:: PDIFF_4 semantic presentation begin theorem Th1: :: PDIFF_4:1 ( dom (proj (1,3)) = REAL 3 & rng (proj (1,3)) = REAL & ( for x, y, z being Element of REAL holds (proj (1,3)) . <*x,y,z*> = x ) ) proof set f = proj (1,3); A1: for x being set st x in REAL holds ex u being set st ( u in REAL 3 & x = (proj (1,3)) . u ) proof let x be set ; ::_thesis: ( x in REAL implies ex u being set st ( u in REAL 3 & x = (proj (1,3)) . u ) ) assume x in REAL ; ::_thesis: ex u being set st ( u in REAL 3 & x = (proj (1,3)) . u ) then reconsider x1 = x as Element of REAL ; set y = the Element of REAL ; reconsider u = <*x1, the Element of REAL , the Element of REAL *> as Element of REAL 3 by FINSEQ_2:104; (proj (1,3)) . u = u . 1 by PDIFF_1:def_1; then (proj (1,3)) . u = x by FINSEQ_1:45; hence ex u being set st ( u in REAL 3 & x = (proj (1,3)) . u ) ; ::_thesis: verum end; now__::_thesis:_for_x,_y,_z_being_Element_of_REAL_holds_(proj_(1,3))_._<*x,y,z*>_=_x let x, y, z be Element of REAL ; ::_thesis: (proj (1,3)) . <*x,y,z*> = x <*x,y,z*> is Element of 3 -tuples_on REAL by FINSEQ_2:104; then (proj (1,3)) . <*x,y,z*> = <*x,y,z*> . 1 by PDIFF_1:def_1; hence (proj (1,3)) . <*x,y,z*> = x by FINSEQ_1:45; ::_thesis: verum end; hence ( dom (proj (1,3)) = REAL 3 & rng (proj (1,3)) = REAL & ( for x, y, z being Element of REAL holds (proj (1,3)) . <*x,y,z*> = x ) ) by A1, FUNCT_2:10, FUNCT_2:def_1; ::_thesis: verum end; theorem Th2: :: PDIFF_4:2 ( dom (proj (2,3)) = REAL 3 & rng (proj (2,3)) = REAL & ( for x, y, z being Element of REAL holds (proj (2,3)) . <*x,y,z*> = y ) ) proof set f = proj (2,3); A1: for y being set st y in REAL holds ex u being set st ( u in REAL 3 & y = (proj (2,3)) . u ) proof let y be set ; ::_thesis: ( y in REAL implies ex u being set st ( u in REAL 3 & y = (proj (2,3)) . u ) ) assume y in REAL ; ::_thesis: ex u being set st ( u in REAL 3 & y = (proj (2,3)) . u ) then reconsider y1 = y as Element of REAL ; set x = the Element of REAL ; reconsider u = <* the Element of REAL ,y1, the Element of REAL *> as Element of REAL 3 by FINSEQ_2:104; (proj (2,3)) . u = u . 2 by PDIFF_1:def_1; then (proj (2,3)) . u = y by FINSEQ_1:45; hence ex u being set st ( u in REAL 3 & y = (proj (2,3)) . u ) ; ::_thesis: verum end; now__::_thesis:_for_x,_y,_z_being_Element_of_REAL_holds_(proj_(2,3))_._<*x,y,z*>_=_y let x, y, z be Element of REAL ; ::_thesis: (proj (2,3)) . <*x,y,z*> = y <*x,y,z*> is Element of 3 -tuples_on REAL by FINSEQ_2:104; then (proj (2,3)) . <*x,y,z*> = <*x,y,z*> . 2 by PDIFF_1:def_1; hence (proj (2,3)) . <*x,y,z*> = y by FINSEQ_1:45; ::_thesis: verum end; hence ( dom (proj (2,3)) = REAL 3 & rng (proj (2,3)) = REAL & ( for x, y, z being Element of REAL holds (proj (2,3)) . <*x,y,z*> = y ) ) by A1, FUNCT_2:10, FUNCT_2:def_1; ::_thesis: verum end; theorem Th3: :: PDIFF_4:3 ( dom (proj (3,3)) = REAL 3 & rng (proj (3,3)) = REAL & ( for x, y, z being Element of REAL holds (proj (3,3)) . <*x,y,z*> = z ) ) proof set f = proj (3,3); A1: for z being set st z in REAL holds ex u being set st ( u in REAL 3 & z = (proj (3,3)) . u ) proof let z be set ; ::_thesis: ( z in REAL implies ex u being set st ( u in REAL 3 & z = (proj (3,3)) . u ) ) assume z in REAL ; ::_thesis: ex u being set st ( u in REAL 3 & z = (proj (3,3)) . u ) then reconsider z1 = z as Element of REAL ; set x = the Element of REAL ; reconsider u = <* the Element of REAL , the Element of REAL ,z1*> as Element of REAL 3 by FINSEQ_2:104; (proj (3,3)) . u = u . 3 by PDIFF_1:def_1; then (proj (3,3)) . u = z by FINSEQ_1:45; hence ex u being set st ( u in REAL 3 & z = (proj (3,3)) . u ) ; ::_thesis: verum end; now__::_thesis:_for_x,_y,_z_being_Element_of_REAL_holds_(proj_(3,3))_._<*x,y,z*>_=_z let x, y, z be Element of REAL ; ::_thesis: (proj (3,3)) . <*x,y,z*> = z <*x,y,z*> is Element of 3 -tuples_on REAL by FINSEQ_2:104; then (proj (3,3)) . <*x,y,z*> = <*x,y,z*> . 3 by PDIFF_1:def_1; hence (proj (3,3)) . <*x,y,z*> = z by FINSEQ_1:45; ::_thesis: verum end; hence ( dom (proj (3,3)) = REAL 3 & rng (proj (3,3)) = REAL & ( for x, y, z being Element of REAL holds (proj (3,3)) . <*x,y,z*> = z ) ) by A1, FUNCT_2:10, FUNCT_2:def_1; ::_thesis: verum end; begin theorem Th4: :: PDIFF_4:4 for x, y, z being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,1 holds SVF1 (1,f,u) is_differentiable_in x proof let x, y, z be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,1 holds SVF1 (1,f,u) is_differentiable_in x let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,1 holds SVF1 (1,f,u) is_differentiable_in x let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x,y,z*> & f is_partial_differentiable_in u,1 implies SVF1 (1,f,u) is_differentiable_in x ) assume that A1: u = <*x,y,z*> and A2: f is_partial_differentiable_in u,1 ; ::_thesis: SVF1 (1,f,u) is_differentiable_in x (proj (1,3)) . u = x by A1, Th1; hence SVF1 (1,f,u) is_differentiable_in x by A2, PDIFF_1:def_11; ::_thesis: verum end; theorem Th5: :: PDIFF_4:5 for x, y, z being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,2 holds SVF1 (2,f,u) is_differentiable_in y proof let x, y, z be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,2 holds SVF1 (2,f,u) is_differentiable_in y let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,2 holds SVF1 (2,f,u) is_differentiable_in y let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x,y,z*> & f is_partial_differentiable_in u,2 implies SVF1 (2,f,u) is_differentiable_in y ) assume that A1: u = <*x,y,z*> and A2: f is_partial_differentiable_in u,2 ; ::_thesis: SVF1 (2,f,u) is_differentiable_in y (proj (2,3)) . u = y by A1, Th2; hence SVF1 (2,f,u) is_differentiable_in y by A2, PDIFF_1:def_11; ::_thesis: verum end; theorem Th6: :: PDIFF_4:6 for x, y, z being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,3 holds SVF1 (3,f,u) is_differentiable_in z proof let x, y, z be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,3 holds SVF1 (3,f,u) is_differentiable_in z let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x,y,z*> & f is_partial_differentiable_in u,3 holds SVF1 (3,f,u) is_differentiable_in z let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x,y,z*> & f is_partial_differentiable_in u,3 implies SVF1 (3,f,u) is_differentiable_in z ) assume that A1: u = <*x,y,z*> and A2: f is_partial_differentiable_in u,3 ; ::_thesis: SVF1 (3,f,u) is_differentiable_in z (proj (3,3)) . u = z by A1, Th3; hence SVF1 (3,f,u) is_differentiable_in z by A2, PDIFF_1:def_11; ::_thesis: verum end; theorem Th7: :: PDIFF_4:7 for f being PartFunc of (REAL 3),REAL for u being Element of REAL 3 holds ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (1,f,u) is_differentiable_in x0 ) iff f is_partial_differentiable_in u,1 ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u being Element of REAL 3 holds ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (1,f,u) is_differentiable_in x0 ) iff f is_partial_differentiable_in u,1 ) let u be Element of REAL 3; ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (1,f,u) is_differentiable_in x0 ) iff f is_partial_differentiable_in u,1 ) hereby ::_thesis: ( f is_partial_differentiable_in u,1 implies ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (1,f,u) is_differentiable_in x0 ) ) given x0, y0, z0 being Real such that A1: ( u = <*x0,y0,z0*> & SVF1 (1,f,u) is_differentiable_in x0 ) ; ::_thesis: f is_partial_differentiable_in u,1 (proj (1,3)) . u = x0 by A1, Th1; hence f is_partial_differentiable_in u,1 by A1, PDIFF_1:def_11; ::_thesis: verum end; assume A2: f is_partial_differentiable_in u,1 ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (1,f,u) is_differentiable_in x0 ) consider x0, y0, z0 being Real such that A3: u = <*x0,y0,z0*> by FINSEQ_2:103; (proj (1,3)) . u = x0 by A3, Th1; then SVF1 (1,f,u) is_differentiable_in x0 by A2, PDIFF_1:def_11; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (1,f,u) is_differentiable_in x0 ) by A3; ::_thesis: verum end; theorem Th8: :: PDIFF_4:8 for f being PartFunc of (REAL 3),REAL for u being Element of REAL 3 holds ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (2,f,u) is_differentiable_in y0 ) iff f is_partial_differentiable_in u,2 ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u being Element of REAL 3 holds ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (2,f,u) is_differentiable_in y0 ) iff f is_partial_differentiable_in u,2 ) let u be Element of REAL 3; ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (2,f,u) is_differentiable_in y0 ) iff f is_partial_differentiable_in u,2 ) hereby ::_thesis: ( f is_partial_differentiable_in u,2 implies ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (2,f,u) is_differentiable_in y0 ) ) given x0, y0, z0 being Real such that A1: ( u = <*x0,y0,z0*> & SVF1 (2,f,u) is_differentiable_in y0 ) ; ::_thesis: f is_partial_differentiable_in u,2 (proj (2,3)) . u = y0 by A1, Th2; hence f is_partial_differentiable_in u,2 by A1, PDIFF_1:def_11; ::_thesis: verum end; assume A2: f is_partial_differentiable_in u,2 ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (2,f,u) is_differentiable_in y0 ) consider x0, y0, z0 being Real such that A3: u = <*x0,y0,z0*> by FINSEQ_2:103; (proj (2,3)) . u = y0 by A3, Th2; then SVF1 (2,f,u) is_differentiable_in y0 by A2, PDIFF_1:def_11; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (2,f,u) is_differentiable_in y0 ) by A3; ::_thesis: verum end; theorem Th9: :: PDIFF_4:9 for f being PartFunc of (REAL 3),REAL for u being Element of REAL 3 holds ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (3,f,u) is_differentiable_in z0 ) iff f is_partial_differentiable_in u,3 ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u being Element of REAL 3 holds ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (3,f,u) is_differentiable_in z0 ) iff f is_partial_differentiable_in u,3 ) let u be Element of REAL 3; ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (3,f,u) is_differentiable_in z0 ) iff f is_partial_differentiable_in u,3 ) hereby ::_thesis: ( f is_partial_differentiable_in u,3 implies ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (3,f,u) is_differentiable_in z0 ) ) given x0, y0, z0 being Real such that A1: ( u = <*x0,y0,z0*> & SVF1 (3,f,u) is_differentiable_in z0 ) ; ::_thesis: f is_partial_differentiable_in u,3 (proj (3,3)) . u = z0 by A1, Th3; hence f is_partial_differentiable_in u,3 by A1, PDIFF_1:def_11; ::_thesis: verum end; assume A2: f is_partial_differentiable_in u,3 ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (3,f,u) is_differentiable_in z0 ) consider x0, y0, z0 being Real such that A3: u = <*x0,y0,z0*> by FINSEQ_2:103; (proj (3,3)) . u = z0 by A3, Th3; then SVF1 (3,f,u) is_differentiable_in z0 by A2, PDIFF_1:def_11; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & SVF1 (3,f,u) is_differentiable_in z0 ) by A3; ::_thesis: verum end; theorem :: PDIFF_4:10 for x0, y0, z0 being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) proof let x0, y0, z0 be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 implies ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) assume that A1: u = <*x0,y0,z0*> and A2: f is_partial_differentiable_in u,1 ; ::_thesis: ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) consider x1, y1, z1 being Real such that A3: ( u = <*x1,y1,z1*> & SVF1 (1,f,u) is_differentiable_in x1 ) by A2, Th7; SVF1 (1,f,u) is_differentiable_in x0 by A1, A3, FINSEQ_1:78; hence ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) by FDIFF_1:def_4; ::_thesis: verum end; theorem :: PDIFF_4:11 for x0, y0, z0 being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) proof let x0, y0, z0 be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 implies ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) assume that A1: u = <*x0,y0,z0*> and A2: f is_partial_differentiable_in u,2 ; ::_thesis: ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) consider x1, y1, z1 being Real such that A3: ( u = <*x1,y1,z1*> & SVF1 (2,f,u) is_differentiable_in y1 ) by A2, Th8; SVF1 (2,f,u) is_differentiable_in y0 by A1, A3, FINSEQ_1:78; hence ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) by FDIFF_1:def_4; ::_thesis: verum end; theorem :: PDIFF_4:12 for x0, y0, z0 being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) proof let x0, y0, z0 be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 implies ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) assume that A1: u = <*x0,y0,z0*> and A2: f is_partial_differentiable_in u,3 ; ::_thesis: ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) consider x1, y1, z1 being Real such that A3: ( u = <*x1,y1,z1*> & SVF1 (3,f,u) is_differentiable_in z1 ) by A2, Th9; SVF1 (3,f,u) is_differentiable_in z0 by A1, A3, FINSEQ_1:78; hence ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) by FDIFF_1:def_4; ::_thesis: verum end; theorem Th13: :: PDIFF_4:13 for f being PartFunc of (REAL 3),REAL for u being Element of REAL 3 holds ( f is_partial_differentiable_in u,1 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u being Element of REAL 3 holds ( f is_partial_differentiable_in u,1 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) let u be Element of REAL 3; ::_thesis: ( f is_partial_differentiable_in u,1 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) implies f is_partial_differentiable_in u,1 ) assume A1: f is_partial_differentiable_in u,1 ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) thus ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ::_thesis: verum proof consider x0, y0, z0 being Real such that A2: ( u = <*x0,y0,z0*> & SVF1 (1,f,u) is_differentiable_in x0 ) by A1, Th7; ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) by A2, FDIFF_1:def_4; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) by A2; ::_thesis: verum end; end; assume ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ; ::_thesis: f is_partial_differentiable_in u,1 then consider x0, y0, z0 being Real such that A3: ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ; consider N being Neighbourhood of x0 such that A4: ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) by A3; SVF1 (1,f,u) is_differentiable_in x0 by A4, FDIFF_1:def_4; hence f is_partial_differentiable_in u,1 by A3, Th7; ::_thesis: verum end; theorem Th14: :: PDIFF_4:14 for f being PartFunc of (REAL 3),REAL for u being Element of REAL 3 holds ( f is_partial_differentiable_in u,2 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u being Element of REAL 3 holds ( f is_partial_differentiable_in u,2 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) let u be Element of REAL 3; ::_thesis: ( f is_partial_differentiable_in u,2 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) implies f is_partial_differentiable_in u,2 ) assume A1: f is_partial_differentiable_in u,2 ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) thus ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ::_thesis: verum proof consider x0, y0, z0 being Real such that A2: ( u = <*x0,y0,z0*> & SVF1 (2,f,u) is_differentiable_in y0 ) by A1, Th8; ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) by A2, FDIFF_1:def_4; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) by A2; ::_thesis: verum end; end; assume ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ; ::_thesis: f is_partial_differentiable_in u,2 then consider x0, y0, z0 being Real such that A3: ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ; consider N being Neighbourhood of y0 such that A4: ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) by A3; SVF1 (2,f,u) is_differentiable_in y0 by A4, FDIFF_1:def_4; hence f is_partial_differentiable_in u,2 by A3, Th8; ::_thesis: verum end; theorem Th15: :: PDIFF_4:15 for f being PartFunc of (REAL 3),REAL for u being Element of REAL 3 holds ( f is_partial_differentiable_in u,3 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u being Element of REAL 3 holds ( f is_partial_differentiable_in u,3 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) let u be Element of REAL 3; ::_thesis: ( f is_partial_differentiable_in u,3 iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) implies f is_partial_differentiable_in u,3 ) assume A1: f is_partial_differentiable_in u,3 ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) thus ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ::_thesis: verum proof consider x0, y0, z0 being Real such that A2: ( u = <*x0,y0,z0*> & SVF1 (3,f,u) is_differentiable_in z0 ) by A1, Th9; ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) by A2, FDIFF_1:def_4; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) by A2; ::_thesis: verum end; end; assume ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ; ::_thesis: f is_partial_differentiable_in u,3 then consider x0, y0, z0 being Real such that A3: ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ; consider N being Neighbourhood of z0 such that A4: ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) by A3; SVF1 (3,f,u) is_differentiable_in z0 by A4, FDIFF_1:def_4; hence f is_partial_differentiable_in u,3 by A3, Th9; ::_thesis: verum end; Lm1: for x0, y0, z0, r being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ( r = diff ((SVF1 (1,f,u)),x0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) proof let x0, y0, z0, r be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ( r = diff ((SVF1 (1,f,u)),x0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ( r = diff ((SVF1 (1,f,u)),x0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 implies ( r = diff ((SVF1 (1,f,u)),x0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) ) set F1 = SVF1 (1,f,u); assume that A1: u = <*x0,y0,z0*> and A2: f is_partial_differentiable_in u,1 ; ::_thesis: ( r = diff ((SVF1 (1,f,u)),x0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) implies r = diff ((SVF1 (1,f,u)),x0) ) assume A3: r = diff ((SVF1 (1,f,u)),x0) ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) SVF1 (1,f,u) is_differentiable_in x0 by A1, A2, Th4; then consider N being Neighbourhood of x0 such that A4: ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) by A3, FDIFF_1:def_5; thus ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) by A1, A4; ::_thesis: verum end; given x1, y1, z1 being Real such that A5: ( u = <*x1,y1,z1*> & ex