:: RSSPACE2 semantic presentation begin theorem Th1: :: RSSPACE2:1 ( the carrier of l2_Space = the_set_of_l2RealSequences & ( for x being set holds ( x is VECTOR of l2_Space iff ( x is Real_Sequence & (seq_id x) (#) (seq_id x) is summable ) ) ) & 0. l2_Space = Zeroseq & ( for u being VECTOR of l2_Space holds u = seq_id u ) & ( for u, v being VECTOR of l2_Space holds u + v = (seq_id u) + (seq_id v) ) & ( for r being Real for u being VECTOR of l2_Space holds r * u = r (#) (seq_id u) ) & ( for u being VECTOR of l2_Space holds ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) ) & ( for u, v being VECTOR of l2_Space holds u - v = (seq_id u) - (seq_id v) ) & ( for v, w being VECTOR of l2_Space holds ( (seq_id v) (#) (seq_id w) is summable & ( for v, w being VECTOR of l2_Space holds v .|. w = Sum ((seq_id v) (#) (seq_id w)) ) ) ) ) proof A1: for u, v being VECTOR of l2_Space holds (seq_id u) (#) (seq_id v) is summable proof set q0 = 1 / 2; let u, v be VECTOR of l2_Space; ::_thesis: (seq_id u) (#) (seq_id v) is summable set p = (seq_id v) (#) (seq_id v); set q = (seq_id u) (#) (seq_id u); set r = abs ((seq_id u) (#) (seq_id v)); A2: for n being Element of NAT holds 0 <= (2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n proof set rr = (seq_id u) (#) (seq_id v); let n be Element of NAT ; ::_thesis: 0 <= (2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n reconsider tt = abs (((seq_id u) (#) (seq_id v)) . n) as Real ; A3: 0 <= tt by COMPLEX1:46; (2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n = 2 * ((abs ((seq_id u) (#) (seq_id v))) . n) by SEQ_1:9 .= 2 * (abs (((seq_id u) (#) (seq_id v)) . n)) by SEQ_1:12 ; hence 0 <= (2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n by A3; ::_thesis: verum end; A4: for n being Element of NAT holds (2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n <= (((seq_id v) (#) (seq_id v)) + ((seq_id u) (#) (seq_id u))) . n proof set s = seq_id v; set t = seq_id u; let n be Element of NAT ; ::_thesis: (2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n <= (((seq_id v) (#) (seq_id v)) + ((seq_id u) (#) (seq_id u))) . n reconsider sn = (seq_id v) . n, tn = (seq_id u) . n as Real ; reconsider ss = abs sn, tt = abs tn as Real ; A5: (((seq_id v) (#) (seq_id v)) + ((seq_id u) (#) (seq_id u))) . n = (((seq_id v) (#) (seq_id v)) . n) + (((seq_id u) (#) (seq_id u)) . n) by SEQ_1:7 .= (((seq_id v) . n) * ((seq_id v) . n)) + (((seq_id u) (#) (seq_id u)) . n) by SEQ_1:8 .= (sn ^2) + (((seq_id u) . n) * ((seq_id u) . n)) by SEQ_1:8 .= ((abs sn) ^2) + (tn ^2) by COMPLEX1:75 .= ((abs sn) ^2) + ((abs tn) ^2) by COMPLEX1:75 ; A6: 0 <= ((abs sn) - (abs tn)) ^2 by XREAL_1:63; (2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n = 2 * ((abs ((seq_id u) (#) (seq_id v))) . n) by SEQ_1:9 .= 2 * (abs (((seq_id u) (#) (seq_id v)) . n)) by SEQ_1:12 .= 2 * (abs (((seq_id u) . n) * ((seq_id v) . n))) by SEQ_1:8 .= 2 * (ss * tt) by COMPLEX1:65 .= (2 * (abs sn)) * (abs tn) ; then 0 + ((2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n) <= (((((seq_id v) (#) (seq_id v)) + ((seq_id u) (#) (seq_id u))) . n) - ((2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n)) + ((2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n) by A5, A6, XREAL_1:7; hence (2 (#) (abs ((seq_id u) (#) (seq_id v)))) . n <= (((seq_id v) (#) (seq_id v)) + ((seq_id u) (#) (seq_id u))) . n ; ::_thesis: verum end; A7: (1 / 2) (#) (2 (#) (abs ((seq_id u) (#) (seq_id v)))) = ((1 / 2) * 2) (#) (abs ((seq_id u) (#) (seq_id v))) by SEQ_1:23 .= abs ((seq_id u) (#) (seq_id v)) by SEQ_1:27 ; ( (seq_id v) (#) (seq_id v) is summable & (seq_id u) (#) (seq_id u) is summable ) by RSSPACE:def_11, RSSPACE:def_13; then ((seq_id v) (#) (seq_id v)) + ((seq_id u) (#) (seq_id u)) is summable by SERIES_1:7; then 2 (#) (abs ((seq_id u) (#) (seq_id v))) is summable by A2, A4, SERIES_1:20; then abs ((seq_id u) (#) (seq_id v)) is summable by A7, SERIES_1:10; then (seq_id u) (#) (seq_id v) is absolutely_summable by SERIES_1:def_4; hence (seq_id u) (#) (seq_id v) is summable ; ::_thesis: verum end; A8: for x being set holds ( x is Element of l2_Space iff ( x is Real_Sequence & (seq_id x) (#) (seq_id x) is summable ) ) proof let x be set ; ::_thesis: ( x is Element of l2_Space iff ( x is Real_Sequence & (seq_id x) (#) (seq_id x) is summable ) ) ( x in the_set_of_RealSequences iff x is Real_Sequence ) by RSSPACE:def_1; hence ( x is Element of l2_Space iff ( x is Real_Sequence & (seq_id x) (#) (seq_id x) is summable ) ) by RSSPACE:def_11, RSSPACE:def_13; ::_thesis: verum end; A9: for v, w being VECTOR of l2_Space holds v .|. w = Sum ((seq_id v) (#) (seq_id w)) proof let v, w be VECTOR of l2_Space; ::_thesis: v .|. w = Sum ((seq_id v) (#) (seq_id w)) thus v .|. w = the scalar of l2_Space . (v,w) by BHSP_1:def_1 .= Sum ((seq_id v) (#) (seq_id w)) by RSSPACE:def_12, RSSPACE:def_13 ; ::_thesis: verum end; A10: for u, v being VECTOR of l2_Space holds u + v = (seq_id u) + (seq_id v) proof set W = the_set_of_l2RealSequences ; set L1 = Linear_Space_of_RealSequences ; let u, v be VECTOR of l2_Space; ::_thesis: u + v = (seq_id u) + (seq_id v) reconsider u1 = u, v1 = v as VECTOR of Linear_Space_of_RealSequences by RLSUB_1:10, RSSPACE:12, RSSPACE:def_13; dom the addF of Linear_Space_of_RealSequences = [: the carrier of Linear_Space_of_RealSequences, the carrier of Linear_Space_of_RealSequences:] by FUNCT_2:def_1; then dom ( the addF of Linear_Space_of_RealSequences || the_set_of_l2RealSequences) = [:the_set_of_l2RealSequences,the_set_of_l2RealSequences:] by RELAT_1:62, ZFMISC_1:96; then A11: [u,v] in dom ( the addF of Linear_Space_of_RealSequences || the_set_of_l2RealSequences) by RSSPACE:def_13, ZFMISC_1:87; u + v = ( the addF of Linear_Space_of_RealSequences || the_set_of_l2RealSequences) . [u,v] by RSSPACE:def_8, RSSPACE:def_13 .= u1 + v1 by A11, FUNCT_1:47 ; hence u + v = (seq_id u) + (seq_id v) by RSSPACE:14; ::_thesis: verum end; A12: for r being Real for u being VECTOR of l2_Space holds r * u = r (#) (seq_id u) proof set W = the_set_of_l2RealSequences ; set L1 = Linear_Space_of_RealSequences ; let r be Real; ::_thesis: for u being VECTOR of l2_Space holds r * u = r (#) (seq_id u) let u be VECTOR of l2_Space; ::_thesis: r * u = r (#) (seq_id u) reconsider u1 = u as VECTOR of Linear_Space_of_RealSequences by RLSUB_1:10, RSSPACE:12, RSSPACE:def_13; dom the Mult of Linear_Space_of_RealSequences = [:REAL, the carrier of Linear_Space_of_RealSequences:] by FUNCT_2:def_1; then dom ( the Mult of Linear_Space_of_RealSequences | [:REAL,the_set_of_l2RealSequences:]) = [:REAL,the_set_of_l2RealSequences:] by RELAT_1:62, ZFMISC_1:96; then A13: [r,u] in dom ( the Mult of Linear_Space_of_RealSequences | [:REAL,the_set_of_l2RealSequences:]) by RSSPACE:def_13, ZFMISC_1:87; r * u = ( the Mult of Linear_Space_of_RealSequences | [:REAL,the_set_of_l2RealSequences:]) . [r,u] by RSSPACE:def_9, RSSPACE:def_13 .