:: POWER semantic presentation begin theorem Th1: :: POWER:1 for a being real number for n being Element of NAT st n is even holds (- a) |^ n = a |^ n proof let a be real number ; ::_thesis: for n being Element of NAT st n is even holds (- a) |^ n = a |^ n let n be Element of NAT ; ::_thesis: ( n is even implies (- a) |^ n = a |^ n ) given m being Element of NAT such that A1: n = 2 * m ; :: according to ABIAN:def_2 ::_thesis: (- a) |^ n = a |^ n thus (- a) |^ n = ((- a) |^ (1 + 1)) |^ m by A1, NEWTON:9 .= (((- a) |^ (0 + 1)) * ((- a) |^ (0 + 1))) |^ m by NEWTON:8 .= ((((- a) |^ 0) * (- a)) * ((- a) |^ (0 + 1))) |^ m by NEWTON:6 .= ((((- a) |^ 0) * (- a)) * (((- a) |^ 0) * (- a))) |^ m by NEWTON:6 .= (((((- a) GeoSeq) . 0) * (- a)) * (((- a) |^ 0) * (- a))) |^ m by PREPOWER:def_1 .= (((((- a) GeoSeq) . 0) * (- a)) * ((((- a) GeoSeq) . 0) * (- a))) |^ m by PREPOWER:def_1 .= (((((- a) GeoSeq) . 0) * (- a)) * (1 * (- a))) |^ m by PREPOWER:3 .= ((1 * (- a)) * (1 * (- a))) |^ m by PREPOWER:3 .= (a * a) |^ m .= ((((a GeoSeq) . 0) * a) * (1 * a)) |^ m by PREPOWER:3 .= ((((a GeoSeq) . 0) * a) * (((a GeoSeq) . 0) * a)) |^ m by PREPOWER:3 .= ((((a GeoSeq) . 0) * a) * ((a |^ 0) * a)) |^ m by PREPOWER:def_1 .= (((a |^ 0) * a) * ((a |^ 0) * a)) |^ m by PREPOWER:def_1 .= (((a |^ 0) * a) * (a |^ (0 + 1))) |^ m by NEWTON:6 .= ((a |^ (0 + 1)) * (a |^ (0 + 1))) |^ m by NEWTON:6 .= (a |^ (1 + 1)) |^ m by NEWTON:8 .= a |^ n by A1, NEWTON:9 ; ::_thesis: verum end; theorem Th2: :: POWER:2 for a being real number for n being Element of NAT st n is odd holds (- a) |^ n = - (a |^ n) proof let a be real number ; ::_thesis: for n being Element of NAT st n is odd holds (- a) |^ n = - (a |^ n) let n be Element of NAT ; ::_thesis: ( n is odd implies (- a) |^ n = - (a |^ n) ) assume n is odd ; ::_thesis: (- a) |^ n = - (a |^ n) then consider m being Element of NAT such that A1: n = (2 * m) + 1 by ABIAN:9; thus (- a) |^ n = ((- a) |^ (2 * m)) * (- a) by A1, NEWTON:6 .= (a |^ (2 * m)) * (- a) by Th1 .= - ((a |^ (2 * m)) * a) .= - (a |^ n) by A1, NEWTON:6 ; ::_thesis: verum end; theorem Th3: :: POWER:3 for a being real number for n being Element of NAT st ( a >= 0 or n is even ) holds a |^ n >= 0 proof let a be real number ; ::_thesis: for n being Element of NAT st ( a >= 0 or n is even ) holds a |^ n >= 0 let n be Element of NAT ; ::_thesis: ( ( a >= 0 or n is even ) implies a |^ n >= 0 ) assume A1: ( a >= 0 or n is even ) ; ::_thesis: a |^ n >= 0 A2: now__::_thesis:_for_a_being_real_number_ for_n_being_Element_of_NAT_st_a_>=_0_holds_ a_|^_n_>=_0 let a be real number ; ::_thesis: for n being Element of NAT st a >= 0 holds a |^ n >= 0 let n be Element of NAT ; ::_thesis: ( a >= 0 implies a |^ n >= 0 ) assume A3: a >= 0 ; ::_thesis: a |^ n >= 0 now__::_thesis:_a_|^_n_>=_0 percases ( a > 0 or a = 0 ) by A3; suppose a > 0 ; ::_thesis: a |^ n >= 0 hence a |^ n >= 0 by PREPOWER:6; ::_thesis: verum end; supposeA4: a = 0 ; ::_thesis: a |^ n >= 0 now__::_thesis:_a_|^_n_>=_0 percases ( n = 0 or ex m being Nat st n = m + 1 ) by NAT_1:6; supposeA5: n = 0 ; ::_thesis: a |^ n >= 0 a |^ n = (a GeoSeq) . n by PREPOWER:def_1 .= 1 by A5, PREPOWER:3 ; hence a |^ n >= 0 ; ::_thesis: verum end; suppose ex m being Nat st n = m + 1 ; ::_thesis: a |^ n >= 0 then consider m being Nat such that A6: n = m + 1 ; a |^ n = (a |^ m) * a by A6, NEWTON:6 .= 0 by A4 ; hence a |^ n >= 0 ; ::_thesis: verum end; end; end; hence a |^ n >= 0 ; ::_thesis: verum end; end; end; hence a |^ n >= 0 ; ::_thesis: verum end; now__::_thesis:_(_n_is_even_implies_a_|^_n_>=_0_) assume A7: n is even ; ::_thesis: a |^ n >= 0 now__::_thesis:_a_|^_n_>=_0 percases ( a >= 0 or a < 0 ) ; suppose a >= 0 ; ::_thesis: a |^ n >= 0 hence a |^ n >= 0 by A2; ::_thesis: verum end; suppose a < 0 ; ::_thesis: a |^ n >= 0 then (- a) |^ n >= 0 by A2; hence a |^ n >= 0 by A7, Th1; ::_thesis: verum end; end; end; hence a |^ n >= 0 ; ::_thesis: verum end; hence a |^ n >= 0 by A1, A2; ::_thesis: verum end; definition let n be Nat; let a be real number ; funcn -root a -> real number equals :Def1: :: POWER:def 1 n -Root a if ( a >= 0 & n >= 1 ) - (n -Root (- a)) if ( a < 0 & n is odd ) ; consistency for b1 being real number st a >= 0 & n >= 1 & a < 0 & n is odd holds ( b1 = n -Root a iff b1 = - (n -Root (- a)) ) ; coherence ( ( a >= 0 & n >= 1 implies n -Root a is real number ) & ( a < 0 & n is odd implies - (n -Root (- a)) is real number ) ) ; end; :: deftheorem Def1 defines -root POWER:def_1_:_ for n being Nat for a being real number holds ( ( a >= 0 & n >= 1 implies n -root a = n -Root a ) & ( a < 0 & n is odd implies n -root a = - (n -Root (- a)) ) ); definition let n be Nat; let a be Real; :: original: -root redefine funcn -root a -> Real; coherence n -root a is Real by XREAL_0:def_1; end; theorem :: POWER:4 for a being real number for n being Nat st ( ( n >= 1 & a >= 0 ) or n is odd ) holds ( (n -root a) |^ n = a & n -root (a |^ n) = a ) proof let a be real number ; ::_thesis: for n being Nat st ( ( n >= 1 & a >= 0 ) or n is odd ) holds ( (n -root a) |^ n = a & n -root (a |^ n) = a ) let n be Nat; ::_thesis: ( ( ( n >= 1 & a >= 0 ) or n is odd ) implies ( (n -root a) |^ n = a & n -root (a |^ n) = a ) ) assume A1: ( ( n >= 1 & a >= 0 ) or n is odd ) ; ::_thesis: ( (n -root a) |^ n = a & n -root (a |^ n) = a ) A2: now__::_thesis:_(_n_>=_1_&_a_>=_0_implies_(_(n_-root_a)_|^_n_=_a_&_n_-root_(a_|^_n)_=_a_)_) assume that A3: n >= 1 and A4: a >= 0 ; ::_thesis: ( (n -root a) |^ n = a & n -root (a |^ n) = a ) A5: n -root a = n -Root a by A3, A4, Def1; now__::_thesis:_a_|^_n_>=_0 percases ( a > 0 or a = 0 ) by A4; suppose a > 0 ; ::_thesis: a |^ n >= 0 hence a |^ n >= 0 by PREPOWER:6; ::_thesis: verum end; suppose a = 0 ; ::_thesis: a |^ n >= 0 hence a |^ n >= 0 ; ::_thesis: verum end; end; end; then n -root (a |^ n) = n -Root (a |^ n) by A3, Def1; hence ( (n -root a) |^ n = a & n -root (a |^ n) = a ) by A3, A4, A5, PREPOWER:19; ::_thesis: verum end; now__::_thesis:_(_n_is_odd_implies_(_(n_-root_a)_|^_n_=_a_&_n_-root_(a_|^_n)_=_a_)_) assume A6: n is odd ; ::_thesis: ( (n -root a) |^ n = a & n -root (a |^ n) = a ) then A7: ex m being Element of NAT st n = (2 * m) + 1 by ABIAN:9; A8: n >= 1 by A6, ABIAN:12; now__::_thesis:_(_(n_-root_a)_|^_n_=_a_&_n_-root_(a_|^_n)_=_a_) percases ( a >= 0 or a < 0 ) ; suppose a >= 0 ; ::_thesis: ( (n -root a) |^ n = a & n -root (a |^ n) = a ) hence ( (n -root a) |^ n = a & n -root (a |^ n) = a ) by A2, A8; ::_thesis: verum end; supposeA9: a < 0 ; ::_thesis: ( (n -root a) |^ n = a & n -root (a |^ n) = a ) then A10: - a > 0 by XREAL_1:58; thus (n -root a) |^ n = (- (n -Root (- a))) |^ n by A7, A9, Def1 .= - ((n -Root (- a)) |^ n) by A7, Th2 .= - (- a) by A8, A9, PREPOWER:19 .= a ; ::_thesis: n -root (a |^ n) = a (- a) |^ n > 0 by A10, PREPOWER:6; then - (a |^ n) > 0 by A7, Th2; then a |^ n < 0 ; hence n -root (a |^ n) = - (n -Root (- (a |^ n))) by A7, Def1 .= - (n -Root ((- a) |^ n)) by A7, Th2 .= - (- a) by A8, A9, PREPOWER:19 .= a ; ::_thesis: verum end; end; end; hence ( (n -root a) |^ n = a & n -root (a |^ n) = a ) ; ::_thesis: verum end; hence ( (n -root a) |^ n = a & n -root (a |^ n) = a ) by A1, A2; ::_thesis: verum end; theorem Th5: :: POWER:5 for n being Nat st n >= 1 holds n -root 0 = 0 proof let n be Nat; ::_thesis: ( n >= 1 implies n -root 0 = 0 ) assume A1: n >= 1 ; ::_thesis: n -root 0 = 0 hence n -root 0 = n -Root 0 by Def1 .= 0 by A1, PREPOWER:def_2 ; ::_thesis: verum end; theorem :: POWER:6 for n being Element of NAT st n >= 1 holds n -root 1 = 1 proof let n be Element of NAT ; ::_thesis: ( n >= 1 implies n -root 1 = 1 ) assume A1: n >= 1 ; ::_thesis: n -root 1 = 1 hence n -root 1 = n -Root 1 by Def1 .= 1 by A1, PREPOWER:20 ; ::_thesis: verum end; theorem Th7: :: POWER:7 for a being real number for n being Element of NAT st a >= 0 & n >= 1 holds n -root a >= 0 proof let a be real number ; ::_thesis: for n being Element of NAT st a >= 0 & n >= 1 holds n -root a >= 0 let n be Element of NAT ; ::_thesis: ( a >= 0 & n >= 1 implies n -root a >= 0 ) assume that A1: a >= 0 and A2: n >= 1 ; ::_thesis: n -root a >= 0 now__::_thesis:_n_-root_a_>=_0 percases ( a > 0 or a = 0 ) by A1; supposeA3: a > 0 ; ::_thesis: n -root a >= 0 n -root a = n -Root a by A1, A2, Def1; hence n -root a >= 0 by A2, A3, PREPOWER:def_2; ::_thesis: verum end; supposeA4: a = 0 ; ::_thesis: n -root a >= 0 n -root a = n -Root a by A1, A2, Def1 .= 0 by A2, A4, PREPOWER:def_2 ; hence n -root a >= 0 ; ::_thesis: verum end; end; end; hence n -root a >= 0 ; ::_thesis: verum end; theorem :: POWER:8 for n being Element of NAT st n is odd holds n -root (- 1) = - 1 proof let n be Element of NAT ; ::_thesis: ( n is odd implies n -root (- 1) = - 1 ) assume A1: n is odd ; ::_thesis: n -root (- 1) = - 1 then A2: n >= 1 by ABIAN:12; thus n -root (- 1) = - (n -Root (- (- 1))) by A1, Def1 .= - 1 by A2, PREPOWER:20 ; ::_thesis: verum end; theorem :: POWER:9 for a being real number holds 1 -root a = a proof let a be real number ; ::_thesis: 1 -root a = a now__::_thesis:_1_-root_a_=_a percases ( a >= 0 or a < 0 ) ; supposeA1: a >= 0 ; ::_thesis: 1 -root a = a hence 1 -root a = 1 -Root a by Def1 .= a by A1, PREPOWER:21 ; ::_thesis: verum end; supposeA2: a < 0 ; ::_thesis: 1 -root a = a 1 = (2 * 0) + 1 ; hence 1 -root a = - (1 -Root (- a)) by A2, Def1 .= - (- a) by A2, PREPOWER:21 .= a ; ::_thesis: verum end; end; end; hence 1 -root a = a ; ::_thesis: verum end; theorem Th10: :: POWER:10 for a being real number for n being Element of NAT st n is odd holds n -root a = - (n -root (- a)) proof let a be real number ; ::_thesis: for n being Element of NAT st n is odd holds n -root a = - (n -root (- a)) let n be Element of NAT ; ::_thesis: ( n is odd implies n -root a = - (n -root (- a)) ) assume A1: n is odd ; ::_thesis: n -root a = - (n -root (- a)) then A2: ex m being Element of NAT st n = (2 * m) + 1 by ABIAN:9; A3: n >= 1 by A1, ABIAN:12; now__::_thesis:_n_-root_a_=_-_(n_-root_(-_a)) percases ( a < 0 or a = 0 or a > 0 ) ; supposeA4: a < 0 ; ::_thesis: n -root a = - (n -root (- a)) hence n -root a = - (n -Root (- a)) by A2, Def1 .