N being Neighbourhood of x1 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x1) = (L . (x - x1)) + (R . (x - x1)) ) ) ) ) ; ::_thesis: r = diff ((SVF1 (1,f,u)),x0) A6: x1 = x0 by A5, A1, FINSEQ_1:78; SVF1 (1,f,u) is_differentiable_in x0 by A1, A2, Th4; hence r = diff ((SVF1 (1,f,u)),x0) by A6, A5, FDIFF_1:def_5; ::_thesis: verum end; Lm2: for x0, y0, z0, r being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ( r = diff ((SVF1 (2,f,u)),y0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) proof let x0, y0, z0, r be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ( r = diff ((SVF1 (2,f,u)),y0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ( r = diff ((SVF1 (2,f,u)),y0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 implies ( r = diff ((SVF1 (2,f,u)),y0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) ) set F1 = SVF1 (2,f,u); assume that A1: u = <*x0,y0,z0*> and A2: f is_partial_differentiable_in u,2 ; ::_thesis: ( r = diff ((SVF1 (2,f,u)),y0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) implies r = diff ((SVF1 (2,f,u)),y0) ) assume A3: r = diff ((SVF1 (2,f,u)),y0) ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) SVF1 (2,f,u) is_differentiable_in y0 by A1, A2, Th5; then consider N being Neighbourhood of y0 such that A4: ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) by A3, FDIFF_1:def_5; thus ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) by A1, A4; ::_thesis: verum end; given x1, y1, z1 being Real such that A5: ( u = <*x1,y1,z1*> & ex N being Neighbourhood of y1 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y1) = (L . (y - y1)) + (R . (y - y1)) ) ) ) ) ; ::_thesis: r = diff ((SVF1 (2,f,u)),y0) A6: y1 = y0 by A5, A1, FINSEQ_1:78; SVF1 (2,f,u) is_differentiable_in y0 by A1, A2, Th5; hence r = diff ((SVF1 (2,f,u)),y0) by A6, A5, FDIFF_1:def_5; ::_thesis: verum end; Lm3: for x0, y0, z0, r being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ( r = diff ((SVF1 (3,f,u)),z0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) proof let x0, y0, z0, r be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ( r = diff ((SVF1 (3,f,u)),z0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ( r = diff ((SVF1 (3,f,u)),z0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 implies ( r = diff ((SVF1 (3,f,u)),z0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) ) set F1 = SVF1 (3,f,u); assume that A1: u = <*x0,y0,z0*> and A2: f is_partial_differentiable_in u,3 ; ::_thesis: ( r = diff ((SVF1 (3,f,u)),z0) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) implies r = diff ((SVF1 (3,f,u)),z0) ) assume A3: r = diff ((SVF1 (3,f,u)),z0) ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) SVF1 (3,f,u) is_differentiable_in z0 by A1, A2, Th6; then consider N being Neighbourhood of z0 such that A4: ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) by A3, FDIFF_1:def_5; thus ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) by A1, A4; ::_thesis: verum end; given x1, y1, z1 being Real such that A5: ( u = <*x1,y1,z1*> & ex N being Neighbourhood of z1 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z1) = (L . (z - z1)) + (R . (z - z1)) ) ) ) ) ; ::_thesis: r = diff ((SVF1 (3,f,u)),z0) A6: z1 = z0 by A5, A1, FINSEQ_1:78; SVF1 (3,f,u) is_differentiable_in z0 by A1, A2, Th6; hence r = diff ((SVF1 (3,f,u)),z0) by A6, A5, FDIFF_1:def_5; ::_thesis: verum end; theorem Th16: :: PDIFF_4:16 for x0, y0, z0, r being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ( r = partdiff (f,u,1) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) proof let x0, y0, z0, r be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ( r = partdiff (f,u,1) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 holds ( r = partdiff (f,u,1) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 implies ( r = partdiff (f,u,1) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) ) assume A1: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,1 ) ; ::_thesis: ( r = partdiff (f,u,1) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) implies r = partdiff (f,u,1) ) assume r = partdiff (f,u,1) ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) then r = diff ((SVF1 (1,f,u)),x0) by Th1, A1; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) by Lm1, A1; ::_thesis: verum end; given x1, y1, z1 being Real such that A2: ( u = <*x1,y1,z1*> & ex N being Neighbourhood of x1 st ( N c= dom (SVF1 (1,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for x being Real st x in N holds ((SVF1 (1,f,u)) . x) - ((SVF1 (1,f,u)) . x1) = (L . (x - x1)) + (R . (x - x1)) ) ) ) ) ; ::_thesis: r = partdiff (f,u,1) r = diff ((SVF1 (1,f,u)),x0) by A2, A1, Lm1; hence r = partdiff (f,u,1) by Th1, A1; ::_thesis: verum end; theorem Th17: :: PDIFF_4:17 for x0, y0, z0, r being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ( r = partdiff (f,u,2) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) proof let x0, y0, z0, r be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ( r = partdiff (f,u,2) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 holds ( r = partdiff (f,u,2) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 implies ( r = partdiff (f,u,2) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) ) assume A1: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,2 ) ; ::_thesis: ( r = partdiff (f,u,2) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) implies r = partdiff (f,u,2) ) assume r = partdiff (f,u,2) ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) then r = diff ((SVF1 (2,f,u)),y0) by Th2, A1; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) by Lm2, A1; ::_thesis: verum end; given x1, y1, z1 being Real such that A2: ( u = <*x1,y1,z1*> & ex N being Neighbourhood of y1 st ( N c= dom (SVF1 (2,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for y being Real st y in N holds ((SVF1 (2,f,u)) . y) - ((SVF1 (2,f,u)) . y1) = (L . (y - y1)) + (R . (y - y1)) ) ) ) ) ; ::_thesis: r = partdiff (f,u,2) r = diff ((SVF1 (2,f,u)),y0) by A2, A1, Lm2; hence r = partdiff (f,u,2) by Th2, A1; ::_thesis: verum end; theorem Th18: :: PDIFF_4:18 for x0, y0, z0, r being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ( r = partdiff (f,u,3) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) proof let x0, y0, z0, r be Real; ::_thesis: for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ( r = partdiff (f,u,3) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) let u be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 holds ( r = partdiff (f,u,3) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 implies ( r = partdiff (f,u,3) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) ) assume A1: ( u = <*x0,y0,z0*> & f is_partial_differentiable_in u,3 ) ; ::_thesis: ( r = partdiff (f,u,3) iff ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) ) hereby ::_thesis: ( ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) implies r = partdiff (f,u,3) ) assume r = partdiff (f,u,3) ; ::_thesis: ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) then r = diff ((SVF1 (3,f,u)),z0) by Th3, A1; hence ex x0, y0, z0 being Real st ( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) by Lm3, A1; ::_thesis: verum end; given x1, y1, z1 being Real such that A2: ( u = <*x1,y1,z1*> & ex N being Neighbourhood of z1 st ( N c= dom (SVF1 (3,f,u)) & ex L being LinearFunc ex R being RestFunc st ( r = L . 1 & ( for z being Real st z in N holds ((SVF1 (3,f,u)) . z) - ((SVF1 (3,f,u)) . z1) = (L . (z - z1)) + (R . (z - z1)) ) ) ) ) ; ::_thesis: r = partdiff (f,u,3) r = diff ((SVF1 (3,f,u)),z0) by A2, A1, Lm3; hence r = partdiff (f,u,3) by Th3, A1; ::_thesis: verum end; theorem :: PDIFF_4:19 for x0, y0, z0 being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> holds partdiff (f,u,1) = diff ((SVF1 (1,f,u)),x0) by Th1; theorem :: PDIFF_4:20 for x0, y0, z0 being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> holds partdiff (f,u,2) = diff ((SVF1 (2,f,u)),y0) by Th2; theorem :: PDIFF_4:21 for x0, y0, z0 being Real for u being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st u = <*x0,y0,z0*> holds partdiff (f,u,3) = diff ((SVF1 (3,f,u)),z0) by Th3; definition let f be PartFunc of (REAL 3),REAL; let D be set ; predf is_partial_differentiable`1_on D means :Def1: :: PDIFF_4:def 1 ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f | D is_partial_differentiable_in u,1 ) ); predf is_partial_differentiable`2_on D means :Def2: :: PDIFF_4:def 2 ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f | D is_partial_differentiable_in u,2 ) ); predf is_partial_differentiable`3_on D means :Def3: :: PDIFF_4:def 3 ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f | D is_partial_differentiable_in u,3 ) ); end; :: deftheorem Def1 defines is_partial_differentiable`1_on PDIFF_4:def_1_:_ for f being PartFunc of (REAL 3),REAL for D being set holds ( f is_partial_differentiable`1_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f | D is_partial_differentiable_in u,1 ) ) ); :: deftheorem Def2 defines is_partial_differentiable`2_on PDIFF_4:def_2_:_ for f being PartFunc of (REAL 3),REAL for D being set holds ( f is_partial_differentiable`2_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f | D is_partial_differentiable_in u,2 ) ) ); :: deftheorem Def3 defines is_partial_differentiable`3_on PDIFF_4:def_3_:_ for f being PartFunc of (REAL 3),REAL for D being set holds ( f is_partial_differentiable`3_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f | D is_partial_differentiable_in u,3 ) ) ); theorem :: PDIFF_4:22 for D being set for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable`1_on D holds ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,1 ) ) proof let D be set ; ::_thesis: for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable`1_on D holds ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,1 ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( f is_partial_differentiable`1_on D implies ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,1 ) ) ) assume A1: f is_partial_differentiable`1_on D ; ::_thesis: ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,1 ) ) hence D c= dom f by Def1; ::_thesis: for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,1 set g = f | D; let u0 be Element of REAL 3; ::_thesis: ( u0 in D implies f is_partial_differentiable_in u0,1 ) assume u0 in D ; ::_thesis: f is_partial_differentiable_in u0,1 then f | D is_partial_differentiable_in u0,1 by A1, Def1; then consider x0, y0, z0 being Real such that A2: ( u0 = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,(f | D),u0)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,(f | D),u0)) . x) - ((SVF1 (1,(f | D),u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) by Th13; consider N being Neighbourhood of x0 such that A3: ( N c= dom (SVF1 (1,(f | D),u0)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,(f | D),u0)) . x) - ((SVF1 (1,(f | D),u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) by A2; for x being Real st x in dom (SVF1 (1,(f | D),u0)) holds x in dom (SVF1 (1,f,u0)) proof let x be Real; ::_thesis: ( x in dom (SVF1 (1,(f | D),u0)) implies x in dom (SVF1 (1,f,u0)) ) assume x in dom (SVF1 (1,(f | D),u0)) ; ::_thesis: x in dom (SVF1 (1,f,u0)) then A4: ( x in dom (reproj (1,u0)) & (reproj (1,u0)) . x in dom (f | D) ) by FUNCT_1:11; dom (f | D) = (dom f) /\ D by RELAT_1:61; then dom (f | D) c= dom f by XBOOLE_1:17; hence x in dom (SVF1 (1,f,u0)) by A4, FUNCT_1:11; ::_thesis: verum end; then for x being set st x in dom (SVF1 (1,(f | D),u0)) holds x in dom (SVF1 (1,f,u0)) ; then dom (SVF1 (1,(f | D),u0)) c= dom (SVF1 (1,f,u0)) by TARSKI:def_3; then A5: N c= dom (SVF1 (1,f,u0)) by A3, XBOOLE_1:1; consider L being LinearFunc, R being RestFunc such that A6: for x being Real st x in N holds ((SVF1 (1,(f | D),u0)) . x) - ((SVF1 (1,(f | D),u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) by A3; for x being Real st x in N holds ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) proof let x be Real; ::_thesis: ( x in N implies ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) assume A7: x in N ; ::_thesis: ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) A8: for x being Real st x in dom (SVF1 (1,(f | D),u0)) holds (SVF1 (1,(f | D),u0)) . x = (SVF1 (1,f,u0)) . x proof let x be Real; ::_thesis: ( x in dom (SVF1 (1,(f | D),u0)) implies (SVF1 (1,(f | D),u0)) . x = (SVF1 (1,f,u0)) . x ) assume A9: x in dom (SVF1 (1,(f | D),u0)) ; ::_thesis: (SVF1 (1,(f | D),u0)) . x = (SVF1 (1,f,u0)) . x then A10: ( x in dom (reproj (1,u0)) & (reproj (1,u0)) . x in dom (f | D) ) by FUNCT_1:11; (SVF1 (1,(f | D),u0)) . x = (f | D) . ((reproj (1,u0)) . x) by A9, FUNCT_1:12 .= f . ((reproj (1,u0)) . x) by A10, FUNCT_1:47 .= (SVF1 (1,f,u0)) . x by A10, FUNCT_1:13 ; hence (SVF1 (1,(f | D),u0)) . x = (SVF1 (1,f,u0)) . x ; ::_thesis: verum end; A11: x0 in N by RCOMP_1:16; (L . (x - x0)) + (R . (x - x0)) = ((SVF1 (1,(f | D),u0)) . x) - ((SVF1 (1,(f | D),u0)) . x0) by A6, A7 .= ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,(f | D),u0)) . x0) by A3, A7, A8 .= ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) by A3, A8, A11 ; hence ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ; ::_thesis: verum end; hence f is_partial_differentiable_in u0,1 by A2, A5, Th13; ::_thesis: verum end; theorem :: PDIFF_4:23 for D being set for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable`2_on D holds ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,2 ) ) proof let D be set ; ::_thesis: for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable`2_on D holds ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,2 ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( f is_partial_differentiable`2_on D implies ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,2 ) ) ) assume A1: f is_partial_differentiable`2_on D ; ::_thesis: ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,2 ) ) hence D c= dom f by Def2; ::_thesis: for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,2 set g = f | D; let u0 be Element of REAL 3; ::_thesis: ( u0 in D implies f is_partial_differentiable_in u0,2 ) assume u0 in D ; ::_thesis: f is_partial_differentiable_in u0,2 then f | D is_partial_differentiable_in u0,2 by A1, Def2; then consider x0, y0, z0 being Real such that A2: ( u0 = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,(f | D),u0)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,(f | D),u0)) . y) - ((SVF1 (2,(f | D),u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) by Th14; consider N being Neighbourhood of y0 such that A3: ( N c= dom (SVF1 (2,(f | D),u0)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,(f | D),u0)) . y) - ((SVF1 (2,(f | D),u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) by A2; for y being Real st y in dom (SVF1 (2,(f | D),u0)) holds y in dom (SVF1 (2,f,u0)) proof let y be Real; ::_thesis: ( y in dom (SVF1 (2,(f | D),u0)) implies y in dom (SVF1 (2,f,u0)) ) assume y in dom (SVF1 (2,(f | D),u0)) ; ::_thesis: y in dom (SVF1 (2,f,u0)) then A4: ( y in dom (reproj (2,u0)) & (reproj (2,u0)) . y in dom (f | D) ) by FUNCT_1:11; dom (f | D) = (dom f) /\ D by RELAT_1:61; then dom (f | D) c= dom f by XBOOLE_1:17; hence y in dom (SVF1 (2,f,u0)) by A4, FUNCT_1:11; ::_thesis: verum end; then for y being set st y in dom (SVF1 (2,(f | D),u0)) holds y in dom (SVF1 (2,f,u0)) ; then dom (SVF1 (2,(f | D),u0)) c= dom (SVF1 (2,f,u0)) by TARSKI:def_3; then A5: N c= dom (SVF1 (2,f,u0)) by A3, XBOOLE_1:1; consider L being LinearFunc, R being RestFunc such that A6: for y being Real st y in N holds ((SVF1 (2,(f | D),u0)) . y) - ((SVF1 (2,(f | D),u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) by A3; for y being Real st y in N holds ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) proof let y be Real; ::_thesis: ( y in N implies ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) assume A7: y in N ; ::_thesis: ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) A8: for y being Real st y in dom (SVF1 (2,(f | D),u0)) holds (SVF1 (2,(f | D),u0)) . y = (SVF1 (2,f,u0)) . y proof let y be Real; ::_thesis: ( y in dom (SVF1 (2,(f | D),u0)) implies (SVF1 (2,(f | D),u0)) . y = (SVF1 (2,f,u0)) . y ) assume A9: y in dom (SVF1 (2,(f | D),u0)) ; ::_thesis: (SVF1 (2,(f | D),u0)) . y = (SVF1 (2,f,u0)) . y then A10: ( y in dom (reproj (2,u0)) & (reproj (2,u0)) . y in dom (f | D) ) by FUNCT_1:11; (SVF1 (2,(f | D),u0)) . y = (f | D) . ((reproj (2,u0)) . y) by A9, FUNCT_1:12 .= f . ((reproj (2,u0)) . y) by A10, FUNCT_1:47 .= (SVF1 (2,f,u0)) . y by A10, FUNCT_1:13 ; hence (SVF1 (2,(f | D),u0)) . y = (SVF1 (2,f,u0)) . y ; ::_thesis: verum end; A11: y0 in N by RCOMP_1:16; (L . (y - y0)) + (R . (y - y0)) = ((SVF1 (2,(f | D),u0)) . y) - ((SVF1 (2,(f | D),u0)) . y0) by A6, A7 .= ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,(f | D),u0)) . y0) by A3, A7, A8 .= ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) by A3, A8, A11 ; hence ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ; ::_thesis: verum end; hence f is_partial_differentiable_in u0,2 by A2, A5, Th14; ::_thesis: verum end; theorem :: PDIFF_4:24 for D being set for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable`3_on D holds ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,3 ) ) proof let D be set ; ::_thesis: for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable`3_on D holds ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,3 ) ) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( f is_partial_differentiable`3_on D implies ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,3 ) ) ) assume A1: f is_partial_differentiable`3_on D ; ::_thesis: ( D c= dom f & ( for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,3 ) ) hence D c= dom f by Def3; ::_thesis: for u being Element of REAL 3 st u in D holds f is_partial_differentiable_in u,3 set g = f | D; let u0 be Element of REAL 3; ::_thesis: ( u0 in D implies f is_partial_differentiable_in u0,3 ) assume u0 in D ; ::_thesis: f is_partial_differentiable_in u0,3 then f | D is_partial_differentiable_in u0,3 by A1, Def3; then consider x0, y0, z0 being Real such that A2: ( u0 = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,(f | D),u0)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,(f | D),u0)) . z) - ((SVF1 (3,(f | D),u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) by Th15; consider N being Neighbourhood of z0 such that A3: ( N c= dom (SVF1 (3,(f | D),u0)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,(f | D),u0)) . z) - ((SVF1 (3,(f | D),u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) by A2; for z being Real st z in dom (SVF1 (3,(f | D),u0)) holds z in dom (SVF1 (3,f,u0)) proof let z be Real; ::_thesis: ( z in dom (SVF1 (3,(f | D),u0)) implies z in dom (SVF1 (3,f,u0)) ) assume z in dom (SVF1 (3,(f | D),u0)) ; ::_thesis: z in dom (SVF1 (3,f,u0)) then A4: ( z in dom (reproj (3,u0)) & (reproj (3,u0)) . z in dom (f | D) ) by FUNCT_1:11; dom (f | D) = (dom f) /\ D by RELAT_1:61; then dom (f | D) c= dom f by XBOOLE_1:17; hence z in dom (SVF1 (3,f,u0)) by A4, FUNCT_1:11; ::_thesis: verum end; then for z being set st z in dom (SVF1 (3,(f | D),u0)) holds z in dom (SVF1 (3,f,u0)) ; then dom (SVF1 (3,(f | D),u0)) c= dom (SVF1 (3,f,u0)) by TARSKI:def_3; then A5: N c= dom (SVF1 (3,f,u0)) by A3, XBOOLE_1:1; consider L being LinearFunc, R being RestFunc such that A6: for z being Real st z in N holds ((SVF1 (3,(f | D),u0)) . z) - ((SVF1 (3,(f | D),u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) by A3; for z being Real st z in N holds ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) proof let z be Real; ::_thesis: ( z in N implies ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) assume A7: z in N ; ::_thesis: ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) A8: for z being Real st z in dom (SVF1 (3,(f | D),u0)) holds (SVF1 (3,(f | D),u0)) . z = (SVF1 (3,f,u0)) . z proof let z be Real; ::_thesis: ( z in dom (SVF1 (3,(f | D),u0)) implies (SVF1 (3,(f | D),u0)) . z = (SVF1 (3,f,u0)) . z ) assume A9: z in dom (SVF1 (3,(f | D),u0)) ; ::_thesis: (SVF1 (3,(f | D),u0)) . z = (SVF1 (3,f,u0)) . z then A10: ( z in dom (reproj (3,u0)) & (reproj (3,u0)) . z in dom (f | D) ) by FUNCT_1:11; (SVF1 (3,(f | D),u0)) . z = (f | D) . ((reproj (3,u0)) . z) by A9, FUNCT_1:12 .= f . ((reproj (3,u0)) . z) by A10, FUNCT_1:47 .= (SVF1 (3,f,u0)) . z by A10, FUNCT_1:13 ; hence (SVF1 (3,(f | D),u0)) . z = (SVF1 (3,f,u0)) . z ; ::_thesis: verum end; A11: z0 in N by RCOMP_1:16; (L . (z - z0)) + (R . (z - z0)) = ((SVF1 (3,(f | D),u0)) . z) - ((SVF1 (3,(f | D),u0)) . z0) by A6, A7 .= ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,(f | D),u0)) . z0) by A3, A7, A8 .= ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) by A3, A8, A11 ; hence ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ; ::_thesis: verum end; hence f is_partial_differentiable_in u0,3 by A2, A5, Th15; ::_thesis: verum end; definition let f be PartFunc of (REAL 3),REAL; let D be set ; assume A1: f is_partial_differentiable`1_on D ; funcf `partial1| D -> PartFunc of (REAL 3),REAL means :: PDIFF_4:def 4 ( dom it = D & ( for u being Element of REAL 3 st u in D holds it . u = partdiff (f,u,1) ) ); existence ex b1 being PartFunc of (REAL 3),REAL st ( dom b1 = D & ( for u being Element of REAL 3 st u in D holds b1 . u = partdiff (f,u,1) ) ) proof defpred S1[ Element of REAL 3] means $1 in D; deffunc H1( Element of REAL 3) -> Element of REAL = partdiff (f,$1,1); consider F being PartFunc of (REAL 3),REAL such that A2: ( ( for u being Element of REAL 3 holds ( u in dom F iff S1[u] ) ) & ( for u being Element of REAL 3 st u in dom F holds F . u = H1(u) ) ) from SEQ_1:sch_3(); take F ; ::_thesis: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,1) ) ) for y being set st y in dom F holds y in D by A2; then A3: dom F c= D by TARSKI:def_3; now__::_thesis:_for_y_being_set_st_y_in_D_holds_ y_in_dom_F let y be set ; ::_thesis: ( y in D implies y in dom F ) assume A4: y in D ; ::_thesis: y in dom F D c= dom f by A1, Def1; then D is Subset of (REAL 3) by XBOOLE_1:1; hence y in dom F by A2, A4; ::_thesis: verum end; then D c= dom F by TARSKI:def_3; hence dom F = D by A3, XBOOLE_0:def_10; ::_thesis: for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,1) let u be Element of REAL 3; ::_thesis: ( u in D implies F . u = partdiff (f,u,1) ) assume u in D ; ::_thesis: F . u = partdiff (f,u,1) then u in dom F by A2; hence F . u = partdiff (f,u,1) by A2; ::_thesis: verum end; uniqueness for b1, b2 being PartFunc of (REAL 3),REAL st dom b1 = D & ( for u being Element of REAL 3 st u in D holds b1 . u = partdiff (f,u,1) ) & dom b2 = D & ( for u being Element of REAL 3 st u in D holds b2 . u = partdiff (f,u,1) ) holds b1 = b2 proof let F, G be PartFunc of (REAL 3),REAL; ::_thesis: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,1) ) & dom G = D & ( for u being Element of REAL 3 st u in D holds G . u = partdiff (f,u,1) ) implies F = G ) assume that A5: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,1) ) ) and A6: ( dom G = D & ( for u being Element of REAL 3 st u in D holds G . u = partdiff (f,u,1) ) ) ; ::_thesis: F = G now__::_thesis:_for_u_being_Element_of_REAL_3_st_u_in_dom_F_holds_ F_._u_=_G_._u let u be Element of REAL 3; ::_thesis: ( u in dom F implies F . u = G . u ) assume A7: u in dom F ; ::_thesis: F . u = G . u then F . u = partdiff (f,u,1) by A5; hence F . u = G . u by A5, A6, A7; ::_thesis: verum end; hence F = G by A5, A6, PARTFUN1:5; ::_thesis: verum end; end; :: deftheorem defines `partial1| PDIFF_4:def_4_:_ for f being PartFunc of (REAL 3),REAL for D being set st f is_partial_differentiable`1_on D holds for b3 being PartFunc of (REAL 3),REAL holds ( b3 = f `partial1| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds b3 . u = partdiff (f,u,1) ) ) ); definition let f be PartFunc of (REAL 3),REAL; let D be set ; assume A1: f is_partial_differentiable`2_on D ; funcf `partial2| D -> PartFunc of (REAL 3),REAL means :: PDIFF_4:def 5 ( dom it = D & ( for u being Element of REAL 3 st u in D holds it . u = partdiff (f,u,2) ) ); existence ex b1 being PartFunc of (REAL 3),REAL st ( dom b1 = D & ( for u being Element of REAL 3 st u in D holds b1 . u = partdiff (f,u,2) ) ) proof defpred S1[ Element of REAL 3] means $1 in D; deffunc H1( Element of REAL 3) -> Element of REAL = partdiff (f,$1,2); consider F being PartFunc of (REAL 3),REAL such that A2: ( ( for u being Element of REAL 3 holds ( u in dom F iff S1[u] ) ) & ( for u being Element of REAL 3 st u in dom F holds F . u = H1(u) ) ) from SEQ_1:sch_3(); take F ; ::_thesis: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,2) ) ) for y being set st y in dom F holds y in D by A2; then A3: dom F c= D by TARSKI:def_3; now__::_thesis:_for_y_being_set_st_y_in_D_holds_ y_in_dom_F let y be set ; ::_thesis: ( y in D implies y in dom F ) assume A4: y in D ; ::_thesis: y in dom F D c= dom f by A1, Def2; then D is Subset of (REAL 3) by XBOOLE_1:1; hence y in dom F by A2, A4; ::_thesis: verum end; then D c= dom F by TARSKI:def_3; hence dom F = D by A3, XBOOLE_0:def_10; ::_thesis: for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,2) let u be Element of REAL 3; ::_thesis: ( u in D implies F . u = partdiff (f,u,2) ) assume u in D ; ::_thesis: F . u = partdiff (f,u,2) then u in dom F by A2; hence F . u = partdiff (f,u,2) by A2; ::_thesis: verum end; uniqueness for b1, b2 being PartFunc of (REAL 3),REAL st dom b1 = D & ( for u being Element of REAL 3 st u in D holds b1 . u = partdiff (f,u,2) ) & dom b2 = D & ( for u being Element of REAL 3 st u in D holds b2 . u = partdiff (f,u,2) ) holds b1 = b2 proof let F, G be PartFunc of (REAL 3),REAL; ::_thesis: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,2) ) & dom G = D & ( for u being Element of REAL 3 st u in D holds G . u = partdiff (f,u,2) ) implies F = G ) assume that A5: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,2) ) ) and A6: ( dom G = D & ( for u being Element of REAL 3 st u in D holds G . u = partdiff (f,u,2) ) ) ; ::_thesis: F = G now__::_thesis:_for_u_being_Element_of_REAL_3_st_u_in_dom_F_holds_ F_._u_=_G_._u let u be Element of REAL 3; ::_thesis: ( u in dom F implies F . u = G . u ) assume A7: u in dom F ; ::_thesis: F . u = G . u then F . u = partdiff (f,u,2) by A5; hence F . u = G . u by A5, A6, A7; ::_thesis: verum end; hence F = G by A5, A6, PARTFUN1:5; ::_thesis: verum end; end; :: deftheorem defines `partial2| PDIFF_4:def_5_:_ for f being PartFunc of (REAL 3),REAL for D being set st f is_partial_differentiable`2_on D holds for b3 being PartFunc of (REAL 3),REAL holds ( b3 = f `partial2| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds b3 . u = partdiff (f,u,2) ) ) ); definition let f be PartFunc of (REAL 3),REAL; let D be set ; assume A1: f is_partial_differentiable`3_on D ; funcf `partial3| D -> PartFunc of (REAL 3),REAL means :: PDIFF_4:def 6 ( dom it = D & ( for u being Element of REAL 3 st u in D holds it . u = partdiff (f,u,3) ) ); existence ex b1 being PartFunc of (REAL 3),REAL st ( dom b1 = D & ( for u being Element of REAL 3 st u in D holds b1 . u = partdiff (f,u,3) ) ) proof defpred S1[ Element of REAL 3] means $1 in D; deffunc H1( Element of REAL 3) -> Element of REAL = partdiff (f,$1,3); consider F being PartFunc of (REAL 3),REAL such that A2: ( ( for u being Element of REAL 3 holds ( u in dom F iff S1[u] ) ) & ( for u being Element of REAL 3 st u in dom F holds F . u = H1(u) ) ) from SEQ_1:sch_3(); take F ; ::_thesis: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,3) ) ) for y being set st y in dom F holds y in D by A2; then A3: dom F c= D by TARSKI:def_3; now__::_thesis:_for_y_being_set_st_y_in_D_holds_ y_in_dom_F let y be set ; ::_thesis: ( y in D implies y in dom F ) assume A4: y in D ; ::_thesis: y in dom F D c= dom f by A1, Def3; then D is Subset of (REAL 3) by XBOOLE_1:1; hence y in dom F by A2, A4; ::_thesis: verum end; then D c= dom F by TARSKI:def_3; hence dom F = D by A3, XBOOLE_0:def_10; ::_thesis: for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,3) let u be Element of REAL 3; ::_thesis: ( u in D implies F . u = partdiff (f,u,3) ) assume u in D ; ::_thesis: F . u = partdiff (f,u,3) then u in dom F by A2; hence F . u = partdiff (f,u,3) by A2; ::_thesis: verum end; uniqueness for b1, b2 being PartFunc of (REAL 3),REAL st dom b1 = D & ( for u being Element of REAL 3 st u in D holds b1 . u = partdiff (f,u,3) ) & dom b2 = D & ( for u being Element of REAL 3 st u in D holds b2 . u = partdiff (f,u,3) ) holds b1 = b2 proof let F, G be PartFunc of (REAL 3),REAL; ::_thesis: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,3) ) & dom G = D & ( for u being Element of REAL 3 st u in D holds G . u = partdiff (f,u,3) ) implies F = G ) assume that A5: ( dom F = D & ( for u being Element of REAL 3 st u in D holds F . u = partdiff (f,u,3) ) ) and A6: ( dom G = D & ( for u being Element of REAL 3 st u in D holds G . u = partdiff (f,u,3) ) ) ; ::_thesis: F = G now__::_thesis:_for_u_being_Element_of_REAL_3_st_u_in_dom_F_holds_ F_._u_=_G_._u let u be Element of REAL 3; ::_thesis: ( u in dom F implies F . u = G . u ) assume A7: u in dom F ; ::_thesis: F . u = G . u then F . u = partdiff (f,u,3) by A5; hence F . u = G . u by A5, A6, A7; ::_thesis: verum end; hence F = G by A5, A6, PARTFUN1:5; ::_thesis: verum end; end; :: deftheorem defines `partial3| PDIFF_4:def_6_:_ for f being PartFunc of (REAL 3),REAL for D being set st f is_partial_differentiable`3_on D holds for b3 being PartFunc of (REAL 3),REAL holds ( b3 = f `partial3| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds b3 . u = partdiff (f,u,3) ) ) ); begin theorem :: PDIFF_4:25 for f being PartFunc of (REAL 3),REAL for u0 being Element of REAL 3 for N being Neighbourhood of (proj (1,3)) . u0 st f is_partial_differentiable_in u0,1 & N c= dom (SVF1 (1,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (1,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent & partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u0 being Element of REAL 3 for N being Neighbourhood of (proj (1,3)) . u0 st f is_partial_differentiable_in u0,1 & N c= dom (SVF1 (1,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (1,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent & partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) ) let u0 be Element of REAL 3; ::_thesis: for N being Neighbourhood of (proj (1,3)) . u0 st f is_partial_differentiable_in u0,1 & N c= dom (SVF1 (1,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (1,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent & partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) ) let N be Neighbourhood of (proj (1,3)) . u0; ::_thesis: ( f is_partial_differentiable_in u0,1 & N c= dom (SVF1 (1,f,u0)) implies for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (1,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent & partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) ) ) assume A1: ( f is_partial_differentiable_in u0,1 & N c= dom (SVF1 (1,f,u0)) ) ; ::_thesis: for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (1,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent & partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) ) let h be non-zero 0 -convergent Real_Sequence; ::_thesis: for c being constant Real_Sequence st rng c = {((proj (1,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent & partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) ) let c be constant Real_Sequence; ::_thesis: ( rng c = {((proj (1,3)) . u0)} & rng (h + c) c= N implies ( (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent & partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) ) ) assume A2: ( rng c = {((proj (1,3)) . u0)} & rng (h + c) c= N ) ; ::_thesis: ( (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent & partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) ) consider x0, y0, z0 being Real such that A3: ( u0 = <*x0,y0,z0*> & ex N1 being Neighbourhood of x0 st ( N1 c= dom (SVF1 (1,f,u0)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N1 holds ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) by A1, Th13; consider N1 being Neighbourhood of x0 such that A4: ( N1 c= dom (SVF1 (1,f,u0)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N1 holds ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) by A3; consider L being LinearFunc, R being RestFunc such that A5: for x being Real st x in N1 holds ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) by A4; A6: (proj (1,3)) . u0 = x0 by A3, Th1; then consider N2 being Neighbourhood of x0 such that A7: ( N2 c= N & N2 c= N1 ) by RCOMP_1:17; consider g being real number such that A8: ( 0 < g & N2 = ].(x0 - g),(x0 + g).[ ) by RCOMP_1:def_6; A9: x0 in N2 proof A10: x0 + 0 < x0 + g by A8, XREAL_1:8; x0 - g < x0 - 0 by A8, XREAL_1:44; hence x0 in N2 by A8, A10; ::_thesis: verum end; ex n being Element of NAT st ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) proof x0 in rng c by A2, A6, TARSKI:def_1; then A11: lim c = x0 by SEQ_4:25; ( h is convergent & lim h = 0 ) ; then A12: lim (h + c) = 0 + x0 by A11, SEQ_2:6 .= x0 ; h + c is convergent by SEQ_2:5; then consider n being Element of NAT such that A13: for m being Element of NAT st n <= m holds abs (((h + c) . m) - x0) < g by A8, A12, SEQ_2:def_7; A14: rng (c ^\ n) = {x0} by A2, A6, VALUED_0:26; take n ; ::_thesis: ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) thus rng (c ^\ n) c= N2 ::_thesis: rng ((h + c) ^\ n) c= N2 proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng (c ^\ n) or y in N2 ) assume y in rng (c ^\ n) ; ::_thesis: y in N2 hence y in N2 by A9, A14, TARSKI:def_1; ::_thesis: verum end; let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng ((h + c) ^\ n) or y in N2 ) assume y in rng ((h + c) ^\ n) ; ::_thesis: y in N2 then consider m being Element of NAT such that A15: y = ((h + c) ^\ n) . m by FUNCT_2:113; n + 0 <= n + m by XREAL_1:7; then abs (((h + c) . (n + m)) - x0) < g by A13; then ( - g < ((h + c) . (m + n)) - x0 & ((h + c) . (m + n)) - x0 < g ) by SEQ_2:1; then ( - g < (((h + c) ^\ n) . m) - x0 & (((h + c) ^\ n) . m) - x0 < g ) by NAT_1:def_3; then ( x0 + (- g) < ((h + c) ^\ n) . m & ((h + c) ^\ n) . m < x0 + g ) by XREAL_1:19, XREAL_1:20; hence y in N2 by A8, A15; ::_thesis: verum end; then consider n being Element of NAT such that A16: ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) ; A17: rng (c ^\ n) c= dom (SVF1 (1,f,u0)) proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng (c ^\ n) or y in dom (SVF1 (1,f,u0)) ) A18: rng (c ^\ n) = rng c by VALUED_0:26; assume y in rng (c ^\ n) ; ::_thesis: y in dom (SVF1 (1,f,u0)) then y = x0 by A2, A6, A18, TARSKI:def_1; then y in N by A7, A9; hence y in dom (SVF1 (1,f,u0)) by A1; ::_thesis: verum end; A19: rng ((h + c) ^\ n) c= dom (SVF1 (1,f,u0)) proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng ((h + c) ^\ n) or y in dom (SVF1 (1,f,u0)) ) assume y in rng ((h + c) ^\ n) ; ::_thesis: y in dom (SVF1 (1,f,u0)) then y in N2 by A16; then y in N by A7; hence y in dom (SVF1 (1,f,u0)) by A1; ::_thesis: verum end; A20: rng c c= dom (SVF1 (1,f,u0)) proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng c or y in dom (SVF1 (1,f,u0)) ) assume y in rng c ; ::_thesis: y in dom (SVF1 (1,f,u0)) then y = x0 by A2, A6, TARSKI:def_1; then y in N by A7, A9; hence y in dom (SVF1 (1,f,u0)) by A1; ::_thesis: verum end; A21: rng (h + c) c= dom (SVF1 (1,f,u0)) proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng (h + c) or y in dom (SVF1 (1,f,u0)) ) assume y in rng (h + c) ; ::_thesis: y in dom (SVF1 (1,f,u0)) then y in N by A2; hence y in dom (SVF1 (1,f,u0)) by A1; ::_thesis: verum end; A22: for x being Real st x in N2 holds ((SVF1 (1,f,u0)) . x) - ((SVF1 (1,f,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) by A5, A7; A23: for k being Element of NAT holds ((SVF1 (1,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (1,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) proof let k be Element of NAT ; ::_thesis: ((SVF1 (1,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (1,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) ((h + c) ^\ n) . k in rng ((h + c) ^\ n) by VALUED_0:28; then A24: ((h + c) ^\ n) . k in N2 by A16; A25: (((h + c) ^\ n) . k) - ((c ^\ n) . k) = (((h ^\ n) + (c ^\ n)) . k) - ((c ^\ n) . k) by SEQM_3:15 .= (((h ^\ n) . k) + ((c ^\ n) . k)) - ((c ^\ n) . k) by SEQ_1:7 .