= r * u1 by A13, FUNCT_1:47 ; hence r * u = r (#) (seq_id u) by RSSPACE:14; ::_thesis: verum end; A14: for u being VECTOR of l2_Space holds u = seq_id u proof let u be VECTOR of l2_Space; ::_thesis: u = seq_id u u is VECTOR of Linear_Space_of_RealSequences by RLSUB_1:10, RSSPACE:12, RSSPACE:def_13; hence u = seq_id u by RSSPACE:14; ::_thesis: verum end; A15: for u being VECTOR of l2_Space holds ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) proof let u be VECTOR of l2_Space; ::_thesis: ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) - u = (- 1) * u by RLVECT_1:16 .= (- 1) (#) (seq_id u) by A12 .= - (seq_id u) by SEQ_1:17 ; hence ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) by A14; ::_thesis: verum end; A16: for u, v being VECTOR of l2_Space holds u - v = (seq_id u) - (seq_id v) proof let u, v be VECTOR of l2_Space; ::_thesis: u - v = (seq_id u) - (seq_id v) thus u - v = (seq_id u) + (seq_id (- v)) by A10 .= (seq_id u) + (- (seq_id v)) by A15 .= (seq_id u) - (seq_id v) by SEQ_1:11 ; ::_thesis: verum end; 0. l2_Space = 0. Linear_Space_of_RealSequences by RSSPACE:def_10, RSSPACE:def_13 .= Zeroseq by RSSPACE:def_7 ; hence ( the carrier of l2_Space = the_set_of_l2RealSequences & ( for x being set holds ( x is VECTOR of l2_Space iff ( x is Real_Sequence & (seq_id x) (#) (seq_id x) is summable ) ) ) & 0. l2_Space = Zeroseq & ( for u being VECTOR of l2_Space holds u = seq_id u ) & ( for u, v being VECTOR of l2_Space holds u + v = (seq_id u) + (seq_id v) ) & ( for r being Real for u being VECTOR of l2_Space holds r * u = r (#) (seq_id u) ) & ( for u being VECTOR of l2_Space holds ( - u = - (seq_id u) & seq_id (- u) = - (seq_id u) ) ) & ( for u, v being VECTOR of l2_Space holds u - v = (seq_id u) - (seq_id v) ) & ( for v, w being VECTOR of l2_Space holds ( (seq_id v) (#) (seq_id w) is summable & ( for v, w being VECTOR of l2_Space holds v .|. w = Sum ((seq_id v) (#) (seq_id w)) ) ) ) ) by A8, A14, A10, A12, A15, A16, A1, A9, RSSPACE:def_13; ::_thesis: verum end; theorem Th2: :: RSSPACE2:2 for x, y, z being Point of l2_Space for a being Real holds ( ( x .|. x = 0 implies x = 0. l2_Space ) & ( x = 0. l2_Space implies x .|. x = 0 ) & 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) proof let x, y, z be Point of l2_Space; ::_thesis: for a being Real holds ( ( x .|. x = 0 implies x = 0. l2_Space ) & ( x = 0. l2_Space implies x .|. x = 0 ) & 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) let a be Real; ::_thesis: ( ( x .|. x = 0 implies x = 0. l2_Space ) & ( x = 0. l2_Space implies x .|. x = 0 ) & 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) A1: for n being Element of NAT holds 0 <= ((seq_id x) (#) (seq_id x)) . n proof let n be Element of NAT ; ::_thesis: 0 <= ((seq_id x) (#) (seq_id x)) . n ((seq_id x) (#) (seq_id x)) . n = ((seq_id x) . n) * ((seq_id x) . n) by SEQ_1:8; hence 0 <= ((seq_id x) (#) (seq_id x)) . n by XREAL_1:63; ::_thesis: verum end; A2: ( (seq_id x) (#) (seq_id x) is summable & x .|. x = Sum ((seq_id x) (#) (seq_id x)) ) by Th1; A3: now__::_thesis:_(_x_.|._x_=_0_implies_x_=_0._l2_Space_) A4: for n being Element of NAT holds 0 <= ((seq_id x) (#) (seq_id x)) . n proof let n be Element of NAT ; ::_thesis: 0 <= ((seq_id x) (#) (seq_id x)) . n ((seq_id x) (#) (seq_id x)) . n = ((seq_id x) . n) * ((seq_id x) . n) by SEQ_1:8; hence 0 <= ((seq_id x) (#) (seq_id x)) . n by XREAL_1:63; ::_thesis: verum end; assume A5: x .|. x = 0 ; ::_thesis: x = 0. l2_Space A6: ( x .|. x = Sum ((seq_id x) (#) (seq_id x)) & (seq_id x) (#) (seq_id x) is summable ) by Th1; A7: for n being Element of NAT holds 0 = (seq_id x) . n proof let n be Element of NAT ; ::_thesis: 0 = (seq_id x) . n 0 = ((seq_id x) (#) (seq_id x)) . n by A5, A4, A6, RSSPACE:17 .= ((seq_id x) . n) * ((seq_id x) . n) by SEQ_1:8 ; hence 0 = (seq_id x) . n by XCMPLX_1:6; ::_thesis: verum end; x is Element of the_set_of_RealSequences by RSSPACE:def_11, RSSPACE:def_13; hence x = 0. l2_Space by A7, Th1, RSSPACE:def_6; ::_thesis: verum end; A8: x .|. y = Sum ((seq_id x) (#) (seq_id y)) by Th1 .= y .|. x by Th1 ; A9: now__::_thesis:_(_x_=_0._l2_Space_implies_x_.|._x_=_0_) assume A10: x = 0. l2_Space ; ::_thesis: x .|. x = 0 A11: for n being Element of NAT holds ((seq_id x) (#) (seq_id x)) . n = 0 proof let n be Element of NAT ; ::_thesis: ((seq_id x) (#) (seq_id x)) . n = 0 thus ((seq_id x) (#) (seq_id x)) . n = ((seq_id x) . n) * ((seq_id x) . n) by SEQ_1:8 .= ((seq_id x) . n) * 0 by A10, Th1, RSSPACE:def_6 .= 0 ; ::_thesis: verum end; thus x .|. x = Sum ((seq_id x) (#) (seq_id x)) by Th1 .= 0 by A11, RSSPACE:16 ; ::_thesis: verum end; A12: (seq_id x) (#) (seq_id y) is summable by Th1; A13: (a * x) .|. y = Sum ((seq_id (a * x)) (#) (seq_id y)) by Th1 .= Sum ((seq_id (a (#) (seq_id x))) (#) (seq_id y)) by Th1 .= Sum ((a (#) (seq_id x)) (#) (seq_id y)) by RSSPACE:1 .= Sum (a (#) ((seq_id x) (#) (seq_id y))) by SEQ_1:18 .= a * (Sum ((seq_id x) (#) (seq_id y))) by A12, SERIES_1:10 .= a * (x .|. y) by Th1 ; A14: ( (seq_id x) (#) (seq_id z) is summable & (seq_id y) (#) (seq_id z) is summable ) by Th1; (x + y) .|. z = Sum ((seq_id (x + y)) (#) (seq_id z)) by Th1 .= Sum ((seq_id ((seq_id x) + (seq_id y))) (#) (seq_id z)) by Th1 .= Sum (((seq_id x) + (seq_id y)) (#) (seq_id z)) by RSSPACE:1 .= Sum (((seq_id x) (#) (seq_id z)) + ((seq_id y) (#) (seq_id z))) by SEQ_1:16 .= (Sum ((seq_id x) (#) (seq_id z))) + (Sum ((seq_id y) (#) (seq_id z))) by A14, SERIES_1:7 .= (x .|. z) + (Sum ((seq_id y) (#) (seq_id z))) by Th1 .= (x .|. z) + (y .|. z) by Th1 ; hence ( ( x .|. x = 0 implies x = 0. l2_Space ) & ( x = 0. l2_Space implies x .|. x = 0 ) & 0 <= x .|. x & x .|. y = y .|. x & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) ) by A3, A9, A1, A2, A8, A13, SERIES_1:18; ::_thesis: verum end; registration cluster l2_Space -> RealUnitarySpace-like ; coherence l2_Space is RealUnitarySpace-like by Th2, BHSP_1:def_2; end; Lm1: for rseq being Real_Sequence st ( for n being Element of NAT holds 0 <= rseq . n ) holds ( ( for n being Element of NAT holds 0 <= (Partial_Sums rseq) . n ) & ( for n being Element of NAT holds rseq . n <= (Partial_Sums rseq) . n ) & ( rseq is summable implies ( ( for n being Element of NAT holds (Partial_Sums rseq) . n <= Sum rseq ) & ( for n being Element of NAT holds rseq . n <= Sum rseq ) ) ) ) proof let rseq be Real_Sequence; ::_thesis: ( ( for n being Element of NAT holds 0 <= rseq . n ) implies ( ( for n being Element of NAT holds 0 <= (Partial_Sums rseq) . n ) & ( for n being Element of NAT holds rseq . n <= (Partial_Sums rseq) . n ) & ( rseq is summable implies ( ( for n being Element of NAT holds (Partial_Sums rseq) . n <= Sum rseq ) & ( for n being Element of NAT holds rseq . n <= Sum rseq ) ) ) ) ) assume A1: for n being Element of NAT holds 0 <= rseq . n ; ::_thesis: ( ( for n being Element of NAT holds 0 <= (Partial_Sums rseq) . n ) & ( for n being Element of NAT holds rseq . n <= (Partial_Sums rseq) . n ) & ( rseq is summable implies ( ( for n being Element of NAT holds (Partial_Sums rseq) . n <= Sum rseq ) & ( for n being Element of NAT holds rseq . n <= Sum rseq ) ) ) ) A2: Partial_Sums rseq is V46() by A1, SERIES_1:16; thus A3: for n being Element of NAT holds 0 <= (Partial_Sums rseq) . n ::_thesis: ( ( for n being Element of NAT holds rseq . n <= (Partial_Sums rseq) . n ) & ( rseq is summable implies ( ( for n being Element of NAT holds (Partial_Sums rseq) . n <= Sum rseq ) & ( for n being Element of NAT holds rseq . n <= Sum rseq ) ) ) ) proof let n be Element of NAT ; ::_thesis: 0 <= (Partial_Sums rseq) . n A4: ( n = n + 0 & (Partial_Sums rseq) . 