= - (n -root (- a)) by A3, A4, Def1 ; ::_thesis: verum end; supposeA5: a = 0 ; ::_thesis: n -root a = - (n -root (- a)) hence n -root a = 0 by A3, Th5 .= - (n -root (- a)) by A3, A5, Th5 ; ::_thesis: verum end; supposeA6: a > 0 ; ::_thesis: - (n -root (- a)) = n -root a then - a < - 0 by XREAL_1:24; hence - (n -root (- a)) = - (- (n -Root (- (- a)))) by A2, Def1 .= n -root a by A3, A6, Def1 ; ::_thesis: verum end; end; end; hence n -root a = - (n -root (- a)) ; ::_thesis: verum end; theorem Th11: :: POWER:11 for a, b being real number for n being Element of NAT st ( ( n >= 1 & a >= 0 & b >= 0 ) or n is odd ) holds n -root (a * b) = (n -root a) * (n -root b) proof let a, b be real number ; ::_thesis: for n being Element of NAT st ( ( n >= 1 & a >= 0 & b >= 0 ) or n is odd ) holds n -root (a * b) = (n -root a) * (n -root b) let n be Element of NAT ; ::_thesis: ( ( ( n >= 1 & a >= 0 & b >= 0 ) or n is odd ) implies n -root (a * b) = (n -root a) * (n -root b) ) assume A1: ( ( n >= 1 & a >= 0 & b >= 0 ) or n is odd ) ; ::_thesis: n -root (a * b) = (n -root a) * (n -root b) A2: now__::_thesis:_for_a,_b_being_real_number_ for_n_being_Element_of_NAT_st_n_>=_1_&_a_>=_0_&_b_>=_0_holds_ n_-root_(a_*_b)_=_(n_-root_a)_*_(n_-root_b) let a, b be real number ; ::_thesis: for n being Element of NAT st n >= 1 & a >= 0 & b >= 0 holds n -root (a * b) = (n -root a) * (n -root b) let n be Element of NAT ; ::_thesis: ( n >= 1 & a >= 0 & b >= 0 implies n -root (a * b) = (n -root a) * (n -root b) ) assume that A3: n >= 1 and A4: a >= 0 and A5: b >= 0 ; ::_thesis: n -root (a * b) = (n -root a) * (n -root b) thus n -root (a * b) = n -Root (a * b) by A3, A4, A5, Def1 .= (n -Root a) * (n -Root b) by A3, A4, A5, PREPOWER:22 .= (n -root a) * (n -Root b) by A3, A4, Def1 .= (n -root a) * (n -root b) by A3, A5, Def1 ; ::_thesis: verum end; now__::_thesis:_(_n_is_odd_implies_n_-root_(a_*_b)_=_(n_-root_a)_*_(n_-root_b)_) assume A6: n is odd ; ::_thesis: n -root (a * b) = (n -root a) * (n -root b) then A7: n >= 1 by ABIAN:12; now__::_thesis:_n_-root_(a_*_b)_=_(n_-root_a)_*_(n_-root_b) percases ( ( a >= 0 & b >= 0 ) or ( a < 0 & b < 0 ) or ( a >= 0 & b < 0 ) or ( a < 0 & b >= 0 ) ) ; suppose ( a >= 0 & b >= 0 ) ; ::_thesis: n -root (a * b) = (n -root a) * (n -root b) hence n -root (a * b) = (n -root a) * (n -root b) by A2, A7; ::_thesis: verum end; supposeA8: ( a < 0 & b < 0 ) ; ::_thesis: n -root (a * b) = (n -root a) * (n -root b) hence n -root (a * b) = n -Root ((- a) * (- b)) by A7, Def1 .= (- (- (n -Root (- a)))) * (n -Root (- b)) by A7, A8, PREPOWER:22 .= (- (n -root a)) * (- (- (n -Root (- b)))) by A6, A8, Def1 .= (- (n -root a)) * (- (n -root b)) by A6, A8, Def1 .= (n -root a) * (n -root b) ; ::_thesis: verum end; supposeA9: ( a >= 0 & b < 0 ) ; ::_thesis: n -root (a * b) = (n -root a) * (n -root b) thus n -root (a * b) = - (n -root (- (a * b))) by A6, Th10 .= - (n -root (a * (- b))) .= - ((n -root a) * (n -root (- b))) by A2, A7, A9 .= (n -root a) * (- (n -root (- b))) .= (n -root a) * (n -root b) by A6, Th10 ; ::_thesis: verum end; supposeA10: ( a < 0 & b >= 0 ) ; ::_thesis: n -root (a * b) = (n -root a) * (n -root b) thus n -root (a * b) = - (n -root (- (a * b))) by A6, Th10 .= - (n -root ((- a) * b)) .= - ((n -root (- a)) * (n -root b)) by A2, A7, A10 .= (- (n -root (- a))) * (n -root b) .= (n -root a) * (n -root b) by A6, Th10 ; ::_thesis: verum end; end; end; hence n -root (a * b) = (n -root a) * (n -root b) ; ::_thesis: verum end; hence n -root (a * b) = (n -root a) * (n -root b) by A1, A2; ::_thesis: verum end; theorem Th12: :: POWER:12 for a being real number for n being Element of NAT st ( ( a > 0 & n >= 1 ) or ( a <> 0 & n is odd ) ) holds n -root (1 / a) = 1 / (n -root a) proof let a be real number ; ::_thesis: for n being Element of NAT st ( ( a > 0 & n >= 1 ) or ( a <> 0 & n is odd ) ) holds n -root (1 / a) = 1 / (n -root a) let n be Element of NAT ; ::_thesis: ( ( ( a > 0 & n >= 1 ) or ( a <> 0 & n is odd ) ) implies n -root (1 / a) = 1 / (n -root a) ) assume A1: ( ( a > 0 & n >= 1 ) or ( a <> 0 & n is odd ) ) ; ::_thesis: n -root (1 / a) = 1 / (n -root a) A2: now__::_thesis:_for_a_being_real_number_ for_n_being_Element_of_NAT_st_a_>_0_&_n_>=_1_holds_ n_-root_(1_/_a)_=_1_/_(n_-root_a) let a be real number ; ::_thesis: for n being Element of NAT st a > 0 & n >= 1 holds n -root (1 / a) = 1 / (n -root a) let n be Element of NAT ; ::_thesis: ( a > 0 & n >= 1 implies n -root (1 / a) = 1 / (n -root a) ) assume A3: ( a > 0 & n >= 1 ) ; ::_thesis: n -root (1 / a) = 1 / (n -root a) hence n -root (1 / a) = n -Root (1 / a) by Def1 .= 1 / (n -Root a) by A3, PREPOWER:23 .= 1 / (n -root a) by A3, Def1 ; ::_thesis: verum end; now__::_thesis:_(_a_<>_0_&_n_is_odd_implies_n_-root_(1_/_a)_=_1_/_(n_-root_a)_) assume that A4: a <> 0 and A5: n is odd ; ::_thesis: n -root (1 / a) = 1 / (n -root a) A6: n >= 1 by A5, ABIAN:12; now__::_thesis:_n_-root_(1_/_a)_=_1_/_(n_-root_a) percases ( a > 0 or a < 0 ) by A4; suppose a > 0 ; ::_thesis: n -root (1 / a) = 1 / (n -root a) hence n -root (1 / a) = 1 / (n -root a) by A2, A6; ::_thesis: verum end; suppose a < 0 ; ::_thesis: 1 / (n -root a) = n -root (1 / a) then A7: - a > 0 by XREAL_1:58; thus 1 / (n -root a) = 1 / (- (n -root (- a))) by A5, Th10 .= - (1 / (n -root (- a))) by XCMPLX_1:188 .= - (n -root (1 / (- a))) by A2, A6, A7 .= - (n -root (- (1 / a))) by XCMPLX_1:188 .= n -root (1 / a) by A5, Th10 ; ::_thesis: verum end; end; end; hence n -root (1 / a) = 1 / (n -root a) ; ::_thesis: verum end; hence n -root (1 / a) = 1 / (n -root a) by A1, A2; ::_thesis: verum end; theorem :: POWER:13 for a, b being real number for n being Element of NAT st ( ( a >= 0 & b > 0 & n >= 1 ) or ( b <> 0 & n is odd ) ) holds n -root (a / b) = (n -root a) / (n -root b) proof let a, b be real number ; ::_thesis: for n being Element of NAT st ( ( a >= 0 & b > 0 & n >= 1 ) or ( b <> 0 & n is odd ) ) holds n -root (a / b) = (n -root a) / (n -root b) let n be Element of NAT ; ::_thesis: ( ( ( a >= 0 & b > 0 & n >= 1 ) or ( b <> 0 & n is odd ) ) implies n -root (a / b) = (n -root a) / (n -root b) ) assume A1: ( ( a >= 0 & b > 0 & n >= 1 ) or ( b <> 0 & n is odd ) ) ; ::_thesis: n -root (a / b) = (n -root a) / (n -root b) now__::_thesis:_n_-root_(a_/_b)_=_(n_-root_a)_/_(n_-root_b) percases ( ( a >= 0 & b > 0 & n >= 1 ) or ( b <> 0 & n is odd ) ) by A1; supposeA2: ( a >= 0 & b > 0 & n >= 1 ) ; ::_thesis: n -root (a / b) = (n -root a) / (n -root b) hence n -root (a / b) = n -Root (a / b) by Def1 .= (n -Root a) / (n -Root b) by A2, PREPOWER:24 .= (n -root a) / (n -Root b) by A2, Def1 .= (n -root a) / (n -root b) by A2, Def1 ; ::_thesis: verum end; supposeA3: ( b <> 0 & n is odd ) ; ::_thesis: n -root (a / b) = (n -root a) / (n -root b) thus n -root (a / b) = n -root (a * (1 / b)) .= (n -root a) * (n -root (1 / b)) by A3, Th11 .= (n -root a) * (1 / (n -root b)) by A3, Th12 .= (n -root a) / (n -root b) ; ::_thesis: verum end; end; end; hence n -root (a / b) = (n -root a) / (n -root b) ; ::_thesis: verum end; theorem :: POWER:14 for a being real number for n, m being Element of NAT st ( ( a >= 0 & n >= 1 & m >= 1 ) or ( n is odd & m is odd ) ) holds n -root (m -root a) = (n * m) -root a proof let a be real number ; ::_thesis: for n, m being Element of NAT st ( ( a >= 0 & n >= 1 & m >= 1 ) or ( n is odd & m is odd ) ) holds n -root (m -root a) = (n * m) -root a let n, m be Element of NAT ; ::_thesis: ( ( ( a >= 0 & n >= 1 & m >= 1 ) or ( n is odd & m is odd ) ) implies n -root (m -root a) = (n * m) -root a ) assume A1: ( ( a >= 0 & n >= 1 & m >= 1 ) or ( n is odd & m is odd ) ) ; ::_thesis: n -root (m -root a) = (n * m) -root a A2: now__::_thesis:_for_a_being_real_number_ for_n,_m_being_Element_of_NAT_st_a_>=_0_&_n_>=_1_&_m_>=_1_holds_ n_-root_(m_-root_a)_=_(n_*_m)_-root_a let a be real number ; ::_thesis: for n, m being Element of NAT st a >= 0 & n >= 1 & m >= 1 holds n -root (m -root a) = (n * m) -root a let n, m be Element of NAT ; ::_thesis: ( a >= 0 & n >= 1 & m >= 1 implies n -root (m -root a) = (n * m) -root a ) assume that A3: a >= 0 and A4: n >= 1 and A5: m >= 1 ; ::_thesis: n -root (m -root a) = (n * m) -root a A6: n * m >= 1 by A4, A5, XREAL_1:159; m -root a >= 0 by A3, A5, Th7; then A7: m -Root a >= 0 by A3, A5, Def1; thus n -root (m -root a) = n -root (m -Root a) by A3, A5, Def1 .= n -Root (m -Root a) by A4, A7, Def1 .= (n * m) -Root a by A3, A4, A5, PREPOWER:25 .= (n * m) -root a by A3, A6, Def1 ; ::_thesis: verum end; now__::_thesis:_(_n_is_odd_&_m_is_odd_implies_n_-root_(m_-root_a)_=_(n_*_m)_-root_a_) assume n is odd ; ::_thesis: ( m is odd implies n -root (m -root a) = (n * m) -root a ) then consider m1 being Element of NAT such that A8: n = (2 * m1) + 1 by ABIAN:9; assume m is odd ; ::_thesis: n -root (m -root a) = (n * m) -root a then consider m2 being Element of NAT such that A9: m = (2 * m2) + 1 by ABIAN:9; A10: n >= 0 + 1 by A8, XREAL_1:6; A11: m >= 0 + 1 by A9, XREAL_1:6; then A12: n * m >= 1 by A10, XREAL_1:159; A13: n * m = (2 * (((m1 * (2 * m2)) + m1) + m2)) + 1 by A8, A9; now__::_thesis:_n_-root_(m_-root_a)_=_(n_*_m)_-root_a percases ( a >= 0 or a < 0 ) ; suppose a >= 0 ; ::_thesis: n -root (m -root a) = (n * m) -root a hence n -root (m -root a) = (n * m) -root a by A2, A10, A11; ::_thesis: verum end; supposeA14: a < 0 ; ::_thesis: n -root (m -root a) = (n * m) -root a then m -root (- a) >= 0 by A11, Th7; then A15: m -Root (- a) >= 0 by A11, A14, Def1; thus n -root (m -root a) = n -root (- (m -Root (- a))) by A9, A14, Def1 .= - (n -root (- (- (m -Root (- a))))) by A8, Th10 .