:: PROJDES1 semantic presentation begin theorem Th1: :: PROJDES1:1 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c being Element of FCPS st a,b,c is_collinear holds ( b,c,a is_collinear & c,a,b is_collinear & b,a,c is_collinear & a,c,b is_collinear & c,b,a is_collinear ) proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c being Element of FCPS st a,b,c is_collinear holds ( b,c,a is_collinear & c,a,b is_collinear & b,a,c is_collinear & a,c,b is_collinear & c,b,a is_collinear ) let a, b, c be Element of FCPS; ::_thesis: ( a,b,c is_collinear implies ( b,c,a is_collinear & c,a,b is_collinear & b,a,c is_collinear & a,c,b is_collinear & c,b,a is_collinear ) ) assume A1: a,b,c is_collinear ; ::_thesis: ( b,c,a is_collinear & c,a,b is_collinear & b,a,c is_collinear & a,c,b is_collinear & c,b,a is_collinear ) then b,a,c is_collinear by COLLSP:4; then A2: b,c,a is_collinear by COLLSP:4; a,c,b is_collinear by A1, COLLSP:4; hence ( b,c,a is_collinear & c,a,b is_collinear & b,a,c is_collinear & a,c,b is_collinear & c,b,a is_collinear ) by A2, COLLSP:4; ::_thesis: verum end; theorem :: PROJDES1:2 for FCPS being up-3-dimensional CollProjectiveSpace for p being Element of FCPS holds not for q, r being Element of FCPS holds p,q,r is_collinear proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for p being Element of FCPS holds not for q, r being Element of FCPS holds p,q,r is_collinear let p be Element of FCPS; ::_thesis: not for q, r being Element of FCPS holds p,q,r is_collinear consider q being Element of FCPS such that A1: p <> q and p <> q and p,p,q is_collinear by ANPROJ_2:def_10; not for r being Element of FCPS holds p,q,r is_collinear by A1, COLLSP:12; hence not for q, r being Element of FCPS holds p,q,r is_collinear ; ::_thesis: verum end; theorem :: PROJDES1:3 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, b9 being Element of FCPS st not a,b,c is_collinear & a,b,b9 is_collinear & a <> b9 holds not a,b9,c is_collinear proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, b9 being Element of FCPS st not a,b,c is_collinear & a,b,b9 is_collinear & a <> b9 holds not a,b9,c is_collinear let a, b, c, b9 be Element of FCPS; ::_thesis: ( not a,b,c is_collinear & a,b,b9 is_collinear & a <> b9 implies not a,b9,c is_collinear ) assume that A1: not a,b,c is_collinear and A2: a,b,b9 is_collinear and A3: a <> b9 ; ::_thesis: not a,b9,c is_collinear assume A4: a,b9,c is_collinear ; ::_thesis: contradiction a,b9,b is_collinear by A2, Th1; hence contradiction by A1, A3, A4, COLLSP:6; ::_thesis: verum end; theorem :: PROJDES1:4 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, d being Element of FCPS st not a,b,c is_collinear & a,b,d is_collinear & a,c,d is_collinear holds a = d proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, d being Element of FCPS st not a,b,c is_collinear & a,b,d is_collinear & a,c,d is_collinear holds a = d let a, b, c, d be Element of FCPS; ::_thesis: ( not a,b,c is_collinear & a,b,d is_collinear & a,c,d is_collinear implies a = d ) assume that A1: not a,b,c is_collinear and A2: ( a,b,d is_collinear & a,c,d is_collinear ) ; ::_thesis: a = d assume A3: not a = d ; ::_thesis: contradiction A4: a,d,a is_collinear by ANPROJ_2:def_7; ( a,d,b is_collinear & a,d,c is_collinear ) by A2, Th1; hence contradiction by A1, A3, A4, ANPROJ_2:def_8; ::_thesis: verum end; theorem Th5: :: PROJDES1:5 for FCPS being up-3-dimensional CollProjectiveSpace for o, a, d, d9, a9, s being Element of FCPS st not o,a,d is_collinear & o,d,d9 is_collinear & d <> d9 & a9,d9,s is_collinear & o,a,a9 is_collinear & o <> a9 holds s <> d proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for o, a, d, d9, a9, s being Element of FCPS st not o,a,d is_collinear & o,d,d9 is_collinear & d <> d9 & a9,d9,s is_collinear & o,a,a9 is_collinear & o <> a9 holds s <> d let o, a, d, d9, a9, s be Element of FCPS; ::_thesis: ( not o,a,d is_collinear & o,d,d9 is_collinear & d <> d9 & a9,d9,s is_collinear & o,a,a9 is_collinear & o <> a9 implies s <> d ) assume that A1: not o,a,d is_collinear and A2: o,d,d9 is_collinear and A3: d <> d9 and A4: a9,d9,s is_collinear and A5: o,a,a9 is_collinear and A6: o <> a9 ; ::_thesis: s <> d assume not s <> d ; ::_thesis: contradiction then A7: d,d9,a9 is_collinear by A4, Th1; d,d9,o is_collinear by A2, Th1; then d,o,a9 is_collinear by A3, A7, COLLSP:6; then A8: o,a9,d is_collinear by Th1; o,a9,a is_collinear by A5, Th1; hence contradiction by A1, A6, A8, COLLSP:6; ::_thesis: verum end; Lm1: for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, b9, c9 being Element of FCPS st not a,b,c is_collinear & a,b,b9 is_collinear & a,c,c9 is_collinear & a <> b9 holds b9 <> c9 proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, b9, c9 being Element of FCPS st not a,b,c is_collinear & a,b,b9 is_collinear & a,c,c9 is_collinear & a <> b9 holds b9 <> c9 let a, b, c, b9, c9 be Element of FCPS; ::_thesis: ( not a,b,c is_collinear & a,b,b9 is_collinear & a,c,c9 is_collinear & a <> b9 implies b9 <> c9 ) assume that A1: not a,b,c is_collinear and A2: a,b,b9 is_collinear and A3: a,c,c9 is_collinear and A4: a <> b9 ; ::_thesis: b9 <> c9 assume not b9 <> c9 ; ::_thesis: contradiction then A5: a,b9,c is_collinear by A3, Th1; a,b9,b is_collinear by A2, Th1; hence contradiction by A1, A4, A5, COLLSP:6; ::_thesis: verum end; definition let FCPS be up-3-dimensional CollProjectiveSpace; let a, b, c, d be Element of FCPS; preda,b,c,d are_coplanar means :Def1: :: PROJDES1:def 1 ex x being Element of FCPS st ( a,b,x is_collinear & c,d,x is_collinear ); end; :: deftheorem Def1 defines are_coplanar PROJDES1:def_1_:_ for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, d being Element of FCPS holds ( a,b,c,d are_coplanar iff ex x being Element of FCPS st ( a,b,x is_collinear & c,d,x is_collinear ) ); theorem Th6: :: PROJDES1:6 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, d being Element of FCPS st ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) holds a,b,c,d are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, d being Element of FCPS st ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) holds a,b,c,d are_coplanar let a, b, c, d be Element of FCPS; ::_thesis: ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) A1: now__::_thesis:_(_a,b,c_is_collinear_&_(_a,b,c_is_collinear_or_b,c,d_is_collinear_or_c,d,a_is_collinear_or_d,a,b_is_collinear_)_implies_a,b,c,d_are_coplanar_) A2: c,d,c is_collinear by ANPROJ_2:def_7; assume a,b,c is_collinear ; ::_thesis: ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) hence ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) by A2, Def1; ::_thesis: verum end; A3: now__::_thesis:_(_c,d,a_is_collinear_&_(_a,b,c_is_collinear_or_b,c,d_is_collinear_or_c,d,a_is_collinear_or_d,a,b_is_collinear_)_implies_a,b,c,d_are_coplanar_) A4: a,b,a is_collinear by ANPROJ_2:def_7; assume c,d,a is_collinear ; ::_thesis: ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) hence ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) by A4, Def1; ::_thesis: verum end; A5: now__::_thesis:_(_d,a,b_is_collinear_&_(_a,b,c_is_collinear_or_b,c,d_is_collinear_or_c,d,a_is_collinear_or_d,a,b_is_collinear_)_implies_a,b,c,d_are_coplanar_) assume d,a,b is_collinear ; ::_thesis: ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) then A6: a,b,d is_collinear by Th1; c,d,d is_collinear by ANPROJ_2:def_7; hence ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) by A6, Def1; ::_thesis: verum end; A7: now__::_thesis:_(_b,c,d_is_collinear_&_(_a,b,c_is_collinear_or_b,c,d_is_collinear_or_c,d,a_is_collinear_or_d,a,b_is_collinear_)_implies_a,b,c,d_are_coplanar_) assume b,c,d is_collinear ; ::_thesis: ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) then A8: c,d,b is_collinear by Th1; a,b,b is_collinear by ANPROJ_2:def_7; hence ( ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) implies a,b,c,d are_coplanar ) by A8, Def1; ::_thesis: verum end; assume ( a,b,c is_collinear or b,c,d is_collinear or c,d,a is_collinear or d,a,b is_collinear ) ; ::_thesis: a,b,c,d are_coplanar hence a,b,c,d are_coplanar by A1, A7, A3, A5; ::_thesis: verum end; Lm2: for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, d being Element of FCPS st a,b,c,d are_coplanar holds b,a,c,d are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, d being Element of FCPS st a,b,c,d are_coplanar holds b,a,c,d are_coplanar let a, b, c, d be Element of FCPS; ::_thesis: ( a,b,c,d are_coplanar implies b,a,c,d are_coplanar ) assume a,b,c,d are_coplanar ; ::_thesis: b,a,c,d are_coplanar then consider x being Element of FCPS such that A1: a,b,x is_collinear and A2: c,d,x is_collinear by Def1; b,a,x is_collinear by A1, Th1; hence b,a,c,d are_coplanar by A2, Def1; ::_thesis: verum end; Lm3: for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, d being Element of FCPS st a,b,c,d are_coplanar holds b,c,d,a are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, d being Element of FCPS st a,b,c,d are_coplanar holds b,c,d,a are_coplanar let a, b, c, d be Element of FCPS; ::_thesis: ( a,b,c,d are_coplanar implies b,c,d,a are_coplanar ) assume a,b,c,d are_coplanar ; ::_thesis: b,c,d,a are_coplanar then consider x being Element of FCPS such that A1: ( a,b,x is_collinear & c,d,x is_collinear ) by Def1; ( b,x,a is_collinear & x,c,d is_collinear ) by A1, Th1; then consider y being Element of FCPS such that A2: b,c,y is_collinear and A3: a,d,y is_collinear by ANPROJ_2:def_9; d,a,y is_collinear by A3, Th1; hence b,c,d,a are_coplanar by A2, Def1; ::_thesis: verum end; theorem Th7: :: PROJDES1:7 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, d being Element of FCPS st a,b,c,d are_coplanar holds ( b,c,d,a are_coplanar & c,d,a,b are_coplanar & d,a,b,c are_coplanar & b,a,c,d are_coplanar & c,b,d,a are_coplanar & d,c,a,b are_coplanar & a,d,b,c are_coplanar & a,c,d,b are_coplanar & b,d,a,c are_coplanar & c,a,b,d are_coplanar & d,b,c,a are_coplanar & c,a,d,b are_coplanar & d,b,a,c are_coplanar & a,c,b,d are_coplanar & b,d,c,a are_coplanar & a,b,d,c are_coplanar & a,d,c,b are_coplanar & b,c,a,d are_coplanar & b,a,d,c are_coplanar & c,b,a,d are_coplanar & c,d,b,a are_coplanar & d,a,c,b are_coplanar & d,c,b,a are_coplanar ) proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, d being Element of FCPS st a,b,c,d are_coplanar holds ( b,c,d,a are_coplanar & c,d,a,b are_coplanar & d,a,b,c are_coplanar & b,a,c,d are_coplanar & c,b,d,a are_coplanar & d,c,a,b are_coplanar & a,d,b,c are_coplanar & a,c,d,b are_coplanar & b,d,a,c are_coplanar & c,a,b,d are_coplanar & d,b,c,a are_coplanar & c,a,d,b are_coplanar & d,b,a,c are_coplanar & a,c,b,d are_coplanar & b,d,c,a are_coplanar & a,b,d,c are_coplanar & a,d,c,b are_coplanar & b,c,a,d are_coplanar & b,a,d,c are_coplanar & c,b,a,d are_coplanar & c,d,b,a are_coplanar & d,a,c,b are_coplanar & d,c,b,a are_coplanar ) let a, b, c, d be Element of FCPS; ::_thesis: ( a,b,c,d are_coplanar implies ( b,c,d,a are_coplanar & c,d,a,b are_coplanar & d,a,b,c are_coplanar & b,a,c,d are_coplanar & c,b,d,a are_coplanar & d,c,a,b are_coplanar & a,d,b,c are_coplanar & a,c,d,b are_coplanar & b,d,a,c are_coplanar & c,a,b,d are_coplanar & d,b,c,a are_coplanar & c,a,d,b are_coplanar & d,b,a,c are_coplanar & a,c,b,d are_coplanar & b,d,c,a are_coplanar & a,b,d,c are_coplanar & a,d,c,b are_coplanar & b,c,a,d are_coplanar & b,a,d,c are_coplanar & c,b,a,d are_coplanar & c,d,b,a are_coplanar & d,a,c,b are_coplanar & d,c,b,a are_coplanar ) ) assume A1: a,b,c,d are_coplanar ; ::_thesis: ( b,c,d,a are_coplanar & c,d,a,b are_coplanar & d,a,b,c are_coplanar & b,a,c,d are_coplanar & c,b,d,a are_coplanar & d,c,a,b are_coplanar & a,d,b,c are_coplanar & a,c,d,b are_coplanar & b,d,a,c are_coplanar & c,a,b,d are_coplanar & d,b,c,a are_coplanar & c,a,d,b are_coplanar & d,b,a,c are_coplanar & a,c,b,d are_coplanar & b,d,c,a are_coplanar & a,b,d,c are_coplanar & a,d,c,b are_coplanar & b,c,a,d are_coplanar & b,a,d,c are_coplanar & c,b,a,d are_coplanar & c,d,b,a are_coplanar & d,a,c,b are_coplanar & d,c,b,a are_coplanar ) then A2: b,a,c,d are_coplanar by Lm2; then a,c,d,b are_coplanar by Lm3; then A3: c,d,b,a are_coplanar by Lm3; then A4: d,b,a,c are_coplanar by Lm3; then b,d,a,c are_coplanar by Lm2; then A5: d,a,c,b are_coplanar by Lm3; then A6: a,c,b,d are_coplanar by Lm3; then c,a,b,d are_coplanar by Lm2; then A7: a,b,d,c are_coplanar by Lm3; then A8: b,d,c,a are_coplanar by Lm3; then A9: d,c,a,b are_coplanar by Lm3; then c,d,a,b are_coplanar by Lm2; then A10: d,a,b,c are_coplanar by Lm3; then a,d,b,c are_coplanar by Lm2; then d,b,c,a are_coplanar by Lm3; then b,c,a,d are_coplanar by Lm3; hence ( b,c,d,a are_coplanar & c,d,a,b are_coplanar & d,a,b,c are_coplanar & b,a,c,d are_coplanar & c,b,d,a are_coplanar & d,c,a,b are_coplanar & a,d,b,c are_coplanar & a,c,d,b are_coplanar & b,d,a,c are_coplanar & c,a,b,d