th11, Th34; A15: not x,y,d is_collinear by A10, A14, Th29; parallelogram b,q,x,y by A1, A11, A13, A14, Th41; then A16: parallelogram x,y,d,s by A3, A15, Th40; not x,y,c is_collinear by A1, A9, A11, A13, A14, Th29, Th41; then parallelogram x,y,c,r by A2, A14, Th40; hence c,d '||' r,s by A16, Th39; ::_thesis: verum end; now__::_thesis:_(_not_b,q,c_is_collinear_implies_c,d_'||'_r,s_) assume not b,q,c is_collinear ; ::_thesis: c,d '||' r,s then parallelogram b,q,c,r by A1, A2, Th40; hence c,d '||' r,s by A3, Th39; ::_thesis: verum end; hence c,d '||' r,s by A4, A6; ::_thesis: verum end; theorem Th43: :: PARSP_2:43 for FdSp being FanodesSp for a, b being Element of FdSp st a <> b holds ex c, d being Element of FdSp st parallelogram a,b,c,d proof let FdSp be FanodesSp; ::_thesis: for a, b being Element of FdSp st a <> b holds ex c, d being Element of FdSp st parallelogram a,b,c,d let a, b be Element of FdSp; ::_thesis: ( a <> b implies ex c, d being Element of FdSp st parallelogram a,b,c,d ) assume a <> b ; ::_thesis: ex c, d being Element of FdSp st parallelogram a,b,c,d then consider c being Element of FdSp such that A1: not a,b,c is_collinear by Th14; ex d being Element of FdSp st parallelogram a,b,c,d by A1, Th34; hence ex c, d being Element of FdSp st parallelogram a,b,c,d ; ::_thesis: verum end; theorem :: PARSP_2:44 for FdSp being FanodesSp for a, d being Element of FdSp st a <> d holds ex b, c being Element of FdSp st parallelogram a,b,c,d proof let FdSp be FanodesSp; ::_thesis: for a, d being Element of FdSp st a <> d holds ex b, c being Element of FdSp st parallelogram a,b,c,d let a, d be Element of FdSp; ::_thesis: ( a <> d implies ex b, c being Element of FdSp st parallelogram a,b,c,d ) assume a <> d ; ::_thesis: ex b, c being Element of FdSp st parallelogram a,b,c,d then consider b being Element of FdSp such that A1: not a,d,b is_collinear by Th14; not b,a,d is_collinear by A1, Th10; then consider c being Element of FdSp such that A2: parallelogram b,a,d,c by Th34; parallelogram a,b,c,d by A2, Th33; hence ex b, c being Element of FdSp st parallelogram a,b,c,d ; ::_thesis: verum end; definition let FdSp be FanodesSp; let a, b, r, s be Element of FdSp; preda,b congr r,s means :Def4: :: PARSP_2:def 4 ( ( a = b & r = s ) or ex p, q being Element of FdSp st ( parallelogram p,q,a,b & parallelogram p,q,r,s ) ); end; :: deftheorem Def4 defines congr PARSP_2:def_4_:_ for FdSp being FanodesSp for a, b, r, s being Element of FdSp holds ( a,b congr r,s iff ( ( a = b & r = s ) or ex p, q being Element of FdSp st ( parallelogram p,q,a,b & parallelogram p,q,r,s ) ) ); theorem Th45: :: PARSP_2:45 for FdSp being FanodesSp for a, b, c being Element of FdSp st a,a congr b,c holds b = c proof let FdSp be FanodesSp; ::_thesis: for a, b, c being Element of FdSp st a,a congr b,c holds b = c let a, b, c be Element of FdSp; ::_thesis: ( a,a congr b,c implies b = c ) assume a,a congr b,c ; ::_thesis: b = c then ( ( a = a & b = c ) or ex p, q being Element of FdSp st ( parallelogram p,q,a,a & parallelogram p,q,b,c ) ) by Def4; hence b = c by Th26; ::_thesis: verum end; theorem :: PARSP_2:46 for FdSp being FanodesSp for a, b, c being Element of FdSp st a,b congr c,c holds a = b proof let FdSp be FanodesSp; ::_thesis: for a, b, c being Element of FdSp st a,b congr c,c holds a = b let a, b, c be Element of FdSp; ::_thesis: ( a,b congr c,c implies a = b ) assume a,b congr c,c ; ::_thesis: a = b then ( ( a = b & c = c ) or ex p, q being Element of FdSp st ( parallelogram p,q,a,b & parallelogram p,q,c,c ) ) by Def4; hence a = b by Th26; ::_thesis: verum end; theorem :: PARSP_2:47 for FdSp being FanodesSp for a, b being Element of FdSp st a,b congr b,a holds a = b proof let FdSp be FanodesSp; ::_thesis: for a, b being Element of FdSp st a,b congr b,a holds a = b let a, b be Element of FdSp; ::_thesis: ( a,b congr b,a implies a = b ) assume A1: a,b congr b,a ; ::_thesis: a = b now__::_thesis:_not_a_<>_b assume a <> b ; ::_thesis: contradiction then ex p, q being Element of FdSp st ( parallelogram p,q,a,b & parallelogram p,q,b,a ) by A1, Def4; hence contradiction by Th37; ::_thesis: verum end; hence a = b ; ::_thesis: verum end; theorem Th48: :: PARSP_2:48 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a,b congr c,d holds a,b '||' c,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a,b congr c,d holds a,b '||' c,d let a, b, c, d be Element of FdSp; ::_thesis: ( a,b congr c,d implies a,b '||' c,d ) assume A1: a,b congr c,d ; ::_thesis: a,b '||' c,d now__::_thesis:_(_a_<>_b_implies_a,b_'||'_c,d_) assume a <> b ; ::_thesis: a,b '||' c,d then consider p, q being Element of FdSp such that A2: parallelogram p,q,a,b and A3: parallelogram p,q,c,d by A1, Def4; A4: p,q '||' c,d by A3, Def3; ( p <> q & p,q '||' a,b ) by A2, Def3, Th26; hence a,b '||' c,d by A4, PARSP_1:def_12; ::_thesis: verum end; hence a,b '||' c,d by PARSP_1:20; ::_thesis: verum end; theorem Th49: :: PARSP_2:49 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a,b congr c,d holds a,c '||' b,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a,b congr c,d holds a,c '||' b,d let a, b, c, d be Element of FdSp; ::_thesis: ( a,b congr c,d implies a,c '||' b,d ) assume A1: a,b congr c,d ; ::_thesis: a,c '||' b,d A2: now__::_thesis:_(_a_=_b_implies_a,c_'||'_b,d_) assume A3: a = b ; ::_thesis: a,c '||' b,d then c = d by A1, Th45; hence a,c '||' b,d by A3, PARSP_1:25; ::_thesis: verum end; now__::_thesis:_(_a_<>_b_implies_a,c_'||'_b,d_) assume a <> b ; ::_thesis: a,c '||' b,d then ex p, q being Element of FdSp st ( parallelogram p,q,a,b & parallelogram p,q,c,d ) by A1, Def4; hence a,c '||' b,d by Th39; ::_thesis: verum end; hence a,c '||' b,d by A2; ::_thesis: verum end; theorem Th50: :: PARSP_2:50 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a,b congr c,d & not a,b,c is_collinear holds parallelogram a,b,c,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a,b congr c,d & not a,b,c is_collinear holds parallelogram a,b,c,d let a, b, c, d be Element of FdSp; ::_thesis: ( a,b congr c,d & not a,b,c is_collinear implies parallelogram a,b,c,d ) assume that A1: a,b congr c,d and A2: not a,b,c is_collinear ; ::_thesis: parallelogram a,b,c,d ( a,b '||' c,d & a,c '||' b,d ) by A1, Th48, Th49; hence parallelogram a,b,c,d by A2, Def3; ::_thesis: verum end; theorem Th51: :: PARSP_2:51 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds a,b congr c,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st parallelogram a,b,c,d holds a,b congr c,d let a, b, c, d be Element of FdSp; ::_thesis: ( parallelogram a,b,c,d implies a,b congr c,d ) A1: a,b '||' a,b by PARSP_1:25; assume A2: parallelogram a,b,c,d ; ::_thesis: a,b congr c,d then A3: ( not a,c,b is_collinear & a <> b ) by Th26, Th28; a <> c by A2, Th26; then consider p being Element of FdSp such that A4: a,c,p is_collinear and A5: a <> p and A6: c <> p by Th38; a,c '||' a,p by A4, Def2; then consider q being Element of FdSp such that A7: parallelogram a,p,b,q by A5, A1, A3, Th11, Th34; parallelogram a,b,p,q by A7, Th33; then parallelogram c,d,p,q by A2, A4, A6, Th41; then A8: parallelogram p,q,c,d by Th33; parallelogram p,q,a,b by A7, Th33; hence a,b congr c,d by A8, Def4; ::_thesis: verum end; theorem Th52: :: PARSP_2:52 for FdSp being FanodesSp for a, b, c, d, r, s being Element of FdSp st a,b congr c,d & a,b,c is_collinear & parallelogram r,s,a,b holds parallelogram r,s,c,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d, r, s being Element of