= - (n -Root (m -Root (- a))) by A10, A15, Def1 .= - ((n * m) -Root (- a)) by A10, A11, A14, PREPOWER:25 .= - ((n * m) -root (- a)) by A12, A14, Def1 .= (n * m) -root a by A13, Th10 ; ::_thesis: verum end; end; end; hence n -root (m -root a) = (n * m) -root a ; ::_thesis: verum end; hence n -root (m -root a) = (n * m) -root a by A1, A2; ::_thesis: verum end; theorem :: POWER:15 for a being real number for n, m being Element of NAT st ( ( a >= 0 & n >= 1 & m >= 1 ) or ( n is odd & m is odd ) ) holds (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) proof let a be real number ; ::_thesis: for n, m being Element of NAT st ( ( a >= 0 & n >= 1 & m >= 1 ) or ( n is odd & m is odd ) ) holds (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) let n, m be Element of NAT ; ::_thesis: ( ( ( a >= 0 & n >= 1 & m >= 1 ) or ( n is odd & m is odd ) ) implies (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) ) assume A1: ( ( a >= 0 & n >= 1 & m >= 1 ) or ( n is odd & m is odd ) ) ; ::_thesis: (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) A2: now__::_thesis:_for_a_being_real_number_ for_n,_m_being_Element_of_NAT_st_a_>=_0_&_n_>=_1_&_m_>=_1_holds_ (n_-root_a)_*_(m_-root_a)_=_(n_*_m)_-root_(a_|^_(n_+_m)) let a be real number ; ::_thesis: for n, m being Element of NAT st a >= 0 & n >= 1 & m >= 1 holds (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) let n, m be Element of NAT ; ::_thesis: ( a >= 0 & n >= 1 & m >= 1 implies (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) ) assume that A3: a >= 0 and A4: n >= 1 and A5: m >= 1 ; ::_thesis: (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) A6: ( n * m >= 1 & a |^ (n + m) >= 0 ) by A3, A4, A5, Th3, XREAL_1:159; thus (n -root a) * (m -root a) = (n -root a) * (m -Root a) by A3, A5, Def1 .= (n -Root a) * (m -Root a) by A3, A4, Def1 .= (n * m) -Root (a |^ (n + m)) by A3, A4, A5, PREPOWER:26 .= (n * m) -root (a |^ (n + m)) by A6, Def1 ; ::_thesis: verum end; now__::_thesis:_(_n_is_odd_&_m_is_odd_implies_(n_-root_a)_*_(m_-root_a)_=_(n_*_m)_-root_(a_|^_(n_+_m))_) assume n is odd ; ::_thesis: ( m is odd implies (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) ) then consider m1 being Element of NAT such that A7: n = (2 * m1) + 1 by ABIAN:9; assume m is odd ; ::_thesis: (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) then consider m2 being Element of NAT such that A8: m = (2 * m2) + 1 by ABIAN:9; A9: ( n >= 0 + 1 & m >= 0 + 1 ) by A7, A8, XREAL_1:6; then A10: n * m >= 1 by XREAL_1:159; A11: n + m = 2 * (m1 + (1 + m2)) by A7, A8; now__::_thesis:_(n_-root_a)_*_(m_-root_a)_=_(n_*_m)_-root_(a_|^_(n_+_m)) percases ( a >= 0 or a < 0 ) ; suppose a >= 0 ; ::_thesis: (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) hence (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) by A2, A9; ::_thesis: verum end; supposeA12: a < 0 ; ::_thesis: (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) A13: a |^ (n + m) >= 0 by A11, Th3; thus (n -root a) * (m -root a) = (n -root a) * (- (m -Root (- a))) by A8, A12, Def1 .= (- (n -Root (- a))) * (- (m -Root (- a))) by A7, A12, Def1 .= (n -Root (- a)) * (m -Root (- a)) .= (n * m) -Root ((- a) |^ (n + m)) by A9, A12, PREPOWER:26 .= (n * m) -Root (a |^ (n + m)) by A11, Th1 .= (n * m) -root (a |^ (n + m)) by A10, A13, Def1 ; ::_thesis: verum end; end; end; hence (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) ; ::_thesis: verum end; hence (n -root a) * (m -root a) = (n * m) -root (a |^ (n + m)) by A1, A2; ::_thesis: verum end; theorem :: POWER:16 for a, b being real number for n being Element of NAT st a <= b & ( ( 0 <= a & n >= 1 ) or n is odd ) holds n -root a <= n -root b proof let a, b be real number ; ::_thesis: for n being Element of NAT st a <= b & ( ( 0 <= a & n >= 1 ) or n is odd ) holds n -root a <= n -root b let n be Element of NAT ; ::_thesis: ( a <= b & ( ( 0 <= a & n >= 1 ) or n is odd ) implies n -root a <= n -root b ) assume that A1: a <= b and A2: ( ( 0 <= a & n >= 1 ) or n is odd ) ; ::_thesis: n -root a <= n -root b A3: now__::_thesis:_for_a,_b_being_real_number_ for_n_being_Element_of_NAT_st_0_<=_a_&_n_>=_1_&_a_<=_b_holds_ n_-root_a_<=_n_-root_b let a, b be real number ; ::_thesis: for n being Element of NAT st 0 <= a & n >= 1 & a <= b holds n -root a <= n -root b let n be Element of NAT ; ::_thesis: ( 0 <= a & n >= 1 & a <= b implies n -root a <= n -root b ) assume that A4: ( 0 <= a & n >= 1 ) and A5: a <= b ; ::_thesis: n -root a <= n -root b n -Root a <= n -Root b by A4, A5, PREPOWER:27; then n -Root a <= n -root b by A4, A5, Def1; hence n -root a <= n -root b by A4, Def1; ::_thesis: verum end; now__::_thesis:_(_n_is_odd_implies_n_-root_a_<=_n_-root_b_) assume A6: n is odd ; ::_thesis: n -root a <= n -root b then A7: n >= 1 by ABIAN:12; now__::_thesis:_n_-root_a_<=_n_-root_b percases ( a >= 0 or a < 0 ) ; suppose a >= 0 ; ::_thesis: n -root a <= n -root b hence n -root a <= n -root b by A1, A3, A7; ::_thesis: verum end; supposeA8: a < 0 ; ::_thesis: n -root a <= n -root b now__::_thesis:_n_-root_a_<=_n_-root_b percases ( b >= 0 or b < 0 ) ; suppose b >= 0 ; ::_thesis: n -root a <= n -root b then A9: n -root b >= 0 by A7, Th7; n -root (- a) >= 0 by A7, A8, Th7; then - (n -root (- a)) <= - 0 ; hence n -root a <= n -root b by A6, A9, Th10; ::_thesis: verum end; supposeA10: b < 0 ; ::_thesis: n -root a <= n -root b - a >= - b by A1, XREAL_1:24; then n -root (- a) >= n -root (- b) by A3, A7, A10; then - (n -root (- a)) <= - (n -root (- b)) by XREAL_1:24; then n -root a <= - (n -root (- b)) by A6, Th10; hence n -root a <= n -root b by A6, Th10; ::_thesis: verum end; end; end; hence n -root a <= n -root b ; ::_thesis: verum end; end; end; hence n -root a <= n -root b ; ::_thesis: verum end; hence n -root a <= n -root b by A1, A2, A3; ::_thesis: verum end; theorem :: POWER:17 for a, b being real number for n being Element of NAT st a < b & ( ( a >= 0 & n >= 1 ) or n is odd ) holds n -root a < n -root b proof let a, b be real number ; ::_thesis: for n being Element of NAT st a < b & ( ( a >= 0 & n >= 1 ) or n is odd ) holds n -root a < n -root b let n be Element of NAT ; ::_thesis: ( a < b & ( ( a >= 0 & n >= 1 ) or n is odd ) implies n -root a < n -root b ) assume that A1: a < b and A2: ( ( 0 <= a & n >= 1 ) or n is odd ) ; ::_thesis: n -root a < n -root b A3: now__::_thesis:_for_a,_b_being_real_number_ for_n_being_Element_of_NAT_st_0_<=_a_&_n_>=_1_&_a_<_b_holds_ n_-root_a_<_n_-root_b let a, b be real number ; ::_thesis: for n being Element of NAT st 0 <= a & n >= 1 & a < b holds n -root a < n -root b let n be Element of NAT ; ::_thesis: ( 0 <= a & n >= 1 & a < b implies n -root a < n -root b ) assume that A4: ( 0 <= a & n >= 1 ) and A5: a < b ; ::_thesis: n -root a < n -root b n -Root a < n -Root b by A4, A5, PREPOWER:28; then n -Root a < n -root b by A4, A5, Def1; hence n -root a < n -root b by A4, Def1; ::_thesis: verum end; now__::_thesis:_(_n_is_odd_implies_n_-root_a_<_n_-root_b_) assume A6: n is odd ; ::_thesis: n -root a < n -root b then A7: n >= 1 by ABIAN:12; now__::_thesis:_n_-root_a_<_n_-root_b percases ( a >= 0 or a < 0 ) ; suppose a >= 0 ; ::_thesis: n -root a < n -root b hence n -root a < n -root b by A1, A3, A7; ::_thesis: verum end; supposeA8: a < 0 ; ::_thesis: n -root a < n -root b then A9: - a > 0 by XREAL_1:58; now__::_thesis:_n_-root_a_<_n_-root_b percases ( b >= 0 or b < 0 ) ; suppose b >= 0 ; ::_thesis: n -root a < n -root b then A10: n -root b >= 0 by A7, Th7; n -Root (- a) > 0 by A7, A9, PREPOWER:def_2; then - (n -Root (- a)) < - 0 by XREAL_1:24; hence n -root a < n -root b by A6, A8, A10, Def1; ::_thesis: verum end; supposeA11: b < 0 ; ::_thesis: n -root a < n -root b - a > - b by A1, XREAL_1:24; then n -root (- a) > n -root (- b) by A3, A7, A11; then - (n -root (- a)) < - (n -root (- b)) by XREAL_1:24; then n -root a < - (n -root (- b)) by A6, Th10; hence n -root a < n -root b by A6, Th10; ::_thesis: verum end; end; end; hence n -root a < n -root b ; ::_thesis: verum end; end; end; hence n -root a < n -root b ; ::_thesis: verum end; hence n -root a < n -root b by A1, A2, A3; ::_thesis: verum end; theorem Th18: :: POWER:18 for a being real number for n being Element of NAT st a >= 1 & n >= 1 holds ( n -root a >= 1 & a >= n -root a ) proof let a be real number ; ::_thesis: for n being Element of NAT st a >= 1 & n >= 1 holds ( n -root a >= 1 & a >= n -root a ) let n be Element of NAT ; ::_thesis: ( a >= 1 & n >= 1 implies ( n -root a >= 1 & a >= n -root a ) ) assume that A1: a >= 1 and A2: n >= 1 ; ::_thesis: ( n -root a >= 1 & a >= n -root a ) ( n -Root a >= 1 & a >= n -Root a ) by A1, A2, PREPOWER:29; hence ( n -root a >= 1 & a >= n -root a ) by A2, Def1; ::_thesis: verum end; theorem :: POWER:19 for a being real number for n being Element of NAT st a <= - 1 & n is odd holds ( n -root a <= - 1 & a <= n -root a ) proof let a be real number ; ::_thesis: for n being Element of NAT st a <= - 1 & n is odd holds ( n -root a <= - 1 & a <= n -root a ) let n be Element of NAT ; ::_thesis: ( a <= - 1 & n is odd implies ( n -root a <= - 1 & a <= n -root a ) ) assume that A1: a <= - 1 and A2: n is odd ; ::_thesis: ( n -root a <= - 1 & a <= n -root a ) A3: ( n >= 1 & - a >= 1 ) by A1, A2, ABIAN:12, XREAL_1:25; then A4: n -root (- a) >= 1 by Th18; A5: - a >= n -root (- a) by A3, Th18; A6: - (n -root (- a)) <= - 1 by A4, XREAL_1:24; a <= - (n -root (- a)) by A5, XREAL_1:25; hence ( n -root a <= - 1 & a <= n -root a ) by A2, A6, Th10; ::_thesis: verum end; theorem Th20: :: POWER:20 for a being real number for n being Element of NAT st a >= 0 & a < 1 & n >= 1 holds ( a <= n -root a & n -root a < 1 ) proof let a be real number ; ::_thesis: for n being Element of NAT st a >= 0 & a < 1 & n >= 1 holds ( a <= n -root a & n -root a < 1 ) let n be Element of NAT ; ::_thesis: ( a >= 0 & a < 1 & n >= 1 implies ( a <= n -root a & n -root a < 1 ) ) assume that A1: a >= 0 and A2: a < 1 and A3: n >= 1 ; ::_thesis: ( a <= n -root a & n -root a < 1 ) ( a <= n -Root a & n -Root a < 1 ) by A1, A2, A3, PREPOWER:30; hence ( a <= n -root a & n -root a < 1 ) by A1, A3, Def1; ::_thesis: verum end; theorem :: POWER:21 for a being real number for n being Element of NAT st a > - 1 & a <= 0 & n is odd holds ( a >= n -root a & n -root a > - 1 ) proof let a be real number ; ::_thesis: for n being Element of NAT st a > - 1 & a <= 0 & n is odd holds ( a >= n -root a & n -root a > - 1 ) let n be Element of NAT ; ::_thesis: ( a > - 1 & a <= 0 & n is odd implies ( a >= n -root a & n -root a > - 1 ) ) assume that A1: a > - 1 and A2: a <= 0 ; ::_thesis: ( not n is odd or ( a >= n -root a & n -root a > - 1 ) ) assume n is odd ; ::_thesis: ( a >= n -root a & n -root a > - 1 ) then A3: ex m being Element of NAT st n = (2 * m) + 1 by ABIAN:9; then A4: ( n >= 1 & - a < 1 ) by A1, ABIAN:12, XREAL_1:25; then A5: n -root (- a) < 1 by A2, Th20; A6: - a <= n -root (- a) by A2, A4, Th20; A7: - (n -root (- a)) > - 1 by A5, XREAL_1:24; a >= - (n -root (- a)) by A6, XREAL_1:26; hence ( a >= n -root a & n -root a > - 1 ) by A3, A7, Th10; ::_thesis: verum end; theorem Th22: :: POWER:22 for a being real number for n being Element of NAT st a > 0 & n >= 1 holds (n -root a) - 1 <= (a - 1) / n proof let a be real number ; ::_thesis: for n being Element of NAT st a > 0 & n >= 1 holds (n -root a) - 1 <= (a - 1) / n let n be Element of NAT ; ::_thesis: ( a > 0 & n >= 1 implies (n -root a) - 1 <= (a - 1) / n ) assume A1: ( a > 0 & n >= 1 ) ; ::_thesis: (n -root a) - 1 <= (a - 1) / n then (n -Root a) - 1 <= (a - 1) / n by PREPOWER:31; hence (n -root a) - 1 <= (a - 1) / n by A1, Def1; ::_thesis: verum end; theorem Th23: :: POWER:23 for s being Real_Sequence for a being real number st a > 0 & ( for n being Element of NAT st n >= 1 holds s . n = n -root a ) holds ( s is convergent & lim s = 1 ) proof let s be Real_Sequence; ::_thesis: for a being real number st a > 0 & ( for n being Element of NAT st n >= 1 holds s . n = n -root a ) holds ( s is convergent & lim s = 1 ) let a be real number ; ::_thesis: ( a > 0 & ( for n being Element of NAT st n >= 1 holds s . n = n -root a ) implies ( s is convergent & lim s = 1 ) ) assume that A1: a > 0 and A2: for n being Element of NAT st n >= 1 holds s . n = n -root a ; ::_thesis: ( s is convergent & lim s = 1 ) now__::_thesis:_for_n_being_Element_of_NAT_st_n_>=_1_holds_ s_._n_=_n_-Root_a let n be Element of NAT ; ::_thesis: ( n >= 1 implies s . n = n -Root a ) assume A3: n >= 1 ; ::_thesis: s . n = n -Root a hence s . n = n -root a by A2 .= n -Root a by A1, A3, Def1 ; ::_thesis: verum end; hence ( s is convergent & lim s = 1 ) by A1, PREPOWER:33; ::_thesis: verum end; definition let a, b be real number ; funca to_power b -> real number means :Def2: :: POWER:def 2 it = a #R b if a > 0 it = 0 if ( a = 0 & b > 0 ) ex k being Integer st ( k = b & it = a #Z k ) if b is Integer ; consistency for b1 being real number holds ( ( a > 0 & a = 0 & b > 0 implies ( b1 = a #R b iff b1 = 0 ) ) & ( a > 0 & b is Integer implies ( b1 = a #R b iff ex k being Integer st ( k = b & b1 = a #Z k ) ) ) & ( a = 0 & b > 0 & b is Integer implies ( b1 = 0 iff ex k being Integer st ( k = b & b1 = a #Z k ) ) ) ) proof let IT be real number ; ::_thesis: ( ( a > 0 & a = 0 & b > 0 implies ( IT = a #R b iff IT = 0 ) ) & ( a > 0 & b is Integer implies ( IT = a #R b iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) & ( a = 0 & b > 0 & b is Integer implies ( IT = 0 iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) ) thus ( a > 0 & a = 0 & b > 0 implies ( IT = a #R b iff IT = 0 ) ) ; ::_thesis: ( ( a > 0 & b is Integer implies ( IT = a #R b iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) & ( a = 0 & b > 0 & b is Integer implies ( IT = 0 iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) ) thus ( a > 0 & b is Integer implies ( IT = a #R b iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) ::_thesis: ( a = 0 & b > 0 & b is Integer implies ( IT = 0 iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) proof assume A1: a > 0 ; ::_thesis: ( not b is Integer or ( IT = a #R b iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) assume b is Integer ; ::_thesis: ( IT = a #R b iff ex k being Integer st ( k = b & IT = a #Z k ) ) then reconsider b = b as Integer ; a #R b = a #Q b by A1, PREPOWER:74 .= a #Z b by A1, PREPOWER:99 ; hence ( IT = a #R b iff ex k being Integer st ( k = b & IT = a #Z k ) ) ; ::_thesis: verum end; ( a = 0 & b > 0 & b is Integer implies ( IT = 0 iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) proof assume A2: a = 0 ; ::_thesis: ( not b > 0 or not b is Integer or ( IT = 0 iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) assume that A3: b > 0 and A4: b is Integer ; ::_thesis: ( IT = 0 iff ex k being Integer st ( k = b & IT = a #Z k ) ) b in NAT by A3, A4, INT_1:3; then reconsider b = b as Nat ; a #Z b = a |^ b by PREPOWER:36 .= 0 by A2, A3, NAT_1:14, NEWTON:11 ; hence ( IT = 0 iff ex k being Integer st ( k = b & IT = a #Z k ) ) ; ::_thesis: verum end; hence ( a = 0 & b > 0 & b is Integer implies ( IT = 0 iff ex k being Integer st ( k = b & IT = a #Z k ) ) ) ; ::_thesis: verum end; existence ( ( a > 0 implies ex b1 being real number st b1 = a #R b ) & ( a = 0 & b > 0 implies ex b1 being real number st b1 = 0 ) & ( b is Integer implies ex b1 being real number ex k being Integer st ( k = b & b1 = a #Z k ) ) ) proof now__::_thesis:_(_b_is_Integer_implies_ex_c_being_set_ex_k_being_Integer_st_ (_k_=_b_&_c_=_a_#Z_k_)_) assume b is Integer ; ::_thesis: ex c being set ex k being Integer st ( k = b & c = a #Z k ) then reconsider k = b as Integer ; take c = a #Z k; ::_thesis: ex k being Integer st ( k = b & c = a #Z k ) thus ex k being Integer st ( k = b & c = a #Z k ) ; ::_thesis: verum end; hence ( ( a > 0 implies ex b1 being real number st b1 = a #R b ) & ( a = 0 & b > 0 implies ex b1 being real number st b1 = 0 ) & ( b is Integer implies ex b1 being real number ex k being Integer st ( k = b & b1 = a #Z k ) ) ) ; ::_thesis: verum end; uniqueness for b1, b2 being real number holds ( ( a > 0 & b1 = a #R b & b2 = a #R b implies b1 = b2 ) & ( a = 0 & b > 0 & b1 = 0 & b2 = 0 implies b1 = b2 ) & ( b is Integer & ex k being Integer st ( k = b & b1 = a #Z k ) & ex k being Integer st ( k = b & b2 = a #Z k ) implies b1 = b2 ) ) ; end; :: deftheorem Def2 defines to_power POWER:def_2_:_ for a, b, b3 being real number holds ( ( a > 0 implies ( b3 = a to_power b iff b3 = a #R b ) ) & ( a = 0 & b > 0 implies ( b3 = a to_power b iff b3 = 0 ) ) & ( b is Integer implies ( b3 = a to_power b iff ex k being Integer st ( k = b & b3 = a #Z k ) ) ) ); definition let a, b be Real; :: original: to_power redefine funca to_power b -> Real; coherence a to_power b is Real by XREAL_0:def_1; end; theorem Th24: :: POWER:24 for a being real number holds a to_power 0 = 1 proof let a be real number ; ::_thesis: a to_power 0 = 1 thus a to_power 0 = a #Z 0 by Def2 .= 1 by PREPOWER:34 ; ::_thesis: verum end; theorem Th25: :: POWER:25 for a being real number holds a to_power 1 = a proof let a be real number ; ::_thesis: a to_power 1 = a thus a to_power 1 = a #Z 1 by Def2 .= a by PREPOWER:35 ; ::_thesis: verum end; theorem Th26: :: POWER:26 for a being real number holds 1 to_power a = 1 proof let a be real number ; ::_thesis: 1 to_power a = 1 A1: 1 #R a <> 0 by PREPOWER:81; thus 1 to_power a = (1 / 1) #R a by Def2 .= (1 #R a) / (1 #R a) by PREPOWER:80 .= 1 by A1, XCMPLX_1:60 ; ::_thesis: verum end; theorem Th27: :: POWER:27 for a, b, c being real number st a > 0 holds a to_power (b + c) = (a to_power b) * (a to_power c) proof let a, b, c be real number ; ::_thesis: ( a > 0 implies a to_power (b + c) = (a to_power b) * (a to_power c) ) assume A1: a > 0 ; ::_thesis: a to_power (b + c) = (a to_power b) * (a to_power c) then a #R (b + c) = (a #R b) * (a #R c) by PREPOWER:75; then a #R (b + c) = (a #R b) * (a to_power c) by A1, Def2; then a #R (b + c) = (a to_power b) * (a to_power c) by A1, Def2; hence a to_power (b + c) = (a to_power b) * (a to_power c) by A1, Def2; ::_thesis: verum end; theorem Th28: :: POWER:28 for a, c being real number st a > 0 holds a to_power (- c) = 1 / (a to_power c) proof let a, c be real number ; ::_thesis: ( a > 0 implies a to_power (- c) = 1 / (a to_power c) ) assume A1: a > 0 ; ::_thesis: a to_power (- c) = 1 / (a to_power c) then a #R (- c) = 1 / (a #R c) by PREPOWER:76; then a #R (- c) = 1 / (a to_power c) by A1, Def2; hence a to_power (- c) = 1 / (a to_power c) by A1, Def2; ::_thesis: verum end; theorem Th29: :: POWER:29 for a, b, c being real number st a > 0 holds a to_power (b - c) = (a to_power b) / (a to_power c) proof let a, b, c be real number ; ::_thesis: ( a > 0 implies a to_power (b - c) = (a to_power b) / (a to_power c) ) assume A1: a > 0 ; ::_thesis: a to_power (b - c) = (a to_power b) / (a to_power c) then a #R (b - c) = (a #R b) / (a #R c) by PREPOWER:77; then a #R (b - c) = (a #R b) / (a to_power c) by A1, Def2; then a #R (b - c) = (a to_power b) / (a to_power c) by A1, Def2; hence a to_power (b - c) = (a to_power b) / (a to_power c) by A1, Def2; ::_thesis: verum end; theorem :: POWER:30 for a, b, c being real number st a > 0 & b > 0 holds (a * b) to_power c = (a to_power c) * (b to_power c) proof let a, b, c be real number ; ::_thesis: ( a > 0 & b > 0 implies (a * b) to_power c = (a to_power c) * (b to_power c) ) assume that A1: a > 0 and A2: b > 0 ; ::_thesis: (a * b) to_power c = (a to_power c) * (b to_power c) A3: a * b > 0 by A1, A2, XREAL_1:129; (a * b) #R c = (a #R c) * (b #R c) by A1, A2, PREPOWER:78; then (a * b) #R c = (a #R c) * (b to_power c) by A2, Def2; then (a * b) #R c = (a to_power c) * (b to_power c) by A1, Def2; hence (a * b) to_power c = (a to_power c) * (b to_power c) by A3, Def2; ::_thesis: verum end; theorem Th31: :: POWER:31 for a, b, c being real number st a > 0 & b > 0 holds (a / b) to_power c = (a to_power c) / (b to_power c) proof let a, b, c be real number ; ::_thesis: ( a > 0 & b > 0 implies (a / b) to_power c = (a to_power c) / (b to_power c) ) assume that A1: a > 0 and A2: b > 0 ; ::_thesis: (a / b) to_power c = (a to_power c) / (b to_power c) A3: a / b > 0 by A1, A2, XREAL_1:139; (a / b) #R c = (a #R c) / (b #R c) by A1, A2, PREPOWER:80; then (a / b) #R c = (a #R c) / (b to_power c) by A2, Def2; then (a / b) #R c = (a to_power c) / (b to_power c) by A1, Def2; hence (a / b) to_power c = (a to_power c) / (b to_power c) by A3, Def2; ::_thesis: verum end; theorem Th32: :: POWER:32 for a, b being real number st a > 0 holds (1 / a) to_power b = a to_power (- b) proof let a, b be real number ; ::_thesis: ( a > 0 implies (1 / a) to_power b = a to_power (- b) ) assume A1: a > 0 ; ::_thesis: (1 / a) to_power b = a to_power (- b) hence (1 / a) to_power b = (1 / a) #R b by Def2 .