are_coplanar & d,b,c,a are_coplanar & c,a,d,b are_coplanar & d,b,a,c are_coplanar & a,c,b,d are_coplanar & b,d,c,a are_coplanar & a,b,d,c are_coplanar & a,d,c,b are_coplanar & b,c,a,d are_coplanar & b,a,d,c are_coplanar & c,b,a,d are_coplanar & c,d,b,a are_coplanar & d,a,c,b are_coplanar & d,c,b,a are_coplanar ) by A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Lm2, Lm3; ::_thesis: verum end; Lm4: for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, p, q being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar holds a,b,p,q are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, p, q being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar holds a,b,p,q are_coplanar let a, b, c, p, q be Element of FCPS; ::_thesis: ( not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar implies a,b,p,q are_coplanar ) assume that A1: not a,b,c is_collinear and A2: a,b,c,p are_coplanar and A3: a,b,c,q are_coplanar ; ::_thesis: a,b,p,q are_coplanar consider x being Element of FCPS such that A4: a,b,x is_collinear and A5: c,p,x is_collinear by A2, Def1; consider y being Element of FCPS such that A6: a,b,y is_collinear and A7: c,q,y is_collinear by A3, Def1; A8: now__::_thesis:_(_a_<>_b_implies_a,b,p,q_are_coplanar_) assume A9: a <> b ; ::_thesis: a,b,p,q are_coplanar ( b,a,x is_collinear & b,a,y is_collinear ) by A4, A6, Th1; then b,x,y is_collinear by A9, COLLSP:6; then A10: x,y,b is_collinear by Th1; a,x,y is_collinear by A4, A6, A9, COLLSP:6; then A11: x,y,a is_collinear by Th1; A12: now__::_thesis:_(_x_<>_y_implies_a,b,p,q_are_coplanar_) p,c,x is_collinear by A5, Th1; then consider z being Element of FCPS such that A13: p,q,z is_collinear and A14: x,y,z is_collinear by A7, ANPROJ_2:def_9; assume x <> y ; ::_thesis: a,b,p,q are_coplanar then a,b,z is_collinear by A11, A10, A14, ANPROJ_2:def_8; hence a,b,p,q are_coplanar by A13, Def1; ::_thesis: verum end; now__::_thesis:_(_x_=_y_implies_a,b,p,q_are_coplanar_) assume x = y ; ::_thesis: a,b,p,q are_coplanar then A15: x,c,q is_collinear by A7, Th1; x,c,p is_collinear by A5, Th1; then x,p,q is_collinear by A1, A4, A15, COLLSP:6; then p,q,x is_collinear by Th1; hence a,b,p,q are_coplanar by A4, Def1; ::_thesis: verum end; hence a,b,p,q are_coplanar by A12; ::_thesis: verum end; now__::_thesis:_(_a_=_b_implies_a,b,p,q_are_coplanar_) assume a = b ; ::_thesis: a,b,p,q are_coplanar then a,b,p is_collinear by ANPROJ_2:def_7; hence a,b,p,q are_coplanar by Th6; ::_thesis: verum end; hence a,b,p,q are_coplanar by A8; ::_thesis: verum end; theorem Th8: :: PROJDES1:8 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, p, q, r, s being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar holds p,q,r,s are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, p, q, r, s being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar holds p,q,r,s are_coplanar let a, b, c, p, q, r, s be Element of FCPS; ::_thesis: ( not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar implies p,q,r,s are_coplanar ) assume that A1: not a,b,c is_collinear and A2: a,b,c,p are_coplanar and A3: a,b,c,q are_coplanar and A4: a,b,c,r are_coplanar and A5: a,b,c,s are_coplanar ; ::_thesis: p,q,r,s are_coplanar A6: a,b,p,q are_coplanar by A1, A2, A3, Lm4; A7: a,b,q,r are_coplanar by A1, A3, A4, Lm4; A8: a,b,p,r are_coplanar by A1, A2, A4, Lm4; A9: a,b,q,s are_coplanar by A1, A3, A5, Lm4; A10: now__::_thesis:_(_not_a,b,q_is_collinear_implies_p,q,r,s_are_coplanar_) A11: q,a,b,r are_coplanar by A7, Th7; assume A12: not a,b,q is_collinear ; ::_thesis: p,q,r,s are_coplanar then A13: not q,a,b is_collinear by Th1; A14: q,a,b,p are_coplanar by A6, Th7; then A15: q,a,p,r are_coplanar by A13, A11, Lm4; A16: q,a,b,s are_coplanar by A9, Th7; then A17: q,a,p,s are_coplanar by A13, A14, Lm4; A18: now__::_thesis:_(_not_q,a,p_is_collinear_implies_p,q,r,s_are_coplanar_) assume not q,a,p is_collinear ; ::_thesis: p,q,r,s are_coplanar then A19: not q,p,a is_collinear by Th1; ( q,p,a,r are_coplanar & q,p,a,s are_coplanar ) by A15, A17, Th7; then q,p,r,s are_coplanar by A19, Lm4; hence p,q,r,s are_coplanar by Th7; ::_thesis: verum end; A20: q,a,r,s are_coplanar by A13, A11, A16, Lm4; A21: now__::_thesis:_(_not_q,a,r_is_collinear_implies_p,q,r,s_are_coplanar_) assume not q,a,r is_collinear ; ::_thesis: p,q,r,s are_coplanar then A22: not q,r,a is_collinear by Th1; ( q,r,a,p are_coplanar & q,r,a,s are_coplanar ) by A15, A20, Th7; then q,r,p,s are_coplanar by A22, Lm4; hence p,q,r,s are_coplanar by Th7; ::_thesis: verum end; A23: q <> a by A12, ANPROJ_2:def_7; now__::_thesis:_(_q,a,p_is_collinear_&_q,a,r_is_collinear_implies_p,q,r,s_are_coplanar_) assume ( q,a,p is_collinear & q,a,r is_collinear ) ; ::_thesis: p,q,r,s are_coplanar then q,p,r is_collinear by A23, COLLSP:6; then p,q,r is_collinear by Th1; hence p,q,r,s are_coplanar by Th6; ::_thesis: verum end; hence p,q,r,s are_coplanar by A18, A21; ::_thesis: verum end; A24: a,b,r,s are_coplanar by A1, A4, A5, Lm4; A25: now__::_thesis:_(_not_a,b,r_is_collinear_implies_p,q,r,s_are_coplanar_) A26: r,a,b,q are_coplanar by A7, Th7; assume A27: not a,b,r is_collinear ; ::_thesis: p,q,r,s are_coplanar then A28: not r,a,b is_collinear by Th1; A29: r,a,b,p are_coplanar by A8, Th7; then A30: r,a,p,q are_coplanar by A28, A26, Lm4; A31: r,a,b,s are_coplanar by A24, Th7; then A32: r,a,p,s are_coplanar by A28, A29, Lm4; A33: now__::_thesis:_(_not_r,a,p_is_collinear_implies_p,q,r,s_are_coplanar_) assume not r,a,p is_collinear ; ::_thesis: p,q,r,s are_coplanar then A34: not r,p,a is_collinear by Th1; ( r,p,a,q are_coplanar & r,p,a,s are_coplanar ) by A30, A32, Th7; then r,p,q,s are_coplanar by A34, Lm4; hence p,q,r,s are_coplanar by Th7; ::_thesis: verum end; A35: r,a,q,s are_coplanar by A28, A26, A31, Lm4; A36: now__::_thesis:_(_not_r,a,q_is_collinear_implies_p,q,r,s_are_coplanar_) assume not r,a,q is_collinear ; ::_thesis: p,q,r,s are_coplanar then A37: not r,q,a is_collinear by Th1; ( r,q,a,p are_coplanar & r,q,a,s are_coplanar ) by A30, A35, Th7; then r,q,p,s are_coplanar by A37, Lm4; hence p,q,r,s are_coplanar by Th7; ::_thesis: verum end; A38: r <> a by A27, ANPROJ_2:def_7; now__::_thesis:_(_r,a,p_is_collinear_&_r,a,q_is_collinear_implies_p,q,r,s_are_coplanar_) assume ( r,a,p is_collinear & r,a,q is_collinear ) ; ::_thesis: p,q,r,s are_coplanar then r,p,q is_collinear by A38, COLLSP:6; then p,q,r is_collinear by Th1; hence p,q,r,s are_coplanar by Th6; ::_thesis: verum