FdSp st a,b congr c,d & a,b,c is_collinear & parallelogram r,s,a,b holds parallelogram r,s,c,d let a, b, c, d, r, s be Element of FdSp; ::_thesis: ( a,b congr c,d & a,b,c is_collinear & parallelogram r,s,a,b implies parallelogram r,s,c,d ) assume that A1: a,b congr c,d and A2: a,b,c is_collinear and A3: parallelogram r,s,a,b ; ::_thesis: parallelogram r,s,c,d now__::_thesis:_(_a_<>_b_implies_parallelogram_r,s,c,d_) assume A4: a <> b ; ::_thesis: parallelogram r,s,c,d then consider p, q being Element of FdSp such that A5: parallelogram p,q,a,b and A6: parallelogram p,q,c,d by A1, Def4; ( r,s '||' a,b & a,b '||' c,d ) by A1, A3, Def3, Th48; then A7: r,s '||' c,d by A4, PARSP_1:26; A8: parallelogram a,b,r,s by A3, Th33; parallelogram a,b,p,q by A5, Th33; then A9: r,c '||' s,d by A6, A8, Th42; not r,s,c is_collinear by A2, A3, Th29; hence parallelogram r,s,c,d by A7, A9, Def3; ::_thesis: verum end; hence parallelogram r,s,c,d by A3, Th26; ::_thesis: verum end; theorem :: PARSP_2:53 for FdSp being FanodesSp for a, b, c, x, y being Element of FdSp st a,b congr c,x & a,b congr c,y holds x = y proof let FdSp be FanodesSp; ::_thesis: for a, b, c, x, y being Element of FdSp st a,b congr c,x & a,b congr c,y holds x = y let a, b, c, x, y be Element of FdSp; ::_thesis: ( a,b congr c,x & a,b congr c,y implies x = y ) assume that A1: a,b congr c,x and A2: a,b congr c,y ; ::_thesis: x = y A3: now__::_thesis:_(_a_<>_b_&_not_a,b,c_is_collinear_implies_x_=_y_) assume that a <> b and A4: not a,b,c is_collinear ; ::_thesis: x = y ( parallelogram a,b,c,x & parallelogram a,b,c,y ) by A1, A2, A4, Th50; hence x = y by Th35; ::_thesis: verum end; A5: now__::_thesis:_(_a_<>_b_&_a,b,c_is_collinear_implies_x_=_y_) assume that A6: a <> b and A7: a,b,c is_collinear ; ::_thesis: x = y consider p, q being Element of FdSp such that A8: parallelogram a,b,p,q by A6, Th43; parallelogram p,q,a,b by A8, Th33; then ( parallelogram p,q,c,x & parallelogram p,q,c,y ) by A1, A2, A7, Th52; hence x = y by Th35; ::_thesis: verum end; now__::_thesis:_(_a_=_b_implies_x_=_y_) assume A9: a = b ; ::_thesis: x = y then c = x by A1, Th45; hence x = y by A2, A9, Th45; ::_thesis: verum end; hence x = y by A5, A3; ::_thesis: verum end; theorem :: PARSP_2:54 for FdSp being FanodesSp for a, b, c being Element of FdSp ex d being Element of FdSp st a,b congr c,d proof let FdSp be FanodesSp; ::_thesis: for a, b, c being Element of FdSp ex d being Element of FdSp st a,b congr c,d let a, b, c be Element of FdSp; ::_thesis: ex d being Element of FdSp st a,b congr c,d A1: now__::_thesis:_(_a_=_b_implies_ex_d_being_Element_of_FdSp_st_a,b_congr_c,d_) assume a = b ; ::_thesis: ex d being Element of FdSp st a,b congr c,d then a,b congr c,c by Def4; hence ex d being Element of FdSp st a,b congr c,d ; ::_thesis: verum end; A2: now__::_thesis:_(_a_<>_b_&_a,b,c_is_collinear_implies_ex_d_being_Element_of_FdSp_st_a,b_congr_c,d_) assume that A3: a <> b and A4: a,b,c is_collinear ; ::_thesis: ex d being Element of FdSp st a,b congr c,d consider p, q being Element of FdSp such that A5: parallelogram a,b,p,q by A3, Th43; not p,q,c is_collinear by A4, A5, Th29; then consider d being Element of FdSp such that A6: parallelogram p,q,c,d by Th34; parallelogram p,q,a,b by A5, Th33; then a,b congr c,d by A6, Def4; hence ex d being Element of FdSp st a,b congr c,d ; ::_thesis: verum end; now__::_thesis:_(_a_<>_b_&_not_a,b,c_is_collinear_implies_ex_d_being_Element_of_FdSp_st_a,b_congr_c,d_) assume that a <> b and A7: not a,b,c is_collinear ; ::_thesis: ex d being Element of FdSp st a,b congr c,d ex d being Element of FdSp st parallelogram a,b,c,d by A7, Th34; hence ex d being Element of FdSp st a,b congr c,d by Th51; ::_thesis: verum end; hence ex d being Element