= 1 / (a #R b) by A1, PREPOWER:79 .= 1 / (a to_power b) by A1, Def2 .= a to_power (- b) by A1, Th28 ; ::_thesis: verum end; theorem Th33: :: POWER:33 for a, b, c being real number st a > 0 holds (a to_power b) to_power c = a to_power (b * c) proof let a, b, c be real number ; ::_thesis: ( a > 0 implies (a to_power b) to_power c = a to_power (b * c) ) assume A1: a > 0 ; ::_thesis: (a to_power b) to_power c = a to_power (b * c) then A2: a #R b > 0 by PREPOWER:81; (a #R b) #R c = a #R (b * c) by A1, PREPOWER:91; then (a #R b) #R c = a to_power (b * c) by A1, Def2; then (a #R b) to_power c = a to_power (b * c) by A2, Def2; hence (a to_power b) to_power c = a to_power (b * c) by A1, Def2; ::_thesis: verum end; theorem Th34: :: POWER:34 for a, b being real number st a > 0 holds a to_power b > 0 proof let a, b be real number ; ::_thesis: ( a > 0 implies a to_power b > 0 ) assume A1: a > 0 ; ::_thesis: a to_power b > 0 then a #R b > 0 by PREPOWER:81; hence a to_power b > 0 by A1, Def2; ::_thesis: verum end; theorem Th35: :: POWER:35 for a, b being real number st a > 1 & b > 0 holds a to_power b > 1 proof let a, b be real number ; ::_thesis: ( a > 1 & b > 0 implies a to_power b > 1 ) assume that A1: a > 1 and A2: b > 0 ; ::_thesis: a to_power b > 1 a #R b > 1 by A1, A2, PREPOWER:86; hence a to_power b > 1 by A1, Def2; ::_thesis: verum end; theorem Th36: :: POWER:36 for a, b being real number st a > 1 & b < 0 holds a to_power b < 1 proof let a, b be real number ; ::_thesis: ( a > 1 & b < 0 implies a to_power b < 1 ) assume that A1: a > 1 and A2: b < 0 ; ::_thesis: a to_power b < 1 a #R b < 1 by A1, A2, PREPOWER:88; hence a to_power b < 1 by A1, Def2; ::_thesis: verum end; theorem :: POWER:37 for a, b, c being real number st a > 0 & a < b & c > 0 holds a to_power c < b to_power c proof let a, b, c be real number ; ::_thesis: ( a > 0 & a < b & c > 0 implies a to_power c < b to_power c ) assume that A1: a > 0 and A2: a < b and A3: c > 0 ; ::_thesis: a to_power c < b to_power c A4: a to_power c > 0 by A1, Th34; A5: a to_power c <> 0 by A1, Th34; a / a < b / a by A1, A2, XREAL_1:74; then 1 < b / a by A1, XCMPLX_1:60; then (b / a) to_power c > 1 by A3, Th35; then (b to_power c) / (a to_power c) > 1 by A1, A2, Th31; then ((b to_power c) / (a to_power c)) * (a to_power c) > 1 * (a to_power c) by A4, XREAL_1:68; hence a to_power c < b to_power c by A5, XCMPLX_1:87; ::_thesis: verum end; theorem :: POWER:38 for a, b, c being real number st a > 0 & a < b & c < 0 holds a to_power c > b to_power c proof let a, b, c be real number ; ::_thesis: ( a > 0 & a < b & c < 0 implies a to_power c > b to_power c ) assume that A1: a > 0 and A2: a < b and A3: c < 0 ; ::_thesis: a to_power c > b to_power c A4: a to_power c > 0 by A1, Th34; A5: a to_power c <> 0 by A1, Th34; a / a < b / a by A1, A2, XREAL_1:74; then 1 < b / a by A1, XCMPLX_1:60; then (b / a) to_power c < 1 by A3, Th36; then (b to_power c) / (a to_power c) < 1 by A1, A2, Th31; then ((b to_power c) / (a to_power c)) * (a to_power c) < 1 * (a to_power c) by A4, XREAL_1:68; hence a to_power c > b to_power c by A5, XCMPLX_1:87; ::_thesis: verum end; theorem Th39: :: POWER:39 for a, b, c being real number st a < b & c > 1 holds c to_power a < c to_power b proof let a, b, c be real number ; ::_thesis: ( a < b & c > 1 implies c to_power a < c to_power b ) assume that A1: a < b and A2: c > 1 ; ::_thesis: c to_power a < c to_power b A3: c to_power a > 0 by A2, Th34; A4: c to_power a <> 0 by A2, Th34; b - a > 0 by A1, XREAL_1:50; then c to_power (b - a) > 1 by A2, Th35; then (c to_power b) / (c to_power a) > 1 by A2, Th29; then ((c to_power b) / (c to_power a)) * (c to_power a) > 1 * (c to_power a) by A3, XREAL_1:68; hence c to_power a < c to_power b by A4, XCMPLX_1:87; ::_thesis: verum end; theorem Th40: :: POWER:40 for a, b, c being real number st a < b & c > 0 & c < 1 holds c to_power a > c to_power b proof let a, b, c be real number ; ::_thesis: ( a < b & c > 0 & c < 1 implies c to_power a > c to_power b ) assume that A1: a < b and A2: c > 0 and A3: c < 1 ; ::_thesis: c to_power a > c to_power b A4: (1 / c) to_power a > 0 by A2, Th34; A5: (1 / c) to_power a <> 0 by A2, Th34; A6: c to_power a > 0 by A2, Th34; c / c < 1 / c by A2, A3, XREAL_1:74; then A7: 1 < 1 / c by A2, XCMPLX_1:60; b - a > 0 by A1, XREAL_1:50; then (1 / c) to_power (b - a) > 1 by A7, Th35; then ((1 / c) to_power b) / ((1 / c) to_power a) > 1 by A2, Th29; then (((1 / c) to_power b) / ((1 / c) to_power a)) * ((1 / c) to_power a) > 1 * ((1 / c) to_power a) by A4, XREAL_1:68; then (1 / c) to_power b > (1 / c) to_power a by A5, XCMPLX_1:87; then (1 to_power b) / (c to_power b) > (1 / c) to_power a by A2, Th31; then 1 / (c to_power b) > (1 / c) to_power a by Th26; then 1 / (c to_power b) > (1 to_power a) / (c to_power a) by A2, Th31; then 1 / (c to_power b) > 1 / (c to_power a) by Th26; hence c to_power a > c to_power b by A6, XREAL_1:91; ::_thesis: verum end; registration let a be real number ; let n be Nat; identifya to_power n with a |^ n; compatibility a to_power n = a |^ n proof thus a to_power n = a #Z n by Def2 .= a |^ n by PREPOWER:36 ; ::_thesis: verum end; end; theorem :: POWER:41 for a being real number for n being Nat holds a to_power n = a |^ n ; theorem Th42: :: POWER:42 for k being Integer st k <> 0 holds 0 to_power k = 0 proof let k be Integer; ::_thesis: ( k <> 0 implies 0 to_power k = 0 ) 0 to_power k = 0 #Z k by Def2; hence ( k <> 0 implies 0 to_power k = 0 ) by PREPOWER:100; ::_thesis: verum end; theorem :: POWER:43 for a being real number for k being Integer holds a to_power k = a #Z k by Def2; theorem Th44: :: POWER:44 for a being real number for p being Rational st a > 0 holds a to_power p = a #Q p proof let a be real number ; ::_thesis: for p being Rational st a > 0 holds a to_power p = a #Q p let p be Rational; ::_thesis: ( a > 0 implies a to_power p = a #Q p ) assume A1: a > 0 ; ::_thesis: a to_power p = a #Q p hence a to_power p = a #R p by Def2 .= a #Q p by A1, PREPOWER:74 ; ::_thesis: verum end; theorem Th45: :: POWER:45 for a being real number for n being Element of NAT st a >= 0 & n >= 1 holds a to_power (1 / n) = n -root a proof let a be real number ; ::_thesis: for n being Element of NAT st a >= 0 & n >= 1 holds a to_power (1 / n) = n -root a let n be Element of NAT ; ::_thesis: ( a >= 0 & n >= 1 implies a to_power (1 / n) = n -root a ) assume that A1: a >= 0 and A2: n >= 1 ; ::_thesis: a to_power (1 / n) = n -root a reconsider p = n " as Rational ; now__::_thesis:_a_to_power_(1_/_n)_=_n_-Root_a percases ( a > 0 or a = 0 ) by A1; suppose a > 0 ; ::_thesis: a to_power (1 / n) = n -Root a hence a to_power (1 / n) = a #Q p by Th44 .= n -Root a by A2, PREPOWER:50 ; ::_thesis: verum end; supposeA3: a = 0 ; ::_thesis: a to_power (1 / n) = n -Root a hence a to_power (1 / n) = 0 by A2, Def2 .= n -Root a by A2, A3, PREPOWER:def_2 ; ::_thesis: verum end; end; end; hence a to_power (1 / n) = n -root a by A1, A2, Def1; ::_thesis: verum end; theorem Th46: :: POWER:46 for a being real number holds a to_power 2 = a ^2 proof let a be real number ; ::_thesis: a to_power 2 = a ^2 now__::_thesis:_a_to_power_2_=_a_^2 percases ( a > 0 or a = 0 or a < 0 ) ; supposeA1: a > 0 ; ::_thesis: a to_power 2 = a ^2 thus a to_power 2 = a to_power (1 + 1) .= (a to_power 1) * (a to_power 1) by A1, Th27 .= (a to_power 1) * a by Th25 .= a ^2 by Th25 ; ::_thesis: verum end; suppose a = 0 ; ::_thesis: a to_power 2 = a ^2 hence a to_power 2 = a ^2 by Def2; ::_thesis: verum end; supposeA2: a < 0 ; ::_thesis: a to_power 2 = a ^2 reconsider l = 1 as Integer ; thus a to_power 2 = a #Z (l + l) by Def2 .= (a #Z l) * (a #Z l) by A2, PREPOWER:44 .= a * (a #Z l) by PREPOWER:35 .= a ^2 by PREPOWER:35 ; ::_thesis: verum end; end; end; hence a to_power 2 = a ^2 ; ::_thesis: verum end; theorem Th47: :: POWER:47 for a being real number for k being Integer st k is even holds (- a) to_power k = a to_power k proof let a be real number ; ::_thesis: for k being Integer st k is even holds (- a) to_power k = a to_power k let k be Integer; ::_thesis: ( k is even implies (- a) to_power k = a to_power k ) given l being Integer such that A1: k = 2 * l ; :: according to INT_1:def_3,ABIAN:def_1 ::_thesis: (- a) to_power k = a to_power k percases ( a = 0 or a > 0 or a < 0 ) ; suppose a = 0 ; ::_thesis: (- a) to_power k = a to_power k hence (- a) to_power k = a to_power k ; ::_thesis: verum end; suppose a > 0 ; ::_thesis: (- a) to_power k = a to_power k hence a to_power k = (a to_power 2) to_power l by A1, Th33 .= (a ^2) to_power l by Th46 .= ((- a) ^2) to_power l .= ((- a) to_power 2) to_power l by Th46 .= ((- a) #Z 2) to_power l by Def2 .= ((- a) #Z 2) #Z l by Def2 .