:: REALSET3 semantic presentation begin theorem Th1: :: REALSET3:1 for F being Field holds (revf F) . (1. F) = 1. F proof let F be Field; ::_thesis: (revf F) . (1. F) = 1. F A1: 1. F is Element of NonZero F by STRUCT_0:2; then (1. F) * (1. F) = 1. F by REALSET2:6; hence (revf F) . (1. F) = 1. F by A1, REALSET2:22; ::_thesis: verum end; theorem Th2: :: REALSET3:2 for F being Field for a, b being Element of NonZero F holds (revf F) . ((omf F) . (a,((revf F) . b))) = (omf F) . (b,((revf F) . a)) proof let F be Field; ::_thesis: for a, b being Element of NonZero F holds (revf F) . ((omf F) . (a,((revf F) . b))) = (omf F) . (b,((revf F) . a)) let a, b be Element of NonZero F; ::_thesis: (revf F) . ((omf F) . (a,((revf F) . b))) = (omf F) . (b,((revf F) . a)) reconsider revfa = (revf F) . a, revfb = (revf F) . b as Element of NonZero F ; A1: (omf F) . (a,((revf F) . b)) is Element of NonZero F by REALSET2:24; A2: (omf F) . (b,((revf F) . a)) is Element of NonZero F by REALSET2:24; revfb * (b * revfa) = revfa * (b * revfb) by REALSET2:4 .= revfa * ((omf F) . (b,revfb)) .= revfa * (1. F) by REALSET2:def_6 .= (revf F) . a by REALSET2:6 ; then (a * revfb) * (b * revfa) = a * revfa by A2, REALSET2:4 .= (omf F) . (a,revfa) .= 1. F by REALSET2:def_6 ; hence (revf F) . ((omf F) . (a,((revf F) . b))) = (omf F) . (b,((revf F) . a)) by A1, A2, REALSET2:22; ::_thesis: verum end; theorem Th3: :: REALSET3:3 for F being Field for a, b being Element of NonZero F holds (revf F) . ((omf F) . (a,b)) = (omf F) . (((revf F) . a),((revf F) . b)) proof let F be Field; ::_thesis: for a, b being Element of NonZero F holds (revf F) . ((omf F) . (a,b)) = (omf F) . (((revf F) . a),((revf F) . b)) let a, b be Element of NonZero F; ::_thesis: (revf F) . ((omf F) . (a,b)) = (omf F) . (((revf F) . a),((revf F) . b)) reconsider revfa = (revf F) . a, revfb = (revf F) . b as Element of NonZero F ; thus (revf F) . ((omf F) . (a,b)) = (revf F) . ((omf F) . (a,((revf F) . ((revf F) . b)))) by REALSET2:23 .= revfb * revfa by Th2 .= revfa * revfb .= (omf F) . (((revf F) . a),((revf F) . b)) ; ::_thesis: verum end; theorem Th4: :: REALSET3:4 for F being Field for a, b, c, d being Element of F holds ( a - b = c - d iff a + d = b + c ) proof let F be Field; ::_thesis: for a, b, c, d being Element of F holds ( a - b = c - d iff a + d = b + c ) let a, b, c, d be Element of F; ::_thesis: ( a - b = c - d iff a + d = b + c ) hereby ::_thesis: ( a + d = b + c implies a - b = c - d ) assume a - b = c - d ; ::_thesis: a + d = b + c then (c - d) + b = (a + (- b)) + b .= a + (b - b) by RLVECT_1:def_3 .= a + (0. F) by RLVECT_1:5 .= a by RLVECT_1:4 ; hence a + d = ((c + b) + (- d)) + d by RLVECT_1:def_3 .= (c + b) + (d - d) by RLVECT_1:def_3 .= (c + b) + (0. F) by RLVECT_1:5 .= b + c by RLVECT_1:4 ; ::_thesis: verum end; assume a + d = b + c ; ::_thesis: a - b = c - d then (b + c) - d = a + (d - d) by RLVECT_1:def_3 .= a + (0. F) by RLVECT_1:5 .= a by RLVECT_1:4 ; hence a - b = ((c - d) + b) - b by RLVECT_1:def_3 .= (c - d) + (b - b) by RLVECT_1:def_3 .= (c - d) + (0. F) by RLVECT_1:5 .= c - d by RLVECT_1:4 ; ::_thesis: verum end; theorem Th5: :: REALSET3:5 for F being Field for a, c being Element of F for b, d being Element of NonZero F holds ( (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) iff (omf F) . (a,d) = (omf F) . (b,c) ) proof let F be Field; ::_thesis: for a, c being Element of F for b, d being Element of NonZero F holds ( (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) iff (omf F) . (a,d) = (omf F) . (b,c) ) let a, c be Element of F; ::_thesis: for b, d being Element of NonZero F holds ( (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) iff (omf F) . (a,d) = (omf F) . (b,c) ) let b, d be Element of NonZero F; ::_thesis: ( (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) iff (omf F) . (a,d) = (omf F) . (b,c) ) A1: ( (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) implies (omf F) . (a,d) = (omf F) . (b,c) ) proof reconsider revfb = (revf F) . b, revfd = (revf F) . d as Element of NonZero F ; reconsider crevfd = c * revfd as Element of F ; assume A2: (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) ; ::_thesis: (omf F) . (a,d) = (omf F) . (b,c) A3: c = c * (1. F) by REALSET2:21 .