= (h ^\ n) . k ; A26: (c ^\ n) . k in rng (c ^\ n) by VALUED_0:28; rng (c ^\ n) = rng c by VALUED_0:26; then (c ^\ n) . k = x0 by A2, A6, A26, TARSKI:def_1; hence ((SVF1 (1,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (1,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) by A5, A7, A24, A25; ::_thesis: verum end; A27: L is total by FDIFF_1:def_3; A28: R is total by FDIFF_1:def_2; A29: ((SVF1 (1,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (1,f,u0)) /* (c ^\ n)) = (L /* (h ^\ n)) + (R /* (h ^\ n)) proof now__::_thesis:_for_k_being_Element_of_NAT_holds_(((SVF1_(1,f,u0))_/*_((h_+_c)_^\_n))_-_((SVF1_(1,f,u0))_/*_(c_^\_n)))_._k_=_((L_/*_(h_^\_n))_+_(R_/*_(h_^\_n)))_._k let k be Element of NAT ; ::_thesis: (((SVF1 (1,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (1,f,u0)) /* (c ^\ n))) . k = ((L /* (h ^\ n)) + (R /* (h ^\ n))) . k thus (((SVF1 (1,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (1,f,u0)) /* (c ^\ n))) . k = (((SVF1 (1,f,u0)) /* ((h + c) ^\ n)) . k) - (((SVF1 (1,f,u0)) /* (c ^\ n)) . k) by RFUNCT_2:1 .= ((SVF1 (1,f,u0)) . (((h + c) ^\ n) . k)) - (((SVF1 (1,f,u0)) /* (c ^\ n)) . k) by A19, FUNCT_2:108 .= ((SVF1 (1,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (1,f,u0)) . ((c ^\ n) . k)) by A17, FUNCT_2:108 .= (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) by A23 .= ((L /* (h ^\ n)) . k) + (R . ((h ^\ n) . k)) by A27, FUNCT_2:115 .= ((L /* (h ^\ n)) . k) + ((R /* (h ^\ n)) . k) by A28, FUNCT_2:115 .= ((L /* (h ^\ n)) + (R /* (h ^\ n))) . k by SEQ_1:7 ; ::_thesis: verum end; hence ((SVF1 (1,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (1,f,u0)) /* (c ^\ n)) = (L /* (h ^\ n)) + (R /* (h ^\ n)) by FUNCT_2:63; ::_thesis: verum end; A30: ( ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") is convergent & lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 ) proof deffunc H1( Element of NAT ) -> Element of REAL = (L . 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . $1); consider s1 being Real_Sequence such that A31: for k being Element of NAT holds s1 . k = H1(k) from SEQ_1:sch_1(); consider s being Real such that A32: for p1 being Real holds L . p1 = s * p1 by FDIFF_1:def_3; A33: L . 1 = s * 1 by A32 .= s ; now__::_thesis:_for_m_being_Element_of_NAT_holds_(((L_/*_(h_^\_n))_+_(R_/*_(h_^\_n)))_(#)_((h_^\_n)_"))_._m_=_s1_._m let m be Element of NAT ; ::_thesis: (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) . m = s1 . m A34: (h ^\ n) . m <> 0 by SEQ_1:5; thus (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) . m = (((L /* (h ^\ n)) + (R /* (h ^\ n))) . m) * (((h ^\ n) ") . m) by SEQ_1:8 .= (((L /* (h ^\ n)) . m) + ((R /* (h ^\ n)) . m)) * (((h ^\ n) ") . m) by SEQ_1:7 .= (((L /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) + (((R /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) .= (((L /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by SEQ_1:8 .= (((L /* (h ^\ n)) . m) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by VALUED_1:10 .= ((L . ((h ^\ n) . m)) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A27, FUNCT_2:115 .= ((s * ((h ^\ n) . m)) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A32 .= (s * (((h ^\ n) . m) * (((h ^\ n) . m) "))) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) .= (s * 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A34, XCMPLX_0:def_7 .= s1 . m by A31, A33 ; ::_thesis: verum end; then A35: ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") = s1 by FUNCT_2:63; A36: now__::_thesis:_for_r_being_real_number_st_0_<_r_holds_ ex_n1_being_Element_of_NAT_st_ for_k_being_Element_of_NAT_st_n1_<=_k_holds_ abs_((s1_._k)_-_(L_._1))_<_r let r be real number ; ::_thesis: ( 0 < r implies ex n1 being Element of NAT st for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r ) assume A37: 0 < r ; ::_thesis: ex n1 being Element of NAT st for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r ( ((h ^\ n) ") (#) (R /* (h ^\ n)) is convergent & lim (((h ^\ n) ") (#) (R /* (h ^\ n))) = 0 ) by FDIFF_1:def_2; then consider m being Element of NAT such that A38: for k being Element of NAT st m <= k holds abs (((((h ^\ n) ") (#) (R /* (h ^\ n))) . k) - 0) < r by A37, SEQ_2:def_7; take n1 = m; ::_thesis: for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r let k be Element of NAT ; ::_thesis: ( n1 <= k implies abs ((s1 . k) - (L . 1)) < r ) assume A39: n1 <= k ; ::_thesis: abs ((s1 . k) - (L . 1)) < r abs ((s1 . k) - (L . 1)) = abs (((L . 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . k)) - (L . 1)) by A31 .= abs (((((h ^\ n) ") (#) (R /* (h ^\ n))) . k) - 0) ; hence abs ((s1 . k) - (L . 1)) < r by A38, A39; ::_thesis: verum end; hence ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") is convergent by A35, SEQ_2:def_6; ::_thesis: lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 hence lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 by A35, A36, SEQ_2:def_7; ::_thesis: verum end; A40: N2 c= dom (SVF1 (1,f,u0)) by A1, A7, XBOOLE_1:1; A41: ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") = ((((SVF1 (1,f,u0)) /* (h + c)) ^\ n) - ((SVF1 (1,f,u0)) /* (c ^\ n))) (#) ((h ^\ n) ") by A21, A29, VALUED_0:27 .= ((((SVF1 (1,f,u0)) /* (h + c)) ^\ n) - (((SVF1 (1,f,u0)) /* c) ^\ n)) (#) ((h ^\ n) ") by A20, VALUED_0:27 .= ((((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) ^\ n) (#) ((h ^\ n) ") by SEQM_3:17 .= ((((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) ^\ n) (#) ((h ") ^\ n) by SEQM_3:18 .= ((((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) (#) (h ")) ^\ n by SEQM_3:19 ; then A42: L . 1 = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) by A30, SEQ_4:22; thus (h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c)) is convergent by A30, A41, SEQ_4:21; ::_thesis: partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) thus partdiff (f,u0,1) = lim ((h ") (#) (((SVF1 (1,f,u0)) /* (h + c)) - ((SVF1 (1,f,u0)) /* c))) by A1, A3, A22, A40, A42, Th16; ::_thesis: verum end; theorem :: PDIFF_4:26 for f being PartFunc of (REAL 3),REAL for u0 being Element of REAL 3 for N being Neighbourhood of (proj (2,3)) . u0 st f is_partial_differentiable_in u0,2 & N c= dom (SVF1 (2,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (2,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent & partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u0 being Element of REAL 3 for N being Neighbourhood of (proj (2,3)) . u0 st f is_partial_differentiable_in u0,2 & N c= dom (SVF1 (2,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (2,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent & partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) ) let u0 be Element of REAL 3; ::_thesis: for N being Neighbourhood of (proj (2,3)) . u0 st f is_partial_differentiable_in u0,2 & N c= dom (SVF1 (2,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (2,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent & partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) ) let N be Neighbourhood of (proj (2,3)) . u0; ::_thesis: ( f is_partial_differentiable_in u0,2 & N c= dom (SVF1 (2,f,u0)) implies for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (2,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent & partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) ) ) assume A1: ( f is_partial_differentiable_in u0,2 & N c= dom (SVF1 (2,f,u0)) ) ; ::_thesis: for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (2,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent & partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) ) let h be non-zero 0 -convergent Real_Sequence; ::_thesis: for c being constant Real_Sequence st rng c = {((proj (2,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent & partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) ) let c be constant Real_Sequence; ::_thesis: ( rng c = {((proj (2,3)) . u0)} & rng (h + c) c= N implies ( (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent & partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) ) ) assume A2: ( rng c = {((proj (2,3)) . u0)} & rng (h + c) c= N ) ; ::_thesis: ( (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent & partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) ) consider x0, y0, z0 being Real such that A3: ( u0 = <*x0,y0,z0*> & ex N1 being Neighbourhood of y0 st ( N1 c= dom (SVF1 (2,f,u0)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N1 holds ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) by A1, Th14; consider N1 being Neighbourhood of y0 such that A4: ( N1 c= dom (SVF1 (2,f,u0)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N1 holds ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) by A3; consider L being LinearFunc, R being RestFunc such that A5: for y being Real st y in N1 holds ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) by A4; A6: (proj (2,3)) . u0 = y0 by A3, Th2; then consider N2 being Neighbourhood of y0 such that A7: ( N2 c= N & N2 c= N1 ) by RCOMP_1:17; consider g being real number such that A8: ( 0 < g & N2 = ].(y0 - g),(y0 + g).[ ) by RCOMP_1:def_6; A9: y0 in N2 proof A10: y0 + 0 < y0 + g by A8, XREAL_1:8; y0 - g < y0 - 0 by A8, XREAL_1:44; hence y0 in N2 by A8, A10; ::_thesis: verum end; ex n being Element of NAT st ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) proof y0 in rng c by A2, A6, TARSKI:def_1; then A11: lim c = y0 by SEQ_4:25; ( h is convergent & lim h = 0 ) ; then A12: lim (h + c) = 0 + y0 by A11, SEQ_2:6 .= y0 ; h + c is convergent by SEQ_2:5; then consider n being Element of NAT such that A13: for m being Element of NAT st n <= m holds abs (((h + c) . m) - y0) < g by A8, A12, SEQ_2:def_7; A14: rng (c ^\ n) = {y0} by A2, A6, VALUED_0:26; take n ; ::_thesis: ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) thus rng (c ^\ n) c= N2 ::_thesis: rng ((h + c) ^\ n) c= N2 proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng (c ^\ n) or y in N2 ) assume y in rng (c ^\ n) ; ::_thesis: y in N2 hence y in N2 by A9, A14, TARSKI:def_1; ::_thesis: verum end; let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng ((h + c) ^\ n) or y in N2 ) assume y in rng ((h + c) ^\ n) ; ::_thesis: y in N2 then consider m being Element of NAT such that A15: y = ((h + c) ^\ n) . m by FUNCT_2:113; n + 0 <= n + m by XREAL_1:7; then abs (((h + c) . (n + m)) - y0) < g by A13; then ( - g < ((h + c) . (m + n)) - y0 & ((h + c) . (m + n)) - y0 < g ) by SEQ_2:1; then ( - g < (((h + c) ^\ n) . m) - y0 & (((h + c) ^\ n) . m) - y0 < g ) by NAT_1:def_3; then ( y0 + (- g) < ((h + c) ^\ n) . m & ((h + c) ^\ n) . m < y0 + g ) by XREAL_1:19, XREAL_1:20; hence y in N2 by A8, A15; ::_thesis: verum end; then consider n being Element of NAT such that A16: ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) ; A17: rng (c ^\ n) c= dom (SVF1 (2,f,u0)) proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng (c ^\ n) or y in dom (SVF1 (2,f,u0)) ) A18: rng (c ^\ n) = rng c by VALUED_0:26; assume y in rng (c ^\ n) ; ::_thesis: y in dom (SVF1 (2,f,u0)) then y = y0 by A2, A6, A18, TARSKI:def_1; then y in N by A7, A9; hence y in dom (SVF1 (2,f,u0)) by A1; ::_thesis: verum end; A19: rng ((h + c) ^\ n) c= dom (SVF1 (2,f,u0)) proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng ((h + c) ^\ n) or y in dom (SVF1 (2,f,u0)) ) assume y in rng ((h + c) ^\ n) ; ::_thesis: y in dom (SVF1 (2,f,u0)) then y in N2 by A16; then y in N by A7; hence y in dom (SVF1 (2,f,u0)) by A1; ::_thesis: verum end; A20: rng c c= dom (SVF1 (2,f,u0)) proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng c or y in dom (SVF1 (2,f,u0)) ) assume y in rng c ; ::_thesis: y in dom (SVF1 (2,f,u0)) then y = y0 by A2, A6, TARSKI:def_1; then y in N by A7, A9; hence y in dom (SVF1 (2,f,u0)) by A1; ::_thesis: verum end; A21: rng (h + c) c= dom (SVF1 (2,f,u0)) proof let y be set ; :: according to TARSKI:def_3 ::_thesis: ( not y in rng (h + c) or y in dom (SVF1 (2,f,u0)) ) assume y in rng (h + c) ; ::_thesis: y in dom (SVF1 (2,f,u0)) then y in N by A2; hence y in dom (SVF1 (2,f,u0)) by A1; ::_thesis: verum end; A22: for y being Real st y in N2 holds ((SVF1 (2,f,u0)) . y) - ((SVF1 (2,f,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) by A5, A7; A23: for k being Element of NAT holds ((SVF1 (2,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (2,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) proof let k be Element of NAT ; ::_thesis: ((SVF1 (2,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (2,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) ((h + c) ^\ n) . k in rng ((h + c) ^\ n) by VALUED_0:28; then A24: ((h + c) ^\ n) . k in N2 by A16; A25: (((h + c) ^\ n) . k) - ((c ^\ n) . k) = (((h ^\ n) + (c ^\ n)) . k) - ((c ^\ n) . k) by SEQM_3:15 .= (((h ^\ n) . k) + ((c ^\ n) . k)) - ((c ^\ n) . k) by SEQ_1:7 .= (h ^\ n) . k ; A26: (c ^\ n) . k in rng (c ^\ n) by VALUED_0:28; rng (c ^\ n) = rng c by VALUED_0:26; then (c ^\ n) . k = y0 by A2, A6, A26, TARSKI:def_1; hence ((SVF1 (2,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (2,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) by A5, A7, A24, A25; ::_thesis: verum end; A27: L is total by FDIFF_1:def_3; A28: R is total by FDIFF_1:def_2; A29: ((SVF1 (2,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (2,f,u0)) /* (c ^\ n)) = (L /* (h ^\ n)) + (R /* (h ^\ n)) proof now__::_thesis:_for_k_being_Element_of_NAT_holds_(((SVF1_(2,f,u0))_/*_((h_+_c)_^\_n))_-_((SVF1_(2,f,u0))_/*_(c_^\_n)))_._k_=_((L_/*_(h_^\_n))_+_(R_/*_(h_^\_n)))_._k let k be Element of NAT ; ::_thesis: (((SVF1 (2,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (2,f,u0)) /* (c ^\ n))) . k = ((L /* (h ^\ n)) + (R /* (h ^\ n))) . k thus (((SVF1 (2,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (2,f,u0)) /* (c ^\ n))) . k = (((SVF1 (2,f,u0)) /* ((h + c) ^\ n)) . k) - (((SVF1 (2,f,u0)) /* (c ^\ n)) . k) by RFUNCT_2:1 .= ((SVF1 (2,f,u0)) . (((h + c) ^\ n) . k)) - (((SVF1 (2,f,u0)) /* (c ^\ n)) . k) by A19, FUNCT_2:108 .= ((SVF1 (2,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (2,f,u0)) . ((c ^\ n) . k)) by A17, FUNCT_2:108 .= (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) by A23 .= ((L /* (h ^\ n)) . k) + (R . ((h ^\ n) . k)) by A27, FUNCT_2:115 .= ((L /* (h ^\ n)) . k) + ((R /* (h ^\ n)) . k) by A28, FUNCT_2:115 .= ((L /* (h ^\ n)) + (R /* (h ^\ n))) . k by SEQ_1:7 ; ::_thesis: verum end; hence ((SVF1 (2,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (2,f,u0)) /* (c ^\ n)) = (L /* (h ^\ n)) + (R /* (h ^\ n)) by FUNCT_2:63; ::_thesis: verum end; A30: ( ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") is convergent & lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 ) proof deffunc H1( Element of NAT ) -> Element of REAL = (L . 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . $1); consider s1 being Real_Sequence such that A31: for k being Element of NAT holds s1 . k = H1(k) from SEQ_1:sch_1(); consider s being Real such that A32: for p1 being Real holds L . p1 = s * p1 by FDIFF_1:def_3; A33: L . 1 = s * 1 by A32 .= s ; now__::_thesis:_for_m_being_Element_of_NAT_holds_(((L_/*_(h_^\_n))_+_(R_/*_(h_^\_n)))_(#)_((h_^\_n)_"))_._m_=_s1_._m let m be Element of NAT ; ::_thesis: (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) . m = s1 . m A34: (h ^\ n) . m <> 0 by SEQ_1:5; thus (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) . m = (((L /* (h ^\ n)) + (R /* (h ^\ n))) . m) * (((h ^\ n) ") . m) by SEQ_1:8 .= (((L /* (h ^\ n)) . m) + ((R /* (h ^\ n)) . m)) * (((h ^\ n) ") . m) by SEQ_1:7 .= (((L /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) + (((R /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) .= (((L /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by SEQ_1:8 .= (((L /* (h ^\ n)) . m) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by VALUED_1:10 .= ((L . ((h ^\ n) . m)) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A27, FUNCT_2:115 .= ((s * ((h ^\ n) . m)) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A32 .= (s * (((h ^\ n) . m) * (((h ^\ n) . m) "))) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) .= (s * 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A34, XCMPLX_0:def_7 .= s1 . m by A31, A33 ; ::_thesis: verum end; then A35: ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") = s1 by FUNCT_2:63; A36: now__::_thesis:_for_r_being_real_number_st_0_<_r_holds_ ex_n1_being_Element_of_NAT_st_ for_k_being_Element_of_NAT_st_n1_<=_k_holds_ abs_((s1_._k)_-_(L_._1))_<_r let r be real number ; ::_thesis: ( 0 < r implies ex n1 being Element of NAT st for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r ) assume A37: 0 < r ; ::_thesis: ex n1 being Element of NAT st for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r ( ((h ^\ n) ") (#) (R /* (h ^\ n)) is convergent & lim (((h ^\ n) ") (#) (R /* (h ^\ n))) = 0 ) by FDIFF_1:def_2; then consider m being Element of NAT such that A38: for k being Element of NAT st m <= k holds abs (((((h ^\ n) ") (#) (R /* (h ^\ n))) . k) - 0) < r by A37, SEQ_2:def_7; take n1 = m; ::_thesis: for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r let k be Element of NAT ; ::_thesis: ( n1 <= k implies abs ((s1 . k) - (L . 1)) < r ) assume A39: n1 <= k ; ::_thesis: abs ((s1 . k) - (L . 1)) < r abs ((s1 . k) - (L . 1)) = abs (((L . 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . k)) - (L . 1)) by A31 .= abs (((((h ^\ n) ") (#) (R /* (h ^\ n))) . k) - 0) ; hence abs ((s1 . k) - (L . 1)) < r by A38, A39; ::_thesis: verum end; hence ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") is convergent by A35, SEQ_2:def_6; ::_thesis: lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 hence lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 by A35, A36, SEQ_2:def_7; ::_thesis: verum end; A40: N2 c= dom (SVF1 (2,f,u0)) by A1, A7, XBOOLE_1:1; A41: ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") = ((((SVF1 (2,f,u0)) /* (h + c)) ^\ n) - ((SVF1 (2,f,u0)) /* (c ^\ n))) (#) ((h ^\ n) ") by A21, A29, VALUED_0:27 .= ((((SVF1 (2,f,u0)) /* (h + c)) ^\ n) - (((SVF1 (2,f,u0)) /* c) ^\ n)) (#) ((h ^\ n) ") by A20, VALUED_0:27 .= ((((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) ^\ n) (#) ((h ^\ n) ") by SEQM_3:17 .= ((((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) ^\ n) (#) ((h ") ^\ n) by SEQM_3:18 .