end; hence p,q,r,s are_coplanar by A33, A36; ::_thesis: verum end; A39: a,b,p,s are_coplanar by A1, A2, A5, Lm4; A40: now__::_thesis:_(_not_a,b,p_is_collinear_implies_p,q,r,s_are_coplanar_) A41: p,a,b,r are_coplanar by A8, Th7; assume A42: not a,b,p is_collinear ; ::_thesis: p,q,r,s are_coplanar then A43: not p,a,b is_collinear by Th1; A44: p,a,b,q are_coplanar by A6, Th7; then A45: p,a,q,r are_coplanar by A43, A41, Lm4; A46: p,a,b,s are_coplanar by A39, Th7; then A47: p,a,q,s are_coplanar by A43, A44, Lm4; A48: now__::_thesis:_(_not_p,a,q_is_collinear_implies_p,q,r,s_are_coplanar_) assume not p,a,q is_collinear ; ::_thesis: p,q,r,s are_coplanar then A49: not p,q,a is_collinear by Th1; ( p,q,a,r are_coplanar & p,q,a,s are_coplanar ) by A45, A47, Th7; hence p,q,r,s are_coplanar by A49, Lm4; ::_thesis: verum end; A50: p,a,r,s are_coplanar by A43, A41, A46, Lm4; A51: now__::_thesis:_(_not_p,a,r_is_collinear_implies_p,q,r,s_are_coplanar_) assume not p,a,r is_collinear ; ::_thesis: p,q,r,s are_coplanar then A52: not p,r,a is_collinear by Th1; ( p,r,a,q are_coplanar & p,r,a,s are_coplanar ) by A45, A50, Th7; then p,r,q,s are_coplanar by A52, Lm4; hence p,q,r,s are_coplanar by Th7; ::_thesis: verum end; A53: p <> a by A42, ANPROJ_2:def_7; now__::_thesis:_(_p,a,q_is_collinear_&_p,a,r_is_collinear_implies_p,q,r,s_are_coplanar_) assume ( p,a,q is_collinear & p,a,r is_collinear ) ; ::_thesis: p,q,r,s are_coplanar then p,q,r is_collinear by A53, COLLSP:6; hence p,q,r,s are_coplanar by Th6; ::_thesis: verum end; hence p,q,r,s are_coplanar by A48, A51; ::_thesis: verum end; A54: a <> b by A1, ANPROJ_2:def_7; now__::_thesis:_(_a,b,p_is_collinear_&_a,b,q_is_collinear_&_a,b,r_is_collinear_implies_p,q,r,s_are_coplanar_) assume ( a,b,p is_collinear & a,b,q is_collinear & a,b,r is_collinear ) ; ::_thesis: p,q,r,s are_coplanar then p,q,r is_collinear by A54, ANPROJ_2:def_8; hence p,q,r,s are_coplanar by Th6; ::_thesis: verum end; hence p,q,r,s are_coplanar by A40, A10, A25; ::_thesis: verum end; Lm5: for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, p, q, r being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar holds a,p,q,r are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, p, q, r being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar holds a,p,q,r are_coplanar let a, b, c, p, q, r be Element of FCPS; ::_thesis: ( not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar implies a,p,q,r are_coplanar ) assume that A1: not a,b,c is_collinear and A2: a,b,c,p are_coplanar and A3: a,b,c,q are_coplanar and A4: a,b,c,r are_coplanar ; ::_thesis: a,p,q,r are_coplanar now__::_thesis:_(_not_p,q,r_is_collinear_implies_a,p,q,r_are_coplanar_) A5: now__::_thesis:_(_not_a,r,b_is_collinear_implies_a,p,q,r_are_coplanar_) a,b,r,q are_coplanar by A1, A3, A4, Lm4; then A6: a,r,b,q are_coplanar by Th7; a,b,r,p are_coplanar by A1, A2, A4, Lm4; then A7: a,r,b,p are_coplanar by Th7; assume not a,r,b is_collinear ; ::_thesis: a,p,q,r are_coplanar then a,r,p,q are_coplanar by A7, A6, Lm4; hence a,p,q,r are_coplanar by Th7; ::_thesis: verum end; A8: now__::_thesis:_(_not_a,p,b_is_collinear_implies_a,p,q,r_are_coplanar_) a,b,p,r are_coplanar by A1, A2, A4, Lm4; then A9: a,p,b,r are_coplanar by Th7; a,b,p,q are_coplanar by A1, A2, A3, Lm4; then A10: a,p,b,q are_coplanar by Th7; assume not a,p,b is_collinear ; ::_thesis: a,p,q,r are_coplanar hence a,p,q,r are_coplanar by A10, A9, Lm4; ::_thesis: verum end; A11: now__::_thesis:_(_not_a,q,b_is_collinear_implies_a,p,q,r_are_coplanar_) a,b,q,r are_coplanar by A1, A3, A4, Lm4; then A12: a,q,b,r are_coplanar by Th7; a,b,q,p are_coplanar by A1, A2, A3, Lm4; then A13: a,q,b,p are_coplanar by Th7; assume not a,q,b is_collinear ; ::_thesis: a,p,q,r are_coplanar then a,q,p,r are_coplanar by A13, A12, Lm4; hence a,p,q,r are_coplanar by Th7; ::_thesis: verum end; assume A14: not p,q,r is_collinear ; ::_thesis: a,p,q,r are_coplanar a <> b by A1, ANPROJ_2:def_7; then ( not a,b,p is_collinear or not a,b,q is_collinear or not a,b,r is_collinear ) by A14, ANPROJ_2:def_8; hence a,p,q,r are_coplanar by A8, A11, A5, Th1; ::_thesis: verum end; hence a,p,q,r are_coplanar by Th6; ::_thesis: verum end; theorem :: PROJDES1:9 for FCPS being up-3-dimensional CollProjectiveSpace for p, q, r, a, b, c, s being Element of FCPS st not p,q,r is_collinear & a,b,c,p are_coplanar & a,b,c,r are_coplanar & a,b,c,q are_coplanar & p,q,r,s are_coplanar holds a,b,c,s are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for p, q, r, a, b, c, s being Element of FCPS st not p,q,r is_collinear & a,b,c,p are_coplanar & a,b,c,r are_coplanar & a,b,c,q are_coplanar & p,q,r,s are_coplanar holds a,b,c,s are_coplanar let p, q, r, a, b, c, s be Element of FCPS; ::_thesis: ( not p,q,r is_collinear & a,b,c,p are_coplanar & a,b,c,r are_coplanar & a,b,c,q are_coplanar & p,q,r,s are_coplanar implies a,b,c,s are_coplanar ) assume that A1: not p,q,r is_collinear and A2: a,b,c,p are_coplanar and A3: a,b,c,r are_coplanar and A4: a,b,c,q are_coplanar and A5: p,q,r,s are_coplanar ; ::_thesis: a,b,c,s are_coplanar now__::_thesis:_(_not_a,b,c_is_collinear_implies_a,b,c,s_are_coplanar_) b,b,a is_collinear by ANPROJ_2:def_7; then A6: b,a,c,b are_coplanar by Th6; A7: b,a,c,r are_coplanar by A3, Th7; assume A8: not a,b,c is_collinear ; ::_thesis: a,b,c,s are_coplanar then A9: not b,a,c is_collinear by Th1; a,p,q,r are_coplanar by A2, A3, A4, A8, Lm5; then A10: p,q,r,a are_coplanar by Th7; A11: c,a,b,r are_coplanar by A3, Th7; A12: not c,a,b is_collinear by A8, Th1; ( c,a,b,p are_coplanar & c,a,b,q are_coplanar ) by A2, A4, Th7; then c,p,q,r are_coplanar by A12, A11, Lm5; then A13: p,q,r,c are_coplanar by Th7; ( b,a,c,p are_coplanar & b,a,c,q are_coplanar ) by A2, A4, Th7; then p,q,r,b are_coplanar by A9, A6, A7, Th8; hence a,b,c,s are_coplanar by A1, A5, A10, A13, Th8; ::_thesis: verum end; hence a,b,c,s are_coplanar by Th6; ::_thesis: verum end; Lm6: for FCPS being up-3-dimensional CollProjectiveSpace for p, q, r, a, b being Element of FCPS st p <> q & p,q,r is_collinear & a,b,p,q are_coplanar holds a,b,p,r are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for p, q, r, a, b being Element of FCPS st p <> q & p,q,r is_collinear & a,b,p,q are_coplanar holds a,b,p,r are_coplanar let p, q, r, a, b be Element of FCPS; ::_thesis: ( p <> q & p,q,r is_collinear & a,b,p,q are_coplanar implies a,b,p,r are_coplanar ) assume that A1: ( p <> q & p,q,r is_collinear ) and A2: a,b,p,q are_coplanar ; ::_thesis: a,b,p,r are_coplanar consider x being Element of FCPS such that A3: a,b,x is_collinear and A4: p,q,x is_collinear by A2, Def1; p,r,x is_collinear by A1, A4, COLLSP:6; hence a,b,p,r are_coplanar by A3, Def1; ::_thesis: verum end; theorem Th10: :: PROJDES1:10 for FCPS being up-3-dimensional CollProjectiveSpace for p, q, r, a, b, c being Element of FCPS st p <> q & p,q,r is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar holds a,b,c,r are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for p, q, r, a, b, c being Element of FCPS st p <> q & p,q,r is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar holds a,b,c,r are_coplanar let p, q, r, a, b, c be Element of FCPS; ::_thesis: ( p <> q & p,q,r is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar implies a,b,c,r are_coplanar ) assume that A1: p <> q and A2: p,q,r is_collinear and A3: a,b,c,p are_coplanar and A4: a,b,c,q are_coplanar ; ::_thesis: a,b,c,r are_coplanar A5: q,p,r is_collinear by A2, Th1; now__::_thesis:_(_not_a,b,c_is_collinear_implies_a,b,c,r_are_coplanar_) assume A6: not a,b,c is_collinear ; ::_thesis: a,b,c,r are_coplanar then a,b,p,q are_coplanar by A3, A4, Lm4; then A7: a,b,p,r are_coplanar by A1, A2, Lm6; A8: now__::_thesis:_(_not_a,b,p_is_collinear_implies_a,b,c,r_are_coplanar_) b,a,b is_collinear by ANPROJ_2:def_7; then A9: a,b,p,b are_coplanar by Th6; a,a,b is_collinear by ANPROJ_2:def_7; then A10: a,b,p,a are_coplanar by Th6; assume A11: not a,b,p is_collinear ; ::_thesis: a,b,c,r are_coplanar a,b,p,c are_coplanar by A3, Th7; hence a,b,c,r are_coplanar by A7, A11, A10, A9, Th8; ::_thesis: verum end; a,b,q,p are_coplanar by A3, A4, A6, Lm4; then A12: a,b,q,r are_coplanar by A1, A5, Lm6; A13: now__::_thesis:_(_not_a,b,q_is_collinear_implies_a,b,c,r_are_coplanar_) b,a,b is_collinear by ANPROJ_2:def_7; then A14: a,b,q,b are_coplanar by Th6; a,a,b is_collinear by ANPROJ_2:def_7; then A15: a,b,q,a are_coplanar by Th6; assume A16: not a,b,q is_collinear ; ::_thesis: a,b,c,r are_coplanar a,b,q,c are_coplanar by A4, Th7; hence a,b,c,r are_coplanar by A12, A16, A15, A14, Th8; ::_thesis: verum end; now__::_thesis:_(_a,b,p_is_collinear_&_a,b,q_is_collinear_implies_a,b,c,r_are_coplanar_) assume ( a,b,p is_collinear & a,b,q is_collinear ) ; ::_thesis: a,b,c,r are_coplanar then a,b,r is_collinear by A1, A2, COLLSP:9; then r,a,b is_collinear by Th1; hence a,b,c,r are_coplanar by Th6; ::_thesis: verum end; hence a,b,c,r are_coplanar by A8, A13; ::_thesis: verum end; hence a,b,c,r are_coplanar by Th6; ::_thesis: verum end; theorem :: PROJDES1:11 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, p, q, r, s being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar holds ex x being Element of FCPS st ( p,q,x is_collinear & r,s,x is_collinear ) proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, p, q, r, s being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar holds ex x being Element of FCPS st ( p,q,x is_collinear & r,s,x is_collinear ) let a, b, c, p, q, r, s be Element of FCPS; ::_thesis: ( not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar implies ex x being Element of FCPS st ( p,q,x is_collinear & r,s,x is_collinear ) ) assume ( not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a,b,c,s are_coplanar ) ; ::_thesis: ex x being Element of FCPS st ( p,q,x is_collinear & r,s,x is_collinear ) then p,q,r,s are_coplanar by Th8; then consider x being Element of FCPS such that A1: ( p,q,x is_collinear & r,s,x is_collinear ) by Def1; take x ; ::_thesis: ( p,q,x is_collinear & r,s,x is_collinear ) thus ( p,q,x is_collinear & r,s,x is_collinear ) by A1; ::_thesis: verum end; theorem Th12: :: PROJDES1:12 for FCPS being up-3-dimensional CollProjectiveSpace holds not for a, b, c, d being Element of FCPS holds a,b,c,d are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: not for a, b, c, d being Element of FCPS holds a,b,c,d are_coplanar consider a, b, c, d being Element of FCPS such that A1: for x being Element of FCPS holds ( not a,b,x is_collinear or not c,d,x is_collinear ) by ANPROJ_2:def_14; take a ; ::_thesis: not for b, c, d being Element of FCPS holds a,b,c,d are_coplanar take b ; ::_thesis: not for c, d being Element of FCPS holds a,b,c,d are_coplanar take c ; ::_thesis: not for d being Element of FCPS holds a,b,c,d are_coplanar take d ; ::_thesis: not a,b,c,d are_coplanar thus not a,b,c,d are_coplanar by A1, Def1; ::_thesis: verum end; theorem Th13: :: PROJDES1:13 for FCPS being up-3-dimensional CollProjectiveSpace for p, q, r being Element of FCPS st not p,q,r is_collinear holds ex s being Element of FCPS st not p,q,r,s are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for p, q, r being Element of FCPS st not p,q,r is_collinear holds ex s being Element of FCPS st not p,q,r,s are_coplanar let p, q, r be Element of FCPS; ::_thesis: ( not p,q,r is_collinear implies ex s being Element of FCPS st not p,q,r,s are_coplanar ) assume A1: not p,q,r is_collinear ; ::_thesis: not for s being Element of FCPS holds p,q,r,s are_coplanar consider a, b, c, d being Element of FCPS such that A2: not a,b,c,d are_coplanar by Th12; assume A3: for s being Element of FCPS holds p,q,r,s are_coplanar ; ::_thesis: contradiction then A4: ( p,q,r,c are_coplanar & p,q,r,d are_coplanar ) ; ( p,q,r,a are_coplanar & p,q,r,b are_coplanar ) by A3; hence contradiction by A1, A2, A4, Th8; ::_thesis: verum end; theorem Th14: :: PROJDES1:14 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, d being Element of FCPS st ( a = b or a = c or b = c or a = d or b = d or d = c ) holds a,b,c,d are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, d being Element of FCPS st ( a = b or a = c or b = c or a = d or b = d or d = c ) holds a,b,c,d are_coplanar let a, b, c, d be Element of FCPS; ::_thesis: ( ( a = b or a = c or b = c or a = d or b = d or d = c ) implies a,b,c,d are_coplanar ) A1: now__::_thesis:_(_(_a_=_b_or_a_=_c_or_b_=_c_)_&_(_a_=_b_or_a_=_c_or_b_=_c_or_a_=_d_or_b_=_d_or_d_=_c_)_implies_a,b,c,d_are_coplanar_) assume ( a = b or a = c or b = c ) ; ::_thesis: ( ( a = b or a = c or b = c or a = d or b = d or d = c ) implies a,b,c,d are_coplanar ) then a,b,c is_collinear by ANPROJ_2:def_7; hence ( ( a = b or a = c or b = c or a = d or b = d or d = c ) implies a,b,c,d are_coplanar ) by Th6; ::_thesis: verum end; A2: now__::_thesis:_(_(_a_=_d_or_b_=_d_)_&_(_a_=_b_or_a_=_c_or_b_=_c_or_a_=_d_or_b_=_d_or_d_=_c_)_implies_a,b,c,d_are_coplanar_) assume ( a = d or b = d ) ; ::_thesis: ( ( a = b or a = c or b = c or a = d or b = d or d = c ) implies a,b,c,d are_coplanar ) then d,a,b is_collinear by ANPROJ_2:def_7; hence ( ( a = b or a = c or b = c or a = d or b = d or d = c ) implies a,b,c,d are_coplanar ) by Th6; ::_thesis: verum end; A3: now__::_thesis:_(_d_=_c_&_(_a_=_b_or_a_=_c_or_b_=_c_or_a_=_d_or_b_=_d_or_d_=_c_)_implies_a,b,c,d_are_coplanar_) assume d = c ; ::_thesis: ( ( a = b or a = c or b = c or a = d or b = d or d = c ) implies a,b,c,d are_coplanar ) then b,c,d is_collinear by ANPROJ_2:def_7; hence ( ( a = b or a = c or b = c or a = d or b = d or d = c ) implies a,b,c,d are_coplanar ) by Th6; ::_thesis: verum end; assume ( a = b or a = c or b = c or a = d or b = d or d = c ) ; ::_thesis: a,b,c,d are_coplanar hence a,b,c,d are_coplanar by A1, A2, A3; ::_thesis: verum end; theorem Th15: :: PROJDES1:15 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, o, a9 being Element of FCPS st not a,b,c,o are_coplanar & o,a,a9 is_collinear & a <> a9 holds not a,b,c,a9 are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, o, a9 being Element of FCPS st not a,b,c,o are_coplanar & o,a,a9 is_collinear & a <> a9 holds not a,b,c,a9 are_coplanar let a, b, c, o, a9 be Element of FCPS; ::_thesis: ( not a,b,c,o are_coplanar & o,a,a9 is_collinear & a <> a9 implies not a,b,c,a9 are_coplanar ) assume that A1: not a,b,c,o are_coplanar and A2: o,a,a9 is_collinear and A3: a <> a9 ; ::_thesis: not a,b,c,a9 are_coplanar assume A4: a,b,c,a9 are_coplanar ; ::_thesis: contradiction A5: a,b,c,a are_coplanar by Th14; a,a9,o is_collinear by A2, Th1; hence contradiction by A1, A3, A4, A5, Th10; ::_thesis: verum end; theorem Th16: :: PROJDES1:16 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, a9, b9, c9, p, q, r being Element of FCPS st not a,b,c is_collinear & not a9,b9,c9 is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a9,b9,c9,p are_coplanar & a9,b9,c9,q are_coplanar & a9,b9,c9,r are_coplanar & not a,b,c,a9 are_coplanar holds p,q,r is_collinear proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, a9, b9, c9, p, q, r being Element of FCPS st not a,b,c is_collinear & not a9,b9,c9 is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a9,b9,c9,p are_coplanar & a9,b9,c9,q are_coplanar & a9,b9,c9,r are_coplanar & not a,b,c,a9 are_coplanar holds p,q,r is_collinear let a, b, c, a9, b9, c9, p, q, r be Element of FCPS; ::_thesis: ( not a,b,c is_collinear & not a9,b9,c9 is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar & a9,b9,c9,p are_coplanar & a9,b9,c9,q are_coplanar & a9,b9,c9,r are_coplanar & not a,b,c,a9 are_coplanar implies p,q,r is_collinear ) assume that A1: not a,b,c is_collinear and A2: not a9,b9,c9 is_collinear and A3: ( a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar ) and A4: ( a9,b9,c9,p are_coplanar & a9,b9,c9,q are_coplanar & a9,b9,c9,r are_coplanar ) and A5: not a,b,c,a9 are_coplanar ; ::_thesis: p,q,r is_collinear a,b,c,a are_coplanar by Th14; then A6: p,q,r,a are_coplanar by A1, A3, Th8; a9,b9,c9,a9 are_coplanar by Th14; then A7: p,q,r,a9 are_coplanar by A2, A4, Th8; a,b,c,c are_coplanar by Th14; then A8: p,q,r,c are_coplanar by A1, A3, Th8; a,b,c,b are_coplanar by Th14; then A9: p,q,r,b are_coplanar by A1, A3, Th8; assume not p,q,r is_collinear ; ::_thesis: contradiction hence contradiction by A5, A6, A9, A8, A7, Th8; ::_thesis: verum end; theorem Th17: :: PROJDES1:17 for FCPS being up-3-dimensional CollProjectiveSpace for a, a9, o, b, c, b9, c9, p, q, r being Element of FCPS st a <> a9 & o,a,a9 is_collinear & not a,b,c,o are_coplanar & not a9,b9,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & b,c,q is_collinear & b9,c9,q is_collinear & a,c,r is_collinear & a9,c9,r is_collinear holds p,q,r is_collinear proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, a9, o, b, c, b9, c9, p, q, r being Element of FCPS st a <> a9 & o,a,a9 is_collinear & not a,b,c,o are_coplanar & not a9,b9,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & b,c,q is_collinear & b9,c9,q is_collinear & a,c,r is_collinear & a9,c9,r is_collinear holds p,q,r is_collinear let a, a9, o, b, c, b9, c9, p, q, r be Element of FCPS; ::_thesis: ( a <> a9 & o,a,a9 is_collinear & not a,b,c,o are_coplanar & not a9,b9,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & b,c,q is_collinear & b9,c9,q is_collinear & a,c,r is_collinear & a9,c9,r is_collinear implies p,q,r is_collinear ) assume that A1: ( a <> a9 & o,a,a9 is_collinear & not a,b,c,o are_coplanar ) and A2: not a9,b9,c9 is_collinear and A3: a,b,p is_collinear and A4: a9,b9,p is_collinear and A5: ( b,c,q is_collinear & b9,c9,q is_collinear ) and A6: a,c,r is_collinear and A7: a9,c9,r is_collinear ; ::_thesis: p,q,r is_collinear A8: ( a,b,c,q are_coplanar & a9,b9,c9,q are_coplanar ) by A5, Th6; c9,r,a9 is_collinear by A7, Th1; then A9: a9,b9,c9,r are_coplanar by Th6; p,a9,b9 is_collinear by A4, Th1; then A10: a9,b9,c9,p are_coplanar by Th6; c,r,a is_collinear by A6, Th1; then A11: a,b,c,r are_coplanar by Th6; p,a,b is_collinear by A3, Th1; then A12: a,b,c,p are_coplanar by Th6; ( not a,b,c,a9 are_coplanar & not a,b,c is_collinear ) by A1, Th6, Th15; hence p,q,r is_collinear by A2, A12, A11, A10, A8, A9, Th16; ::_thesis: verum end; theorem Th18: :: PROJDES1:18 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, d, o being Element of FCPS st not a,b,c,d are_coplanar & a,b,c,o are_coplanar & not a,b,o is_collinear holds not a,b,d,o are_coplanar proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, d, o being Element of FCPS st not a,b,c,d are_coplanar & a,b,c,o are_coplanar & not a,b,o is_collinear holds not a,b,d,o are_coplanar let a, b, c, d, o be Element of FCPS; ::_thesis: ( not a,b,c,d are_coplanar & a,b,c,o are_coplanar & not a,b,o is_collinear implies not a,b,d,o are_coplanar ) assume that A1: not a,b,c,d are_coplanar and A2: a,b,c,o are_coplanar and A3: not a,b,o is_collinear ; ::_thesis: not a,b,d,o are_coplanar assume a,b,d,o are_coplanar ; ::_thesis: contradiction then A4: a,b,o,d are_coplanar by Th7; a,b,o,c are_coplanar by A2, Th7; hence contradiction by A1, A3, A4, Lm4; ::_thesis: verum end; theorem Th19: :: PROJDES1:19 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, o, a9, b9, c9 being Element of FCPS st not a,b,c,o are_coplanar & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & o <> a9 & o <> b9 & o <> c9 holds ( not a9,b9,c9 is_collinear & not a9,b9,c9,o are_coplanar ) proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, o, a9, b9, c9 being Element of FCPS st not a,b,c,o are_coplanar & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & o <> a9 & o <> b9 & o <> c9 holds ( not a9,b9,c9 is_collinear & not a9,b9,c9,o are_coplanar ) let a, b, c, o, a9, b9, c9 be Element of FCPS; ::_thesis: ( not a,b,c,o are_coplanar & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & o <> a9 & o <> b9 & o <> c9 implies ( not a9,b9,c9 is_collinear & not a9,b9,c9,o are_coplanar ) ) assume that A1: ( not a,b,c,o are_coplanar & o,a,a9 is_collinear ) and A2: o,b,b9 is_collinear and A3: o,c,c9 is_collinear and A4: o <> a9 and A5: o <> b9 and A6: o <> c9 ; ::_thesis: ( not a9,b9,c9 is_collinear & not a9,b9,c9,o are_coplanar ) ( a,o,a9 is_collinear & not o,b,c,a are_coplanar ) by A1, Th1, Th7; then not o,b,c,a9 are_coplanar by A4, Th15; then A7: not o,a9,b,c are_coplanar by Th7; c,o,c9 is_collinear by A3, Th1; then not o,a9,b,c9 are_coplanar by A6, A7, Th15; then A8: not o,a9,c9,b are_coplanar by Th7; b,o,b9 is_collinear by A2, Th1; then not o,a9,c9,b9 are_coplanar by A5, A8, Th15; then not a9,b9,c9,o are_coplanar by Th7; hence ( not a9,b9,c9 is_collinear & not a9,b9,c9,o are_coplanar ) by Th6; ::_thesis: verum end; theorem Th20: :: PROJDES1:20 for FCPS being up-3-dimensional CollProjectiveSpace for a, b, c, o, d, d9, a9, b9, s, t, u being Element of FCPS st a,b,c,o are_coplanar & not a,b,c,d are_coplanar & not a,b,d,o are_coplanar & o,d,d9 is_collinear & o,a,a9 is_collinear & o,b,b9 is_collinear & a,d,s is_collinear & a9,d9,s is_collinear & b,d,t is_collinear & b9,d9,t is_collinear & c,d,u is_collinear & o <> a9 & d <> d9 & o <> b9 holds not s,t,u is_collinear proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for a, b, c, o, d, d9, a9, b9, s, t, u being Element of FCPS st a,b,c,o are_coplanar & not a,b,c,d are_coplanar & not a,b,d,o are_coplanar & o,d,d9 is_collinear & o,a,a9 is_collinear & o,b,b9 is_collinear & a,d,s is_collinear & a9,d9,s is_collinear & b,d,t is_collinear & b9,d9,t is_collinear & c,d,u is_collinear & o <> a9 & d <> d9 & o <> b9 holds not s,t,u is_collinear let a, b, c, o, d, d9, a9, b9, s, t, u be Element of FCPS; ::_thesis: ( a,b,c,o are_coplanar & not a,b,c,d are_coplanar & not a,b,d,o are_coplanar & o,d,d9 is_collinear & o,a,a9 is_collinear & o,b,b9 is_collinear & a,d,s is_collinear & a9,d9,s is_collinear & b,d,t is_collinear & b9,d9,t is_collinear & c,d,u is_collinear & o <> a9 & d <> d9 & o <> b9 implies not s,t,u is_collinear ) assume that A1: a,b,c,o are_coplanar and A2: not a,b,c,d are_coplanar and A3: not a,b,d,o are_coplanar and A4: o,d,d9 is_collinear and A5: o,a,a9 is_collinear and A6: o,b,b9 is_collinear and A7: a,d,s is_collinear and A8: a9,d9,s is_collinear and A9: b,d,t is_collinear and A10: b9,d9,t is_collinear and A11: c,d,u is_collinear and A12: o <> a9 and A13: d <> d9 and A14: o <> b9 ; ::_thesis: not s,t,u is_collinear A15: d,b,c,b are_coplanar by Th14; A16: not d,b,c,a are_coplanar by A2, Th7; then A17: not d,b,c is_collinear by Th6; not b,d,o is_collinear by A3, Th6; then not o,b,d is_collinear by Th1; then A18: t <> d by A4, A6, A10, A13, A14, Th5; ( d,b,t is_collinear & d,c,u is_collinear ) by A9, A11, Th1; then A19: t <> u by A17, A18, Lm1; A20: d,b,c,d are_coplanar by Th14; not d,o,a is_collinear by A3, Th6; then not o,a,d is_collinear by Th1; then s <> d by A4, A5, A8, A12, A13, Th5; then A21: not d,b,c,s are_coplanar by A7, A16, Th15; b <> d by A2, Th14; then A22: d,b,c,t are_coplanar by A9, A15, A20, Th10; d,b,c,c are_coplanar by Th14; then d,b,c,u are_coplanar by A1, A3, A11, A20, Th10; then not t,u,s is_collinear by A21, A22, A19, Th10; hence not s,t,u is_collinear by Th1; ::_thesis: verum end; definition let FCPS be up-3-dimensional CollProjectiveSpace; let o, a, b, c be Element of FCPS; predo,a,b,c constitute_a_quadrangle means :Def2: :: PROJDES1:def 2 ( not a,b,c is_collinear & not o,a,b is_collinear & not o,b,c is_collinear & not o,c,a is_collinear ); end; :: deftheorem Def2 defines constitute_a_quadrangle PROJDES1:def_2_:_ for FCPS being up-3-dimensional CollProjectiveSpace for o, a, b, c being Element of FCPS holds ( o,a,b,c constitute_a_quadrangle iff ( not a,b,c is_collinear & not o,a,b is_collinear & not o,b,c is_collinear & not o,c,a is_collinear ) ); Lm7: for FCPS being up-3-dimensional CollProjectiveSpace for o, a9, b9, c9, a, b, c, p, q, r being Element of FCPS st o <> a9 & o <> b9 & o <> c9 & a <> a9 & b <> b9 & o,a,b,c constitute_a_quadrangle & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & b,c,q is_collinear & b9,c9,q is_collinear & a,c,r is_collinear & a9,c9,r is_collinear holds p,q,r is_collinear proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for o, a9, b9, c9, a, b, c, p, q, r being Element of FCPS st o <> a9 & o <> b9 & o <> c9 & a <> a9 & b <> b9 & o,a,b,c constitute_a_quadrangle & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & b,c,q is_collinear & b9,c9,q is_collinear & a,c,r is_collinear & a9,c9,r is_collinear holds p,q,r is_collinear let o, a9, b9, c9, a, b, c, p, q, r be Element of FCPS; ::_thesis: ( o <> a9 & o <> b9 & o <> c9 & a <> a9 & b <> b9 & o,a,b,c constitute_a_quadrangle & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & b,c,q is_collinear & b9,c9,q is_collinear & a,c,r is_collinear & a9,c9,r is_collinear implies p,q,r is_collinear ) assume that A1: o <> a9 and A2: o <> b9 and A3: o <> c9 and A4: a <> a9 and A5: b <> b9 and A6: o,a,b,c constitute_a_quadrangle and A7: o,a,a9 is_collinear and A8: o,b,b9 is_collinear and A9: o,c,c9 is_collinear and A10: a,b,p is_collinear and A11: a9,b9,p is_collinear and A12: b,c,q is_collinear and A13: b9,c9,q is_collinear and A14: a,c,r is_collinear and A15: a9,c9,r is_collinear ; ::_thesis: p,q,r is_collinear A16: not o,b,c is_collinear by A6, Def2; A17: not a,b,c is_collinear by A6, Def2; A18: not o,c,a is_collinear by A6, Def2; A19: not o,a,b is_collinear by A6, Def2; A20: now__::_thesis:_(_a,b,c,o_are_coplanar_implies_p,q,r_is_collinear_) assume A21: a,b,c,o are_coplanar ; ::_thesis: p,q,r is_collinear then A22: b,c,a,o are_coplanar by Th7; A23: a,c,b,o are_coplanar by A21, Th7; consider d being Element of FCPS such that A24: not a,b,c,d are_coplanar by A17, Th13; A25: not a,c,b,d are_coplanar by A24, Th7; A26: a,b,c,c are_coplanar by Th14; A27: not b,c,a,d are_coplanar by A24, Th7; consider d9 being Element of FCPS such that A28: o <> d9 and A29: d <> d9 and A30: o,d,d9 is_collinear by ANPROJ_2:def_10; a,o,a9 is_collinear by A7, Th1; then consider s being Element of FCPS such that A31: a,d,s is_collinear and A32: a9,d9,s is_collinear by A30, ANPROJ_2:def_9; A33: d,a,s is_collinear by A31, Th1; b,o,b9 is_collinear by A8, Th1; then consider t being Element of FCPS such that A34: ( b,d,t is_collinear & b9,d9,t is_collinear ) by A30, ANPROJ_2:def_9; c,o,c9 is_collinear by A9, Th1; then consider u being Element of FCPS such that A35: c,d,u is_collinear and A36: c9,d9,u is_collinear by A30, ANPROJ_2:def_9; A37: s,t,u,s are_coplanar by Th14; not a,c,o is_collinear by A18, Th1; then A38: not a,c,d,o are_coplanar by A25, A23, Th18; then not a9,c9,d9 is_collinear by A1, A3, A7, A9, A28, A30, Th19; then r,u,s is_collinear by A4, A7, A14, A15, A31, A32, A35, A36, A38, Th17; then A39: s,u,r is_collinear by Th1; not a,b,o is_collinear by A19, Th1; then A40: not a,b,d,o are_coplanar by A21, A24, Th18; then not d,o,a is_collinear by Th6; then A41: not o,d,a is_collinear by Th1; A42: s,t,u,u are_coplanar by Th14; not b,c,o is_collinear by A16, Th1; then A43: not b,c,d,o are_coplanar by A27, A22, Th18; then not b9,c9,d9 is_collinear by A2, A3, A8, A9, A28, A30, Th19; then q,u,t is_collinear by A5, A8, A12, A13, A34, A35, A36, A43, Th17; then A44: u,t,q is_collinear by Th1; A45: s,t,u,t are_coplanar by Th14; d9,a9,s is_collinear by A32, Th1; then s <> a by A4, A7, A28, A30, A41, Th5; then A46: not a,b,c,s are_coplanar by A24, A33, Th15; A47: a,b,c,b are_coplanar by Th14; not a9,b9,d9 is_collinear by A1, A2, A7, A8, A28, A30, A40, Th19; then p,t,s is_collinear by A4, A7, A10, A11, A31, A32, A34, A40, Th17; then A48: t,s,p is_collinear by Th1; A49: a,b,c,a are_coplanar by Th14; A50: not s,t,u is_collinear by A1, A2, A7, A8, A21, A24, A29, A30, A31, A32, A34, A35, A40, Th20; then t <> u by ANPROJ_2:def_7; then A51: s,t,u,q are_coplanar by A44, A45, A42, Th10; c <> a by A18, ANPROJ_2:def_7; then A52: a,b,c,r are_coplanar by A14, A49, A26, Th10; b <> c by A16, ANPROJ_2:def_7; then A53: a,b,c,q are_coplanar by A12, A47, A26, Th10; a <> b by A19, ANPROJ_2:def_7; then A54: a,b,c,p are_coplanar by A10, A49, A47, Th10; u <> s by A50, ANPROJ_2:def_7; then A55: s,t,u,r are_coplanar by A39, A37, A42, Th10; s <> t by A50, ANPROJ_2:def_7; then s,t,u,p are_coplanar by A48, A37, A45, Th10; hence p,q,r is_collinear by A17, A50, A46, A54, A53, A52, A51, A55, Th16; ::_thesis: verum end; now__::_thesis:_(_not_a,b,c,o_are_coplanar_implies_p,q,r_is_collinear_) assume A56: not a,b,c,o are_coplanar ; ::_thesis: p,q,r is_collinear then not a9,b9,c9 is_collinear by A1, A2, A3, A7, A8, A9, Th19; hence p,q,r is_collinear by A4, A7, A10, A11, A12, A13, A14, A15, A56, Th17; ::_thesis: verum end; hence p,q,r is_collinear by A20; ::_thesis: verum end; theorem Th21: :: PROJDES1:21 for FCPS being up-3-dimensional CollProjectiveSpace for o, a, b, c, a9, b9, c9, p, r, q being Element of FCPS st not o,a,b is_collinear & not o,b,c is_collinear & not o,a,c is_collinear & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & a <> a9 & b,c,r is_collinear & b9,c9,r is_collinear & a,c,q is_collinear & b <> b9 & a9,c9,q is_collinear & o <> a9 & o <> b9 & o <> c9 holds r,q,p is_collinear proof let FCPS be up-3-dimensional CollProjectiveSpace; ::_thesis: for o, a, b, c, a9, b9, c9, p, r, q being Element of FCPS st not o,a,b is_collinear & not o,b,c is_collinear & not o,a,c is_collinear & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & a <> a9 & b,c,r is_collinear & b9,c9,r is_collinear & a,c,q is_collinear & b <> b9 & a9,c9,q is_collinear & o <> a9 & o <> b9 & o <> c9 holds r,q,p is_collinear let o, a, b, c, a9, b9, c9, p, r, q be Element of FCPS; ::_thesis: ( not o,a,b is_collinear & not o,b,c is_collinear & not o,a,c is_collinear & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & a <> a9 & b,c,r is_collinear & b9,c9,r is_collinear & a,c,q is_collinear & b <> b9 & a9,c9,q is_collinear & o <> a9 & o <> b9 & o <> c9 implies r,q,p is_collinear ) assume that A1: not o,a,b is_collinear and A2: not o,b,c is_collinear and A3: not o,a,c is_collinear and A4: ( o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear ) and A5: a,b,p is_collinear and A6: ( a9,b9,p is_collinear & a <> a9 ) and A7: b,c,r is_collinear and A8: b9,c9,r is_collinear and A9: a,c,q is_collinear and A10: ( b <> b9 & a9,c9,q is_collinear & o <> a9 & o <> b9 & o <> c9 ) ; ::_thesis: r,q,p is_collinear A11: now__::_thesis:_(_a,b,c_is_collinear_implies_r,q,p_is_collinear_) A12: ( b <> c & b,c,b is_collinear ) by A2, ANPROJ_2:def_7; assume A13: a,b,c is_collinear ; ::_thesis: r,q,p is_collinear then b,c,a is_collinear by Th1; then A14: a,b,r is_collinear by A7, A12, ANPROJ_2:def_8; A15: ( c <> a & a,c,a is_collinear ) by A3, ANPROJ_2:def_7; a,c,b is_collinear by A13, Th1; then A16: a,b,q is_collinear by A9, A15, ANPROJ_2:def_8; a <> b by A1, ANPROJ_2:def_7; hence r,q,p is_collinear by A5, A14, A16, ANPROJ_2:def_8; ::_thesis: verum end; A17: not o,c,a is_collinear by A3, Th1; now__::_thesis:_(_not_a,b,c_is_collinear_implies_r,q,p_is_collinear_) assume not a,b,c is_collinear ; ::_thesis: r,q,p is_collinear then o,a,b,c constitute_a_quadrangle by A1, A2, A17, Def2; then p,r,q is_collinear by A4, A5, A6, A7, A8, A9, A10, Lm7; hence r,q,p is_collinear by Th1; ::_thesis: verum end; hence r,q,p is_collinear by A11; ::_thesis: verum end; theorem Th22: :: PROJDES1:22 for CS being up-3-dimensional CollProjectiveSpace holds CS is Desarguesian proof let CS be up-3-dimensional CollProjectiveSpace; ::_thesis: CS is Desarguesian for o, a, b, c, a9, b9, c9, r, q, p being Element of CS st o <> a9 & a <> a9 & o <> b9 & b <> b9 & o <> c9 & c <> c9 & not o,a,b is_collinear & not o,a,c is_collinear & not o,b,c is_collinear & a,b,p is_collinear & a9,b9,p is_collinear & b,c,r is_collinear & b9,c9,r is_collinear & a,c,q is_collinear & a9,c9,q is_collinear & o,a,a9 is_collinear & o,b,b9 is_collinear & o,c,c9 is_collinear holds r,q,p is_collinear by Th21; hence CS is Desarguesian by ANPROJ_2:def_12; ::_thesis: verum end; registration clusterV38() V101() V102() proper Vebleian at_least_3rank up-3-dimensional -> Desarguesian up-3-dimensional for L13(); correctness coherence for b1 being up-3-dimensional CollProjectiveSpace holds b1 is Desarguesian ; by Th22; end;