= (omf F) . (c,(d * revfd)) by REALSET2:def_6 .= c * (revfd * d) .= (c * revfd) * d by REALSET2:19 ; a = a * (1. F) by REALSET2:21 .= (omf F) . (a,(b * revfb)) by REALSET2:def_6 .= a * (revfb * b) .= (a * revfb) * b by REALSET2:19 .= b * crevfd by A2 .= (omf F) . (b,((omf F) . (c,((revf F) . d)))) ; hence (omf F) . (a,d) = (b * (c * revfd)) * d .= b * ((c * revfd) * d) by REALSET2:19 .= (omf F) . (b,c) by A3 ; ::_thesis: verum end; ( (omf F) . (a,d) = (omf F) . (b,c) implies (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) ) proof reconsider revfd = (revf F) . d, revfb = (revf F) . b as Element of NonZero F ; reconsider crevfd = (omf F) . (c,revfd) as Element of F ; assume A4: (omf F) . (a,d) = (omf F) . (b,c) ; ::_thesis: (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) a = a * (1. F) by REALSET2:21 .= (omf F) . (a,(1. F)) .= a * (d * revfd) by REALSET2:def_6 .= (a * d) * revfd by REALSET2:19 .= (b * c) * revfd by A4 .= b * (c * revfd) by REALSET2:19 .= crevfd * b ; hence (omf F) . (a,((revf F) . b)) = (crevfd * b) * revfb .= crevfd * (b * revfb) by REALSET2:19 .= ((omf F) . (c,revfd)) * (1. F) by REALSET2:def_6 .= (omf F) . (c,((revf F) . d)) by REALSET2:21 ; ::_thesis: verum end; hence ( (omf F) . (a,((revf F) . b)) = (omf F) . (c,((revf F) . d)) iff (omf F) . (a,d) = (omf F) . (b,c) ) by A1; ::_thesis: verum end; theorem :: REALSET3:6 for F being Field for a, b being Element of F for c, d being Element of NonZero F holds (omf F) . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (omf F) . (((omf F) . (a,b)),((revf F) . ((omf F) . (c,d)))) proof let F be Field; ::_thesis: for a, b being Element of F for c, d being Element of NonZero F holds (omf F) . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (omf F) . (((omf F) . (a,b)),((revf F) . ((omf F) . (c,d)))) let a, b be Element of F; ::_thesis: for c, d being Element of NonZero F holds (omf F) . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (omf F) . (((omf F) . (a,b)),((revf F) . ((omf F) . (c,d)))) let c, d be Element of NonZero F; ::_thesis: (omf F) . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (omf F) . (((omf F) . (a,b)),((revf F) . ((omf F) . (c,d)))) reconsider revfc = (revf F) . c, revfd = (revf F) . d as Element of NonZero F ; (omf F) . (c,d) is Element of NonZero F by REALSET2:24; then reconsider revfcd = (revf F) . (c * d) as Element of F by REALSET2:24; thus (omf F) . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (a * revfc) * (b * revfd) .= a * (revfc * (b * revfd)) by REALSET2:19 .= a * (b * (revfc * revfd)) by REALSET2:19 .= (omf F) . (a,((omf F) . (b,((revf F) . ((omf F) . (c,d)))))) by Th3 .= a * (b * revfcd) .= (a * b) * revfcd by REALSET2:19 .= (omf F) . (((omf F) . (a,b)),((revf F) . ((omf F) . (c,d)))) ; ::_thesis: verum end; theorem :: REALSET3:7 for F being Field for a, b being Element of F for c, d being Element of NonZero F holds the addF of F . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (omf F) . (( the addF of F . (((omf F) . (a,d)),((omf F) . (b,c)))),((revf F) . ((omf F) . (c,d)))) proof let F be Field; ::_thesis: for a, b being Element of F for c, d being Element of NonZero F holds the addF of F . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (omf F) . (( the addF of F . (((omf F) . (a,d)),((omf F) . (b,c)))),((revf F) . ((omf F) . (c,d)))) let a, b be Element of F; ::_thesis: for c, d being Element of NonZero F holds the addF of F . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (omf F) . (( the addF of F . (((omf F) . (a,d)),((omf F) . (b,c)))),((revf F) . ((omf F) . (c,d)))) let c, d be Element of NonZero F; ::_thesis: the addF of F . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = (omf F) . (( the addF of F . (((omf F) . (a,d)),((omf F) . (b,c)))),((revf F) . ((omf F) . (c,d)))) reconsider revfd = (revf F) . d as Element of F by XBOOLE_0:def_5; A1: a = a * (1. F) by REALSET2:21 .= (omf F) . (a,(1. F)) .= a * (d * revfd) by REALSET2:def_6 .= (a * d) * revfd by REALSET2:19 ; reconsider revfc = (revf F) . c, revfd = (revf F) . d as Element of NonZero F ; (omf F) . (c,d) is Element of NonZero F by REALSET2:24; then reconsider revfcd = (revf F) . (c * d) as Element of F by REALSET2:24; b = b * (1. F) by REALSET2:21 .= (omf F) . (b,(1. F)) .= b * (c * revfc) by REALSET2:def_6 .= (b * c) * revfc by REALSET2:19 ; then A2: (omf F) . (b,((revf F) . d)) = ((b * c) * revfc) * revfd .= (b * c) * (revfc * revfd) by REALSET2:19 .= (omf F) . (((omf F) . (b,c)),((revf F) . ((omf F) . (c,d)))) by Th3 ; (omf F) . (a,((revf F) . c)) = ((a * d) * revfd) * revfc by A1 .= (a * d) * (revfd * revfc) by REALSET2:19 .= (omf F) . (((omf F) . (a,d)),(revfc * revfd)) .= (omf F) . (((omf F) . (a,d)),((revf F) . ((omf F) . (c,d)))) by Th3 ; hence the addF of F . (((omf F) . (a,((revf F) . c))),((omf F) . (b,((revf F) . d)))) = ((a * d) * revfcd) + ((b * c) * revfcd) by A2 .= ((a * d) + (b * c)) * revfcd by VECTSP_1:def_7 .= (omf F) . (( the addF of F . (((omf F) . (a,d)),((omf F) . (b,c)))),((revf F) . ((omf F) . (c,d)))) ; ::_thesis: verum end; definition let F be Field; func osf F -> BinOp of the carrier of F means :Def1: :: REALSET3:def 1 for x, y being Element of F holds it . (x,y) = the addF of F . (x,((comp F) . y)); existence ex b1 being BinOp of the carrier of F st for x, y being Element of F holds b1 . (x,y) = the addF of F . (x,((comp F) . y)) proof defpred S1[ Element of F, Element of F, set ] means $3 = the addF of F . ($1,((comp F) . $2)); A1: for x, y being Element of F ex z being Element of F st S1[x,y,z] ; ex f being BinOp of the carrier of F st for x, y being Element of F holds S1[x,y,f . (x,y)] from BINOP_1:sch_3(A1); then consider S being BinOp of the carrier of F such that A2: for x, y being Element of F holds S . (x,y) = the addF of F . (x,((comp F) . y)) ; take S ; ::_thesis: for x, y being Element of F holds S . (x,y) = the addF of F . (x,((comp F) . y)) thus for x, y being Element of F holds S . (x,y) = the addF of F . (x,((comp F) . y)) by A2; ::_thesis: verum end; uniqueness for b1, b2 being BinOp of the carrier of F st ( for x, y being Element of F holds b1 . (x,y) = the addF of F . (x,((comp F) . y)) ) & ( for x, y being Element of F holds b2 . (x,y) = the addF of F . (x,((comp F) . y)) ) holds b1 = b2 proof let S1, S2 be BinOp of the carrier of F; ::_thesis: ( ( for x, y being Element of F holds S1 . (x,y) = the addF of F . (x,((comp F) . y)) ) & ( for x, y being Element of F holds S2 . (x,y) = the addF of F . (x,((comp F) . y)) ) implies S1 = S2 ) assume that A3: for x, y being Element of F holds S1 . (x,y) = the addF of F . (x,((comp F) . y)) and A4: for x, y being Element of F holds S2 . (x,y) = the addF of F . (x,((comp F) . y)) ; ::_thesis: S1 = S2 now__::_thesis:_for_p_being_set_st_p_in_[:_the_carrier_of_F,_the_carrier_of_F:]_holds_ S1_._p_=_S2_._p let p be set ; ::_thesis: ( p in [: the carrier of F, the carrier of F:] implies S1 . p = S2 . p ) assume p in [: the carrier of F, the carrier of F:] ; ::_thesis: S1 . p = S2 . p then consider x, y being set such that A5: ( x in the carrier of F & y in the carrier of F ) and A6: p = [x,y] by ZFMISC_1:def_2; thus S1 . p = S1 . (x,y) by A6 .= the addF of F . (x,((comp F) . y)) by A3, A5 .= S2 . (x,y) by A4, A5 .