= ((((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) (#) (h ")) ^\ n by SEQM_3:19 ; then A42: L . 1 = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) by A30, SEQ_4:22; thus (h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c)) is convergent by A30, A41, SEQ_4:21; ::_thesis: partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) thus partdiff (f,u0,2) = lim ((h ") (#) (((SVF1 (2,f,u0)) /* (h + c)) - ((SVF1 (2,f,u0)) /* c))) by A1, A3, A22, A40, A42, Th17; ::_thesis: verum end; theorem :: PDIFF_4:27 for f being PartFunc of (REAL 3),REAL for u0 being Element of REAL 3 for N being Neighbourhood of (proj (3,3)) . u0 st f is_partial_differentiable_in u0,3 & N c= dom (SVF1 (3,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (3,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent & partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) ) proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u0 being Element of REAL 3 for N being Neighbourhood of (proj (3,3)) . u0 st f is_partial_differentiable_in u0,3 & N c= dom (SVF1 (3,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (3,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent & partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) ) let u0 be Element of REAL 3; ::_thesis: for N being Neighbourhood of (proj (3,3)) . u0 st f is_partial_differentiable_in u0,3 & N c= dom (SVF1 (3,f,u0)) holds for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (3,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent & partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) ) let N be Neighbourhood of (proj (3,3)) . u0; ::_thesis: ( f is_partial_differentiable_in u0,3 & N c= dom (SVF1 (3,f,u0)) implies for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (3,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent & partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) ) ) assume A1: ( f is_partial_differentiable_in u0,3 & N c= dom (SVF1 (3,f,u0)) ) ; ::_thesis: for h being non-zero 0 -convergent Real_Sequence for c being constant Real_Sequence st rng c = {((proj (3,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent & partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) ) let h be non-zero 0 -convergent Real_Sequence; ::_thesis: for c being constant Real_Sequence st rng c = {((proj (3,3)) . u0)} & rng (h + c) c= N holds ( (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent & partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) ) let c be constant Real_Sequence; ::_thesis: ( rng c = {((proj (3,3)) . u0)} & rng (h + c) c= N implies ( (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent & partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) ) ) assume A2: ( rng c = {((proj (3,3)) . u0)} & rng (h + c) c= N ) ; ::_thesis: ( (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent & partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) ) consider x0, y0, z0 being Real such that A3: ( u0 = <*x0,y0,z0*> & ex N1 being Neighbourhood of z0 st ( N1 c= dom (SVF1 (3,f,u0)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N1 holds ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) by A1, Th15; consider N1 being Neighbourhood of z0 such that A4: ( N1 c= dom (SVF1 (3,f,u0)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N1 holds ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) by A3; consider L being LinearFunc, R being RestFunc such that A5: for z being Real st z in N1 holds ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) by A4; A6: (proj (3,3)) . u0 = z0 by A3, Th3; then consider N2 being Neighbourhood of z0 such that A7: ( N2 c= N & N2 c= N1 ) by RCOMP_1:17; consider g being real number such that A8: ( 0 < g & N2 = ].(z0 - g),(z0 + g).[ ) by RCOMP_1:def_6; A9: z0 in N2 proof A10: z0 + 0 < z0 + g by A8, XREAL_1:8; z0 - g < z0 - 0 by A8, XREAL_1:44; hence z0 in N2 by A8, A10; ::_thesis: verum end; ex n being Element of NAT st ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) proof z0 in rng c by A2, A6, TARSKI:def_1; then A11: lim c = z0 by SEQ_4:25; ( h is convergent & lim h = 0 ) ; then A12: lim (h + c) = 0 + z0 by A11, SEQ_2:6 .= z0 ; h + c is convergent by SEQ_2:5; then consider n being Element of NAT such that A13: for m being Element of NAT st n <= m holds abs (((h + c) . m) - z0) < g by A8, A12, SEQ_2:def_7; A14: rng (c ^\ n) = {z0} by A2, A6, VALUED_0:26; take n ; ::_thesis: ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) thus rng (c ^\ n) c= N2 ::_thesis: rng ((h + c) ^\ n) c= N2 proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in rng (c ^\ n) or z in N2 ) assume z in rng (c ^\ n) ; ::_thesis: z in N2 hence z in N2 by A9, A14, TARSKI:def_1; ::_thesis: verum end; let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in rng ((h + c) ^\ n) or z in N2 ) assume z in rng ((h + c) ^\ n) ; ::_thesis: z in N2 then consider m being Element of NAT such that A15: z = ((h + c) ^\ n) . m by FUNCT_2:113; n + 0 <= n + m by XREAL_1:7; then abs (((h + c) . (n + m)) - z0) < g by A13; then ( - g < ((h + c) . (m + n)) - z0 & ((h + c) . (m + n)) - z0 < g ) by SEQ_2:1; then ( - g < (((h + c) ^\ n) . m) - z0 & (((h + c) ^\ n) . m) - z0 < g ) by NAT_1:def_3; then ( z0 + (- g) < ((h + c) ^\ n) . m & ((h + c) ^\ n) . m < z0 + g ) by XREAL_1:19, XREAL_1:20; hence z in N2 by A8, A15; ::_thesis: verum end; then consider n being Element of NAT such that A16: ( rng (c ^\ n) c= N2 & rng ((h + c) ^\ n) c= N2 ) ; A17: rng (c ^\ n) c= dom (SVF1 (3,f,u0)) proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in rng (c ^\ n) or z in dom (SVF1 (3,f,u0)) ) A18: rng (c ^\ n) = rng c by VALUED_0:26; assume z in rng (c ^\ n) ; ::_thesis: z in dom (SVF1 (3,f,u0)) then z = z0 by A2, A6, A18, TARSKI:def_1; then z in N by A7, A9; hence z in dom (SVF1 (3,f,u0)) by A1; ::_thesis: verum end; A19: rng ((h + c) ^\ n) c= dom (SVF1 (3,f,u0)) proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in rng ((h + c) ^\ n) or z in dom (SVF1 (3,f,u0)) ) assume z in rng ((h + c) ^\ n) ; ::_thesis: z in dom (SVF1 (3,f,u0)) then z in N2 by A16; then z in N by A7; hence z in dom (SVF1 (3,f,u0)) by A1; ::_thesis: verum end; A20: rng c c= dom (SVF1 (3,f,u0)) proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in rng c or z in dom (SVF1 (3,f,u0)) ) assume z in rng c ; ::_thesis: z in dom (SVF1 (3,f,u0)) then z = z0 by A2, A6, TARSKI:def_1; then z in N by A7, A9; hence z in dom (SVF1 (3,f,u0)) by A1; ::_thesis: verum end; A21: rng (h + c) c= dom (SVF1 (3,f,u0)) proof let z be set ; :: according to TARSKI:def_3 ::_thesis: ( not z in rng (h + c) or z in dom (SVF1 (3,f,u0)) ) assume z in rng (h + c) ; ::_thesis: z in dom (SVF1 (3,f,u0)) then z in N by A2; hence z in dom (SVF1 (3,f,u0)) by A1; ::_thesis: verum end; A22: for z being Real st z in N2 holds ((SVF1 (3,f,u0)) . z) - ((SVF1 (3,f,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) by A5, A7; A23: for k being Element of NAT holds ((SVF1 (3,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (3,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) proof let k be Element of NAT ; ::_thesis: ((SVF1 (3,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (3,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) ((h + c) ^\ n) . k in rng ((h + c) ^\ n) by VALUED_0:28; then A24: ((h + c) ^\ n) . k in N2 by A16; A25: (((h + c) ^\ n) . k) - ((c ^\ n) . k) = (((h ^\ n) + (c ^\ n)) . k) - ((c ^\ n) . k) by SEQM_3:15 .= (((h ^\ n) . k) + ((c ^\ n) . k)) - ((c ^\ n) . k) by SEQ_1:7 .= (h ^\ n) . k ; A26: (c ^\ n) . k in rng (c ^\ n) by VALUED_0:28; rng (c ^\ n) = rng c by VALUED_0:26; then (c ^\ n) . k = z0 by A2, A6, A26, TARSKI:def_1; hence ((SVF1 (3,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (3,f,u0)) . ((c ^\ n) . k)) = (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) by A5, A7, A24, A25; ::_thesis: verum end; A27: L is total by FDIFF_1:def_3; A28: R is total by FDIFF_1:def_2; A29: ((SVF1 (3,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (3,f,u0)) /* (c ^\ n)) = (L /* (h ^\ n)) + (R /* (h ^\ n)) proof now__::_thesis:_for_k_being_Element_of_NAT_holds_(((SVF1_(3,f,u0))_/*_((h_+_c)_^\_n))_-_((SVF1_(3,f,u0))_/*_(c_^\_n)))_._k_=_((L_/*_(h_^\_n))_+_(R_/*_(h_^\_n)))_._k let k be Element of NAT ; ::_thesis: (((SVF1 (3,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (3,f,u0)) /* (c ^\ n))) . k = ((L /* (h ^\ n)) + (R /* (h ^\ n))) . k thus (((SVF1 (3,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (3,f,u0)) /* (c ^\ n))) . k = (((SVF1 (3,f,u0)) /* ((h + c) ^\ n)) . k) - (((SVF1 (3,f,u0)) /* (c ^\ n)) . k) by RFUNCT_2:1 .= ((SVF1 (3,f,u0)) . (((h + c) ^\ n) . k)) - (((SVF1 (3,f,u0)) /* (c ^\ n)) . k) by A19, FUNCT_2:108 .= ((SVF1 (3,f,u0)) . (((h + c) ^\ n) . k)) - ((SVF1 (3,f,u0)) . ((c ^\ n) . k)) by A17, FUNCT_2:108 .= (L . ((h ^\ n) . k)) + (R . ((h ^\ n) . k)) by A23 .= ((L /* (h ^\ n)) . k) + (R . ((h ^\ n) . k)) by A27, FUNCT_2:115 .= ((L /* (h ^\ n)) . k) + ((R /* (h ^\ n)) . k) by A28, FUNCT_2:115 .= ((L /* (h ^\ n)) + (R /* (h ^\ n))) . k by SEQ_1:7 ; ::_thesis: verum end; hence ((SVF1 (3,f,u0)) /* ((h + c) ^\ n)) - ((SVF1 (3,f,u0)) /* (c ^\ n)) = (L /* (h ^\ n)) + (R /* (h ^\ n)) by FUNCT_2:63; ::_thesis: verum end; A30: ( ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") is convergent & lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 ) proof deffunc H1( Element of NAT ) -> Element of REAL = (L . 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . $1); consider s1 being Real_Sequence such that A31: for k being Element of NAT holds s1 . k = H1(k) from SEQ_1:sch_1(); consider s being Real such that A32: for p1 being Real holds L . p1 = s * p1 by FDIFF_1:def_3; A33: L . 1 = s * 1 by A32 .= s ; now__::_thesis:_for_m_being_Element_of_NAT_holds_(((L_/*_(h_^\_n))_+_(R_/*_(h_^\_n)))_(#)_((h_^\_n)_"))_._m_=_s1_._m let m be Element of NAT ; ::_thesis: (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) . m = s1 . m A34: (h ^\ n) . m <> 0 by SEQ_1:5; thus (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) . m = (((L /* (h ^\ n)) + (R /* (h ^\ n))) . m) * (((h ^\ n) ") . m) by SEQ_1:8 .= (((L /* (h ^\ n)) . m) + ((R /* (h ^\ n)) . m)) * (((h ^\ n) ") . m) by SEQ_1:7 .= (((L /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) + (((R /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) .= (((L /* (h ^\ n)) . m) * (((h ^\ n) ") . m)) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by SEQ_1:8 .= (((L /* (h ^\ n)) . m) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by VALUED_1:10 .= ((L . ((h ^\ n) . m)) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A27, FUNCT_2:115 .= ((s * ((h ^\ n) . m)) * (((h ^\ n) . m) ")) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A32 .= (s * (((h ^\ n) . m) * (((h ^\ n) . m) "))) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) .= (s * 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . m) by A34, XCMPLX_0:def_7 .= s1 . m by A31, A33 ; ::_thesis: verum end; then A35: ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") = s1 by FUNCT_2:63; A36: now__::_thesis:_for_r_being_real_number_st_0_<_r_holds_ ex_n1_being_Element_of_NAT_st_ for_k_being_Element_of_NAT_st_n1_<=_k_holds_ abs_((s1_._k)_-_(L_._1))_<_r let r be real number ; ::_thesis: ( 0 < r implies ex n1 being Element of NAT st for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r ) assume A37: 0 < r ; ::_thesis: ex n1 being Element of NAT st for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r ( ((h ^\ n) ") (#) (R /* (h ^\ n)) is convergent & lim (((h ^\ n) ") (#) (R /* (h ^\ n))) = 0 ) by FDIFF_1:def_2; then consider m being Element of NAT such that A38: for k being Element of NAT st m <= k holds abs (((((h ^\ n) ") (#) (R /* (h ^\ n))) . k) - 0) < r by A37, SEQ_2:def_7; take n1 = m; ::_thesis: for k being Element of NAT st n1 <= k holds abs ((s1 . k) - (L . 1)) < r let k be Element of NAT ; ::_thesis: ( n1 <= k implies abs ((s1 . k) - (L . 1)) < r ) assume A39: n1 <= k ; ::_thesis: abs ((s1 . k) - (L . 1)) < r abs ((s1 . k) - (L . 1)) = abs (((L . 1) + (((R /* (h ^\ n)) (#) ((h ^\ n) ")) . k)) - (L . 1)) by A31 .= abs (((((h ^\ n) ") (#) (R /* (h ^\ n))) . k) - 0) ; hence abs ((s1 . k) - (L . 1)) < r by A38, A39; ::_thesis: verum end; hence ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") is convergent by A35, SEQ_2:def_6; ::_thesis: lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 hence lim (((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ")) = L . 1 by A35, A36, SEQ_2:def_7; ::_thesis: verum end; A40: N2 c= dom (SVF1 (3,f,u0)) by A1, A7, XBOOLE_1:1; A41: ((L /* (h ^\ n)) + (R /* (h ^\ n))) (#) ((h ^\ n) ") = ((((SVF1 (3,f,u0)) /* (h + c)) ^\ n) - ((SVF1 (3,f,u0)) /* (c ^\ n))) (#) ((h ^\ n) ") by A21, A29, VALUED_0:27 .= ((((SVF1 (3,f,u0)) /* (h + c)) ^\ n) - (((SVF1 (3,f,u0)) /* c) ^\ n)) (#) ((h ^\ n) ") by A20, VALUED_0:27 .= ((((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) ^\ n) (#) ((h ^\ n) ") by SEQM_3:17 .= ((((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) ^\ n) (#) ((h ") ^\ n) by SEQM_3:18 .= ((((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) (#) (h ")) ^\ n by SEQM_3:19 ; then A42: L . 1 = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) by A30, SEQ_4:22; thus (h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c)) is convergent by A30, A41, SEQ_4:21; ::_thesis: partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) thus partdiff (f,u0,3) = lim ((h ") (#) (((SVF1 (3,f,u0)) /* (h + c)) - ((SVF1 (3,f,u0)) /* c))) by A1, A3, A22, A40, A42, Th18; ::_thesis: verum end; theorem :: PDIFF_4:28 for u0 being Element of REAL 3 for f1, f2 being PartFunc of (REAL 3),REAL st f1 is_partial_differentiable_in u0,1 & f2 is_partial_differentiable_in u0,1 holds f1 (#) f2 is_partial_differentiable_in u0,1 proof let u0 be Element of REAL 3; ::_thesis: for f1, f2 being PartFunc of (REAL 3),REAL st f1 is_partial_differentiable_in u0,1 & f2 is_partial_differentiable_in u0,1 holds f1 (#) f2 is_partial_differentiable_in u0,1 let f1, f2 be PartFunc of (REAL 3),REAL; ::_thesis: ( f1 is_partial_differentiable_in u0,1 & f2 is_partial_differentiable_in u0,1 implies f1 (#) f2 is_partial_differentiable_in u0,1 ) assume that A1: f1 is_partial_differentiable_in u0,1 and A2: f2 is_partial_differentiable_in u0,1 ; ::_thesis: f1 (#) f2 is_partial_differentiable_in u0,1 consider x0, y0, z0 being Real such that A3: ( u0 = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st ( N c= dom (SVF1 (1,f1,u0)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f1,u0)) . x) - ((SVF1 (1,f1,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) by A1, Th13; consider N1 being Neighbourhood of x0 such that A4: ( N1 c= dom (SVF1 (1,f1,u0)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N1 holds ((SVF1 (1,f1,u0)) . x) - ((SVF1 (1,f1,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) by A3; consider L1 being LinearFunc, R1 being RestFunc such that A5: for x being Real st x in N1 holds ((SVF1 (1,f1,u0)) . x) - ((SVF1 (1,f1,u0)) . x0) = (L1 . (x - x0)) + (R1 . (x - x0)) by A4; consider x1, y1, z1 being Real such that A6: ( u0 = <*x1,y1,z1*> & ex N being Neighbourhood of x1 st ( N c= dom (SVF1 (1,f2,u0)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N holds ((SVF1 (1,f2,u0)) . x) - ((SVF1 (1,f2,u0)) . x1) = (L . (x - x1)) + (R . (x - x1)) ) ) by A2, Th13; ( x0 = x1 & y0 = y1 & z0 = z1 ) by A3, A6, FINSEQ_1:78; then consider N2 being Neighbourhood of x0 such that A7: ( N2 c= dom (SVF1 (1,f2,u0)) & ex L being LinearFunc ex R being RestFunc st for x being Real st x in N2 holds ((SVF1 (1,f2,u0)) . x) - ((SVF1 (1,f2,u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) by A6; consider L2 being LinearFunc, R2 being RestFunc such that A8: for x being Real st x in N2 holds ((SVF1 (1,f2,u0)) . x) - ((SVF1 (1,f2,u0)) . x0) = (L2 . (x - x0)) + (R2 . (x - x0)) by A7; consider N being Neighbourhood of x0 such that A9: ( N c= N1 & N c= N2 ) by RCOMP_1:17; reconsider L11 = ((SVF1 (1,f2,u0)) . x0) (#) L1, L12 = ((SVF1 (1,f1,u0)) . x0) (#) L2 as LinearFunc by FDIFF_1:3; A10: ( L11 is total & L12 is total & L1 is total & L2 is total ) by FDIFF_1:def_3; reconsider L = L11 + L12 as LinearFunc by FDIFF_1:2; reconsider R11 = ((SVF1 (1,f2,u0)) . x0) (#) R1 as RestFunc by FDIFF_1:5; reconsider R12 = ((SVF1 (1,f1,u0)) . x0) (#) R2 as RestFunc by FDIFF_1:5; reconsider R13 = R11 + R12 as RestFunc by FDIFF_1:4; reconsider R14 = L1 (#) L2 as RestFunc by FDIFF_1:6; reconsider R15 = R13 + R14 as RestFunc by FDIFF_1:4; reconsider R16 = R1 (#) L2, R18 = R2 (#) L1 as RestFunc by FDIFF_1:7; reconsider R17 = R1 (#) R2 as RestFunc by FDIFF_1:4; reconsider R19 = R16 + R17 as RestFunc by FDIFF_1:4; reconsider R20 = R19 + R18 as RestFunc by FDIFF_1:4; reconsider R = R15 + R20 as RestFunc by FDIFF_1:4; A11: ( R1 is total & R2 is total & R11 is total & R12 is total & R13 is total & R14 is total & R15 is total & R16 is total & R17 is total & R18 is total & R19 is total & R20 is total ) by FDIFF_1:def_2; A12: N c= dom (SVF1 (1,f1,u0)) by A4, A9, XBOOLE_1:1; A13: N c= dom (SVF1 (1,f2,u0)) by A7, A9, XBOOLE_1:1; A14: for y being Real st y in N holds y in dom (SVF1 (1,(f1 (#) f2),u0)) proof let y be Real; ::_thesis: ( y in N implies y in dom (SVF1 (1,(f1 (#) f2),u0)) ) assume A15: y in N ; ::_thesis: y in dom (SVF1 (1,(f1 (#) f2),u0)) then A16: ( y in dom (reproj (1,u0)) & (reproj (1,u0)) . y in dom f1 ) by A12, FUNCT_1:11; ( y in dom (reproj (1,u0)) & (reproj (1,u0)) . y in dom f2 ) by A13, A15, FUNCT_1:11; then ( y in dom (reproj (1,u0)) & (reproj (1,u0)) . y in (dom f1) /\ (dom f2) ) by A16, XBOOLE_0:def_4; then ( y in dom (reproj (1,u0)) & (reproj (1,u0)) . y in dom (f1 (#) f2) ) by VALUED_1:def_4; hence y in dom (SVF1 (1,(f1 (#) f2),u0)) by FUNCT_1:11; ::_thesis: verum end; then for y being set st y in N holds y in dom (SVF1 (1,(f1 (#) f2),u0)) ; then A17: N c= dom (SVF1 (1,(f1 (#) f2),u0)) by TARSKI:def_3; now__::_thesis:_for_x_being_Real_st_x_in_N_holds_ ((SVF1_(1,(f1_(#)_f2),u0))_._x)_-_((SVF1_(1,(f1_(#)_f2),u0))_._x0)_=_(L_._(x_-_x0))_+_(R_._(x_-_x0)) let x be Real; ::_thesis: ( x in N implies ((SVF1 (1,(f1 (#) f2),u0)) . x) - ((SVF1 (1,(f1 (#) f2),u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) assume A18: x in N ; ::_thesis: ((SVF1 (1,(f1 (#) f2),u0)) . x) - ((SVF1 (1,(f1 (#) f2),u0)) . x0) = (L . (x - x0)) + (R . (x - x0)) then A19: (((SVF1 (1,f1,u0)) . x) - ((SVF1 (1,f1,u0)) . x0)) + ((SVF1 (1,f1,u0)) . x0) = ((L1 . (x - x0)) + (R1 . (x - x0))) + ((SVF1 (1,f1,u0)) . x0) by A5, A9; x in dom ((f1 (#) f2) * (reproj (1,u0))) by A14, A18; then A20: ( x in dom (reproj (1,u0)) & (reproj (1,u0)) . x in dom (f1 (#) f2) ) by FUNCT_1:11; then (reproj (1,u0)) . x in (dom f1) /\ (dom f2) by VALUED_1:def_4; then ( (reproj (1,u0)) . x in dom f1 & (reproj (1,u0)) . x in dom f2 ) by XBOOLE_0:def_4; then A21: ( x in dom (f1 * (reproj (1,u0))) & x in dom (f2 * (reproj (1,u0))) ) by A20, FUNCT_1:11; A22: x0 in N by RCOMP_1:16; x0 in dom ((f1 (#) f2) * (reproj (1,u0))) by A14, RCOMP_1:16; then A23: ( x0 in dom (reproj (1,u0)) & (reproj (1,u0)) . x0 in dom (f1 (#) f2) ) by FUNCT_1:11; then (reproj (1,u0)) . x0 in (dom f1) /\ (dom f2) by VALUED_1:def_4; then ( (reproj (1,u0)) . x0 in dom f1 & (reproj (1,u0)) . x0 in dom f2 ) by XBOOLE_0:def_4; then A24: ( x0 in dom (f1 * (reproj (1,u0))) & x0 in dom (f2 * (reproj (1,u0))) ) by A23, FUNCT_1:11; thus ((SVF1 (1,(f1 (#) f2),u0)) . x) - ((SVF1 (1,(f1 (#) f2),u0)) . x0) = ((f1 (#) f2) . ((reproj (1,u0)) . x)) - ((SVF1 (1,(f1 (#) f2),u0)) . x0) by A17, A18, FUNCT_1:12 .