0 = rseq . 0 ) by SERIES_1:def_1; 0 <= rseq . 0 by A1; hence 0 <= (Partial_Sums rseq) . n by A2, A4, SEQM_3:5; ::_thesis: verum end; thus A5: for n being Element of NAT holds rseq . n <= (Partial_Sums rseq) . n ::_thesis: ( rseq is summable implies ( ( for n being Element of NAT holds (Partial_Sums rseq) . n <= Sum rseq ) & ( for n being Element of NAT holds rseq . n <= Sum rseq ) ) ) proof let n be Element of NAT ; ::_thesis: rseq . n <= (Partial_Sums rseq) . n now__::_thesis:_(_(_n_=_0_&_rseq_._n_<=_(Partial_Sums_rseq)_._n_)_or_(_n_<>_0_&_rseq_._n_<=_(Partial_Sums_rseq)_._n_)_) percases ( n = 0 or n <> 0 ) ; case n = 0 ; ::_thesis: rseq . n <= (Partial_Sums rseq) . n hence rseq . n <= (Partial_Sums rseq) . n by SERIES_1:def_1; ::_thesis: verum end; caseA6: n <> 0 ; ::_thesis: rseq . n <= (Partial_Sums rseq) . n set nn = n - 1; 0 + 1 <= n by A6, INT_1:7; then A7: n - 1 in NAT by INT_1:5; then 0 <= (Partial_Sums rseq) . (n - 1) by A3; then ( (n - 1) + 1 = n & (rseq . n) + 0 <= (rseq . n) + ((Partial_Sums rseq) . (n - 1)) ) by XREAL_1:7; hence rseq . n <= (Partial_Sums rseq) . n by A7, SERIES_1:def_1; ::_thesis: verum end; end; end; hence rseq . n <= (Partial_Sums rseq) . n ; ::_thesis: verum end; assume rseq is summable ; ::_thesis: ( ( for n being Element of NAT holds (Partial_Sums rseq) . n <= Sum rseq ) & ( for n being Element of NAT holds rseq . n <= Sum rseq ) ) then A8: Partial_Sums rseq is bounded_above by A1, SERIES_1:17; thus A9: for n being Element of NAT holds (Partial_Sums rseq) . n <= Sum rseq ::_thesis: for n being Element of NAT holds rseq . n <= Sum rseq proof let n be Element of NAT ; ::_thesis: (Partial_Sums rseq) . n <= Sum rseq (Partial_Sums rseq) . n <= lim (Partial_Sums rseq) by A1, A8, SEQ_4:37, SERIES_1:16; hence (Partial_Sums rseq) . n <= Sum rseq by SERIES_1:def_3; ::_thesis: verum end; let n be Element of NAT ; ::_thesis: rseq . n <= Sum rseq A10: rseq . n <= (Partial_Sums rseq) . n by A5; (Partial_Sums rseq) . n <= Sum rseq by A9; hence rseq . n <= Sum rseq by A10, XXREAL_0:2; ::_thesis: verum end; Lm2: ( ( for x, y being Real holds (x + y) * (x + y) <= ((2 * x) * x) + ((2 * y) * y) ) & ( for x, y being Real holds x * x <= ((2 * (x - y)) * (x - y)) + ((2 * y) * y) ) ) proof A1: now__::_thesis:_for_x,_y_being_Real_holds_(x_+_y)_*_(x_+_y)_<=_((2_*_x)_*_x)_+_((2_*_y)_*_y) let x, y be Real; ::_thesis: (x + y) * (x + y) <= ((2 * x) * x) + ((2 * y) * y) 0 <= (x - y) ^2 by XREAL_1:63; then 0 + ((x + y) * (x + y)) <= ((((2 * x) * x) + ((2 * y) * y)) - ((x + y) * (x + y))) + ((x + y) * (x + y)) by XREAL_1:7; hence (x + y) * (x + y) <= ((2 * x) * x) + ((2 * y) * y) ; ::_thesis: verum end; now__::_thesis:_for_x,_y_being_Real_holds_x_*_x_<=_((2_*_(x_-_y))_*_(x_-_y))_+_((2_*_y)_*_y) let x, y be Real; ::_thesis: x * x <= ((2 * (x - y)) * (x - y)) + ((2 * y) * y) (x - y) + y = x ; hence x * x <= ((2 * (x - y)) * (x - y)) + ((2 * y) * y) by A1; ::_thesis: verum end; hence ( ( for x, y being Real holds (x + y) * (x + y) <= ((2 * x) * x) + ((2 * y) * y) ) & ( for x, y being Real holds x * x <= ((2 * (x - y)) * (x - y)) + ((2 * y) * y) ) ) by A1; ::_thesis: verum end; Lm3: for e being Real for seq being Real_Sequence st seq is convergent & ex k being Element of NAT st for i being Element of NAT st k <= i holds seq . i <= e holds lim seq <= e proof let e be Real; ::_thesis: for seq being Real_Sequence st seq is convergent & ex k being Element of NAT st for i being Element of NAT st k <= i holds seq . i <= e holds lim seq <= e let seq be Real_Sequence; ::_thesis: ( seq is convergent & ex k being Element of NAT st for i being Element of NAT st k <= i holds seq . i <= e implies lim seq <= e ) assume that A1: seq is convergent and A2: ex k being Element of NAT st for i being Element of NAT st k <= i holds seq . i <= e ; ::_thesis: lim seq <= e consider k being Element of NAT such that A3: for i being Element of NAT st k <= i holds seq . i <= e by A2; reconsider cseq = NAT --> e as Real_Sequence ; A4: lim cseq = cseq . 0 by SEQ_4:26 .= e by FUNCOP_1:7 ; A5: now__::_thesis:_for_i_being_Element_of_NAT_holds_(seq_^\_k)_._i_<=_cseq_._i let i be Element of NAT ; ::_thesis: (seq ^\ k) . i <= cseq . i ( (seq ^\ k) . i = seq . (k + i) & seq . (k + i) <= e ) by A3, NAT_1:11, NAT_1:def_3; hence (seq ^\ k) . i <= cseq . i by FUNCOP_1:7; ::_thesis: verum end; lim (seq ^\ k) = lim seq by A1, SEQ_4:20; hence lim seq <= e by A1, A5, A4, SEQ_2:18; ::_thesis: verum end; Lm4: for c being Real for seq being Real_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((seq . i) - c) * ((seq . i) - c) ) holds ( rseq is convergent & lim rseq = ((lim seq) - c) * ((lim seq) - c) ) proof let c be Real; ::_thesis: for seq being Real_Sequence st seq is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((seq . i) - c) * ((seq . i) - c) ) holds ( rseq is convergent & lim rseq = ((lim seq) - c) * ((lim seq) - c) ) reconsider cseq = NAT --> c as Real_Sequence ; let seq be Real_Sequence; ::_thesis: ( seq is convergent implies for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((seq . i) - c) * ((seq . i) - c) ) holds ( rseq is convergent & lim rseq = ((lim seq) - c) * ((lim seq) - c) ) ) assume A1: seq is convergent ; ::_thesis: for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = ((seq . i) - c) * ((seq . i) - c) ) holds ( rseq is convergent & lim rseq = ((lim seq) - c) * ((lim seq) - c) ) A2: seq - cseq is convergent by A1, SEQ_2:11; then A3: (seq - cseq) (#) (seq - cseq) is convergent by SEQ_2:14; let rseq be Real_Sequence; ::_thesis: ( ( for i being Element of NAT holds rseq . i = ((seq . i) - c) * ((seq . i) - c) ) implies ( rseq is convergent & lim rseq = ((lim seq) - c) * ((lim seq) - c) ) ) assume A4: for i being Element of NAT holds rseq . i = ((seq . i) - c) * ((seq . i) - c) ; ::_thesis: ( rseq is convergent & lim rseq = ((lim seq) - c) * ((lim seq) - c) ) now__::_thesis:_for_i_being_Element_of_NAT_holds_rseq_._i_=_((seq_-_cseq)_(#)_(seq_-_cseq))_._i let i be Element of NAT ; ::_thesis: rseq . i = ((seq - cseq) (#) (seq - cseq)) . i thus rseq . i = ((seq . i) - c) * ((seq . i) - c) by A4 .