= S2 . p by A6 ; ::_thesis: verum end; hence S1 = S2 by FUNCT_2:12; ::_thesis: verum end; end; :: deftheorem Def1 defines osf REALSET3:def_1_:_ for F being Field for b2 being BinOp of the carrier of F holds ( b2 = osf F iff for x, y being Element of F holds b2 . (x,y) = the addF of F . (x,((comp F) . y)) ); theorem :: REALSET3:8 for F being Field for x being Element of F holds (osf F) . (x,x) = 0. F proof let F be Field; ::_thesis: for x being Element of F holds (osf F) . (x,x) = 0. F let x be Element of F; ::_thesis: (osf F) . (x,x) = 0. F thus (osf F) . (x,x) = the addF of F . (x,((comp F) . x)) by Def1 .= x - x by VECTSP_1:def_13 .= 0. F by RLVECT_1:5 ; ::_thesis: verum end; theorem Th9: :: REALSET3:9 for F being Field for a, b, c being Element of F holds (omf F) . (a,((osf F) . (b,c))) = (osf F) . (((omf F) . (a,b)),((omf F) . (a,c))) proof let F be Field; ::_thesis: for a, b, c being Element of F holds (omf F) . (a,((osf F) . (b,c))) = (osf F) . (((omf F) . (a,b)),((omf F) . (a,c))) let a, b, c be Element of F; ::_thesis: (omf F) . (a,((osf F) . (b,c))) = (osf F) . (((omf F) . (a,b)),((omf F) . (a,c))) thus (omf F) . (a,((osf F) . (b,c))) = (omf F) . (a,( the addF of F . (b,((comp F) . c)))) by Def1 .= a * (b - c) by VECTSP_1:def_13 .= (a * b) - (a * c) by REALSET2:11 .= the addF of F . (((omf F) . (a,b)),((comp F) . (a * c))) by VECTSP_1:def_13 .= (osf F) . (((omf F) . (a,b)),((omf F) . (a,c))) by Def1 ; ::_thesis: verum end; theorem :: REALSET3:10 for F being Field for a, b, c being Element of F holds (omf F) . (((osf F) . (a,b)),c) = (osf F) . (((omf F) . (a,c)),((omf F) . (b,c))) proof let F be Field; ::_thesis: for a, b, c being Element of F holds (omf F) . (((osf F) . (a,b)),c) = (osf F) . (((omf F) . (a,c)),((omf F) . (b,c))) let a, b, c be Element of F; ::_thesis: (omf F) . (((osf F) . (a,b)),c) = (osf F) . (((omf F) . (a,c)),((omf F) . (b,c))) thus (omf F) . (((osf F) . (a,b)),c) = ((osf F) . (a,b)) * c .= c * ((osf F) . (a,b)) .= (omf F) . (c,((osf F) . (a,b))) .= (osf F) . ((c * a),(c * b)) by Th9 .= (osf F) . ((a * c),(b * c)) .= (osf F) . (((omf F) . (a,c)),((omf F) . (b,c))) ; ::_thesis: verum end; theorem :: REALSET3:11 for F being Field for a, b being Element of F holds (osf F) . (a,b) = (comp F) . ((osf F) . (b,a)) proof let F be Field; ::_thesis: for a, b being Element of F holds (osf F) . (a,b) = (comp F) . ((osf F) . (b,a)) let a, b be Element of F; ::_thesis: (osf F) . (a,b) = (comp F) . ((osf F) . (b,a)) (osf F) . (a,b) = the addF of F . (a,((comp F) . b)) by Def1 .= a + (- b) by VECTSP_1:def_13 .= - (b - a) by RLVECT_1:33 .= (comp F) . (b + (- a)) by VECTSP_1:def_13 .= (comp F) . ( the addF of F . (b,((comp F) . a))) by VECTSP_1:def_13 ; hence (osf F) . (a,b) = (comp F) . ((osf F) . (b,a)) by Def1; ::_thesis: verum end; theorem :: REALSET3:12 for F being Field for a, b being Element of F holds (osf F) . (((comp F) . a),b) = (comp F) . ( the addF of F . (a,b)) proof let F be Field; ::_thesis: for a, b being Element of F holds (osf F) . (((comp F) . a),b) = (comp F) . ( the addF of F . (a,b)) let a, b be Element of F; ::_thesis: (osf F) . (((comp F) . a),b) = (comp F) . ( the addF of F . (a,b)) thus (osf F) . (((comp F) . a),b) = the addF of F . (((comp F) . a),((comp F) . b)) by Def1 .= the addF of F . ((- a),((comp F) . b)) by VECTSP_1:def_13 .= (- a) + (- b) by VECTSP_1:def_13 .= - (a + b) by RLVECT_1:31 .= (comp F) . ( the addF of F . (a,b)) by VECTSP_1:def_13 ; ::_thesis: verum end; theorem Th13: :: REALSET3:13 for F being Field for a, b, c, d being Element of F holds ( (osf F) . (a,b) = (osf F) . (c,d) iff a + d = b + c ) proof let F be Field; ::_thesis: for a, b, c, d being Element of F holds ( (osf F) . (a,b) = (osf F) . (c,d) iff a + d = b + c ) let a, b, c, d be Element of F; ::_thesis: ( (osf F) . (a,b) = (osf F) . (c,d) iff a + d = b + c ) A1: (osf F) . (c,d) = the addF of F . (c,((comp F) . d)) by Def1 .= c - d by VECTSP_1:def_13 ; (osf F) . (a,b) = the addF of F . (a,((comp F) . b)) by Def1 .