= ((f1 . ((reproj (1,u0)) . x)) * (f2 . ((reproj (1,u0)) . x))) - ((SVF1 (1,(f1 (#) f2),u0)) . x0) by VALUED_1:5 .= (((SVF1 (1,f1,u0)) . x) * (f2 . ((reproj (1,u0)) . x))) - ((SVF1 (1,(f1 (#) f2),u0)) . x0) by A21, FUNCT_1:12 .= (((SVF1 (1,f1,u0)) . x) * ((SVF1 (1,f2,u0)) . x)) - (((f1 (#) f2) * (reproj (1,u0))) . x0) by A21, FUNCT_1:12 .= (((SVF1 (1,f1,u0)) . x) * ((SVF1 (1,f2,u0)) . x)) - ((f1 (#) f2) . ((reproj (1,u0)) . x0)) by A17, A22, FUNCT_1:12 .= (((SVF1 (1,f1,u0)) . x) * ((SVF1 (1,f2,u0)) . x)) - ((f1 . ((reproj (1,u0)) . x0)) * (f2 . ((reproj (1,u0)) . x0))) by VALUED_1:5 .= (((SVF1 (1,f1,u0)) . x) * ((SVF1 (1,f2,u0)) . x)) - (((SVF1 (1,f1,u0)) . x0) * (f2 . ((reproj (1,u0)) . x0))) by A24, FUNCT_1:12 .= (((((SVF1 (1,f1,u0)) . x) * ((SVF1 (1,f2,u0)) . x)) + (- (((SVF1 (1,f1,u0)) . x) * ((SVF1 (1,f2,u0)) . x0)))) + (((SVF1 (1,f1,u0)) . x) * ((SVF1 (1,f2,u0)) . x0))) - (((SVF1 (1,f1,u0)) . x0) * ((SVF1 (1,f2,u0)) . x0)) by A24, FUNCT_1:12 .= (((SVF1 (1,f1,u0)) . x) * (((SVF1 (1,f2,u0)) . x) - ((SVF1 (1,f2,u0)) . x0))) + ((((SVF1 (1,f1,u0)) . x) - ((SVF1 (1,f1,u0)) . x0)) * ((SVF1 (1,f2,u0)) . x0)) .= (((SVF1 (1,f1,u0)) . x) * (((SVF1 (1,f2,u0)) . x) - ((SVF1 (1,f2,u0)) . x0))) + (((L1 . (x - x0)) + (R1 . (x - x0))) * ((SVF1 (1,f2,u0)) . x0)) by A5, A9, A18 .= (((SVF1 (1,f1,u0)) . x) * (((SVF1 (1,f2,u0)) . x) - ((SVF1 (1,f2,u0)) . x0))) + ((((SVF1 (1,f2,u0)) . x0) * (L1 . (x - x0))) + (((SVF1 (1,f2,u0)) . x0) * (R1 . (x - x0)))) .= (((SVF1 (1,f1,u0)) . x) * (((SVF1 (1,f2,u0)) . x) - ((SVF1 (1,f2,u0)) . x0))) + ((L11 . (x - x0)) + (((SVF1 (1,f2,u0)) . x0) * (R1 . (x - x0)))) by A10, RFUNCT_1:57 .= ((((L1 . (x - x0)) + (R1 . (x - x0))) + ((SVF1 (1,f1,u0)) . x0)) * (((SVF1 (1,f2,u0)) . x) - ((SVF1 (1,f2,u0)) . x0))) + ((L11 . (x - x0)) + (R11 . (x - x0))) by A11, A19, RFUNCT_1:57 .= ((((L1 . (x - x0)) + (R1 . (x - x0))) + ((SVF1 (1,f1,u0)) . x0)) * ((L2 . (x - x0)) + (R2 . (x - x0)))) + ((L11 . (x - x0)) + (R11 . (x - x0))) by A8, A9, A18 .= ((((L1 . (x - x0)) + (R1 . (x - x0))) * ((L2 . (x - x0)) + (R2 . (x - x0)))) + ((((SVF1 (1,f1,u0)) . x0) * (L2 . (x - x0))) + (((SVF1 (1,f1,u0)) . x0) * (R2 . (x - x0))))) + ((L11 . (x - x0)) + (R11 . (x - x0))) .= ((((L1 . (x - x0)) + (R1 . (x - x0))) * ((L2 . (x - x0)) + (R2 . (x - x0)))) + ((L12 . (x - x0)) + (((SVF1 (1,f1,u0)) . x0) * (R2 . (x - x0))))) + ((L11 . (x - x0)) + (R11 . (x - x0))) by A10, RFUNCT_1:57 .= ((((L1 . (x - x0)) + (R1 . (x - x0))) * ((L2 . (x - x0)) + (R2 . (x - x0)))) + ((L12 . (x - x0)) + (R12 . (x - x0)))) + ((L11 . (x - x0)) + (R11 . (x - x0))) by A11, RFUNCT_1:57 .= (((L1 . (x - x0)) + (R1 . (x - x0))) * ((L2 . (x - x0)) + (R2 . (x - x0)))) + ((L12 . (x - x0)) + ((L11 . (x - x0)) + ((R11 . (x - x0)) + (R12 . (x - x0))))) .= (((L1 . (x - x0)) + (R1 . (x - x0))) * ((L2 . (x - x0)) + (R2 . (x - x0)))) + ((L12 . (x - x0)) + ((L11 . (x - x0)) + (R13 . (x - x0)))) by A11, RFUNCT_1:56 .= (((L1 . (x - x0)) + (R1 . (x - x0))) * ((L2 . (x - x0)) + (R2 . (x - x0)))) + (((L11 . (x - x0)) + (L12 . (x - x0))) + (R13 . (x - x0))) .= ((((L1 . (x - x0)) * (L2 . (x - x0))) + ((L1 . (x - x0)) * (R2 . (x - x0)))) + ((R1 . (x - x0)) * ((L2 . (x - x0)) + (R2 . (x - x0))))) + ((L . (x - x0)) + (R13 . (x - x0))) by A10, RFUNCT_1:56 .= (((R14 . (x - x0)) + ((R2 . (x - x0)) * (L1 . (x - x0)))) + ((R1 . (x - x0)) * ((L2 . (x - x0)) + (R2 . (x - x0))))) + ((L . (x - x0)) + (R13 . (x - x0))) by A10, RFUNCT_1:56 .= (((R14 . (x - x0)) + (R18 . (x - x0))) + (((R1 . (x - x0)) * (L2 . (x - x0))) + ((R1 . (x - x0)) * (R2 . (x - x0))))) + ((L . (x - x0)) + (R13 . (x - x0))) by A10, A11, RFUNCT_1:56 .= (((R14 . (x - x0)) + (R18 . (x - x0))) + ((R16 . (x - x0)) + ((R1 . (x - x0)) * (R2 . (x - x0))))) + ((L . (x - x0)) + (R13 . (x - x0))) by A10, A11, RFUNCT_1:56 .= (((R14 . (x - x0)) + (R18 . (x - x0))) + ((R16 . (x - x0)) + (R17 . (x - x0)))) + ((L . (x - x0)) + (R13 . (x - x0))) by A11, RFUNCT_1:56 .= (((R14 . (x - x0)) + (R18 . (x - x0))) + (R19 . (x - x0))) + ((L . (x - x0)) + (R13 . (x - x0))) by A11, RFUNCT_1:56 .= ((R14 . (x - x0)) + ((R19 . (x - x0)) + (R18 . (x - x0)))) + ((L . (x - x0)) + (R13 . (x - x0))) .= ((L . (x - x0)) + (R13 . (x - x0))) + ((R14 . (x - x0)) + (R20 . (x - x0))) by A11, RFUNCT_1:56 .= (L . (x - x0)) + (((R13 . (x - x0)) + (R14 . (x - x0))) + (R20 . (x - x0))) .= (L . (x - x0)) + ((R15 . (x - x0)) + (R20 . (x - x0))) by A11, RFUNCT_1:56 .= (L . (x - x0)) + (R . (x - x0)) by A11, RFUNCT_1:56 ; ::_thesis: verum end; hence f1 (#) f2 is_partial_differentiable_in u0,1 by A3, A17, Th13; ::_thesis: verum end; theorem :: PDIFF_4:29 for u0 being Element of REAL 3 for f1, f2 being PartFunc of (REAL 3),REAL st f1 is_partial_differentiable_in u0,2 & f2 is_partial_differentiable_in u0,2 holds f1 (#) f2 is_partial_differentiable_in u0,2 proof let u0 be Element of REAL 3; ::_thesis: for f1, f2 being PartFunc of (REAL 3),REAL st f1 is_partial_differentiable_in u0,2 & f2 is_partial_differentiable_in u0,2 holds f1 (#) f2 is_partial_differentiable_in u0,2 let f1, f2 be PartFunc of (REAL 3),REAL; ::_thesis: ( f1 is_partial_differentiable_in u0,2 & f2 is_partial_differentiable_in u0,2 implies f1 (#) f2 is_partial_differentiable_in u0,2 ) assume that A1: f1 is_partial_differentiable_in u0,2 and A2: f2 is_partial_differentiable_in u0,2 ; ::_thesis: f1 (#) f2 is_partial_differentiable_in u0,2 consider x0, y0, z0 being Real such that A3: ( u0 = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st ( N c= dom (SVF1 (2,f1,u0)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f1,u0)) . y) - ((SVF1 (2,f1,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) by A1, Th14; consider N1 being Neighbourhood of y0 such that A4: ( N1 c= dom (SVF1 (2,f1,u0)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N1 holds ((SVF1 (2,f1,u0)) . y) - ((SVF1 (2,f1,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) by A3; consider L1 being LinearFunc, R1 being RestFunc such that A5: for y being Real st y in N1 holds ((SVF1 (2,f1,u0)) . y) - ((SVF1 (2,f1,u0)) . y0) = (L1 . (y - y0)) + (R1 . (y - y0)) by A4; consider x1, y1, z1 being Real such that A6: ( u0 = <*x1,y1,z1*> & ex N being Neighbourhood of y1 st ( N c= dom (SVF1 (2,f2,u0)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N holds ((SVF1 (2,f2,u0)) . y) - ((SVF1 (2,f2,u0)) . y1) = (L . (y - y1)) + (R . (y - y1)) ) ) by A2, Th14; ( x0 = x1 & y0 = y1 & z0 = z1 ) by A3, A6, FINSEQ_1:78; then consider N2 being Neighbourhood of y0 such that A7: ( N2 c= dom (SVF1 (2,f2,u0)) & ex L being LinearFunc ex R being RestFunc st for y being Real st y in N2 holds ((SVF1 (2,f2,u0)) . y) - ((SVF1 (2,f2,u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) by A6; consider L2 being LinearFunc, R2 being RestFunc such that A8: for y being Real st y in N2 holds ((SVF1 (2,f2,u0)) . y) - ((SVF1 (2,f2,u0)) . y0) = (L2 . (y - y0)) + (R2 . (y - y0)) by A7; consider N being Neighbourhood of y0 such that A9: ( N c= N1 & N c= N2 ) by RCOMP_1:17; reconsider L11 = ((SVF1 (2,f2,u0)) . y0) (#) L1 as LinearFunc by FDIFF_1:3; reconsider L12 = ((SVF1 (2,f1,u0)) . y0) (#) L2 as LinearFunc by FDIFF_1:3; A10: ( L11 is total & L12 is total & L1 is total & L2 is total ) by FDIFF_1:def_3; reconsider L = L11 + L12 as LinearFunc by FDIFF_1:2; reconsider R11 = ((SVF1 (2,f2,u0)) . y0) (#) R1, R12 = ((SVF1 (2,f1,u0)) . y0) (#) R2 as RestFunc by FDIFF_1:5; reconsider R13 = R11 + R12 as RestFunc by FDIFF_1:4; reconsider R14 = L1 (#) L2 as RestFunc by FDIFF_1:6; reconsider R15 = R13 + R14, R17 = R1 (#) R2 as RestFunc by FDIFF_1:4; reconsider R16 = R1 (#) L2, R18 = R2 (#) L1 as RestFunc by FDIFF_1:7; reconsider R19 = R16 + R17 as RestFunc by FDIFF_1:4; reconsider R20 = R19 + R18 as RestFunc by FDIFF_1:4; reconsider R = R15 + R20 as RestFunc by FDIFF_1:4; A11: ( R1 is total & R2 is total & R11 is total & R12 is total & R13 is total & R14 is total & R15 is total & R16 is total & R17 is total & R18 is total & R19 is total & R20 is total ) by FDIFF_1:def_2; A12: N c= dom (SVF1 (2,f1,u0)) by A4, A9, XBOOLE_1:1; A13: N c= dom (SVF1 (2,f2,u0)) by A7, A9, XBOOLE_1:1; A14: for y being Real st y in N holds y in dom (SVF1 (2,(f1 (#) f2),u0)) proof let y be Real; ::_thesis: ( y in N implies y in dom (SVF1 (2,(f1 (#) f2),u0)) ) assume A15: y in N ; ::_thesis: y in dom (SVF1 (2,(f1 (#) f2),u0)) then A16: ( y in dom (reproj (2,u0)) & (reproj (2,u0)) . y in dom f1 ) by A12, FUNCT_1:11; ( y in dom (reproj (2,u0)) & (reproj (2,u0)) . y in dom f2 ) by A13, A15, FUNCT_1:11; then ( y in dom (reproj (2,u0)) & (reproj (2,u0)) . y in (dom f1) /\ (dom f2) ) by A16, XBOOLE_0:def_4; then ( y in dom (reproj (2,u0)) & (reproj (2,u0)) . y in dom (f1 (#) f2) ) by VALUED_1:def_4; hence y in dom (SVF1 (2,(f1 (#) f2),u0)) by FUNCT_1:11; ::_thesis: verum end; then for y being set st y in N holds y in dom (SVF1 (2,(f1 (#) f2),u0)) ; then A17: N c= dom (SVF1 (2,(f1 (#) f2),u0)) by TARSKI:def_3; now__::_thesis:_for_y_being_Real_st_y_in_N_holds_ ((SVF1_(2,(f1_(#)_f2),u0))_._y)_-_((SVF1_(2,(f1_(#)_f2),u0))_._y0)_=_(L_._(y_-_y0))_+_(R_._(y_-_y0)) let y be Real; ::_thesis: ( y in N implies ((SVF1 (2,(f1 (#) f2),u0)) . y) - ((SVF1 (2,(f1 (#) f2),u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) assume A18: y in N ; ::_thesis: ((SVF1 (2,(f1 (#) f2),u0)) . y) - ((SVF1 (2,(f1 (#) f2),u0)) . y0) = (L . (y - y0)) + (R . (y - y0)) then A19: (((SVF1 (2,f1,u0)) . y) - ((SVF1 (2,f1,u0)) . y0)) + ((SVF1 (2,f1,u0)) . y0) = ((L1 . (y - y0)) + (R1 . (y - y0))) + ((SVF1 (2,f1,u0)) . y0) by A5, A9; y in dom ((f1 (#) f2) * (reproj (2,u0))) by A14, A18; then A20: ( y in dom (reproj (2,u0)) & (reproj (2,u0)) . y in dom (f1 (#) f2) ) by FUNCT_1:11; then (reproj (2,u0)) . y in (dom f1) /\ (dom f2) by VALUED_1:def_4; then ( (reproj (2,u0)) . y in dom f1 & (reproj (2,u0)) . y in dom f2 ) by XBOOLE_0:def_4; then A21: ( y in dom (f1 * (reproj (2,u0))) & y in dom (f2 * (reproj (2,u0))) ) by A20, FUNCT_1:11; A22: y0 in N by RCOMP_1:16; y0 in dom ((f1 (#) f2) * (reproj (2,u0))) by A14, RCOMP_1:16; then A23: ( y0 in dom (reproj (2,u0)) & (reproj (2,u0)) . y0 in dom (f1 (#) f2) ) by FUNCT_1:11; then (reproj (2,u0)) . y0 in (dom f1) /\ (dom f2) by VALUED_1:def_4; then ( (reproj (2,u0)) . y0 in dom f1 & (reproj (2,u0)) . y0 in dom f2 ) by XBOOLE_0:def_4; then A24: ( y0 in dom (f1 * (reproj (2,u0))) & y0 in dom (f2 * (reproj (2,u0))) ) by A23, FUNCT_1:11; thus ((SVF1 (2,(f1 (#) f2),u0)) . y) - ((SVF1 (2,(f1 (#) f2),u0)) . y0) = ((f1 (#) f2) . ((reproj (2,u0)) . y)) - ((SVF1 (2,(f1 (#) f2),u0)) . y0) by A17, A18, FUNCT_1:12 .= ((f1 . ((reproj (2,u0)) . y)) * (f2 . ((reproj (2,u0)) . y))) - ((SVF1 (2,(f1 (#) f2),u0)) . y0) by VALUED_1:5 .= (((SVF1 (2,f1,u0)) . y) * (f2 . ((reproj (2,u0)) . y))) - ((SVF1 (2,(f1 (#) f2),u0)) . y0) by A21, FUNCT_1:12 .= (((SVF1 (2,f1,u0)) . y) * ((SVF1 (2,f2,u0)) . y)) - (((f1 (#) f2) * (reproj (2,u0))) . y0) by A21, FUNCT_1:12 .= (((SVF1 (2,f1,u0)) . y) * ((SVF1 (2,f2,u0)) . y)) - ((f1 (#) f2) . ((reproj (2,u0)) . y0)) by A17, A22, FUNCT_1:12 .= (((SVF1 (2,f1,u0)) . y) * ((SVF1 (2,f2,u0)) . y)) - ((f1 . ((reproj (2,u0)) . y0)) * (f2 . ((reproj (2,u0)) . y0))) by VALUED_1:5 .= (((SVF1 (2,f1,u0)) . y) * ((SVF1 (2,f2,u0)) . y)) - (((SVF1 (2,f1,u0)) . y0) * (f2 . ((reproj (2,u0)) . y0))) by A24, FUNCT_1:12 .= (((((SVF1 (2,f1,u0)) . y) * ((SVF1 (2,f2,u0)) . y)) + (- (((SVF1 (2,f1,u0)) . y) * ((SVF1 (2,f2,u0)) . y0)))) + (((SVF1 (2,f1,u0)) . y) * ((SVF1 (2,f2,u0)) . y0))) - (((SVF1 (2,f1,u0)) . y0) * ((SVF1 (2,f2,u0)) . y0)) by A24, FUNCT_1:12 .= (((SVF1 (2,f1,u0)) . y) * (((SVF1 (2,f2,u0)) . y) - ((SVF1 (2,f2,u0)) . y0))) + ((((SVF1 (2,f1,u0)) . y) - ((SVF1 (2,f1,u0)) . y0)) * ((SVF1 (2,f2,u0)) . y0)) .= (((SVF1 (2,f1,u0)) . y) * (((SVF1 (2,f2,u0)) . y) - ((SVF1 (2,f2,u0)) . y0))) + (((L1 . (y - y0)) + (R1 . (y - y0))) * ((SVF1 (2,f2,u0)) . y0)) by A5, A9, A18 .= (((SVF1 (2,f1,u0)) . y) * (((SVF1 (2,f2,u0)) . y) - ((SVF1 (2,f2,u0)) . y0))) + ((((SVF1 (2,f2,u0)) . y0) * (L1 . (y - y0))) + (((SVF1 (2,f2,u0)) . y0) * (R1 . (y - y0)))) .= (((SVF1 (2,f1,u0)) . y) * (((SVF1 (2,f2,u0)) . y) - ((SVF1 (2,f2,u0)) . y0))) + ((L11 . (y - y0)) + (((SVF1 (2,f2,u0)) . y0) * (R1 . (y - y0)))) by A10, RFUNCT_1:57 .= ((((L1 . (y - y0)) + (R1 . (y - y0))) + ((SVF1 (2,f1,u0)) . y0)) * (((SVF1 (2,f2,u0)) . y) - ((SVF1 (2,f2,u0)) . y0))) + ((L11 . (y - y0)) + (R11 . (y - y0))) by A11, A19, RFUNCT_1:57 .= ((((L1 . (y - y0)) + (R1 . (y - y0))) + ((SVF1 (2,f1,u0)) . y0)) * ((L2 . (y - y0)) + (R2 . (y - y0)))) + ((L11 . (y - y0)) + (R11 . (y - y0))) by A8, A9, A18 .= ((((L1 . (y - y0)) + (R1 . (y - y0))) * ((L2 . (y - y0)) + (R2 . (y - y0)))) + ((((SVF1 (2,f1,u0)) . y0) * (L2 . (y - y0))) + (((SVF1 (2,f1,u0)) . y0) * (R2 . (y - y0))))) + ((L11 . (y - y0)) + (R11 . (y - y0))) .= ((((L1 . (y - y0)) + (R1 . (y - y0))) * ((L2 . (y - y0)) + (R2 . (y - y0)))) + ((L12 . (y - y0)) + (((SVF1 (2,f1,u0)) . y0) * (R2 . (y - y0))))) + ((L11 . (y - y0)) + (R11 . (y - y0))) by A10, RFUNCT_1:57 .= ((((L1 . (y - y0)) + (R1 . (y - y0))) * ((L2 . (y - y0)) + (R2 . (y - y0)))) + ((L12 . (y - y0)) + (R12 . (y - y0)))) + ((L11 . (y - y0)) + (R11 . (y - y0))) by A11, RFUNCT_1:57 .= (((L1 . (y - y0)) + (R1 . (y - y0))) * ((L2 . (y - y0)) + (R2 . (y - y0)))) + ((L12 . (y - y0)) + ((L11 . (y - y0)) + ((R11 . (y - y0)) + (R12 . (y - y0))))) .= (((L1 . (y - y0)) + (R1 . (y - y0))) * ((L2 . (y - y0)) + (R2 . (y - y0)))) + ((L12 . (y - y0)) + ((L11 . (y - y0)) + (R13 . (y - y0)))) by A11, RFUNCT_1:56 .= (((L1 . (y - y0)) + (R1 . (y - y0))) * ((L2 . (y - y0)) + (R2 . (y - y0)))) + (((L11 . (y - y0)) + (L12 . (y - y0))) + (R13 . (y - y0))) .= ((((L1 . (y - y0)) * (L2 . (y - y0))) + ((L1 . (y - y0)) * (R2 . (y - y0)))) + ((R1 . (y - y0)) * ((L2 . (y - y0)) + (R2 . (y - y0))))) + ((L . (y - y0)) + (R13 . (y - y0))) by A10, RFUNCT_1:56 .= (((R14 . (y - y0)) + ((R2 . (y - y0)) * (L1 . (y - y0)))) + ((R1 . (y - y0)) * ((L2 . (y - y0)) + (R2 . (y - y0))))) + ((L . (y - y0)) + (R13 . (y - y0))) by A10, RFUNCT_1:56 .= (((R14 . (y - y0)) + (R18 . (y - y0))) + (((R1 . (y - y0)) * (L2 . (y - y0))) + ((R1 . (y - y0)) * (R2 . (y - y0))))) + ((L . (y - y0)) + (R13 . (y - y0))) by A10, A11, RFUNCT_1:56 .= (((R14 . (y - y0)) + (R18 . (y - y0))) + ((R16 . (y - y0)) + ((R1 . (y - y0)) * (R2 . (y - y0))))) + ((L . (y - y0)) + (R13 . (y - y0))) by A10, A11, RFUNCT_1:56 .= (((R14 . (y - y0)) + (R18 . (y - y0))) + ((R16 . (y - y0)) + (R17 . (y - y0)))) + ((L . (y - y0)) + (R13 . (y - y0))) by A11, RFUNCT_1:56 .= (((R14 . (y - y0)) + (R18 . (y - y0))) + (R19 . (y - y0))) + ((L . (y - y0)) + (R13 . (y - y0))) by A11, RFUNCT_1:56 .= ((R14 . (y - y0)) + ((R19 . (y - y0)) + (R18 . (y - y0)))) + ((L . (y - y0)) + (R13 . (y - y0))) .= ((L . (y - y0)) + (R13 . (y - y0))) + ((R14 . (y - y0)) + (R20 . (y - y0))) by A11, RFUNCT_1:56 .= (L . (y - y0)) + (((R13 . (y - y0)) + (R14 . (y - y0))) + (R20 . (y - y0))) .= (L . (y - y0)) + ((R15 . (y - y0)) + (R20 . (y - y0))) by A11, RFUNCT_1:56 .