= ((seq . i) - (cseq . i)) * ((seq . i) - c) by FUNCOP_1:7 .= ((seq . i) - (cseq . i)) * ((seq . i) + (- (cseq . i))) by FUNCOP_1:7 .= ((seq . i) + ((- cseq) . i)) * ((seq . i) + (- (cseq . i))) by SEQ_1:10 .= ((seq . i) + ((- cseq) . i)) * ((seq . i) + ((- cseq) . i)) by SEQ_1:10 .= ((seq + (- cseq)) . i) * ((seq . i) + ((- cseq) . i)) by SEQ_1:7 .= ((seq + (- cseq)) . i) * ((seq + (- cseq)) . i) by SEQ_1:7 .= ((seq - cseq) . i) * ((seq + (- cseq)) . i) by SEQ_1:11 .= ((seq - cseq) . i) * ((seq - cseq) . i) by SEQ_1:11 .= ((seq - cseq) (#) (seq - cseq)) . i by SEQ_1:8 ; ::_thesis: verum end; then A5: for x being set st x in NAT holds rseq . x = ((seq - cseq) (#) (seq - cseq)) . x ; lim ((seq - cseq) (#) (seq - cseq)) = (lim (seq - cseq)) * (lim (seq - cseq)) by A2, SEQ_2:15 .= ((lim seq) - (lim cseq)) * (lim (seq - cseq)) by A1, SEQ_2:12 .= ((lim seq) - (lim cseq)) * ((lim seq) - (lim cseq)) by A1, SEQ_2:12 .= ((lim seq) - (cseq . 0)) * ((lim seq) - (lim cseq)) by SEQ_4:26 .= ((lim seq) - (cseq . 0)) * ((lim seq) - (cseq . 0)) by SEQ_4:26 .= ((lim seq) - c) * ((lim seq) - (cseq . 0)) by FUNCOP_1:7 .= ((lim seq) - c) * ((lim seq) - c) by FUNCOP_1:7 ; hence ( rseq is convergent & lim rseq = ((lim seq) - c) * ((lim seq) - c) ) by A5, A3, FUNCT_2:12; ::_thesis: verum end; Lm5: for c being Real for seq, seq1 being Real_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (((seq . i) - c) * ((seq . i) - c)) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (((lim seq) - c) * ((lim seq) - c)) + (lim seq1) ) proof let c be Real; ::_thesis: for seq, seq1 being Real_Sequence st seq is convergent & seq1 is convergent holds for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (((seq . i) - c) * ((seq . i) - c)) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (((lim seq) - c) * ((lim seq) - c)) + (lim seq1) ) let seq, seq1 be Real_Sequence; ::_thesis: ( seq is convergent & seq1 is convergent implies for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (((seq . i) - c) * ((seq . i) - c)) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (((lim seq) - c) * ((lim seq) - c)) + (lim seq1) ) ) assume that A1: seq is convergent and A2: seq1 is convergent ; ::_thesis: for rseq being Real_Sequence st ( for i being Element of NAT holds rseq . i = (((seq . i) - c) * ((seq . i) - c)) + (seq1 . i) ) holds ( rseq is convergent & lim rseq = (((lim seq) - c) * ((lim seq) - c)) + (lim seq1) ) reconsider cseq = NAT --> c as Real_Sequence ; A3: seq - cseq is convergent by A1, SEQ_2:11; then A4: (seq - cseq) (#) (seq - cseq) is convergent by SEQ_2:14; let rseq be Real_Sequence; ::_thesis: ( ( for i being Element of NAT holds rseq . i = (((seq . i) - c) * ((seq . i) - c)) + (seq1 . i) ) implies ( rseq is convergent & lim rseq = (((lim seq) - c) * ((lim seq) - c)) + (lim seq1) ) ) assume A5: for i being Element of NAT holds rseq . i = (((seq . i) - c) * ((seq . i) - c)) + (seq1 . i) ; ::_thesis: ( rseq is convergent & lim rseq = (((lim seq) - c) * ((lim seq) - c)) + (lim seq1) ) now__::_thesis:_for_i_being_Element_of_NAT_holds_rseq_._i_=_(((seq_-_cseq)_(#)_(seq_-_cseq))_+_seq1)_._i let i be Element of NAT ; ::_thesis: rseq . i = (((seq - cseq) (#) (seq - cseq)) + seq1) . i thus rseq . i = (((seq . i) - c) * ((seq . i) - c)) + (seq1 . i) by A5 .= (((seq . i) - (cseq . i)) * ((seq . i) - c)) + (seq1 . i) by FUNCOP_1:7 .= (((seq . i) - (cseq . i)) * ((seq . i) + (- (cseq . i)))) + (seq1 . i) by FUNCOP_1:7 .= (((seq . i) + ((- cseq) . i)) * ((seq . i) + (- (cseq . i)))) + (seq1 . i) by SEQ_1:10 .= (((seq . i) + ((- cseq) . i)) * ((seq . i) + ((- cseq) . i))) + (seq1 . i) by SEQ_1:10 .= (((seq + (- cseq)) . i) * ((seq . i) + ((- cseq) . i))) + (seq1 . i) by SEQ_1:7 .= (((seq + (- cseq)) . i) * ((seq + (- cseq)) . i)) + (seq1 . i) by SEQ_1:7 .= (((seq - cseq) . i) * ((seq + (- cseq)) . i)) + (seq1 . i) by SEQ_1:11 .= (((seq - cseq) . i) * ((seq - cseq) . i)) + (seq1 . i) by SEQ_1:11 .= (((seq - cseq) (#) (seq - cseq)) . i) + (seq1 . i) by SEQ_1:8 .= (((seq - cseq) (#) (seq - cseq)) + seq1) . i by SEQ_1:7 ; ::_thesis: verum end; then A6: rseq = ((seq - cseq) (#) (seq - cseq)) + seq1 by FUNCT_2:63; lim ((seq - cseq) (#) (seq - cseq)) = (lim (seq - cseq)) * (lim (seq - cseq)) by A3, SEQ_2:15 .= ((lim seq) - (lim cseq)) * (lim (seq - cseq)) by A1, SEQ_2:12 .= ((lim seq) - (lim cseq)) * ((lim seq) - (lim cseq)) by A1, SEQ_2:12 .= ((lim seq) - (cseq . 0)) * ((lim seq) - (lim cseq)) by SEQ_4:26 .= ((lim seq) - (cseq . 0)) * ((lim seq) - (cseq . 0)) by SEQ_4:26 .= ((lim seq) - c) * ((lim seq) - (cseq . 0)) by FUNCOP_1:7 .= ((lim seq) - c) * ((lim seq) - c) by FUNCOP_1:7 ; hence ( rseq is convergent & lim rseq = (((lim seq) - c) * ((lim seq) - c)) + (lim seq1) ) by A2, A6, A4, SEQ_2:5, SEQ_2:6; ::_thesis: verum end; registration cluster l2_Space -> complete ; coherence l2_Space is complete proof let vseq be sequence of l2_Space; :: according to BHSP_3:def_4 ::_thesis: ( not vseq is Cauchy or vseq is convergent ) assume A1: vseq is Cauchy ; ::_thesis: vseq is convergent defpred S1[ set , set ] means ex i being Element of NAT st ( c1 = i & ex rseqi being Real_Sequence st ( ( for n being Element of NAT holds rseqi . n = (seq_id (vseq . n)) . i ) & rseqi is convergent & c2 = lim rseqi ) ); A2: for x being set st x in NAT holds ex y being set st ( y in REAL & S1[x,y] ) proof let x be set ; ::_thesis: ( x in NAT implies ex y being set st ( y in REAL & S1[x,y] ) ) assume x in NAT ; ::_thesis: ex y being set st ( y in REAL & S1[x,y] ) then reconsider i = x as Element of NAT ; deffunc H1( set ) -> Element of REAL = (seq_id (vseq . c1)) . i; consider rseqi being Real_Sequence such that A3: for n being Element of NAT holds rseqi . n = H1(n) from SEQ_1:sch_1(); take lim rseqi ; ::_thesis: ( lim rseqi in REAL & S1[x, lim rseqi] ) now__::_thesis:_for_e_being_real_number_st_e_>_0_holds_ ex_k_being_Element_of_NAT_st_ for_m_being_Element_of_NAT_st_k_<=_m_holds_ abs_((rseqi_._m)_-_(rseqi_._k))_<_e let e be real number ; ::_thesis: ( e > 0 implies ex k being Element of NAT st for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e ) assume A4: e > 0 ; ::_thesis: ex k being Element of NAT st for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e thus ex k being Element of NAT st for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e ::_thesis: verum proof e is Real by XREAL_0:def_1; then consider k being Element of NAT such that A5: for n, m being Element of NAT st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < e by A1, A4, BHSP_3:2; now__::_thesis:_for_m_being_Element_of_NAT_st_k_<=_m_holds_ abs_((rseqi_._m)_-_(rseqi_._k))_<_e let m be Element of NAT ; ::_thesis: ( k <= m implies abs ((rseqi . m) - (rseqi . k)) < e ) assume k <= m ; ::_thesis: abs ((rseqi . m) - (rseqi . k)) < e then ||.((vseq . m) - (vseq . k)).|| < e by A5; then sqrt (((vseq . m) - (vseq . k)) .