= a - b by VECTSP_1:def_13 ; hence ( (osf F) . (a,b) = (osf F) . (c,d) iff a + d = b + c ) by A1, Th4; ::_thesis: verum end; theorem :: REALSET3:14 for F being Field for a being Element of F holds (osf F) . ((0. F),a) = (comp F) . a proof let F be Field; ::_thesis: for a being Element of F holds (osf F) . ((0. F),a) = (comp F) . a let a be Element of F; ::_thesis: (osf F) . ((0. F),a) = (comp F) . a thus (osf F) . ((0. F),a) = (0. F) + ((comp F) . a) by Def1 .= (comp F) . a by REALSET2:2 ; ::_thesis: verum end; theorem Th15: :: REALSET3:15 for F being Field for a being Element of F holds (osf F) . (a,(0. F)) = a proof let F be Field; ::_thesis: for a being Element of F holds (osf F) . (a,(0. F)) = a let a be Element of F; ::_thesis: (osf F) . (a,(0. F)) = a thus (osf F) . (a,(0. F)) = the addF of F . (a,((comp F) . (0. F))) by Def1 .= the addF of F . (a,(- (0. F))) by VECTSP_1:def_13 .= a + (0. F) by RLVECT_1:12 .= a by REALSET2:2 ; ::_thesis: verum end; theorem :: REALSET3:16 for F being Field for a, b, c being Element of F holds ( a + b = c iff (osf F) . (c,a) = b ) proof let F be Field; ::_thesis: for a, b, c being Element of F holds ( a + b = c iff (osf F) . (c,a) = b ) let a, b, c be Element of F; ::_thesis: ( a + b = c iff (osf F) . (c,a) = b ) set d = 0. F; ( c + (0. F) = c & (osf F) . (b,(0. F)) = b ) by Th15, REALSET2:2; hence ( a + b = c iff (osf F) . (c,a) = b ) by Th13; ::_thesis: verum end; theorem :: REALSET3:17 for F being Field for a, b, c being Element of F holds ( a + b = c iff (osf F) . (c,b) = a ) proof let F be Field; ::_thesis: for a, b, c being Element of F holds ( a + b = c iff (osf F) . (c,b) = a ) let a, b, c be Element of F; ::_thesis: ( a + b = c iff (osf F) . (c,b) = a ) set d = 0. F; ( c + (0. F) = c & (osf F) . (a,(0. F)) = a ) by Th15, REALSET2:2; hence ( a + b = c iff (osf F) . (c,b) = a ) by Th13; ::_thesis: verum end; theorem :: REALSET3:18 for F being Field for a, b, c being Element of F holds (osf F) . (a,((osf F) . (b,c))) = the addF of F . (((osf F) . (a,b)),c) proof let F be Field; ::_thesis: for a, b, c being Element of F holds (osf F) . (a,((osf F) . (b,c))) = the addF of F . (((osf F) . (a,b)),c) let a, b, c be Element of F; ::_thesis: (osf F) . (a,((osf F) . (b,c))) = the addF of F . (((osf F) . (a,b)),c) thus (osf F) . (a,((osf F) . (b,c))) = (osf F) . (a,( the addF of F . (b,((comp F) . c)))) by Def1 .= a + ((comp F) . (b + ((comp F) . c))) by Def1 .= a + ((comp F) . (b + (- c))) by VECTSP_1:def_13 .= a + (- (b + (- c))) by VECTSP_1:def_13 .= a + ((- b) + (- (- c))) by RLVECT_1:31 .= a + (((comp F) . b) + (- (- c))) by VECTSP_1:def_13 .= a + (((comp F) . b) + ((comp F) . (- c))) by VECTSP_1:def_13 .= a + (((comp F) . b) + ((comp F) . ((comp F) . c))) by VECTSP_1:def_13 .= a + (((comp F) . b) + c) by REALSET2:9 .= (a + ((comp F) . b)) + c by RLVECT_1:def_3 .= the addF of F . (((osf F) . (a,b)),c) by Def1 ; ::_thesis: verum end; theorem :: REALSET3:19 for F being Field for a, b, c being Element of F holds (osf F) . (a,( the addF of F . (b,c))) = (osf F) . (((osf F) . (a,b)),c) proof let F be Field; ::_thesis: for a, b, c being Element of F holds (osf F) . (a,( the addF of F . (b,c))) = (osf F) . (((osf F) . (a,b)),c) let a, b, c be Element of F; ::_thesis: (osf F) . (a,( the addF of F . (b,c))) = (osf F) . (((osf F) . (a,b)),c) thus (osf F) . (a,( the addF of F . (b,c))) = the addF of F . (a,((comp F) . ( the addF of F . (b,c)))) by Def1 .= a - (b + c) by VECTSP_1:def_13 .= (a - b) - c by RLVECT_1:27 .= the addF of F . (( the addF of F . (a,(- b))),((comp F) . c)) by VECTSP_1:def_13 .= the addF of F . (( the addF of F . (a,((comp F) . b))),((comp F) . c)) by VECTSP_1:def_13 .= the addF of F . (((osf F) . (a,b)),((comp F) . c)) by Def1 .