= (- a) #Z (2 * l) by PREPOWER:45 .= (- a) to_power k by A1, Def2 ; ::_thesis: verum end; suppose a < 0 ; ::_thesis: (- a) to_power k = a to_power k then - a > 0 by XREAL_1:58; hence (- a) to_power k = ((- a) to_power 2) to_power l by A1, Th33 .= ((- a) ^2) to_power l by Th46 .= (a ^2) to_power l .= (a to_power 2) to_power l by Th46 .= (a #Z 2) to_power l by Def2 .= (a #Z 2) #Z l by Def2 .= a #Z (2 * l) by PREPOWER:45 .= a to_power k by A1, Def2 ; ::_thesis: verum end; end; end; theorem :: POWER:48 for a being real number for k being Integer st k is odd holds (- a) to_power k = - (a to_power k) proof let a be real number ; ::_thesis: for k being Integer st k is odd holds (- a) to_power k = - (a to_power k) let k be Integer; ::_thesis: ( k is odd implies (- a) to_power k = - (a to_power k) ) assume A1: k is odd ; ::_thesis: (- a) to_power k = - (a to_power k) then consider l being Integer such that A2: k = (2 * l) + 1 by ABIAN:1; percases ( a = 0 or a > 0 or a < 0 ) ; supposeA3: a = 0 ; ::_thesis: (- a) to_power k = - (a to_power k) k <> 0 by A1; then a to_power k = 0 by A3, Th42; hence (- a) to_power k = - (a to_power k) by A3; ::_thesis: verum end; supposeA4: a > 0 ; ::_thesis: (- a) to_power k = - (a to_power k) then A5: - a <> - 0 ; a to_power k = (a to_power (2 * l)) * (a to_power 1) by A2, A4, Th27 .= (a to_power (2 * l)) * a by Th25 .= ((- a) to_power (2 * l)) * a by Th47 .= - (((- a) to_power (2 * l)) * (- a)) .= - (((- a) #Z (2 * l)) * (- a)) by Def2 .= - (((- a) #Z (2 * l)) * ((- a) #Z 1)) by PREPOWER:35 .= - ((- a) #Z k) by A2, A5, PREPOWER:44 .= - ((- a) to_power k) by Def2 ; hence (- a) to_power k = - (a to_power k) ; ::_thesis: verum end; supposeA6: a < 0 ; ::_thesis: (- a) to_power k = - (a to_power k) then - a > 0 by XREAL_1:58; hence (- a) to_power k = ((- a) to_power (2 * l)) * ((- a) to_power 1) by A2, Th27 .= ((- a) to_power (2 * l)) * (- a) by Th25 .= (a to_power (2 * l)) * (- a) by Th47 .= - ((a to_power (2 * l)) * a) .= - ((a #Z (2 * l)) * a) by Def2 .= - ((a #Z (2 * l)) * (a #Z 1)) by PREPOWER:35 .= - (a #Z k) by A2, A6, PREPOWER:44 .= - (a to_power k) by Def2 ; ::_thesis: verum end; end; end; theorem :: POWER:49 for a being real number for n being Element of NAT st - 1 < a holds (1 + a) to_power n >= 1 + (n * a) by PREPOWER:16; theorem Th50: :: POWER:50 for a, c, d being real number st a > 0 & a <> 1 & c <> d holds a to_power c <> a to_power d proof let a, c, d be real number ; ::_thesis: ( a > 0 & a <> 1 & c <> d implies a to_power c <> a to_power d ) assume that A1: a > 0 and A2: a <> 1 and A3: c <> d ; ::_thesis: a to_power c <> a to_power d now__::_thesis:_a_to_power_c_<>_a_to_power_d percases ( c < d or c > d ) by A3, XXREAL_0:1; supposeA4: c < d ; ::_thesis: a to_power c <> a to_power d now__::_thesis:_a_to_power_c_<>_a_to_power_d percases ( a < 1 or a > 1 ) by A2, XXREAL_0:1; suppose a < 1 ; ::_thesis: a to_power c <> a to_power d hence a to_power c <> a to_power d by A1, A4, Th40; ::_thesis: verum end; suppose a > 1 ; ::_thesis: a to_power c <> a to_power d hence a to_power c <> a to_power d by A4, Th39; ::_thesis: verum end; end; end; hence a to_power c <> a to_power d ; ::_thesis: verum end; supposeA5: c > d ; ::_thesis: a to_power c <> a to_power d now__::_thesis:_a_to_power_c_<>_a_to_power_d percases ( a < 1 or a > 1 ) by A2, XXREAL_0:1; suppose a < 1 ; ::_thesis: a to_power c <> a to_power d hence a to_power c <> a to_power d by A1, A5, Th40; ::_thesis: verum end; suppose a > 1 ; ::_thesis: a to_power c <> a to_power d hence a to_power c <> a to_power d by A5, Th39; ::_thesis: verum end; end; end; hence a to_power c <> a to_power d ; ::_thesis: verum end; end; end; hence a to_power c <> a to_power d ; ::_thesis: verum end; definition let a, b be real number ; assume that A1: a > 0 and A2: a <> 1 and A3: b > 0 ; func log (a,b) -> real number means :Def3: :: POWER:def 3 a to_power it = b; existence ex b1 being real number st a to_power b1 = b proof reconsider a1 = a, b1 = b as Real by XREAL_0:def_1; set X = { c where c is Real : a to_power c <= b } ; for x being set st x in { c where c is Real : a to_power c <= b } holds x in REAL proof let x be set ; ::_thesis: ( x in { c where c is Real : a to_power c <= b } implies x in REAL ) assume x in { c where c is Real : a to_power c <= b } ; ::_thesis: x in REAL then ex c being Real st ( x = c & a to_power c <= b ) ; hence x in REAL ; ::_thesis: verum end; then reconsider X = { c where c is Real : a to_power c <= b } as Subset of REAL by TARSKI:def_3; A4: ex d being real number st d in X proof A5: now__::_thesis:_for_a,_b_being_real_number_st_a_>_1_&_b_>_0_holds_ ex_d_being_real_number_st_a_to_power_d_<=_b let a, b be real number ; ::_thesis: ( a > 1 & b > 0 implies ex d being real number st a to_power d <= b ) assume that A6: a > 1 and A7: b > 0 ; ::_thesis: ex d being real number st a to_power d <= b reconsider a1 = a, b1 = b as Real by XREAL_0:def_1; set e = a1 - 1; consider n being Element of NAT such that A8: n > 1 / (b * (a1 - 1)) by SEQ_4:3; a1 - 1 > 0 - 1 by A6, XREAL_1:9; then A9: (1 + (a1 - 1)) to_power n >= 1 + (n * (a1 - 1)) by PREPOWER:16; 1 + (n * (a1 - 1)) >= 0 + (n * (a1 - 1)) by XREAL_1:6; then A10: (1 + (a1 - 1)) to_power n >= n * (a1 - 1) by A9, XXREAL_0:2; A11: a1 - 1 > 1 - 1 by A6, XREAL_1:9; then n * (a1 - 1) > (1 / (b * (a1 - 1))) * (a1 - 1) by A8, XREAL_1:68; then n * (a1 - 1) >= 1 / b by A11, XCMPLX_1:92; then a to_power n >= 1 / b by A10, XXREAL_0:2; then 1 / (a to_power n) <= 1 / (1 / b) by A7, XREAL_1:85; then a1 to_power (- n) <= b1 by A6, Th28; hence ex d being real number st a to_power d <= b ; ::_thesis: verum end; now__::_thesis:_ex_d_being_real_number_st_a_to_power_d_<=_b percases ( a > 1 or a < 1 ) by A2, XXREAL_0:1; suppose a > 1 ; ::_thesis: ex d being real number st a to_power d <= b hence ex d being real number st a to_power d <= b by A3, A5; ::_thesis: verum end; suppose a < 1 ; ::_thesis: ex e being real number st a to_power e <= b then 1 / a > 1 / 1 by A1, XREAL_1:88; then consider d being real number such that A12: (1 / a) to_power d <= b by A3, A5; a1 to_power (- d) <= b1 by A1, A12, Th32; hence ex e being real number st a to_power e <= b ; ::_thesis: verum end; end; end; then consider d being real number such that A13: a to_power d <= b ; take d ; ::_thesis: d in X d is Real by XREAL_0:def_1; hence d in X by A13; ::_thesis: verum end; now__::_thesis:_ex_d_being_Element_of_REAL_st_b_=_a_to_power_d percases ( a > 1 or a < 1 ) by A2, XXREAL_0:1; supposeA14: a > 1 ; ::_thesis: ex d being Element of REAL st b = a to_power d A15: X is bounded_above proof consider n being Element of NAT such that A16: n > (b1 - 1) / (a1 - 1) by SEQ_4:3; a - 1 > 1 - 1 by A14, XREAL_1:9; then n * (a - 1) > b - 1 by A16, XREAL_1:77; then A17: 1 + (n * (a - 1)) > 1 + (b - 1) by XREAL_1:6; a - 1 > 0 - 1 by A1, XREAL_1:9; then (1 + (a1 - 1)) to_power n >= 1 + (n * (a1 - 1)) by PREPOWER:16; then A18: a to_power n > b by A17, XXREAL_0:2; take n ; :: according to XXREAL_2:def_10 ::_thesis: n is UpperBound of X let c be ext-real number ; :: according to XXREAL_2:def_1 ::_thesis: ( not c in X or c <= n ) assume c in X ; ::_thesis: c <= n then consider d being Real such that A19: ( d = c & a to_power d <= b ) ; a1 to_power d <= a1 to_power n by A18, A19, XXREAL_0:2; hence c <= n by A14, Th39, A19; ::_thesis: verum end; take d = upper_bound X; ::_thesis: b = a to_power d A20: not b < a to_power d proof assume a to_power d > b ; ::_thesis: contradiction then consider e being real number such that A21: b < e and A22: e < a to_power d by XREAL_1:5; reconsider e = e as Real by XREAL_0:def_1; consider n being Element of NAT such that A23: n > (a1 - 1) / ((e / b1) - 1) by SEQ_4:3; reconsider m = max (1,n) as Element of NAT ; n <= m by XXREAL_0:25; then A24: (a - 1) / ((e / b) - 1) < m by A23, XXREAL_0:2; e / b > 1 by A3, A21, XREAL_1:187; then (e / b) - 1 > 1 - 1 by XREAL_1:9; then A25: a - 1 < m * ((e / b) - 1) by A24, XREAL_1:77; A26: 1 <= m by XXREAL_0:25; then (a - 1) / m < (e / b) - 1 by A25, XREAL_1:83; then A27: ((a - 1) / m) + 1 < ((e / b) - 1) + 1 by XREAL_1:6; (m -root a1) - 1 <= (a1 - 1) / m by A1, Th22, XXREAL_0:25; then ((m -root a) - 1) + 1 <= ((a - 1) / m) + 1 by XREAL_1:6; then m -root a <= e / b by A27, XXREAL_0:2; then a1 to_power (1 / m) <= e / b1 by A1, Th45, XXREAL_0:25; then A28: (a to_power (1 / m)) * b <= e by A3, XREAL_1:83; consider c being real number such that A29: c in X and A30: d - (1 / m) < c by A4, A15, A26, SEQ_4:def_1; reconsider c = c as Real by XREAL_0:def_1; A31: ex g being Real st ( g = c & a to_power g <= b ) by A29; a1 to_power (1 / m) >= 0 by A1, Th34; then (a to_power c) * (a to_power (1 / m)) <= (a to_power (1 / m)) * b by A31, XREAL_1:64; then (a to_power c) * (a to_power (1 / m)) <= e by A28, XXREAL_0:2; then A32: a1 to_power (c + (1 / m)) <= e by A1, Th27; d < c + (1 / m) by A30, XREAL_1:19; then a1 to_power d <= a1 to_power (c + (1 / m)) by A14, Th39; hence contradiction by A22, A32, XXREAL_0:2; ::_thesis: verum end; not a to_power d < b proof assume a to_power d < b ; ::_thesis: contradiction then consider e being real number such that A33: a to_power d < e and A34: e < b by XREAL_1:5; reconsider e = e as Real by XREAL_0:def_1; A35: a1 to_power d > 0 by A1, Th34; then b / e > 1 by A33, A34, XREAL_1:187; then A36: (b / e) - 1 > 1 - 1 by XREAL_1:9; deffunc H1( Element of NAT ) -> real number = $1 -root a; consider s being Real_Sequence such that A37: for n being Element of NAT holds s . n = H1(n) from SEQ_1:sch_1(); for n being Element of NAT st n >= 1 holds s . n = n -root a1 by A37; then ( s is convergent & lim s = 1 ) by A1, Th23; then consider n being Element of NAT such that A38: for m being Element of NAT st m >= n holds abs ((s . m) - 1) < (b / e) - 1 by A36, SEQ_2:def_7; reconsider m = max (1,n) as Element