|. ((vseq . m) - (vseq . k))) < e by BHSP_1:def_4; then A6: sqrt (Sum ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k))))) < e by Th1; reconsider e1 = e as Real by XREAL_0:def_1; A7: sqrt ((abs ((rseqi . m) - (rseqi . k))) * (abs ((rseqi . m) - (rseqi . k)))) = sqrt ((abs ((rseqi . m) - (rseqi . k))) ^2) .= abs ((rseqi . m) - (rseqi . k)) by COMPLEX1:46, SQUARE_1:22 ; seq_id ((vseq . m) - (vseq . k)) = seq_id ((seq_id (vseq . m)) - (seq_id (vseq . k))) by Th1 .= (seq_id (vseq . m)) - (seq_id (vseq . k)) by RSSPACE:1 .= (seq_id (vseq . m)) + (- (seq_id (vseq . k))) by SEQ_1:11 ; then (seq_id ((vseq . m) - (vseq . k))) . i = ((seq_id (vseq . m)) . i) + ((- (seq_id (vseq . k))) . i) by SEQ_1:7 .= ((seq_id (vseq . m)) . i) + (- ((seq_id (vseq . k)) . i)) by SEQ_1:10 .= ((seq_id (vseq . m)) . i) - ((seq_id (vseq . k)) . i) .= (rseqi . m) - ((seq_id (vseq . k)) . i) by A3 .= (rseqi . m) - (rseqi . k) by A3 ; then ((seq_id ((vseq . m) - (vseq . k))) . i) * ((seq_id ((vseq . m) - (vseq . k))) . i) = ((rseqi . m) - (rseqi . k)) ^2 .= (abs ((rseqi . m) - (rseqi . k))) ^2 by COMPLEX1:75 .= (abs ((rseqi . m) - (rseqi . k))) * (abs ((rseqi . m) - (rseqi . k))) ; then A8: (abs ((rseqi . m) - (rseqi . k))) * (abs ((rseqi . m) - (rseqi . k))) = ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) . i by SEQ_1:8; A9: for i being Element of NAT holds 0 <= ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) . i proof let i be Element of NAT ; ::_thesis: 0 <= ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) . i ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) . i = ((seq_id ((vseq . m) - (vseq . k))) . i) * ((seq_id ((vseq . m) - (vseq . k))) . i) by SEQ_1:8; hence 0 <= ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) . i by XREAL_1:63; ::_thesis: verum end; A10: (seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k))) is summable by RSSPACE:def_11, RSSPACE:def_13; then A11: 0 <= Sum ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) by A9, SERIES_1:18; then 0 <= sqrt (Sum ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k))))) by SQUARE_1:def_2; then (sqrt (Sum ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))))) ^2 < e1 ^2 by A6, SQUARE_1:16; then A12: Sum ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) < e * e by A11, SQUARE_1:def_2; ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) . i <= Sum ((seq_id ((vseq . m) - (vseq . k))) (#) (seq_id ((vseq . m) - (vseq . k)))) by A10, A9, Lm1; then A13: ( 0 <= abs ((rseqi . m) - (rseqi . k)) & (abs ((rseqi . m) - (rseqi . k))) * (abs ((rseqi . m) - (rseqi . k))) < e * e ) by A12, A8, COMPLEX1:46, XXREAL_0:2; sqrt (e * e) = sqrt (e1 ^2) .= e by A4, SQUARE_1:22 ; hence abs ((rseqi . m) - (rseqi . k)) < e by A13, A7, SQUARE_1:27; ::_thesis: verum end; hence ex k being Element of NAT st for m being Element of NAT st k <= m holds abs ((rseqi . m) - (rseqi . k)) < e ; ::_thesis: verum end; end; then rseqi is convergent by SEQ_4:41; hence ( lim rseqi in REAL & S1[x, lim rseqi] ) by A3; ::_thesis: verum end; consider f being Function of NAT,REAL such that A14: for x being set st x in NAT holds S1[x,f . x] from FUNCT_2:sch_1(A2); reconsider tseq = f as Real_Sequence ; A15: now__::_thesis:_for_i_being_Element_of_NAT_ex_rseqi_being_Real_Sequence_st_ (_(_for_n_being_Element_of_NAT_holds_rseqi_._n_=_(seq_id_(vseq_._n))_._i_)_&_rseqi_is_convergent_&_tseq_._i_=_lim_rseqi_) let i be Element of NAT ; ::_thesis: ex rseqi being Real_Sequence st ( ( for n being Element of NAT holds rseqi . n = (seq_id (vseq . n)) . i ) & rseqi is convergent & tseq . i = lim rseqi ) reconsider x = i as set ; ex i0 being Element of NAT st ( x = i0 & ex rseqi being Real_Sequence st ( ( for n being Element of NAT holds rseqi . n = (seq_id (vseq . n)) . i0 ) & rseqi is convergent & f . x = lim rseqi ) ) by A14; hence ex rseqi being Real_Sequence st ( ( for n being Element of NAT holds rseqi . n = (seq_id (vseq . n)) . i ) & rseqi is convergent & tseq . i = lim rseqi ) ; ::_thesis: verum end; A16: for e being Real st e > 0 holds ex k being Element of NAT st for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e * e ) proof let e1 be Real; ::_thesis: ( e1 > 0 implies ex k being Element of NAT st for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e1 * e1 ) ) assume A17: e1 > 0 ; ::_thesis: ex k being Element of NAT st for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e1 * e1 ) set e = e1 / 2; A18: e1 / 2 > 0 by A17, XREAL_1:215; then consider k being Element of NAT such that A19: for n, m being Element of NAT st n >= k & m >= k holds ||.((vseq . n) - (vseq . m)).|| < e1 / 2 by A1, BHSP_3:2; e1 / 2 < e1 by A17, XREAL_1:216; then A20: (e1 / 2) * (e1 / 2) < e1 * e1 by A18, XREAL_1:97; A21: for m, n being Element of NAT st n >= k & m >= k holds ( (seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m))) is summable & Sum ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) < (e1 / 2) * (e1 / 2) & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i ) ) proof let m, n be Element of NAT ; ::_thesis: ( n >= k & m >= k implies ( (seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m))) is summable & Sum ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) < (e1 / 2) * (e1 / 2) & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i ) ) ) assume ( n >= k & m >= k ) ; ::_thesis: ( (seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m))) is summable & Sum ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) < (e1 / 2) * (e1 / 2) & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i ) ) then ||.((vseq . n) - (vseq . m)).|| < e1 / 2 by A19; then sqrt (((vseq . n) - (vseq . m)) .|. ((vseq . n) - (vseq . m))) < e1 / 2 by BHSP_1:def_4; then A22: sqrt (Sum ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m))))) < e1 / 2 by Th1; A23: for i being Element of NAT holds 0 <= ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i proof let i be Element of NAT ; ::_thesis: 0 <= ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i = ((seq_id ((vseq . n) - (vseq . m))) . i) * ((seq_id ((vseq . n) - (vseq . m))) . i) by SEQ_1:8; hence 0 <= ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i by XREAL_1:63; ::_thesis: verum end; (seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m))) is summable by RSSPACE:def_11, RSSPACE:def_13; then A24: 0 <= Sum ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) by A23, SERIES_1:18; then 0 <= sqrt (Sum ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m))))) by SQUARE_1:def_2; then (sqrt (Sum ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))))) ^2 < (e1 / 2) ^2 by A22, SQUARE_1:16; hence ( (seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m))) is summable & Sum ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) < (e1 / 2) * (e1 / 2) & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . n) - (vseq . m))) (#) (seq_id ((vseq . n) - (vseq . m)))) . i ) ) by A23, A24, RSSPACE:def_11, RSSPACE:def_13, SQUARE_1:def_2; ::_thesis: verum end; A25: for n, i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i ) proof let n be Element of NAT ; ::_thesis: for i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i ) defpred S2[ Nat] means for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . c1 ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . c1 ); A26: for m, k being Element of NAT holds seq_id ((vseq . m) - (vseq . k)) = (seq_id (vseq . m)) - (seq_id (vseq . k)) proof let m, k be Element of NAT ; ::_thesis: seq_id ((vseq . m) - (vseq . k)) = (seq_id (vseq . m)) - (seq_id (vseq . k)) thus seq_id ((vseq . m) - (vseq . k)) = seq_id ((seq_id (vseq . m)) - (seq_id (vseq . k))) by Th1 .