= (osf F) . (((osf F) . (a,b)),c) by Def1 ; ::_thesis: verum end; definition let F be Field; func ovf F -> Function of [: the carrier of F,(NonZero F):], the carrier of F means :Def2: :: REALSET3:def 2 for x being Element of F for y being Element of NonZero F holds it . (x,y) = (omf F) . (x,((revf F) . y)); existence ex b1 being Function of [: the carrier of F,(NonZero F):], the carrier of F st for x being Element of F for y being Element of NonZero F holds b1 . (x,y) = (omf F) . (x,((revf F) . y)) proof defpred S1[ Element of F, Element of NonZero F, set ] means $3 = (omf F) . ($1,((revf F) . $2)); now__::_thesis:_for_x_being_Element_of_F for_y_being_Element_of_NonZero_F_ex_z_being_Element_of_F_st_z_=_(omf_F)_._(x,((revf_F)_._y)) let x be Element of F; ::_thesis: for y being Element of NonZero F ex z being Element of F st z = (omf F) . (x,((revf F) . y)) let y be Element of NonZero F; ::_thesis: ex z being Element of F st z = (omf F) . (x,((revf F) . y)) (revf F) . y is Element of F by XBOOLE_0:def_5; then reconsider z = (omf F) . (x,((revf F) . y)) as Element of F by REALSET2:10; take z = z; ::_thesis: z = (omf F) . (x,((revf F) . y)) thus z = (omf F) . (x,((revf F) . y)) ; ::_thesis: verum end; then A1: for x being Element of F for y being Element of NonZero F ex z being Element of F st S1[x,y,z] ; ex f being Function of [: the carrier of F,(NonZero F):], the carrier of F st for x being Element of F for y being Element of NonZero F holds S1[x,y,f . (x,y)] from BINOP_1:sch_3(A1); hence ex b1 being Function of [: the carrier of F,(NonZero F):], the carrier of F st for x being Element of F for y being Element of NonZero F holds b1 . (x,y) = (omf F) . (x,((revf F) . y)) ; ::_thesis: verum end; uniqueness for b1, b2 being Function of [: the carrier of F,(NonZero F):], the carrier of F st ( for x being Element of F for y being Element of NonZero F holds b1 . (x,y) = (omf F) . (x,((revf F) . y)) ) & ( for x being Element of F for y being Element of NonZero F holds b2 . (x,y) = (omf F) . (x,((revf F) . y)) ) holds b1 = b2 proof let S1, S2 be Function of [: the carrier of F,(NonZero F):], the carrier of F; ::_thesis: ( ( for x being Element of F for y being Element of NonZero F holds S1 . (x,y) = (omf F) . (x,((revf F) . y)) ) & ( for x being Element of F for y being Element of NonZero F holds S2 . (x,y) = (omf F) . (x,((revf F) . y)) ) implies S1 = S2 ) assume that A2: for x being Element of F for y being Element of NonZero F holds S1 . (x,y) = (omf F) . (x,((revf F) . y)) and A3: for x being Element of F for y being Element of NonZero F holds S2 . (x,y) = (omf F) . (x,((revf F) . y)) ; ::_thesis: S1 = S2 now__::_thesis:_for_p_being_set_st_p_in_[:_the_carrier_of_F,(NonZero_F):]_holds_ S1_._p_=_S2_._p let p be set ; ::_thesis: ( p in [: the carrier of F,(NonZero F):] implies S1 . p = S2 . p ) assume p in [: the carrier of F,(NonZero F):] ; ::_thesis: S1 . p = S2 . p then consider x, y being set such that A4: ( x in the carrier of F & y in NonZero F ) and A5: p = [x,y] by ZFMISC_1:def_2; S1 . (x,y) = (omf F) . (x,((revf F) . y)) by A2, A4 .= S2 . (x,y) by A3, A4 ; hence S1 . p = S2 . p by A5; ::_thesis: verum end; hence S1 = S2 by FUNCT_2:12; ::_thesis: verum end; end; :: deftheorem Def2 defines ovf REALSET3:def_2_:_ for F being Field for b2 being Function of [: the carrier of F,(NonZero F):], the carrier of F holds ( b2 = ovf F iff for x being Element of F for y being Element of NonZero F holds b2 . (x,y) = (omf F) . (x,((revf F) . y)) ); theorem Th20: :: REALSET3:20 for F being Field for x being Element of NonZero F holds (ovf F) . (x,x) = 1. F proof let F be Field; ::_thesis: for x being Element of NonZero F holds (ovf F) . (x,x) = 1. F let x be Element of NonZero F; ::_thesis: (ovf F) . (x,x) = 1. F thus (ovf F) . (x,x) = (omf F) . (x,((revf F) . x)) by Def2 .= 1. F by REALSET2:def_6 ; ::_thesis: verum end; theorem Th21: :: REALSET3:21 for F being Field for a, b being Element of F for c being Element of NonZero F holds (omf F) . (a,((ovf F) . (b,c))) = (ovf F) . (((omf F) . (a,b)),c) proof let F be Field; ::_thesis: for a, b being Element of F for c being Element of NonZero F holds (omf F) . (a,((ovf F) . (b,c))) = (ovf F) . (((omf F) . (a,b)),c) let a, b be Element of F; ::_thesis: for c being Element of NonZero F holds (omf F) . (a,((ovf F) . (b,c))) = (ovf F) . (((omf F) . (a,b)),c) let c be Element of NonZero F; ::_thesis: (omf F) . (a,((ovf F) . (b,c))) = (ovf F) . (((omf F) . (a,b)),c) reconsider revfc = (revf F) . c as Element of F by XBOOLE_0:def_5; thus (omf F) . (a,((ovf F) . (b,c))) = a * (b * revfc) by Def2 .