of FdSp st a,b congr c,d by A1, A2; ::_thesis: verum end; theorem Th55: :: PARSP_2:55 for FdSp being FanodesSp for a, b being Element of FdSp holds a,b congr a,b proof let FdSp be FanodesSp; ::_thesis: for a, b being Element of FdSp holds a,b congr a,b let a, b be Element of FdSp; ::_thesis: a,b congr a,b now__::_thesis:_(_a_<>_b_implies_a,b_congr_a,b_) assume a <> b ; ::_thesis: a,b congr a,b then consider p, q being Element of FdSp such that A1: parallelogram a,b,p,q by Th43; parallelogram p,q,a,b by A1, Th33; hence a,b congr a,b by Def4; ::_thesis: verum end; hence a,b congr a,b by Def4; ::_thesis: verum end; theorem Th56: :: PARSP_2:56 for FdSp being FanodesSp for r, s, a, b, c, d being Element of FdSp st r,s congr a,b & r,s congr c,d holds a,b congr c,d proof let FdSp be FanodesSp; ::_thesis: for r, s, a, b, c, d being Element of FdSp st r,s congr a,b & r,s congr c,d holds a,b congr c,d let r, s, a, b, c, d be Element of FdSp; ::_thesis: ( r,s congr a,b & r,s congr c,d implies a,b congr c,d ) assume that A1: r,s congr a,b and A2: r,s congr c,d ; ::_thesis: a,b congr c,d A3: now__::_thesis:_(_r_<>_s_&_not_r,s,a_is_collinear_&_not_r,s,c_is_collinear_implies_a,b_congr_c,d_) assume that r <> s and A4: ( not r,s,a is_collinear & not r,s,c is_collinear ) ; ::_thesis: a,b congr c,d ( parallelogram r,s,a,b & parallelogram r,s,c,d ) by A1, A2, A4, Th50; hence a,b congr c,d by Def4; ::_thesis: verum end; A5: now__::_thesis:_(_r_<>_s_&_r,s,c_is_collinear_implies_a,b_congr_c,d_) assume that A6: r <> s and A7: r,s,c is_collinear ; ::_thesis: a,b congr c,d consider p, q being Element of FdSp such that A8: parallelogram p,q,r,s and A9: parallelogram p,q,a,b by A1, A6, Def4; parallelogram p,q,c,d by A2, A7, A8, Th52; hence a,b congr c,d by A9, Def4; ::_thesis: verum end; A10: now__::_thesis:_(_r_<>_s_&_r,s,a_is_collinear_implies_a,b_congr_c,d_) assume that A11: r <> s and A12: r,s,a is_collinear ; ::_thesis: a,b congr c,d consider p, q being Element of FdSp such that A13: parallelogram p,q,r,s and A14: parallelogram p,q,c,d by A2, A11, Def4; parallelogram p,q,a,b by A1, A12, A13, Th52; hence a,b congr c,d by A14, Def4; ::_thesis: verum end; now__::_thesis:_(_r_=_s_implies_a,b_congr_c,d_) assume r = s ; ::_thesis: a,b congr c,d then ( a = b & c = d ) by A1, A2, Th45; hence a,b congr c,d by Def4; ::_thesis: verum end; hence a,b congr c,d by A10, A5, A3; ::_thesis: verum end; theorem :: PARSP_2:57 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a,b congr c,d holds c,d congr a,b proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a,b congr c,d holds c,d congr a,b let a, b, c, d be Element of FdSp; ::_thesis: ( a,b congr c,d implies c,d congr a,b ) assume A1: a,b congr c,d ; ::_thesis: c,d congr a,b a,b congr a,b by Th55; hence c,d congr a,b by A1, Th56; ::_thesis: verum end; theorem :: PARSP_2:58 for FdSp being FanodesSp for a, b, c, d being Element of FdSp st a,b congr c,d holds b,a congr d,c proof let FdSp be FanodesSp; ::_thesis: for a, b, c, d being Element of FdSp st a,b congr c,d holds b,a congr d,c let a, b, c, d be Element of FdSp; ::_thesis: ( a,b congr c,d implies b,a congr d,c ) assume A1: a,b congr c,d ; ::_thesis: b,a congr d,c A2: now__::_thesis:_(_a_<>_b_implies_b,a_congr_d,c_) assume a <> b ; ::_thesis: b,a congr d,c then consider p, q being Element of FdSp such that A3: ( parallelogram p,q,a,b & parallelogram p,q,c,d ) by A1, Def4; ( parallelogram q,p,b,a & parallelogram q,p,d,c ) by A3, Th33; hence b,a congr d,c by Def4; ::_thesis: verum end; now__::_thesis:_(_a_=_b_implies_b,a_congr_d,c_) assume A4: a = b ; ::_thesis: b,a congr d,c then c = d by A1, Th45; hence b,a congr d,c by A4, Def4; ::_thesis: verum end; hence b,a congr d,c by A2; ::_thesis: verum end;