of NAT ; abs ((s . m) - 1) < (b / e) - 1 by A38, XXREAL_0:25; then A39: abs ((m -root a) - 1) < (b / e) - 1 by A37; (m -root a) - 1 <= abs ((m -root a) - 1) by ABSVALUE:4; then (m -root a) - 1 < (b / e) - 1 by A39, XXREAL_0:2; then m -root a < b / e by XREAL_1:9; then a1 to_power (1 / m) < b1 / e by A1, Th45, XXREAL_0:25; then (a to_power d) * (a to_power (1 / m)) < (b / e) * (a to_power d) by A35, XREAL_1:68; then A40: a to_power (d + (1 / m)) < (b * (a to_power d)) / e by A1, Th27; (a to_power d) / e < 1 by A33, A35, XREAL_1:189; then ((a to_power d) / e) * b < 1 * b by A3, XREAL_1:68; then a to_power (d + (1 / m)) <= b by A40, XXREAL_0:2; then d + (1 / m) in X ; then ( m >= 1 & d + (1 / m) <= d ) by A15, SEQ_4:def_1, XXREAL_0:25; hence contradiction by XREAL_1:29; ::_thesis: verum end; hence b = a to_power d by A20, XXREAL_0:1; ::_thesis: verum end; supposeA41: a < 1 ; ::_thesis: ex d being Element of REAL st b = a to_power d A42: X is bounded_below proof consider n being Element of NAT such that A43: n > (b1 - 1) / ((1 / a1) - 1) by SEQ_4:3; 1 / a > 1 / 1 by A1, A41, XREAL_1:88; then (1 / a) - 1 > 1 - 1 by XREAL_1:9; then n * ((1 / a) - 1) > b - 1 by A43, XREAL_1:77; then A44: 1 + (n * ((1 / a) - 1)) > 1 + (b - 1) by XREAL_1:6; (1 / a) - 1 > 0 - 1 by A1, XREAL_1:9; then (1 + ((1 / a1) - 1)) to_power n >= 1 + (n * ((1 / a1) - 1)) by PREPOWER:16; then (1 / a) to_power n > b by A44, XXREAL_0:2; then A45: a1 to_power (- n) > b1 by A1, Th32; take - n ; :: according to XXREAL_2:def_9 ::_thesis: - n is LowerBound of X let c be ext-real number ; :: according to XXREAL_2:def_2 ::_thesis: ( not c in X or - n <= c ) assume c in X ; ::_thesis: - n <= c then consider d being Real such that A46: ( d = c & a to_power d <= b ) ; a1 to_power d <= a1 to_power (- n) by A45, A46, XXREAL_0:2; hence c >= - n by A1, A41, Th40, A46; ::_thesis: verum end; take d = lower_bound X; ::_thesis: b = a to_power d A47: not b < a to_power d proof assume a to_power d > b ; ::_thesis: contradiction then consider e being real number such that A48: b < e and A49: e < a to_power d by XREAL_1:5; reconsider e = e as Real by XREAL_0:def_1; consider n being Element of NAT such that A50: n > ((1 / a1) - 1) / ((e / b1) - 1) by SEQ_4:3; reconsider m = max (1,n) as Element of NAT ; n <= m by XXREAL_0:25; then A51: ((1 / a) - 1) / ((e / b) - 1) < m by A50, XXREAL_0:2; e / b > 1 by A3, A48, XREAL_1:187; then (e / b) - 1 > 1 - 1 by XREAL_1:9; then A52: (1 / a) - 1 < m * ((e / b) - 1) by A51, XREAL_1:77; A53: 1 <= m by XXREAL_0:25; then ((1 / a) - 1) / m < (e / b) - 1 by A52, XREAL_1:83; then A54: (((1 / a) - 1) / m) + 1 < ((e / b) - 1) + 1 by XREAL_1:6; (m -root (1 / a1)) - 1 <= ((1 / a1) - 1) / m by A1, Th22, XXREAL_0:25; then ((m -root (1 / a)) - 1) + 1 <= (((1 / a) - 1) / m) + 1 by XREAL_1:6; then m -root (1 / a) <= e / b by A54, XXREAL_0:2; then (1 / a1) to_power (1 / m) <= e / b1 by A1, Th45, XXREAL_0:25; then ((1 / a) to_power (1 / m)) * b <= e by A3, XREAL_1:83; then A55: (a1 to_power (- (1 / m))) * b1 <= e by A1, Th32; consider c being real number such that A56: c in X and A57: c < d + (1 / m) by A4, A42, A53, SEQ_4:def_2; reconsider c = c as Real by XREAL_0:def_1; A58: ex g being Real st ( g = c & a to_power g <= b ) by A56; a1 to_power (- (1 / m)) >= 0 by A1, Th34; then (a to_power c) * (a to_power (- (1 / m))) <= (a to_power (- (1 / m))) * b by A58, XREAL_1:64; then (a to_power c) * (a to_power (- (1 / m))) <= e by A55, XXREAL_0:2; then A59: a1 to_power (c + (- (1 / m))) <= e by A1, Th27; d > c - (1 / m) by A57, XREAL_1:19; then a1 to_power d <= a1 to_power (c - (1 / m)) by A1, A41, Th40; hence contradiction by A49, A59, XXREAL_0:2; ::_thesis: verum end; not a to_power d < b proof assume a to_power d < b ; ::_thesis: contradiction then consider e being real number such that A60: a to_power d < e and A61: e < b by XREAL_1:5; reconsider e = e as Real by XREAL_0:def_1; A62: a1 to_power d > 0 by A1, Th34; then b / e > 1 by A60, A61, XREAL_1:187; then A63: (b / e) - 1 > 1 - 1 by XREAL_1:9; deffunc H1( Element of NAT ) -> Real = $1 -root (1 / a); consider s being Real_Sequence such that A64: for n being Element of NAT holds s . n = H1(n) from SEQ_1:sch_1(); for n being Element of NAT st n >= 1 holds s . n = n -root (1 / a1) by A64; then ( s is convergent & lim s = 1 ) by A1, Th23; then consider n being Element of NAT such that A65: for m being Element of NAT st m >= n holds abs ((s . m) - 1) < (b / e) - 1 by A63, SEQ_2:def_7; reconsider m = max (1,n) as Element of NAT ; abs ((s . m) - 1) < (b / e) - 1 by A65, XXREAL_0:25; then A66: abs ((m -root (1 / a)) - 1) < (b / e) - 1 by A64; (m -root (1 / a)) - 1 <= abs ((m -root (1 / a)) - 1) by ABSVALUE:4; then (m -root (1 / a)) - 1 < (b / e) - 1 by A66, XXREAL_0:2; then m -root (1 / a) < b / e by XREAL_1:9; then (1 / a1) to_power (1 / m) < b1 / e by A1, Th45, XXREAL_0:25; then (a to_power d) * ((1 / a) to_power (1 / m)) < (b / e) * (a to_power d) by A62, XREAL_1:68; then (a1 to_power d) * (a1 to_power (- (1 / m))) < (b1 / e) * (a1 to_power d) by A1, Th32; then A67: a to_power (d - (1 / m)) < (b * (a to_power d)) / e by A1, Th27; (a to_power d) / e < 1 by A60, A62, XREAL_1:189; then ((a to_power d) / e) * b < 1 * b by A3, XREAL_1:68; then a to_power (d - (1 / m)) < b by A67, XXREAL_0:2; then d - (1 / m) in X ; then ( m >= 1 & d - (1 / m) >= d ) by A42, SEQ_4:def_2, XXREAL_0:25; hence contradiction by XREAL_1:44; ::_thesis: verum end; hence b = a to_power d by A47, XXREAL_0:1; ::_thesis: verum end; end; end; hence ex b1 being real number st a to_power b1 = b ; ::_thesis: verum end; uniqueness for b1, b2 being real number st a to_power b1 = b & a to_power b2 = b holds b1 = b2 by A1, A2, Th50; end; :: deftheorem Def3 defines log POWER:def_3_:_ for a, b being real number st a > 0 & a <> 1 & b > 0 holds for b3 being real number holds ( b3 = log (a,b) iff a to_power b3 = b ); definition let a, b be Real; :: original: log redefine func log (a,b) -> Real; coherence log (a,b) is Real by XREAL_0:def_1; end; theorem :: POWER:51 for a being real number st a > 0 & a <> 1 holds log (a,1) = 0 proof let a be real number ; ::_thesis: ( a > 0 & a <> 1 implies log (a,1) = 0 ) assume A1: ( a > 0 & a <> 1 ) ; ::_thesis: log (a,1) = 0 a to_power 0 = 1 by Th24; hence log (a,1) = 0 by A1, Def3; ::_thesis: verum end; theorem :: POWER:52 for a being real number st a > 0 & a <> 1 holds log (a,a) = 1 proof let a be real number ; ::_thesis: ( a > 0 & a <> 1 implies log (a,a) = 1 ) assume A1: ( a > 0 & a <> 1 ) ; ::_thesis: log (a,a) = 1 a to_power 1 = a by Th25; hence log (a,a) = 1 by A1, Def3; ::_thesis: verum end; theorem :: POWER:53 for a, b, c being real number st a > 0 & a <> 1 & b > 0 & c > 0 holds (log (a,b)) + (log (a,c)) = log (a,(b * c)) proof let a, b, c be real number ; ::_thesis: ( a > 0 & a <> 1 & b > 0 & c > 0 implies (log (a,b)) + (log (a,c)) = log (a,(b * c)) ) assume that A1: a > 0 and A2: a <> 1 and A3: b > 0 and A4: c > 0 ; ::_thesis: (log (a,b)) + (log (a,c)) = log (a,(b * c)) A5: a to_power ((log (a,b)) + (log (a,c))) = (a to_power (log (a,b))) * (a to_power (log (a,c))) by A1, Th27 .= b * (a to_power (log (a,c))) by A1, A2, A3, Def3 .= b * c by A1, A2, A4, Def3 ; b * c > 0 by A3, A4, XREAL_1:129; hence (log (a,b)) + (log (a,c)) = log (a,(b * c)) by A1, A2, A5, Def3; ::_thesis: verum end; theorem :: POWER:54 for a, b, c being real number st a > 0 & a <> 1 & b > 0 & c > 0 holds (log (a,b)) - (log (a,c)) = log (a,(b / c)) proof let a, b, c be real number ; ::_thesis: ( a > 0 & a <> 1 & b > 0 & c > 0 implies (log (a,b)) - (log (a,c)) = log (a,(b / c)) ) assume that A1: a > 0 and A2: a <> 1 and A3: b > 0 and A4: c > 0 ; ::_thesis: (log (a,b)) - (log (a,c)) = log (a,(b / c)) A5: a to_power ((log (a,b)) - (log (a,c))) = (a to_power (log (a,b))) / (a to_power (log (a,c))) by A1, Th29 .= b / (a to_power (log (a,c))) by A1, A2, A3, Def3 .= b / c by A1, A2, A4, Def3 ; b / c > 0 by A3, A4, XREAL_1:139; hence (log (a,b)) - (log (a,c)) = log (a,(b / c)) by A1, A2, A5, Def3; ::_thesis: verum end; theorem :: POWER:55 for a, b, c being real number st a > 0 & a <> 1 & b > 0 holds log (a,(b to_power c)) = c * (log (a,b)) proof let a, b, c be real number ; ::_thesis: ( a > 0 & a <> 1 & b > 0 implies log (a,(b to_power c)) = c * (log (a,b)) ) assume that A1: a > 0 and A2: a <> 1 and A3: b > 0 ; ::_thesis: log (a,(b to_power c)) = c * (log (a,b)) A4: b to_power c > 0 by A3, Th34; a to_power (c * (log (a,b))) = (a to_power (log (a,b))) to_power c by A1, Th33 .= b to_power c by A1, A2, A3, Def3 ; hence log (a,(b to_power c)) = c * (log (a,b)) by A1, A2, A4, Def3; ::_thesis: verum end; theorem :: POWER:56 for a, b, c being real number st a > 0 & a <> 1 & b > 0 & b <> 1 & c > 0 holds log (a,c) = (log (a,b)) * (log (b,c)) proof let a, b, c be real number ; ::_thesis: ( a > 0 & a <> 1 & b > 0 & b <> 1 & c > 0 implies log (a,c) = (log (a,b)) * (log (b,c)) ) assume that A1: a > 0 and A2: a <> 1 and A3: b > 0 and A4: b <> 1 and A5: c > 0 ; ::_thesis: log (a,c) = (log (a,b)) * (log (b,c)) a to_power ((log (a,b)) * (log (b,c))) = (a to_power (log (a,b))) to_power (log (b,c)) by A1, Th33 .= b to_power (log (b,c)) by A1, A2, A3, Def3 .