= (seq_id (vseq . m)) - (seq_id (vseq . k)) by RSSPACE:1 ; ::_thesis: verum end; now__::_thesis:_for_i_being_Element_of_NAT_st_(_for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_((seq_id_((vseq_._m)_-_(vseq_._n)))_(#)_(seq_id_((vseq_._m)_-_(vseq_._n)))))_._i_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(((seq_id_tseq)_-_(seq_id_(vseq_._n)))_(#)_((seq_id_tseq)_-_(seq_id_(vseq_._n)))))_._i_)_)_holds_ for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_((seq_id_((vseq_._m)_-_(vseq_._n)))_(#)_(seq_id_((vseq_._m)_-_(vseq_._n)))))_._(i_+_1)_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(((seq_id_tseq)_-_(seq_id_(vseq_._n)))_(#)_((seq_id_tseq)_-_(seq_id_(vseq_._n)))))_._(i_+_1)_) let i be Element of NAT ; ::_thesis: ( ( for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i ) ) implies for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . (i + 1) ) ) assume A27: for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i ) ; ::_thesis: for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . (i + 1) ) thus for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . (i + 1) ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . (i + 1) ) ::_thesis: verum proof deffunc H1( Element of NAT ) -> Element of REAL = (Partial_Sums ((seq_id ((vseq . c1) - (vseq . n))) (#) (seq_id ((vseq . c1) - (vseq . n))))) . i; consider rseqb being Real_Sequence such that A28: for m being Element of NAT holds rseqb . m = H1(m) from SEQ_1:sch_1(); consider rseq0 being Real_Sequence such that A29: for m being Element of NAT holds rseq0 . m = (seq_id (vseq . m)) . (i + 1) and A30: rseq0 is convergent and A31: tseq . (i + 1) = lim rseq0 by A15; let rseq be Real_Sequence; ::_thesis: ( ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . (i + 1) ) implies ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . (i + 1) ) ) assume A32: for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . (i + 1) ; ::_thesis: ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . (i + 1) ) A33: now__::_thesis:_for_m_being_Element_of_NAT_holds_rseq_._m_=_(((rseq0_._m)_-_((seq_id_(vseq_._n))_._(i_+_1)))_*_((rseq0_._m)_-_((seq_id_(vseq_._n))_._(i_+_1))))_+_(rseqb_._m) let m be Element of NAT ; ::_thesis: rseq . m = (((rseq0 . m) - ((seq_id (vseq . n)) . (i + 1))) * ((rseq0 . m) - ((seq_id (vseq . n)) . (i + 1)))) + (rseqb . m) thus rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . (i + 1) by A32 .= (((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n)))) . (i + 1)) + ((Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i) by SERIES_1:def_1 .= ((((seq_id (vseq . m)) - (seq_id (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n)))) . (i + 1)) + ((Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i) by A26 .= ((((seq_id (vseq . m)) - (seq_id (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n)))) . (i + 1)) + (rseqb . m) by A28 .= ((((seq_id (vseq . m)) - (seq_id (vseq . n))) (#) ((seq_id (vseq . m)) - (seq_id (vseq . n)))) . (i + 1)) + (rseqb . m) by A26 .= ((((seq_id (vseq . m)) - (seq_id (vseq . n))) . (i + 1)) * (((seq_id (vseq . m)) - (seq_id (vseq . n))) . (i + 1))) + (rseqb . m) by SEQ_1:8 .= ((((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1)) * (((seq_id (vseq . m)) - (seq_id (vseq . n))) . (i + 1))) + (rseqb . m) by SEQ_1:11 .= ((((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1)) * (((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1))) + (rseqb . m) by SEQ_1:11 .= ((((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))) * (((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . (i + 1))) + (rseqb . m) by SEQ_1:7 .= ((((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))) * (((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1)))) + (rseqb . m) by SEQ_1:7 .= ((((seq_id (vseq . m)) . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1)))) * (((seq_id (vseq . m)) . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1)))) + (rseqb . m) by SEQ_1:10 .= ((((seq_id (vseq . m)) . (i + 1)) - ((seq_id (vseq . n)) . (i + 1))) * (((seq_id (vseq . m)) . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1))))) + (rseqb . m) by SEQ_1:10 .= (((rseq0 . m) - ((seq_id (vseq . n)) . (i + 1))) * (((seq_id (vseq . m)) . (i + 1)) - ((seq_id (vseq . n)) . (i + 1)))) + (rseqb . m) by A29 .= (((rseq0 . m) - ((seq_id (vseq . n)) . (i + 1))) * ((rseq0 . m) - ((seq_id (vseq . n)) . (i + 1)))) + (rseqb . m) by A29 ; ::_thesis: verum end; A34: rseqb is convergent by A27, A28; then lim rseq = (((tseq . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1)))) * ((tseq . (i + 1)) - ((seq_id (vseq . n)) . (i + 1)))) + (lim rseqb) by A30, A31, A33, Lm5 .= (((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))) * ((tseq . (i + 1)) + (- ((seq_id (vseq . n)) . (i + 1))))) + (lim rseqb) by SEQ_1:10 .= (((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1))) * ((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1)))) + (lim rseqb) by SEQ_1:10 .= (((tseq + (- (seq_id (vseq . n)))) . (i + 1)) * ((tseq . (i + 1)) + ((- (seq_id (vseq . n))) . (i + 1)))) + (lim rseqb) by SEQ_1:7 .= (((tseq + (- (seq_id (vseq . n)))) . (i + 1)) * ((tseq + (- (seq_id (vseq . n)))) . (i + 1))) + (lim rseqb) by SEQ_1:7 .= (((tseq - (seq_id (vseq . n))) . (i + 1)) * ((tseq + (- (seq_id (vseq . n)))) . (i + 1))) + (lim rseqb) by SEQ_1:11 .= (((tseq - (seq_id (vseq . n))) . (i + 1)) * ((tseq - (seq_id (vseq . n))) . (i + 1))) + (lim rseqb) by SEQ_1:11 .= (((tseq - (seq_id (vseq . n))) (#) (tseq - (seq_id (vseq . n)))) . (i + 1)) + (lim rseqb) by SEQ_1:8 .= (((tseq - (seq_id (vseq . n))) (#) (tseq - (seq_id (vseq . n)))) . (i + 1)) + ((Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i) by A27, A28 .= (((tseq - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) . (i + 1)) + ((Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i) by RSSPACE:1 .= ((((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) . (i + 1)) + ((Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i) by RSSPACE:1 .