= (a * b) * revfc by REALSET2:19 .= (ovf F) . (((omf F) . (a,b)),c) by Def2 ; ::_thesis: verum end; theorem :: REALSET3:22 for F being Field for a being Element of NonZero F holds ( (omf F) . (a,((ovf F) . ((1. F),a))) = 1. F & (omf F) . (((ovf F) . ((1. F),a)),a) = 1. F ) proof let F be Field; ::_thesis: for a being Element of NonZero F holds ( (omf F) . (a,((ovf F) . ((1. F),a))) = 1. F & (omf F) . (((ovf F) . ((1. F),a)),a) = 1. F ) let a be Element of NonZero F; ::_thesis: ( (omf F) . (a,((ovf F) . ((1. F),a))) = 1. F & (omf F) . (((ovf F) . ((1. F),a)),a) = 1. F ) thus A1: (omf F) . (a,((ovf F) . ((1. F),a))) = (ovf F) . ((a * (1. F)),a) by Th21 .= (ovf F) . (a,a) by REALSET2:21 .= 1. F by Th20 ; ::_thesis: (omf F) . (((ovf F) . ((1. F),a)),a) = 1. F thus (omf F) . (((ovf F) . ((1. F),a)),a) = ((ovf F) . ((1. F),a)) * a .= a * ((ovf F) . ((1. F),a)) .= 1. F by A1 ; ::_thesis: verum end; theorem :: REALSET3:23 for F being Field for a, b being Element of NonZero F holds (ovf F) . (a,b) = (revf F) . ((ovf F) . (b,a)) proof let F be Field; ::_thesis: for a, b being Element of NonZero F holds (ovf F) . (a,b) = (revf F) . ((ovf F) . (b,a)) let a, b be Element of NonZero F; ::_thesis: (ovf F) . (a,b) = (revf F) . ((ovf F) . (b,a)) (ovf F) . (a,b) = (omf F) . (a,((revf F) . b)) by Def2 .= (revf F) . ((omf F) . (b,((revf F) . a))) by Th2 ; hence (ovf F) . (a,b) = (revf F) . ((ovf F) . (b,a)) by Def2; ::_thesis: verum end; theorem :: REALSET3:24 for F being Field for a, b being Element of NonZero F holds (ovf F) . (((revf F) . a),b) = (revf F) . ((omf F) . (a,b)) proof let F be Field; ::_thesis: for a, b being Element of NonZero F holds (ovf F) . (((revf F) . a),b) = (revf F) . ((omf F) . (a,b)) let a, b be Element of NonZero F; ::_thesis: (ovf F) . (((revf F) . a),b) = (revf F) . ((omf F) . (a,b)) (revf F) . a is Element of F by XBOOLE_0:def_5; hence (ovf F) . (((revf F) . a),b) = (omf F) . (((revf F) . a),((revf F) . b)) by Def2 .= (revf F) . ((omf F) . (a,b)) by Th3 ; ::_thesis: verum end; theorem Th25: :: REALSET3:25 for F being Field for a, c being Element of F for b, d being Element of NonZero F holds ( (ovf F) . (a,b) = (ovf F) . (c,d) iff (omf F) . (a,d) = (omf F) . (b,c) ) proof let F be Field; ::_thesis: for a, c being Element of F for b, d being Element of NonZero F holds ( (ovf F) . (a,b) = (ovf F) . (c,d) iff (omf F) . (a,d) = (omf F) . (b,c) ) let a, c be Element of F; ::_thesis: for b, d being Element of NonZero F holds ( (ovf F) . (a,b) = (ovf F) . (c,d) iff (omf F) . (a,d) = (omf F) . (b,c) ) let b, d be Element of NonZero F; ::_thesis: ( (ovf F) . (a,b) = (ovf F) . (c,d) iff (omf F) . (a,d) = (omf F) . (b,c) ) ( (ovf F) . (a,b) = (omf F) . (a,((revf F) . b)) & (ovf F) . (c,d) = (omf F) . (c,((revf F) . d)) ) by Def2; hence ( (ovf F) . (a,b) = (ovf F) . (c,d) iff (omf F) . (a,d) = (omf F) . (b,c) ) by Th5; ::_thesis: verum end; theorem :: REALSET3:26 for F being Field for a being Element of NonZero F holds (ovf F) . ((1. F),a) = (revf F) . a proof let F be Field; ::_thesis: for a being Element of NonZero F holds (ovf F) . ((1. F),a) = (revf F) . a let a be Element of NonZero F; ::_thesis: (ovf F) . ((1. F),a) = (revf F) . a reconsider revfa = (revf F) . a as Element of NonZero F ; thus (ovf F) . ((1. F),a) = (omf F) . ((1. F),((revf F) . a)) by Def2 .= (1. F) * revfa .= (revf F) . a by REALSET2:6 ; ::_thesis: verum end; theorem Th27: :: REALSET3:27 for F being Field for a being Element of F holds (ovf F) . (a,(1. F)) = a proof let F be Field; ::_thesis: for a being Element of F holds (ovf F) . (a,(1. F)) = a let a be Element of F; ::_thesis: (ovf F) . (a,(1. F)) = a 1. F is Element of NonZero F by STRUCT_0:2; hence (ovf F) . (a,(1. F)) = (omf F) . (a,((revf F) . (1. F))) by Def2 .