= c by A3, A4, A5, Def3 ; hence log (a,c) = (log (a,b)) * (log (b,c)) by A1, A2, A5, Def3; ::_thesis: verum end; theorem :: POWER:57 for a, b, c being real number st a > 1 & b > 0 & c > b holds log (a,c) > log (a,b) proof let a, b, c be real number ; ::_thesis: ( a > 1 & b > 0 & c > b implies log (a,c) > log (a,b) ) assume that A1: a > 1 and A2: b > 0 and A3: c > b and A4: log (a,c) <= log (a,b) ; ::_thesis: contradiction A5: a to_power (log (a,b)) = b by A1, A2, Def3; A6: a to_power (log (a,c)) = c by A1, A2, A3, Def3; now__::_thesis:_contradiction percases ( log (a,c) < log (a,b) or log (a,c) = log (a,b) ) by A4, XXREAL_0:1; suppose log (a,c) < log (a,b) ; ::_thesis: contradiction hence contradiction by A1, A3, A5, A6, Th39; ::_thesis: verum end; suppose log (a,c) = log (a,b) ; ::_thesis: contradiction hence contradiction by A1, A2, A3, A6, Def3; ::_thesis: verum end; end; end; hence contradiction ; ::_thesis: verum end; theorem :: POWER:58 for a, b, c being real number st a > 0 & a < 1 & b > 0 & c > b holds log (a,c) < log (a,b) proof let a, b, c be real number ; ::_thesis: ( a > 0 & a < 1 & b > 0 & c > b implies log (a,c) < log (a,b) ) assume that A1: ( a > 0 & a < 1 ) and A2: b > 0 and A3: c > b and A4: log (a,c) >= log (a,b) ; ::_thesis: contradiction A5: a to_power (log (a,b)) = b by A1, A2, Def3; A6: a to_power (log (a,c)) = c by A1, A2, A3, Def3; now__::_thesis:_contradiction percases ( log (a,c) > log (a,b) or log (a,c) = log (a,b) ) by A4, XXREAL_0:1; suppose log (a,c) > log (a,b) ; ::_thesis: contradiction hence contradiction by A1, A3, A5, A6, Th40; ::_thesis: verum end; suppose log (a,c) = log (a,b) ; ::_thesis: contradiction hence contradiction by A1, A2, A3, A6, Def3; ::_thesis: verum end; end; end; hence contradiction ; ::_thesis: verum end; theorem :: POWER:59 for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds s is convergent proof let s be Real_Sequence; ::_thesis: ( ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) implies s is convergent ) assume A1: for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ; ::_thesis: s is convergent now__::_thesis:_for_n_being_Element_of_NAT_holds_s_._(n_+_1)_>=_s_._n let n be Element of NAT ; ::_thesis: s . (n + 1) >= s . n A2: (1 + (1 / (n + 1))) to_power (n + 1) > 0 by Th34; A3: (s . (n + 1)) / (s . n) = ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / (s . n) by A1 .= (((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power (n + 1))) * 1 by A1 .= (((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power (n + 1))) * ((1 + (1 / (n + 1))) / (1 + (1 / (n + 1)))) by XCMPLX_1:60 .= ((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / (((1 + (1 / (n + 1))) to_power (n + 1)) * (1 + (1 / (n + 1)))) by XCMPLX_1:76 .= ((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / (((1 + (1 / (n + 1))) to_power (n + 1)) * ((1 + (1 / (n + 1))) to_power 1)) by Th25 .= ((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / ((1 + (1 / (n + 1))) to_power ((n + 1) + 1)) by Th27 .= (1 + (1 / (n + 1))) * (((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power ((n + 1) + 1))) .= (1 + (1 / (n + 1))) * (((1 + (1 / ((n + 1) + 1))) / (1 + (1 / (n + 1)))) to_power ((n + 1) + 1)) by Th31 ; A4: (1 + (1 / ((n + 1) + 1))) / (1 + (1 / (n + 1))) = (((1 * ((n + 1) + 1)) + 1) / ((n + 1) + 1)) / (1 + (1 / (n + 1))) by XCMPLX_1:113 .= ((((n + 1) + 1) + 1) / ((n + 1) + 1)) / (((1 * (n + 1)) + 1) / (n + 1)) by XCMPLX_1:113 .= (((n + (1 + 1)) + 1) * (n + 1)) / ((n + 2) * (n + 2)) by XCMPLX_1:84 .= ((((((n * n) + (n * 2)) + (2 * n)) + 3) + 1) - 1) / ((n + 2) * (n + 2)) .= (((n + 2) * (n + 2)) / ((n + 2) * (n + 2))) - (1 / ((n + 2) * (n + 2))) .= 1 - (1 / ((n + 2) * (n + 2))) by XCMPLX_1:6, XCMPLX_1:60 ; (n + 1) + 1 > 0 + 1 by XREAL_1:6; then (n + 2) * (n + 2) > 1 by XREAL_1:161; then 1 / ((n + 2) * (n + 2)) < 1 by XREAL_1:212; then - (1 / ((n + 2) * (n + 2))) > - 1 by XREAL_1:24; then (1 + (- (1 / ((n + 2) * (n + 2))))) to_power ((n + 1) + 1) >= 1 + (((n + 1) + 1) * (- (1 / ((n + 2) * (n + 2))))) by PREPOWER:16; then (1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1) >= 1 - (((n + 2) * 1) / ((n + 2) * (n + 2))) ; then (1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1) >= 1 - ((((n + 2) / (n + 2)) * 1) / (n + 2)) by XCMPLX_1:83; then (1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1) >= 1 - ((1 * 1) / (n + 2)) by XCMPLX_1:60; then (s . (n + 1)) / (s . n) >= (1 + (1 / (n + 1))) * (1 - (1 / (n + 2))) by A3, A4, XREAL_1:64; then (s . (n + 1)) / (s . n) >= (((1 * (n + 1)) + 1) / (n + 1)) * (1 - (1 / (n + 2))) by XCMPLX_1:113; then (s . (n + 1)) / (s . n) >= ((n + 2) / (n + 1)) * (((1 * (n + 2)) - 1) / (n + 2)) by XCMPLX_1:127; then (s . (n + 1)) / (s . n) >= ((n + 1) * (n + 2)) / ((n + 1) * (n + 2)) by XCMPLX_1:76; then A5: (s . (n + 1)) / (s . n) >= 1 by XCMPLX_1:6, XCMPLX_1:60; s . n > 0 by A1, A2; hence s . (n + 1) >= s . n by A5, XREAL_1:191; ::_thesis: verum end; then A6: s is non-decreasing by SEQM_3:def_8; now__::_thesis:_for_n_being_Element_of_NAT_holds_s_._n_<_(2_*_2)_+_1 let n be Element of NAT ; ::_thesis: s . n < (2 * 2) + 1 A7: 2 * (n + 1) > 0 by XREAL_1:129; A8: 2 * (n + 1) <> 0 ; A9: s . (n + (n + 1)) = (1 + (1 / ((2 * n) + (1 + 1)))) to_power (((2 * n) + 1) + 1) by A1 .= ((1 + (1 / (2 * (n + 1)))) to_power (n + 1)) to_power 2 by Th33 ; (2 * (n + 1)) + 1 > 0 + 1 by A7, XREAL_1:6; then 1 / ((2 * (n + 1)) + 1) < 1 by XREAL_1:212; then A10: - (1 / ((2 * (n + 1)) + 1)) > - 1 by XREAL_1:24; then A11: (- (1 / ((2 * (n + 1)) + 1))) + 1 > (- 1) + 1 by XREAL_1:6; A12: (1 + (1 / (2 * (n + 1)))) to_power (n + 1) = (1 / (1 / (1 + (1 / (2 * (n + 1)))))) to_power (n + 1) .= (1 / (1 + (1 / (2 * (n + 1))))) to_power (- (n + 1)) by Th32 .= (1 / (((1 * (2 * (n + 1))) + 1) / (2 * (n + 1)))) to_power (- (n + 1)) by A8, XCMPLX_1:113 .= ((((2 * (n + 1)) + 1) - 1) / ((2 * (n + 1)) + 1)) to_power (- (n + 1)) by XCMPLX_1:77 .= ((((2 * (n + 1)) + 1) / ((2 * (n + 1)) + 1)) - (1 / ((2 * (n + 1)) + 1))) to_power (- (n + 1)) .= (1 - (1 / ((2 * (n + 1)) + 1))) to_power (- (n + 1)) by XCMPLX_1:60 .= 1 / ((1 - (1 / ((2 * (n + 1)) + 1))) to_power (n + 1)) by A11, Th28 ; (1 + (- (1 / ((2 * (n + 1)) + 1)))) to_power (n + 1) >= 1 + ((n + 1) * (- (1 / ((2 * (n + 1)) + 1)))) by A10, PREPOWER:16; then (1 - (1 / ((2 * (n + 1)) + 1))) to_power (n + 1) >= 1 - ((n + 1) / ((2 * (n + 1)) + 1)) ; then A13: (1 - (1 / ((2 * (n + 1)) + 1))) to_power (n + 1) >= ((1 * ((2 * (n + 1)) + 1)) - (n + 1)) / ((2 * (n + 1)) + 1) by XCMPLX_1:127; now__::_thesis:_not_((2_*_(n_+_1))_-_n)_/_((2_*_(n_+_1))_+_1)_<_1_/_2 assume ((2 * (n + 1)) - n) / ((2 * (n + 1)) + 1) < 1 / 2 ; ::_thesis: contradiction then ((2 * (n + 1)) - n) * 2 < ((2 * (n + 1)) + 1) * 1 by XREAL_1:102; then (2 * (n + 1)) + ((- n) + ((2 * (n + 1)) - n)) < (2 * (n + 1)) + 1 ; hence contradiction by XREAL_1:6; ::_thesis: verum end; then (1 - (1 / ((2 * (n + 1)) + 1))) to_power (n + 1) >= 1 / 2 by A13, XXREAL_0:2; then A14: (1 + (1 / (2 * (n + 1)))) to_power (n + 1) <= 1 / (1 / 2) by A12, XREAL_1:85; (1 + (1 / (2 * (n + 1)))) to_power (n + 1) > 0 by Th34; then ((1 + (1 / (2 * (n + 1)))) to_power (n + 1)) ^2 <= 2 * 2 by A14, XREAL_1:66; then A15: s . (n + (n + 1)) <= 2 * 2 by A9, Th46; s . n <= s . (n + (n + 1)) by A6, SEQM_3:5; then s . n <= 2 * 2 by A15, XXREAL_0:2; hence s . n < (2 * 2) + 1 by XXREAL_0:2; ::_thesis: verum end; then s is bounded_above by SEQ_2:def_3; hence s is convergent by A6; ::_thesis: verum end; definition func number_e -> real number means :: POWER:def 4 for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds it = lim s; existence ex b1 being real number st for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds b1 = lim s proof deffunc H1( Element of NAT ) -> Real = (1 + (1 / ($1 + 1))) to_power ($1 + 1); consider s1 being Real_Sequence such that A1: for n being Element of NAT holds s1 . n = H1(n) from SEQ_1:sch_1(); take lim s1 ; ::_thesis: for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds lim s1 = lim s let s be Real_Sequence; ::_thesis: ( ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) implies lim s1 = lim s ) assume A2: for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ; ::_thesis: lim s1 = lim s now__::_thesis:_for_n_being_Element_of_NAT_holds_s1_._n_=_s_._n let n be Element of NAT ; ::_thesis: s1 . n = s . n thus s1 . n = (1 + (1 / (n + 1))) to_power (n + 1) by A1 .= s . n by A2 ; ::_thesis: verum end; hence lim s1 = lim s by FUNCT_2:63; ::_thesis: verum end; uniqueness for b1, b2 being real number st ( for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds b1 = lim s ) & ( for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds b2 = lim s ) holds b1 = b2 proof let a, b be real number ; ::_thesis: ( ( for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds a = lim s ) & ( for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds b = lim s ) implies a = b ) assume that A3: for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds a = lim s and A4: for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds b = lim s ; ::_thesis: a = b deffunc H1( Element of NAT ) -> Real = (1 + (1 / ($1 + 1))) to_power ($1 + 1); consider s1 being Real_Sequence such that A5: for n being Element of NAT holds s1 . n = H1(n) from SEQ_1:sch_1(); lim s1 = a by A3, A5; hence a = b by A4, A5; ::_thesis: verum end; end; :: deftheorem defines number_e POWER:def_4_:_ for b1 being real number holds ( b1 = number_e iff for s being Real_Sequence st ( for n being Element of NAT holds s . n = (1 + (1 / (n + 1))) to_power (n + 1) ) holds b1 = lim s ); definition :: original: number_e redefine func number_e -> Real; coherence number_e is Real by XREAL_0:def_1; end; theorem Th60: :: POWER:60 2 to_power 2 = 4 proof thus 2 to_power 2 = 2 ^2 by Th46 .= 4 ; ::_thesis: verum end; theorem Th61: :: POWER:61 2 to_power 3 = 8 proof thus 2 to_power 3 = 2 to_power (2 + 1) .= (2 to_power 2) * (2 to_power 1) by Th27 .= 4 * 2 by Th25, Th60 .= 8 ; ::_thesis: verum end; theorem :: POWER:62 2 to_power 4 = 16 proof thus 2 to_power 4 = 2 to_power (2 + 2) .= (2 to_power 2) * (2 to_power 2) by Th27 .= 16 by Th60 ; ::_thesis: verum end; theorem :: POWER:63 2 to_power 5 = 32 proof thus 2 to_power 5 = 2 to_power (3 + 2) .= (2 to_power 3) * (2 to_power 2) by Th27 .= 32 by Th60, Th61 ; ::_thesis: verum end; theorem :: POWER:64 2 to_power 6 = 64 proof thus 2 to_power 6 = 2 to_power (3 + 3) .= (2 to_power 3) * (2 to_power 3) by Th27 .= 64 by Th61 ; ::_thesis: verum end;