= (L . (y - y0)) + (R . (y - y0)) by A11, RFUNCT_1:56 ; ::_thesis: verum end; hence f1 (#) f2 is_partial_differentiable_in u0,2 by A3, A17, Th14; ::_thesis: verum end; theorem :: PDIFF_4:30 for u0 being Element of REAL 3 for f1, f2 being PartFunc of (REAL 3),REAL st f1 is_partial_differentiable_in u0,3 & f2 is_partial_differentiable_in u0,3 holds f1 (#) f2 is_partial_differentiable_in u0,3 proof let u0 be Element of REAL 3; ::_thesis: for f1, f2 being PartFunc of (REAL 3),REAL st f1 is_partial_differentiable_in u0,3 & f2 is_partial_differentiable_in u0,3 holds f1 (#) f2 is_partial_differentiable_in u0,3 let f1, f2 be PartFunc of (REAL 3),REAL; ::_thesis: ( f1 is_partial_differentiable_in u0,3 & f2 is_partial_differentiable_in u0,3 implies f1 (#) f2 is_partial_differentiable_in u0,3 ) assume that A1: f1 is_partial_differentiable_in u0,3 and A2: f2 is_partial_differentiable_in u0,3 ; ::_thesis: f1 (#) f2 is_partial_differentiable_in u0,3 consider x0, y0, z0 being Real such that A3: ( u0 = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st ( N c= dom (SVF1 (3,f1,u0)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f1,u0)) . z) - ((SVF1 (3,f1,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) by A1, Th15; consider N1 being Neighbourhood of z0 such that A4: ( N1 c= dom (SVF1 (3,f1,u0)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N1 holds ((SVF1 (3,f1,u0)) . z) - ((SVF1 (3,f1,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) by A3; consider L1 being LinearFunc, R1 being RestFunc such that A5: for z being Real st z in N1 holds ((SVF1 (3,f1,u0)) . z) - ((SVF1 (3,f1,u0)) . z0) = (L1 . (z - z0)) + (R1 . (z - z0)) by A4; consider x1, y1, z1 being Real such that A6: ( u0 = <*x1,y1,z1*> & ex N being Neighbourhood of z1 st ( N c= dom (SVF1 (3,f2,u0)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N holds ((SVF1 (3,f2,u0)) . z) - ((SVF1 (3,f2,u0)) . z1) = (L . (z - z1)) + (R . (z - z1)) ) ) by A2, Th15; ( x0 = x1 & y0 = y1 & z0 = z1 ) by A3, A6, FINSEQ_1:78; then consider N2 being Neighbourhood of z0 such that A7: ( N2 c= dom (SVF1 (3,f2,u0)) & ex L being LinearFunc ex R being RestFunc st for z being Real st z in N2 holds ((SVF1 (3,f2,u0)) . z) - ((SVF1 (3,f2,u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) by A6; consider L2 being LinearFunc, R2 being RestFunc such that A8: for z being Real st z in N2 holds ((SVF1 (3,f2,u0)) . z) - ((SVF1 (3,f2,u0)) . z0) = (L2 . (z - z0)) + (R2 . (z - z0)) by A7; consider N being Neighbourhood of z0 such that A9: ( N c= N1 & N c= N2 ) by RCOMP_1:17; reconsider L11 = ((SVF1 (3,f2,u0)) . z0) (#) L1 as LinearFunc by FDIFF_1:3; reconsider L12 = ((SVF1 (3,f1,u0)) . z0) (#) L2 as LinearFunc by FDIFF_1:3; A10: ( L11 is total & L12 is total & L1 is total & L2 is total ) by FDIFF_1:def_3; reconsider L = L11 + L12 as LinearFunc by FDIFF_1:2; reconsider R11 = ((SVF1 (3,f2,u0)) . z0) (#) R1, R12 = ((SVF1 (3,f1,u0)) . z0) (#) R2 as RestFunc by FDIFF_1:5; reconsider R13 = R11 + R12 as RestFunc by FDIFF_1:4; reconsider R14 = L1 (#) L2 as RestFunc by FDIFF_1:6; reconsider R15 = R13 + R14, R17 = R1 (#) R2 as RestFunc by FDIFF_1:4; reconsider R16 = R1 (#) L2, R18 = R2 (#) L1 as RestFunc by FDIFF_1:7; reconsider R19 = R16 + R17 as RestFunc by FDIFF_1:4; reconsider R20 = R19 + R18 as RestFunc by FDIFF_1:4; reconsider R = R15 + R20 as RestFunc by FDIFF_1:4; A11: ( R1 is total & R2 is total & R11 is total & R12 is total & R13 is total & R14 is total & R15 is total & R16 is total & R17 is total & R18 is total & R19 is total & R20 is total ) by FDIFF_1:def_2; A12: N c= dom (SVF1 (3,f1,u0)) by A4, A9, XBOOLE_1:1; A13: N c= dom (SVF1 (3,f2,u0)) by A7, A9, XBOOLE_1:1; A14: for z being Real st z in N holds z in dom (SVF1 (3,(f1 (#) f2),u0)) proof let z be Real; ::_thesis: ( z in N implies z in dom (SVF1 (3,(f1 (#) f2),u0)) ) assume A15: z in N ; ::_thesis: z in dom (SVF1 (3,(f1 (#) f2),u0)) then A16: ( z in dom (reproj (3,u0)) & (reproj (3,u0)) . z in dom f1 ) by A12, FUNCT_1:11; ( z in dom (reproj (3,u0)) & (reproj (3,u0)) . z in dom f2 ) by A13, A15, FUNCT_1:11; then ( z in dom (reproj (3,u0)) & (reproj (3,u0)) . z in (dom f1) /\ (dom f2) ) by A16, XBOOLE_0:def_4; then ( z in dom (reproj (3,u0)) & (reproj (3,u0)) . z in dom (f1 (#) f2) ) by VALUED_1:def_4; hence z in dom (SVF1 (3,(f1 (#) f2),u0)) by FUNCT_1:11; ::_thesis: verum end; then for z being set st z in N holds z in dom (SVF1 (3,(f1 (#) f2),u0)) ; then A17: N c= dom (SVF1 (3,(f1 (#) f2),u0)) by TARSKI:def_3; now__::_thesis:_for_z_being_Real_st_z_in_N_holds_ ((SVF1_(3,(f1_(#)_f2),u0))_._z)_-_((SVF1_(3,(f1_(#)_f2),u0))_._z0)_=_(L_._(z_-_z0))_+_(R_._(z_-_z0)) let z be Real; ::_thesis: ( z in N implies ((SVF1 (3,(f1 (#) f2),u0)) . z) - ((SVF1 (3,(f1 (#) f2),u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) assume A18: z in N ; ::_thesis: ((SVF1 (3,(f1 (#) f2),u0)) . z) - ((SVF1 (3,(f1 (#) f2),u0)) . z0) = (L . (z - z0)) + (R . (z - z0)) then A19: (((SVF1 (3,f1,u0)) . z) - ((SVF1 (3,f1,u0)) . z0)) + ((SVF1 (3,f1,u0)) . z0) = ((L1 . (z - z0)) + (R1 . (z - z0))) + ((SVF1 (3,f1,u0)) . z0) by A5, A9; z in dom ((f1 (#) f2) * (reproj (3,u0))) by A14, A18; then A20: ( z in dom (reproj (3,u0)) & (reproj (3,u0)) . z in dom (f1 (#) f2) ) by FUNCT_1:11; then (reproj (3,u0)) . z in (dom f1) /\ (dom f2) by VALUED_1:def_4; then ( (reproj (3,u0)) . z in dom f1 & (reproj (3,u0)) . z in dom f2 ) by XBOOLE_0:def_4; then A21: ( z in dom (f1 * (reproj (3,u0))) & z in dom (f2 * (reproj (3,u0))) ) by A20, FUNCT_1:11; A22: z0 in N by RCOMP_1:16; z0 in dom ((f1 (#) f2) * (reproj (3,u0))) by A14, RCOMP_1:16; then A23: ( z0 in dom (reproj (3,u0)) & (reproj (3,u0)) . z0 in dom (f1 (#) f2) ) by FUNCT_1:11; then (reproj (3,u0)) . z0 in (dom f1) /\ (dom f2) by VALUED_1:def_4; then ( (reproj (3,u0)) . z0 in dom f1 & (reproj (3,u0)) . z0 in dom f2 ) by XBOOLE_0:def_4; then A24: ( z0 in dom (f1 * (reproj (3,u0))) & z0 in dom (f2 * (reproj (3,u0))) ) by A23, FUNCT_1:11; thus ((SVF1 (3,(f1 (#) f2),u0)) . z) - ((SVF1 (3,(f1 (#) f2),u0)) . z0) = ((f1 (#) f2) . ((reproj (3,u0)) . z)) - ((SVF1 (3,(f1 (#) f2),u0)) . z0) by A17, A18, FUNCT_1:12 .= ((f1 . ((reproj (3,u0)) . z)) * (f2 . ((reproj (3,u0)) . z))) - ((SVF1 (3,(f1 (#) f2),u0)) . z0) by VALUED_1:5 .= (((SVF1 (3,f1,u0)) . z) * (f2 . ((reproj (3,u0)) . z))) - ((SVF1 (3,(f1 (#) f2),u0)) . z0) by A21, FUNCT_1:12 .= (((SVF1 (3,f1,u0)) . z) * ((SVF1 (3,f2,u0)) . z)) - (((f1 (#) f2) * (reproj (3,u0))) . z0) by A21, FUNCT_1:12 .= (((SVF1 (3,f1,u0)) . z) * ((SVF1 (3,f2,u0)) . z)) - ((f1 (#) f2) . ((reproj (3,u0)) . z0)) by A17, A22, FUNCT_1:12 .= (((SVF1 (3,f1,u0)) . z) * ((SVF1 (3,f2,u0)) . z)) - ((f1 . ((reproj (3,u0)) . z0)) * (f2 . ((reproj (3,u0)) . z0))) by VALUED_1:5 .= (((SVF1 (3,f1,u0)) . z) * ((SVF1 (3,f2,u0)) . z)) - (((SVF1 (3,f1,u0)) . z0) * (f2 . ((reproj (3,u0)) . z0))) by A24, FUNCT_1:12 .= (((((SVF1 (3,f1,u0)) . z) * ((SVF1 (3,f2,u0)) . z)) + (- (((SVF1 (3,f1,u0)) . z) * ((SVF1 (3,f2,u0)) . z0)))) + (((SVF1 (3,f1,u0)) . z) * ((SVF1 (3,f2,u0)) . z0))) - (((SVF1 (3,f1,u0)) . z0) * ((SVF1 (3,f2,u0)) . z0)) by A24, FUNCT_1:12 .= (((SVF1 (3,f1,u0)) . z) * (((SVF1 (3,f2,u0)) . z) - ((SVF1 (3,f2,u0)) . z0))) + ((((SVF1 (3,f1,u0)) . z) - ((SVF1 (3,f1,u0)) . z0)) * ((SVF1 (3,f2,u0)) . z0)) .= (((SVF1 (3,f1,u0)) . z) * (((SVF1 (3,f2,u0)) . z) - ((SVF1 (3,f2,u0)) . z0))) + (((L1 . (z - z0)) + (R1 . (z - z0))) * ((SVF1 (3,f2,u0)) . z0)) by A5, A9, A18 .= (((SVF1 (3,f1,u0)) . z) * (((SVF1 (3,f2,u0)) . z) - ((SVF1 (3,f2,u0)) . z0))) + ((((SVF1 (3,f2,u0)) . z0) * (L1 . (z - z0))) + (((SVF1 (3,f2,u0)) . z0) * (R1 . (z - z0)))) .= (((SVF1 (3,f1,u0)) . z) * (((SVF1 (3,f2,u0)) . z) - ((SVF1 (3,f2,u0)) . z0))) + ((L11 . (z - z0)) + (((SVF1 (3,f2,u0)) . z0) * (R1 . (z - z0)))) by A10, RFUNCT_1:57 .= ((((L1 . (z - z0)) + (R1 . (z - z0))) + ((SVF1 (3,f1,u0)) . z0)) * (((SVF1 (3,f2,u0)) . z) - ((SVF1 (3,f2,u0)) . z0))) + ((L11 . (z - z0)) + (R11 . (z - z0))) by A11, A19, RFUNCT_1:57 .= ((((L1 . (z - z0)) + (R1 . (z - z0))) + ((SVF1 (3,f1,u0)) . z0)) * ((L2 . (z - z0)) + (R2 . (z - z0)))) + ((L11 . (z - z0)) + (R11 . (z - z0))) by A8, A9, A18 .= ((((L1 . (z - z0)) + (R1 . (z - z0))) * ((L2 . (z - z0)) + (R2 . (z - z0)))) + ((((SVF1 (3,f1,u0)) . z0) * (L2 . (z - z0))) + (((SVF1 (3,f1,u0)) . z0) * (R2 . (z - z0))))) + ((L11 . (z - z0)) + (R11 . (z - z0))) .= ((((L1 . (z - z0)) + (R1 . (z - z0))) * ((L2 . (z - z0)) + (R2 . (z - z0)))) + ((L12 . (z - z0)) + (((SVF1 (3,f1,u0)) . z0) * (R2 . (z - z0))))) + ((L11 . (z - z0)) + (R11 . (z - z0))) by A10, RFUNCT_1:57 .= ((((L1 . (z - z0)) + (R1 . (z - z0))) * ((L2 . (z - z0)) + (R2 . (z - z0)))) + ((L12 . (z - z0)) + (R12 . (z - z0)))) + ((L11 . (z - z0)) + (R11 . (z - z0))) by A11, RFUNCT_1:57 .= (((L1 . (z - z0)) + (R1 . (z - z0))) * ((L2 . (z - z0)) + (R2 . (z - z0)))) + ((L12 . (z - z0)) + ((L11 . (z - z0)) + ((R11 . (z - z0)) + (R12 . (z - z0))))) .= (((L1 . (z - z0)) + (R1 . (z - z0))) * ((L2 . (z - z0)) + (R2 . (z - z0)))) + ((L12 . (z - z0)) + ((L11 . (z - z0)) + (R13 . (z - z0)))) by A11, RFUNCT_1:56 .= (((L1 . (z - z0)) + (R1 . (z - z0))) * ((L2 . (z - z0)) + (R2 . (z - z0)))) + (((L11 . (z - z0)) + (L12 . (z - z0))) + (R13 . (z - z0))) .= ((((L1 . (z - z0)) * (L2 . (z - z0))) + ((L1 . (z - z0)) * (R2 . (z - z0)))) + ((R1 . (z - z0)) * ((L2 . (z - z0)) + (R2 . (z - z0))))) + ((L . (z - z0)) + (R13 . (z - z0))) by A10, RFUNCT_1:56 .= (((R14 . (z - z0)) + ((R2 . (z - z0)) * (L1 . (z - z0)))) + ((R1 . (z - z0)) * ((L2 . (z - z0)) + (R2 . (z - z0))))) + ((L . (z - z0)) + (R13 . (z - z0))) by A10, RFUNCT_1:56 .= (((R14 . (z - z0)) + (R18 . (z - z0))) + (((R1 . (z - z0)) * (L2 . (z - z0))) + ((R1 . (z - z0)) * (R2 . (z - z0))))) + ((L . (z - z0)) + (R13 . (z - z0))) by A10, A11, RFUNCT_1:56 .= (((R14 . (z - z0)) + (R18 . (z - z0))) + ((R16 . (z - z0)) + ((R1 . (z - z0)) * (R2 . (z - z0))))) + ((L . (z - z0)) + (R13 . (z - z0))) by A10, A11, RFUNCT_1:56 .= (((R14 . (z - z0)) + (R18 . (z - z0))) + ((R16 . (z - z0)) + (R17 . (z - z0)))) + ((L . (z - z0)) + (R13 . (z - z0))) by A11, RFUNCT_1:56 .= (((R14 . (z - z0)) + (R18 . (z - z0))) + (R19 . (z - z0))) + ((L . (z - z0)) + (R13 . (z - z0))) by A11, RFUNCT_1:56 .= ((R14 . (z - z0)) + ((R19 . (z - z0)) + (R18 . (z - z0)))) + ((L . (z - z0)) + (R13 . (z - z0))) .= ((L . (z - z0)) + (R13 . (z - z0))) + ((R14 . (z - z0)) + (R20 . (z - z0))) by A11, RFUNCT_1:56 .= (L . (z - z0)) + (((R13 . (z - z0)) + (R14 . (z - z0))) + (R20 . (z - z0))) .= (L . (z - z0)) + ((R15 . (z - z0)) + (R20 . (z - z0))) by A11, RFUNCT_1:56 .= (L . (z - z0)) + (R . (z - z0)) by A11, RFUNCT_1:56 ; ::_thesis: verum end; hence f1 (#) f2 is_partial_differentiable_in u0,3 by A3, A17, Th15; ::_thesis: verum end; theorem :: PDIFF_4:31 for f being PartFunc of (REAL 3),REAL for u0 being Element of REAL 3 st f is_partial_differentiable_in u0,1 holds SVF1 (1,f,u0) is_continuous_in (proj (1,3)) . u0 proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u0 being Element of REAL 3 st f is_partial_differentiable_in u0,1 holds SVF1 (1,f,u0) is_continuous_in (proj (1,3)) . u0 let u0 be Element of REAL 3; ::_thesis: ( f is_partial_differentiable_in u0,1 implies SVF1 (1,f,u0) is_continuous_in (proj (1,3)) . u0 ) assume f is_partial_differentiable_in u0,1 ; ::_thesis: SVF1 (1,f,u0) is_continuous_in (proj (1,3)) . u0 then consider x0, y0, z0 being Real such that A1: ( u0 = <*x0,y0,z0*> & SVF1 (1,f,u0) is_differentiable_in x0 ) by Th7; SVF1 (1,f,u0) is_continuous_in x0 by A1, FDIFF_1:24; hence SVF1 (1,f,u0) is_continuous_in (proj (1,3)) . u0 by A1, Th1; ::_thesis: verum end; theorem :: PDIFF_4:32 for f being PartFunc of (REAL 3),REAL for u0 being Element of REAL 3 st f is_partial_differentiable_in u0,2 holds SVF1 (2,f,u0) is_continuous_in (proj (2,3)) . u0 proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u0 being Element of REAL 3 st f is_partial_differentiable_in u0,2 holds SVF1 (2,f,u0) is_continuous_in (proj (2,3)) . u0 let u0 be Element of REAL 3; ::_thesis: ( f is_partial_differentiable_in u0,2 implies SVF1 (2,f,u0) is_continuous_in (proj (2,3)) . u0 ) assume f is_partial_differentiable_in u0,2 ; ::_thesis: SVF1 (2,f,u0) is_continuous_in (proj (2,3)) . u0 then consider x0, y0, z0 being Real such that A1: ( u0 = <*x0,y0,z0*> & SVF1 (2,f,u0) is_differentiable_in y0 ) by Th8; SVF1 (2,f,u0) is_continuous_in y0 by A1, FDIFF_1:24; hence SVF1 (2,f,u0) is_continuous_in (proj (2,3)) . u0 by A1, Th2; ::_thesis: verum end; theorem :: PDIFF_4:33 for f being PartFunc of (REAL 3),REAL for u0 being Element of REAL 3 st f is_partial_differentiable_in u0,3 holds SVF1 (3,f,u0) is_continuous_in (proj (3,3)) . u0 proof let f be PartFunc of (REAL 3),REAL; ::_thesis: for u0 being Element of REAL 3 st f is_partial_differentiable_in u0,3 holds SVF1 (3,f,u0) is_continuous_in (proj (3,3)) . u0 let u0 be Element of REAL 3; ::_thesis: ( f is_partial_differentiable_in u0,3 implies SVF1 (3,f,u0) is_continuous_in (proj (3,3)) . u0 ) assume f is_partial_differentiable_in u0,3 ; ::_thesis: SVF1 (3,f,u0) is_continuous_in (proj (3,3)) . u0 then consider x0, y0, z0 being Real such that A1: ( u0 = <*x0,y0,z0*> & SVF1 (3,f,u0) is_differentiable_in z0 ) by Th9; SVF1 (3,f,u0) is_continuous_in z0 by A1, FDIFF_1:24; hence SVF1 (3,f,u0) is_continuous_in (proj (3,3)) . u0 by A1, Th3; ::_thesis: verum end; begin Lm4: for x1, y1, z1, x2, y2, z2 being Real holds |[x1,y1,z1]| + |[x2,y2,z2]| = |[(x1 + x2),(y1 + y2),(z1 + z2)]| proof let x1, y1, z1, x2, y2, z2 be Real; ::_thesis: |[x1,y1,z1]| + |[x2,y2,z2]| = |[(x1 + x2),(y1 + y2),(z1 + z2)]| A1: |[x2,y2,z2]| . 1 = x2 by FINSEQ_1:45; A2: |[x2,y2,z2]| . 2 = y2 by FINSEQ_1:45; A3: |[x2,y2,z2]| . 3 = z2 by FINSEQ_1:45; A4: (|[x1,y1,z1]| . 1) + (|[x2,y2,z2]| . 1) = x1 + x2 by A1, FINSEQ_1:45; A5: (|[x1,y1,z1]| . 2) + (|[x2,y2,z2]| . 2) = y1 + y2 by A2, FINSEQ_1:45; (|[x1,y1,z1]| . 3) + (|[x2,y2,z2]| . 3) = z1 + z2 by A3, FINSEQ_1:45; hence |[x1,y1,z1]| + |[x2,y2,z2]| = |[(x1 + x2),(y1 + y2),(z1 + z2)]| by A4, A5, EUCLID_8:55; ::_thesis: verum end; definition let f be PartFunc of (REAL 3),REAL; let p be Element of REAL 3; func grad (f,p) -> Element of REAL 3 equals :: PDIFF_4:def 7 (((partdiff (f,p,1)) * ) + ((partdiff (f,p,2)) * )) + ((partdiff (f,p,3)) * ); coherence (((partdiff (f,p,1)) * ) + ((partdiff (f,p,2)) * )) + ((partdiff (f,p,3)) * ) is Element of REAL 3 ; end; :: deftheorem defines grad PDIFF_4:def_7_:_ for f being PartFunc of (REAL 3),REAL for p being Element of REAL 3 holds grad (f,p) = (((partdiff (f,p,1)) * ) + ((partdiff (f,p,2)) * )) + ((partdiff (f,p,3)) * ); theorem Th34: :: PDIFF_4:34 for p being Element of REAL 3 for f being PartFunc of (REAL 3),REAL holds grad (f,p) = |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| proof let p be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL holds grad (f,p) = |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| let f be PartFunc of (REAL 3),REAL; ::_thesis: grad (f,p) = |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| grad (f,p) = (|[((partdiff (f,p,1)) * 1),((partdiff (f,p,1)) * 0),((partdiff (f,p,1)) * 0)]| + ((partdiff (f,p,2)) * |[0,1,0]|)) + ((partdiff (f,p,3)) * |[0,0,1]|) by EUCLID_8:59 .= (|[(partdiff (f,p,1)),0,0]| + |[((partdiff (f,p,2)) * 0),((partdiff (f,p,2)) * 1),((partdiff (f,p,2)) * 0)]|) + ((partdiff (f,p,3)) * |[0,0,1]|) by EUCLID_8:59 .= (|[(partdiff (f,p,1)),0,0]| + |[0,(partdiff (f,p,2)),0]|) + |[((partdiff (f,p,3)) * 0),((partdiff (f,p,3)) * 0),((partdiff (f,p,3)) * 1)]| by EUCLID_8:59 .= |[((partdiff (f,p,1)) + 0),(0 + (partdiff (f,p,2))),(0 + 0)]| + |[0,0,(partdiff (f,p,3))]| by Lm4 .= |[((partdiff (f,p,1)) + 0),((partdiff (f,p,2)) + 0),(0 + (partdiff (f,p,3)))]| by Lm4 .= |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| ; hence grad (f,p) = |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| ; ::_thesis: verum end; theorem Th35: :: PDIFF_4:35 for p being Element of REAL 3 for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad ((f + g),p) = (grad (f,p)) + (grad (g,p)) proof let p be Element of REAL 3; ::_thesis: for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad ((f + g),p) = (grad (f,p)) + (grad (g,p)) let f, g be PartFunc of (REAL 3),REAL; ::_thesis: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 implies grad ((f + g),p) = (grad (f,p)) + (grad (g,p)) ) assume that A1: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 ) and A2: ( g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 ) ; ::_thesis: grad ((f + g),p) = (grad (f,p)) + (grad (g,p)) grad ((f + g),p) = |[(partdiff ((f + g),p,1)),(partdiff ((f + g),p,2)),(partdiff ((f + g),p,3))]| by Th34 .= |[((partdiff (f,p,1)) + (partdiff (g,p,1))),(partdiff ((f + g),p,2)),(partdiff ((f + g),p,3))]| by A1, A2, PDIFF_1:29 .= |[((partdiff (f,p,1)) + (partdiff (g,p,1))),((partdiff (f,p,2)) + (partdiff (g,p,2))),(partdiff ((f + g),p,3))]| by A1, A2, PDIFF_1:29 .= |[((partdiff (f,p,1)) + (partdiff (g,p,1))),((partdiff (f,p,2)) + (partdiff (g,p,2))),((partdiff (f,p,3)) + (partdiff (g,p,3)))]| by A1, A2, PDIFF_1:29 .= |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| + |[(partdiff (g,p,1)),(partdiff (g,p,2)),(partdiff (g,p,3))]| by Lm4 .= (grad (f,p)) + |[(partdiff (g,p,1)),(partdiff (g,p,2)),(partdiff (g,p,3))]| by Th34 .= (grad (f,p)) + (grad (g,p)) by Th34 ; hence grad ((f + g),p) = (grad (f,p)) + (grad (g,p)) ; ::_thesis: verum end; theorem Th36: :: PDIFF_4:36 for p being Element of REAL 3 for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad ((f - g),p) = (grad (f,p)) - (grad (g,p)) proof let p be Element of REAL 3; ::_thesis: for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad ((f - g),p) = (grad (f,p)) - (grad (g,p)) let f, g be PartFunc of (REAL 3),REAL; ::_thesis: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 implies grad ((f - g),p) = (grad (f,p)) - (grad (g,p)) ) assume that A1: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 ) and A2: ( g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 ) ; ::_thesis: grad ((f - g),p) = (grad (f,p)) - (grad (g,p)) grad ((f - g),p) = |[(partdiff ((f - g),p,1)),(partdiff ((f - g),p,2)),(partdiff ((f - g),p,3))]| by Th34 .= |[((partdiff (f,p,1)) - (partdiff (g,p,1))),(partdiff ((f - g),p,2)),(partdiff ((f - g),p,3))]| by A1, A2, PDIFF_1:31 .= |[((partdiff (f,p,1)) - (partdiff (g,p,1))),((partdiff (f,p,2)) - (partdiff (g,p,2))),(partdiff ((f - g),p,3))]| by A1, A2, PDIFF_1:31 .= |[((partdiff (f,p,1)) - (partdiff (g,p,1))),((partdiff (f,p,2)) - (partdiff (g,p,2))),((partdiff (f,p,3)) - (partdiff (g,p,3)))]| by A1, A2, PDIFF_1:31 .= |[((partdiff (f,p,1)) + (- (partdiff (g,p,1)))),((partdiff (f,p,2)) + (- (partdiff (g,p,2)))),((partdiff (f,p,3)) + (- (partdiff (g,p,3))))]| .= |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| + |[(- (partdiff (g,p,1))),(- (partdiff (g,p,2))),(- (partdiff (g,p,3)))]| by Lm4 .= (grad (f,p)) + |[((- 1) * (partdiff (g,p,1))),((- 1) * (partdiff (g,p,2))),((- 1) * (partdiff (g,p,3)))]| by Th34 .= (grad (f,p)) + ((- 1) * |[(partdiff (g,p,1)),(partdiff (g,p,2)),(partdiff (g,p,3))]|) by EUCLID_8:59 .= (grad (f,p)) - (grad (g,p)) by Th34 ; hence grad ((f - g),p) = (grad (f,p)) - (grad (g,p)) ; ::_thesis: verum end; theorem Th37: :: PDIFF_4:37 for r being Real for p being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 holds grad ((r (#) f),p) = r * (grad (f,p)) proof let r be Real; ::_thesis: for p being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 holds grad ((r (#) f),p) = r * (grad (f,p)) let p be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 holds grad ((r (#) f),p) = r * (grad (f,p)) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 implies grad ((r (#) f),p) = r * (grad (f,p)) ) assume A1: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 ) ; ::_thesis: grad ((r (#) f),p) = r * (grad (f,p)) grad ((r (#) f),p) = |[(partdiff ((r (#) f),p,1)),(partdiff ((r (#) f),p,2)),(partdiff ((r (#) f),p,3))]| by Th34 .= |[(r * (partdiff (f,p,1))),(partdiff ((r (#) f),p,2)),(partdiff ((r (#) f),p,3))]| by A1, PDIFF_1:33 .= |[(r * (partdiff (f,p,1))),(r * (partdiff (f,p,2))),(partdiff ((r (#) f),p,3))]| by A1, PDIFF_1:33 .= |[(r * (partdiff (f,p,1))),(r * (partdiff (f,p,2))),(r * (partdiff (f,p,3)))]| by A1, PDIFF_1:33 .= r * |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| by EUCLID_8:59 .