= a * (1. F) by Th1 .= a by REALSET2:21 ; ::_thesis: verum end; theorem :: REALSET3:28 for F being Field for a being Element of NonZero F for b, c being Element of F holds ( (omf F) . (a,b) = c iff (ovf F) . (c,a) = b ) proof let F be Field; ::_thesis: for a being Element of NonZero F for b, c being Element of F holds ( (omf F) . (a,b) = c iff (ovf F) . (c,a) = b ) let a be Element of NonZero F; ::_thesis: for b, c being Element of F holds ( (omf F) . (a,b) = c iff (ovf F) . (c,a) = b ) let b, c be Element of F; ::_thesis: ( (omf F) . (a,b) = c iff (ovf F) . (c,a) = b ) set d = 1. F; A1: (omf F) . (c,(1. F)) = c * (1. F) .= c by REALSET2:21 ; ( 1. F is Element of NonZero F & (ovf F) . (b,(1. F)) = b ) by Th27, STRUCT_0:2; hence ( (omf F) . (a,b) = c iff (ovf F) . (c,a) = b ) by A1, Th25; ::_thesis: verum end; theorem :: REALSET3:29 for F being Field for a, c being Element of F for b being Element of NonZero F holds ( (omf F) . (a,b) = c iff (ovf F) . (c,b) = a ) proof let F be Field; ::_thesis: for a, c being Element of F for b being Element of NonZero F holds ( (omf F) . (a,b) = c iff (ovf F) . (c,b) = a ) let a, c be Element of F; ::_thesis: for b being Element of NonZero F holds ( (omf F) . (a,b) = c iff (ovf F) . (c,b) = a ) let b be Element of NonZero F; ::_thesis: ( (omf F) . (a,b) = c iff (ovf F) . (c,b) = a ) set d = 1. F; A1: (omf F) . (c,(1. F)) = c * (1. F) .= c by REALSET2:21 ; A2: (omf F) . (b,a) = b * a .= a * b .= (omf F) . (a,b) ; ( (ovf F) . (a,(1. F)) = a & 1. F is Element of NonZero F ) by Th27, STRUCT_0:2; hence ( (omf F) . (a,b) = c iff (ovf F) . (c,b) = a ) by A1, A2, Th25; ::_thesis: verum end; theorem :: REALSET3:30 for F being Field for a being Element of F for b, c being Element of NonZero F holds (ovf F) . (a,((ovf F) . (b,c))) = (omf F) . (((ovf F) . (a,b)),c) proof let F be Field; ::_thesis: for a being Element of F for b, c being Element of NonZero F holds (ovf F) . (a,((ovf F) . (b,c))) = (omf F) . (((ovf F) . (a,b)),c) let a be Element of F; ::_thesis: for b, c being Element of NonZero F holds (ovf F) . (a,((ovf F) . (b,c))) = (omf F) . (((ovf F) . (a,b)),c) let b, c be Element of NonZero F; ::_thesis: (ovf F) . (a,((ovf F) . (b,c))) = (omf F) . (((ovf F) . (a,b)),c) A1: (omf F) . (b,((revf F) . c)) is Element of NonZero F by REALSET2:24; reconsider revfb = (revf F) . b as Element of F by XBOOLE_0:def_5; thus (ovf F) . (a,((ovf F) . (b,c))) = (ovf F) . (a,((omf F) . (b,((revf F) . c)))) by Def2 .= (omf F) . (a,((revf F) . ((omf F) . (b,((revf F) . c))))) by A1, Def2 .= (omf F) . (a,((omf F) . (((revf F) . b),((revf F) . ((revf F) . c))))) by Th3 .= a * (revfb * c) by REALSET2:23 .= (a * revfb) * c by REALSET2:19 .= (omf F) . (((ovf F) . (a,b)),c) by Def2 ; ::_thesis: verum end; theorem :: REALSET3:31 for F being Field for a being Element of F for b, c being Element of NonZero F holds (ovf F) . (a,((omf F) . (b,c))) = (ovf F) . (((ovf F) . (a,b)),c) proof let F be Field; ::_thesis: for a being Element of F for b, c being Element of NonZero F holds (ovf F) . (a,((omf F) . (b,c))) = (ovf F) . (((ovf F) . (a,b)),c) let a be Element of F; ::_thesis: for b, c being Element of NonZero F holds (ovf F) . (a,((omf F) . (b,c))) = (ovf F) . (((ovf F) . (a,b)),c) let b, c be Element of NonZero F; ::_thesis: (ovf F) . (a,((omf F) . (b,c))) = (ovf F) . (((ovf F) . (a,b)),c) reconsider revfb = (revf F) . b, revfc = (revf F) . c as Element of F by XBOOLE_0:def_5; (omf F) . (b,c) is Element of NonZero F by REALSET2:24; hence (ovf F) . (a,((omf F) . (b,c))) = (omf F) . (a,((revf F) . ((omf F) . (b,c)))) by Def2 .= a * (revfb * revfc) by Th3 .= (a * revfb) * revfc by REALSET2:19 .= (omf F) . (((ovf F) . (a,b)),((revf F) . c)) by Def2 .= (ovf F) . (((ovf F) . (a,b)),c) by Def2 ; ::_thesis: verum end;