= r * (grad (f,p)) by Th34 ; hence grad ((r (#) f),p) = r * (grad (f,p)) ; ::_thesis: verum end; theorem :: PDIFF_4:38 for s, t being Real for p being Element of REAL 3 for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad (((s (#) f) + (t (#) g)),p) = (s * (grad (f,p))) + (t * (grad (g,p))) proof let s, t be Real; ::_thesis: for p being Element of REAL 3 for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad (((s (#) f) + (t (#) g)),p) = (s * (grad (f,p))) + (t * (grad (g,p))) let p be Element of REAL 3; ::_thesis: for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad (((s (#) f) + (t (#) g)),p) = (s * (grad (f,p))) + (t * (grad (g,p))) let f, g be PartFunc of (REAL 3),REAL; ::_thesis: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 implies grad (((s (#) f) + (t (#) g)),p) = (s * (grad (f,p))) + (t * (grad (g,p))) ) assume that A1: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 ) and A2: ( g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 ) ; ::_thesis: grad (((s (#) f) + (t (#) g)),p) = (s * (grad (f,p))) + (t * (grad (g,p))) A3: ( s (#) f is_partial_differentiable_in p,1 & s (#) f is_partial_differentiable_in p,2 & s (#) f is_partial_differentiable_in p,3 ) by A1, PDIFF_1:33; ( t (#) g is_partial_differentiable_in p,1 & t (#) g is_partial_differentiable_in p,2 & t (#) g is_partial_differentiable_in p,3 ) by A2, PDIFF_1:33; then grad (((s (#) f) + (t (#) g)),p) = (grad ((s (#) f),p)) + (grad ((t (#) g),p)) by A3, Th35 .= (s * (grad (f,p))) + (grad ((t (#) g),p)) by A1, Th37 .= (s * (grad (f,p))) + (t * (grad (g,p))) by A2, Th37 ; hence grad (((s (#) f) + (t (#) g)),p) = (s * (grad (f,p))) + (t * (grad (g,p))) ; ::_thesis: verum end; theorem :: PDIFF_4:39 for s, t being Real for p being Element of REAL 3 for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad (((s (#) f) - (t (#) g)),p) = (s * (grad (f,p))) - (t * (grad (g,p))) proof let s, t be Real; ::_thesis: for p being Element of REAL 3 for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad (((s (#) f) - (t (#) g)),p) = (s * (grad (f,p))) - (t * (grad (g,p))) let p be Element of REAL 3; ::_thesis: for f, g being PartFunc of (REAL 3),REAL st f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 holds grad (((s (#) f) - (t (#) g)),p) = (s * (grad (f,p))) - (t * (grad (g,p))) let f, g be PartFunc of (REAL 3),REAL; ::_thesis: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 & g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 implies grad (((s (#) f) - (t (#) g)),p) = (s * (grad (f,p))) - (t * (grad (g,p))) ) assume that A1: ( f is_partial_differentiable_in p,1 & f is_partial_differentiable_in p,2 & f is_partial_differentiable_in p,3 ) and A2: ( g is_partial_differentiable_in p,1 & g is_partial_differentiable_in p,2 & g is_partial_differentiable_in p,3 ) ; ::_thesis: grad (((s (#) f) - (t (#) g)),p) = (s * (grad (f,p))) - (t * (grad (g,p))) A3: ( s (#) f is_partial_differentiable_in p,1 & s (#) f is_partial_differentiable_in p,2 & s (#) f is_partial_differentiable_in p,3 ) by A1, PDIFF_1:33; ( t (#) g is_partial_differentiable_in p,1 & t (#) g is_partial_differentiable_in p,2 & t (#) g is_partial_differentiable_in p,3 ) by A2, PDIFF_1:33; then grad (((s (#) f) - (t (#) g)),p) = (grad ((s (#) f),p)) - (grad ((t (#) g),p)) by A3, Th36 .= (s * (grad (f,p))) - (grad ((t (#) g),p)) by A1, Th37 .= (s * (grad (f,p))) - (t * (grad (g,p))) by A2, Th37 ; hence grad (((s (#) f) - (t (#) g)),p) = (s * (grad (f,p))) - (t * (grad (g,p))) ; ::_thesis: verum end; theorem :: PDIFF_4:40 for p being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st f is total & f is constant holds grad (f,p) = 0.REAL 3 proof let p be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st f is total & f is constant holds grad (f,p) = 0.REAL 3 let f be PartFunc of (REAL 3),REAL; ::_thesis: ( f is total & f is constant implies grad (f,p) = 0.REAL 3 ) assume A1: ( f is total & f is constant ) ; ::_thesis: grad (f,p) = 0.REAL 3 then A2: dom f = REAL 3 by FUNCT_2:def_1; REAL = [#] REAL ; then reconsider W = REAL as open Subset of REAL ; consider a being Real such that A3: for p being Element of REAL 3 st p in REAL 3 holds f . p = a by A1, A2, PARTFUN2:def_1; now__::_thesis:_for_x_being_Real_st_x_in_dom_(f_*_(reproj_(1,p)))_holds_ (f_*_(reproj_(1,p)))_._x_=_a let x be Real; ::_thesis: ( x in dom (f * (reproj (1,p))) implies (f * (reproj (1,p))) . x = a ) assume x in dom (f * (reproj (1,p))) ; ::_thesis: (f * (reproj (1,p))) . x = a then (f * (reproj (1,p))) . x = f . ((reproj (1,p)) . x) by FUNCT_1:12; hence (f * (reproj (1,p))) . x = a by A3; ::_thesis: verum end; then A4: f * (reproj (1,p)) is constant by PARTFUN2:def_1; set g1 = f * (reproj (1,p)); A5: dom (f * (reproj (1,p))) = W by A1, FUNCT_2:def_1; A6: (f * (reproj (1,p))) | W is constant by A4; then A7: f * (reproj (1,p)) is_differentiable_on REAL by A5, FDIFF_1:22; for x being Real st x in REAL holds diff ((f * (reproj (1,p))),x) = 0 proof let x be Real; ::_thesis: ( x in REAL implies diff ((f * (reproj (1,p))),x) = 0 ) assume x in REAL ; ::_thesis: diff ((f * (reproj (1,p))),x) = 0 diff ((f * (reproj (1,p))),x) = ((f * (reproj (1,p))) `| W) . x by A7, FDIFF_1:def_7 .= 0 by A5, A6, FDIFF_1:22 ; hence diff ((f * (reproj (1,p))),x) = 0 ; ::_thesis: verum end; then A8: partdiff (f,p,1) = 0 ; now__::_thesis:_for_y_being_Real_st_y_in_dom_(f_*_(reproj_(2,p)))_holds_ (f_*_(reproj_(2,p)))_._y_=_a let y be Real; ::_thesis: ( y in dom (f * (reproj (2,p))) implies (f * (reproj (2,p))) . y = a ) assume y in dom (f * (reproj (2,p))) ; ::_thesis: (f * (reproj (2,p))) . y = a then (f * (reproj (2,p))) . y = f . ((reproj (2,p)) . y) by FUNCT_1:12; hence (f * (reproj (2,p))) . y = a by A3; ::_thesis: verum end; then A9: f * (reproj (2,p)) is constant by PARTFUN2:def_1; set g2 = f * (reproj (2,p)); A10: dom (f * (reproj (2,p))) = W by A1, FUNCT_2:def_1; A11: (f * (reproj (2,p))) | W is constant by A9; then A12: ( f * (reproj (2,p)) is_differentiable_on REAL & ( for y being Real st y in REAL holds ((f * (reproj (2,p))) `| W) . y = 0 ) ) by A10, FDIFF_1:22; for y being Real st y in REAL holds diff ((f * (reproj (2,p))),y) = 0 proof let y be Real; ::_thesis: ( y in REAL implies diff ((f * (reproj (2,p))),y) = 0 ) assume y in REAL ; ::_thesis: diff ((f * (reproj (2,p))),y) = 0 diff ((f * (reproj (2,p))),y) = ((f * (reproj (2,p))) `| W) . y by A12, FDIFF_1:def_7 .= 0 by A10, A11, FDIFF_1:22 ; hence diff ((f * (reproj (2,p))),y) = 0 ; ::_thesis: verum end; then A13: partdiff (f,p,2) = 0 ; now__::_thesis:_for_z_being_Real_st_z_in_dom_(f_*_(reproj_(3,p)))_holds_ (f_*_(reproj_(3,p)))_._z_=_a let z be Real; ::_thesis: ( z in dom (f * (reproj (3,p))) implies (f * (reproj (3,p))) . z = a ) assume z in dom (f * (reproj (3,p))) ; ::_thesis: (f * (reproj (3,p))) . z = a then (f * (reproj (3,p))) . z = f . ((reproj (3,p)) . z) by FUNCT_1:12; hence (f * (reproj (3,p))) . z = a by A3; ::_thesis: verum end; then A14: f * (reproj (3,p)) is constant by PARTFUN2:def_1; set g3 = f * (reproj (3,p)); A15: dom (f * (reproj (3,p))) = W by A1, FUNCT_2:def_1; A16: (f * (reproj (3,p))) | W is constant by A14; then A17: ( f * (reproj (3,p)) is_differentiable_on REAL & ( for z being Real st z in REAL holds ((f * (reproj (3,p))) `| W) . z = 0 ) ) by A15, FDIFF_1:22; for z being Real st z in REAL holds diff ((f * (reproj (3,p))),z) = 0 proof let z be Real; ::_thesis: ( z in REAL implies diff ((f * (reproj (3,p))),z) = 0 ) assume z in REAL ; ::_thesis: diff ((f * (reproj (3,p))),z) = 0 diff ((f * (reproj (3,p))),z) = ((f * (reproj (3,p))) `| W) . z by A17, FDIFF_1:def_7 .= 0 by A15, A16, FDIFF_1:22 ; hence diff ((f * (reproj (3,p))),z) = 0 ; ::_thesis: verum end; then partdiff (f,p,3) = 0 ; then grad (f,p) = |[0,0,0]| by A8, A13, Th34 .= 0.REAL 3 by FINSEQ_2:62 ; hence grad (f,p) = 0.REAL 3 ; ::_thesis: verum end; definition let a be Element of REAL 3; func unitvector a -> Element of REAL 3 equals :: PDIFF_4:def 8 |[((a . 1) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))),((a . 2) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))),((a . 3) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))]|; coherence |[((a . 1) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))),((a . 2) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))),((a . 3) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))]| is Element of REAL 3 ; end; :: deftheorem defines unitvector PDIFF_4:def_8_:_ for a being Element of REAL 3 holds unitvector a = |[((a . 1) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))),((a . 2) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))),((a . 3) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))]|; definition let f be PartFunc of (REAL 3),REAL; let p, a be Element of REAL 3; func Directiondiff (f,p,a) -> Real equals :: PDIFF_4:def 9 (((partdiff (f,p,1)) * ((unitvector a) . 1)) + ((partdiff (f,p,2)) * ((unitvector a) . 2))) + ((partdiff (f,p,3)) * ((unitvector a) . 3)); coherence (((partdiff (f,p,1)) * ((unitvector a) . 1)) + ((partdiff (f,p,2)) * ((unitvector a) . 2))) + ((partdiff (f,p,3)) * ((unitvector a) . 3)) is Real ; end; :: deftheorem defines Directiondiff PDIFF_4:def_9_:_ for f being PartFunc of (REAL 3),REAL for p, a being Element of REAL 3 holds Directiondiff (f,p,a) = (((partdiff (f,p,1)) * ((unitvector a) . 1)) + ((partdiff (f,p,2)) * ((unitvector a) . 2))) + ((partdiff (f,p,3)) * ((unitvector a) . 3)); theorem :: PDIFF_4:41 for x0, y0, z0 being Real for a, p being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st a = <*x0,y0,z0*> holds Directiondiff (f,p,a) = ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * y0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2))))) + (((partdiff (f,p,3)) * z0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) proof let x0, y0, z0 be Real; ::_thesis: for a, p being Element of REAL 3 for f being PartFunc of (REAL 3),REAL st a = <*x0,y0,z0*> holds Directiondiff (f,p,a) = ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * y0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2))))) + (((partdiff (f,p,3)) * z0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) let a, p be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL st a = <*x0,y0,z0*> holds Directiondiff (f,p,a) = ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * y0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2))))) + (((partdiff (f,p,3)) * z0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) let f be PartFunc of (REAL 3),REAL; ::_thesis: ( a = <*x0,y0,z0*> implies Directiondiff (f,p,a) = ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * y0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2))))) + (((partdiff (f,p,3)) * z0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) ) assume A1: a = <*x0,y0,z0*> ; ::_thesis: Directiondiff (f,p,a) = ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * y0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2))))) + (((partdiff (f,p,3)) * z0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) then A2: sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)) = sqrt (((x0 ^2) + ((a . 2) ^2)) + ((a . 3) ^2)) by FINSEQ_1:45 .= sqrt (((x0 ^2) + (y0 ^2)) + ((a . 3) ^2)) by A1, FINSEQ_1:45 .= sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)) by A1, FINSEQ_1:45 ; Directiondiff (f,p,a) = (((partdiff (f,p,1)) * ((a . 1) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))) + ((partdiff (f,p,2)) * ((unitvector a) . 2))) + ((partdiff (f,p,3)) * ((unitvector a) . 3)) by FINSEQ_1:45 .= ((((partdiff (f,p,1)) * (a . 1)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))) + ((partdiff (f,p,2)) * ((unitvector a) . 2))) + ((partdiff (f,p,3)) * ((unitvector a) . 3)) by XCMPLX_1:74 .= ((((partdiff (f,p,1)) * (a . 1)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))) + ((partdiff (f,p,2)) * ((a . 2) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))))) + ((partdiff (f,p,3)) * ((unitvector a) . 3)) by FINSEQ_1:45 .= ((((partdiff (f,p,1)) * (a . 1)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))) + (((partdiff (f,p,2)) * (a . 2)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))) + ((partdiff (f,p,3)) * ((unitvector a) . 3)) by XCMPLX_1:74 .= ((((partdiff (f,p,1)) * (a . 1)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))) + (((partdiff (f,p,2)) * (a . 2)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))) + ((partdiff (f,p,3)) * ((a . 3) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))) by FINSEQ_1:45 .= ((((partdiff (f,p,1)) * (a . 1)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))) + (((partdiff (f,p,2)) * (a . 2)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))) + (((partdiff (f,p,3)) * (a . 3)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))) by XCMPLX_1:74 .= ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * (a . 2)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2))))) + (((partdiff (f,p,3)) * (a . 3)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))) by A1, A2, FINSEQ_1:45 .= ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * y0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2))))) + (((partdiff (f,p,3)) * (a . 3)) / (sqrt ((((a . 1) ^2) + ((a . 2) ^2)) + ((a . 3) ^2)))) by A1, A2, FINSEQ_1:45 .= ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * y0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2))))) + (((partdiff (f,p,3)) * z0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) by A1, A2, FINSEQ_1:45 ; hence Directiondiff (f,p,a) = ((((partdiff (f,p,1)) * x0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) + (((partdiff (f,p,2)) * y0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2))))) + (((partdiff (f,p,3)) * z0) / (sqrt (((x0 ^2) + (y0 ^2)) + (z0 ^2)))) ; ::_thesis: verum end; theorem :: PDIFF_4:42 for p, a being Element of REAL 3 for f being PartFunc of (REAL 3),REAL holds Directiondiff (f,p,a) = |((grad (f,p)),(unitvector a))| proof let p, a be Element of REAL 3; ::_thesis: for f being PartFunc of (REAL 3),REAL holds Directiondiff (f,p,a) = |((grad (f,p)),(unitvector a))| let f be PartFunc of (REAL 3),REAL; ::_thesis: Directiondiff (f,p,a) = |((grad (f,p)),(unitvector a))| set p0 = grad (f,p); reconsider g1 = grad (f,p), g2 = unitvector a as FinSequence of REAL ; A1: len g1 = len <*((grad (f,p)) . 1),((grad (f,p)) . 2),((grad (f,p)) . 3)*> by EUCLID_8:1 .= 3 by FINSEQ_1:45 ; A2: len g2 = 3 by FINSEQ_1:45; A3: grad (f,p) = |[(partdiff (f,p,1)),(partdiff (f,p,2)),(partdiff (f,p,3))]| by Th34; |((grad (f,p)),(unitvector a))| = Sum <*((g1 . 1) * (g2 . 1)),((g1 . 2) * (g2 . 2)),((g1 . 3) * (g2 . 3))*> by A1, A2, EUCLID_5:28 .= ((((grad (f,p)) . 1) * (g2 . 1)) + (((grad (f,p)) . 2) * (g2 . 2))) + (((grad (f,p)) . 3) * (g2 . 3)) by RVSUM_1:78 .= (((partdiff (f,p,1)) * (g2 . 1)) + (((grad (f,p)) . 2) * (g2 . 2))) + (((grad (f,p)) . 3) * (g2 . 3)) by A3, FINSEQ_1:45 .= (((partdiff (f,p,1)) * (g2 . 1)) + ((partdiff (f,p,2)) * (g2 . 2))) + (((grad (f,p)) . 3) * (g2 . 3)) by A3, FINSEQ_1:45 .= Directiondiff (f,p,a) by A3, FINSEQ_1:45 ; hence Directiondiff (f,p,a) = |((grad (f,p)),(unitvector a))| ; ::_thesis: verum end; definition let f1, f2, f3 be PartFunc of (REAL 3),REAL; let p be Element of REAL 3; func curl (f1,f2,f3,p) -> Element of REAL 3 equals :: PDIFF_4:def 10 ((((partdiff (f3,p,2)) - (partdiff (f2,p,3))) * ) + (((partdiff (f1,p,3)) - (partdiff (f3,p,1))) * )) + (((partdiff (f2,p,1)) - (partdiff (f1,p,2))) * ); coherence ((((partdiff (f3,p,2)) - (partdiff (f2,p,3))) * ) + (((partdiff (f1,p,3)) - (partdiff (f3,p,1))) * )) + (((partdiff (f2,p,1)) - (partdiff (f1,p,2))) * ) is Element of REAL 3 ; end; :: deftheorem defines curl PDIFF_4:def_10_:_ for f1, f2, f3 being PartFunc of (REAL 3),REAL for p being Element of REAL 3 holds curl (f1,f2,f3,p) = ((((partdiff (f3,p,2)) - (partdiff (f2,p,3))) * ) + (((partdiff (f1,p,3)) - (partdiff (f3,p,1))) * )) + (((partdiff (f2,p,1)) - (partdiff (f1,p,2))) * ); theorem :: PDIFF_4:43 for p being Element of REAL 3 for f1, f2, f3 being PartFunc of (REAL 3),REAL holds curl (f1,f2,f3,p) = |[((partdiff (f3,p,2)) - (partdiff (f2,p,3))),((partdiff (f1,p,3)) - (partdiff (f3,p,1))),((partdiff (f2,p,1)) - (partdiff (f1,p,2)))]| proof let p be Element of REAL 3; ::_thesis: for f1, f2, f3 being PartFunc of (REAL 3),REAL holds curl (f1,f2,f3,p) = |[((partdiff (f3,p,2)) - (partdiff (f2,p,3))),((partdiff (f1,p,3)) - (partdiff (f3,p,1))),((partdiff (f2,p,1)) - (partdiff (f1,p,2)))]| let f1, f2, f3 be PartFunc of (REAL 3),REAL; ::_thesis: curl (f1,f2,f3,p) = |[((partdiff (f3,p,2)) - (partdiff (f2,p,3))),((partdiff (f1,p,3)) - (partdiff (f3,p,1))),((partdiff (f2,p,1)) - (partdiff (f1,p,2)))]| curl (f1,f2,f3,p) = (|[(((partdiff (f3,p,2)) - (partdiff (f2,p,3))) * 1),(((partdiff (f3,p,2)) - (partdiff (f2,p,3))) * 0),(((partdiff (f3,p,2)) - (partdiff (f2,p,3))) * 0)]| + (((partdiff (f1,p,3)) - (partdiff (f3,p,1))) * |[0,1,0]|)) + (((partdiff (f2,p,1)) - (partdiff (f1,p,2))) * |[0,0,1]|) by EUCLID_8:59 .= (|[((partdiff (f3,p,2)) - (partdiff (f2,p,3))),0,0]| + |[(((partdiff (f1,p,3)) - (partdiff (f3,p,1))) * 0),(((partdiff (f1,p,3)) - (partdiff (f3,p,1))) * 1),(((partdiff (f1,p,3)) - (partdiff (f3,p,1))) * 0)]|) + (((partdiff (f2,p,1)) - (partdiff (f1,p,2))) * |[0,0,1]|) by EUCLID_8:59 .= (|[((partdiff (f3,p,2)) - (partdiff (f2,p,3))),0,0]| + |[0,((partdiff (f1,p,3)) - (partdiff (f3,p,1))),0]|) + |[(((partdiff (f2,p,1)) - (partdiff (f1,p,2))) * 0),(((partdiff (f2,p,1)) - (partdiff (f1,p,2))) * 0),(((partdiff (f2,p,1)) - (partdiff (f1,p,2))) * 1)]| by EUCLID_8:59 .= |[(((partdiff (f3,p,2)) - (partdiff (f2,p,3))) + 0),(0 + ((partdiff (f1,p,3)) - (partdiff (f3,p,1)))),(0 + 0)]| + |[0,0,((partdiff (f2,p,1)) - (partdiff (f1,p,2)))]| by Lm4 .= |[(((partdiff (f3,p,2)) - (partdiff (f2,p,3))) + 0),(((partdiff (f1,p,3)) - (partdiff (f3,p,1))) + 0),(0 + ((partdiff (f2,p,1)) - (partdiff (f1,p,2))))]| by Lm4 .= |[((partdiff (f3,p,2)) - (partdiff (f2,p,3))),((partdiff (f1,p,3)) - (partdiff (f3,p,1))),((partdiff (f2,p,1)) - (partdiff (f1,p,2)))]| ; hence curl (f1,f2,f3,p) = |[((partdiff (f3,p,2)) - (partdiff (f2,p,3))),((partdiff (f1,p,3)) - (partdiff (f3,p,1))),((partdiff (f2,p,1)) - (partdiff (f1,p,2)))]| ; ::_thesis: verum end;