= (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . (i + 1) by SERIES_1:def_1 ; hence ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . (i + 1) ) by A34, A30, A33, Lm5; ::_thesis: verum end; end; then A35: for i being Element of NAT st S2[i] holds S2[i + 1] ; now__::_thesis:_for_rseq_being_Real_Sequence_st_(_for_m_being_Element_of_NAT_holds_rseq_._m_=_(Partial_Sums_((seq_id_((vseq_._m)_-_(vseq_._n)))_(#)_(seq_id_((vseq_._m)_-_(vseq_._n)))))_._0_)_holds_ (_rseq_is_convergent_&_lim_rseq_=_(Partial_Sums_(((seq_id_tseq)_-_(seq_id_(vseq_._n)))_(#)_((seq_id_tseq)_-_(seq_id_(vseq_._n)))))_._0_) let rseq be Real_Sequence; ::_thesis: ( ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . 0 ) implies ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . 0 ) ) assume A36: for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . 0 ; ::_thesis: ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . 0 ) thus ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . 0 ) ::_thesis: verum proof consider rseq0 being Real_Sequence such that A37: for m being Element of NAT holds rseq0 . m = (seq_id (vseq . m)) . 0 and A38: rseq0 is convergent and A39: tseq . 0 = lim rseq0 by A15; A40: now__::_thesis:_for_m_being_Element_of_NAT_holds_rseq_._m_=_((rseq0_._m)_-_((seq_id_(vseq_._n))_._0))_*_((rseq0_._m)_-_((seq_id_(vseq_._n))_._0)) let m be Element of NAT ; ::_thesis: rseq . m = ((rseq0 . m) - ((seq_id (vseq . n)) . 0)) * ((rseq0 . m) - ((seq_id (vseq . n)) . 0)) thus rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . 0 by A36 .= ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n)))) . 0 by SERIES_1:def_1 .= (((seq_id (vseq . m)) - (seq_id (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n)))) . 0 by A26 .= (((seq_id (vseq . m)) - (seq_id (vseq . n))) (#) ((seq_id (vseq . m)) - (seq_id (vseq . n)))) . 0 by A26 .= (((seq_id (vseq . m)) - (seq_id (vseq . n))) . 0) * (((seq_id (vseq . m)) - (seq_id (vseq . n))) . 0) by SEQ_1:8 .= (((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0) * (((seq_id (vseq . m)) - (seq_id (vseq . n))) . 0) by SEQ_1:11 .= (((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0) * (((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0) by SEQ_1:11 .= (((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0)) * (((seq_id (vseq . m)) + (- (seq_id (vseq . n)))) . 0) by SEQ_1:7 .= (((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0)) * (((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0)) by SEQ_1:7 .= (((seq_id (vseq . m)) . 0) + (- ((seq_id (vseq . n)) . 0))) * (((seq_id (vseq . m)) . 0) + ((- (seq_id (vseq . n))) . 0)) by SEQ_1:10 .= (((seq_id (vseq . m)) . 0) - ((seq_id (vseq . n)) . 0)) * (((seq_id (vseq . m)) . 0) + (- ((seq_id (vseq . n)) . 0))) by SEQ_1:10 .= ((rseq0 . m) - ((seq_id (vseq . n)) . 0)) * (((seq_id (vseq . m)) . 0) - ((seq_id (vseq . n)) . 0)) by A37 .= ((rseq0 . m) - ((seq_id (vseq . n)) . 0)) * ((rseq0 . m) - ((seq_id (vseq . n)) . 0)) by A37 ; ::_thesis: verum end; then lim rseq = ((tseq . 0) + (- ((seq_id (vseq . n)) . 0))) * ((tseq . 0) - ((seq_id (vseq . n)) . 0)) by A38, A39, Lm4 .= ((tseq . 0) + ((- (seq_id (vseq . n))) . 0)) * ((tseq . 0) + (- ((seq_id (vseq . n)) . 0))) by SEQ_1:10 .= ((tseq . 0) + ((- (seq_id (vseq . n))) . 0)) * ((tseq . 0) + ((- (seq_id (vseq . n))) . 0)) by SEQ_1:10 .= ((tseq + (- (seq_id (vseq . n)))) . 0) * ((tseq . 0) + ((- (seq_id (vseq . n))) . 0)) by SEQ_1:7 .= ((tseq + (- (seq_id (vseq . n)))) . 0) * ((tseq + (- (seq_id (vseq . n)))) . 0) by SEQ_1:7 .= ((tseq - (seq_id (vseq . n))) . 0) * ((tseq + (- (seq_id (vseq . n)))) . 0) by SEQ_1:11 .= ((tseq - (seq_id (vseq . n))) . 0) * ((tseq - (seq_id (vseq . n))) . 0) by SEQ_1:11 .= ((tseq - (seq_id (vseq . n))) (#) (tseq - (seq_id (vseq . n)))) . 0 by SEQ_1:8 .= (Partial_Sums ((tseq - (seq_id (vseq . n))) (#) (tseq - (seq_id (vseq . n))))) . 0 by SERIES_1:def_1 .= (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) (tseq - (seq_id (vseq . n))))) . 0 by RSSPACE:1 .= (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . 0 by RSSPACE:1 ; hence ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . 0 ) by A38, A40, Lm4; ::_thesis: verum end; end; then A41: S2[ 0 ] ; for i being Element of NAT holds S2[i] from NAT_1:sch_1(A41, A35); hence for i being Element of NAT for rseq being Real_Sequence st ( for m being Element of NAT holds rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i ) holds ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i ) ; ::_thesis: verum end; for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e1 * e1 ) proof let n be Element of NAT ; ::_thesis: ( n >= k implies ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e1 * e1 ) ) assume A42: n >= k ; ::_thesis: ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e1 * e1 ) A43: for i being Element of NAT st 0 <= i holds (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i <= (e1 / 2) * (e1 / 2) proof let i be Element of NAT ; ::_thesis: ( 0 <= i implies (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i <= (e1 / 2) * (e1 / 2) ) assume 0 <= i ; ::_thesis: (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i <= (e1 / 2) * (e1 / 2) deffunc H1( Element of NAT ) -> Element of REAL = (Partial_Sums ((seq_id ((vseq . c1) - (vseq . n))) (#) (seq_id ((vseq . c1) - (vseq . n))))) . i; consider rseq being Real_Sequence such that A44: for m being Element of NAT holds rseq . m = H1(m) from SEQ_1:sch_1(); A45: for m being Element of NAT st m >= k holds rseq . m <= (e1 / 2) * (e1 / 2) proof let m be Element of NAT ; ::_thesis: ( m >= k implies rseq . m <= (e1 / 2) * (e1 / 2) ) assume A46: m >= k ; ::_thesis: rseq . m <= (e1 / 2) * (e1 / 2) ( (seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))) is summable & ( for i being Element of NAT holds 0 <= ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n)))) . i ) ) by A21, A42, A46; then A47: (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i <= Sum ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n)))) by Lm1; A48: rseq . m = (Partial_Sums ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n))))) . i by A44; Sum ((seq_id ((vseq . m) - (vseq . n))) (#) (seq_id ((vseq . m) - (vseq . n)))) < (e1 / 2) * (e1 / 2) by A21, A42, A46; hence rseq . m <= (e1 / 2) * (e1 / 2) by A48, A47, XXREAL_0:2; ::_thesis: verum end; ( rseq is convergent & lim rseq = (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i ) by A25, A44; hence (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i <= (e1 / 2) * (e1 / 2) by A45, Lm3; ::_thesis: verum end; now__::_thesis:_for_i_being_Element_of_NAT_holds_(Partial_Sums_(((seq_id_tseq)_-_(seq_id_(vseq_._n)))_(#)_((seq_id_tseq)_-_(seq_id_(vseq_._n)))))_._i_<_e1_*_e1 let i be Element of NAT ; ::_thesis: (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i < e1 * e1 (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i <= (e1 / 2) * (e1 / 2) by A43; hence (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) . i < e1 * e1 by A20, XXREAL_0:2; ::_thesis: verum end; then A49: Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) is bounded_above by SEQ_2:def_3; A50: for i being Element of NAT holds 0 <= (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) . i proof let i be Element of NAT ; ::_thesis: 0 <= (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) . i (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) . i = (((seq_id tseq) - (seq_id (vseq . n))) . i) * (((seq_id tseq) - (seq_id (vseq . n))) . i) by SEQ_1:8; hence 0 <= (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) . i by XREAL_1:63; ::_thesis: verum end; then ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable by A49, SERIES_1:17; then Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) is convergent by SERIES_1:def_2; then ( Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) = lim (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) & lim (Partial_Sums (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))))) <= (e1 / 2) * (e1 / 2) ) by A43, Lm3, SERIES_1:def_3; hence ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e1 * e1 ) by A20, A50, A49, SERIES_1:17, XXREAL_0:2; ::_thesis: verum end; hence ex k being Element of NAT st for n being Element of NAT st n >= k holds ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e1 * e1 ) ; ::_thesis: verum end; A51: (seq_id tseq) (#) (seq_id tseq) is summable proof set d = (seq_id tseq) (#) (seq_id tseq); A52: for i being Element of NAT holds 0 <= ((seq_id tseq) (#) (seq_id tseq)) . i proof let i be Element of NAT ; ::_thesis: 0 <= ((seq_id tseq) (#) (seq_id tseq)) . i ((seq_id tseq) (#) (seq_id tseq)) . i = ((seq_id tseq) . i) * ((seq_id tseq) . i) by SEQ_1:8; hence 0 <= ((seq_id tseq) (#) (seq_id tseq)) . i by XREAL_1:63; ::_thesis: verum end; consider m being Element of NAT such that A53: for n being Element of NAT st n >= m holds ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < 1 * 1 ) by A16; set b = (seq_id (vseq . m)) (#) (seq_id (vseq . m)); set a = ((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m))); (seq_id (vseq . m)) (#) (seq_id (vseq . m)) is summable by RSSPACE:def_11, RSSPACE:def_13; then A54: 2 (#) ((seq_id (vseq . m)) (#) (seq_id (vseq . m))) is summable by SERIES_1:10; A55: for i being Element of NAT holds ((seq_id tseq) (#) (seq_id tseq)) . i <= ((2 (#) (((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m))))) + (2 (#) ((seq_id (vseq . m)) (#) (seq_id (vseq . m))))) . i proof let i be Element of NAT ; ::_thesis: ((seq_id tseq) (#) (seq_id tseq)) . i <= ((2 (#) (((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m))))) + (2 (#) ((seq_id (vseq . m)) (#) (seq_id (vseq . m))))) . i set x = (seq_id tseq) . i; set y = (seq_id (vseq . m)) . i; A56: 2 * (((seq_id (vseq . m)) (#) (seq_id (vseq . m))) . i) = 2 * (((seq_id (vseq . m)) . i) * ((seq_id (vseq . m)) . i)) by SEQ_1:8 .= (2 * ((seq_id (vseq . m)) . i)) * ((seq_id (vseq . m)) . i) ; ((seq_id tseq) - (seq_id (vseq . m))) . i = ((seq_id tseq) + (- (seq_id (vseq . m)))) . i by SEQ_1:11 .= ((seq_id tseq) . i) + ((- (seq_id (vseq . m))) . i) by SEQ_1:7 .= ((seq_id tseq) . i) + (- ((seq_id (vseq . m)) . i)) by SEQ_1:10 .= ((seq_id tseq) . i) - ((seq_id (vseq . m)) . i) ; then (((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m)))) . i = (((seq_id tseq) . i) - ((seq_id (vseq . m)) . i)) * (((seq_id tseq) . i) - ((seq_id (vseq . m)) . i)) by SEQ_1:8; then A57: ( ((seq_id tseq) (#) (seq_id tseq)) . i = ((seq_id tseq) . i) * ((seq_id tseq) . i) & 2 * ((((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m)))) . i) = (2 * (((seq_id tseq) . i) - ((seq_id (vseq . m)) . i))) * (((seq_id tseq) . i) - ((seq_id (vseq . m)) . i)) ) by SEQ_1:8; ((2 (#) (((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m))))) + (2 (#) ((seq_id (vseq . m)) (#) (seq_id (vseq . m))))) . i = ((2 (#) (((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m))))) . i) + ((2 (#) ((seq_id (vseq . m)) (#) (seq_id (vseq . m)))) . i) by SEQ_1:7 .= (2 * ((((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m)))) . i)) + ((2 (#) ((seq_id (vseq . m)) (#) (seq_id (vseq . m)))) . i) by SEQ_1:9 .= (2 * ((((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m)))) . i)) + (2 * (((seq_id (vseq . m)) (#) (seq_id (vseq . m))) . i)) by SEQ_1:9 ; hence ((seq_id tseq) (#) (seq_id tseq)) . i <= ((2 (#) (((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m))))) + (2 (#) ((seq_id (vseq . m)) (#) (seq_id (vseq . m))))) . i by A57, A56, Lm2; ::_thesis: verum end; ((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m))) is summable by A53; then 2 (#) (((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m)))) is summable by SERIES_1:10; then (2 (#) (((seq_id tseq) - (seq_id (vseq . m))) (#) ((seq_id tseq) - (seq_id (vseq . m))))) + (2 (#) ((seq_id (vseq . m)) (#) (seq_id (vseq . m)))) is summable by A54, SERIES_1:7; hence (seq_id tseq) (#) (seq_id tseq) is summable by A52, A55, SERIES_1:20; ::_thesis: verum end; tseq in the_set_of_RealSequences by RSSPACE:def_1; then reconsider tv = tseq as Point of l2_Space by A51, RSSPACE:def_11, RSSPACE:def_13; for e being Real st e > 0 holds ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e proof let e be Real; ::_thesis: ( e > 0 implies ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e ) assume A58: e > 0 ; ::_thesis: ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e consider m being Element of NAT such that A59: for n being Element of NAT st n >= m holds ( ((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n))) is summable & Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e * e ) by A16, A58; now__::_thesis:_for_n_being_Element_of_NAT_st_n_>=_m_holds_ ||.((vseq_._n)_-_tv).||_<_e tseq in the_set_of_RealSequences by RSSPACE:def_1; then reconsider u = tseq as VECTOR of l2_Space by A51, RSSPACE:def_11, RSSPACE:def_13; let n be Element of NAT ; ::_thesis: ( n >= m implies ||.((vseq . n) - tv).|| < e ) assume n >= m ; ::_thesis: ||.((vseq . n) - tv).|| < e then A60: Sum (((seq_id tseq) - (seq_id (vseq . n))) (#) ((seq_id tseq) - (seq_id (vseq . n)))) < e * e by A59; reconsider v = vseq . n as VECTOR of l2_Space ; seq_id (u - v) = u - v by Th1; then seq_id (u - v) = (seq_id tseq) - (seq_id (vseq . n)) by Th1; then A61: (u - v) .|. (u - v) < e * e by A60, Th1; A62: ||.((vseq . n) - tv).|| = ||.(- (tv - (vseq . n))).|| by RLVECT_1:33 .= ||.(tv - (vseq . n)).|| by BHSP_1:31 .= sqrt ((u - v) .|. (u - v)) by BHSP_1:def_4 ; 0 <= (u - v) .|. (u - v) by BHSP_1:def_2; then sqrt ((u - v) .|. (u - v)) < sqrt (e ^2) by A61, SQUARE_1:27; hence ||.((vseq . n) - tv).|| < e by A58, A62, SQUARE_1:22; ::_thesis: verum end; hence ex m being Element of NAT st for n being Element of NAT st n >= m holds ||.((vseq . n) - tv).|| < e ; ::_thesis: verum end; hence vseq is convergent by BHSP_2:9; ::_thesis: verum end; end; registration clusterV78() right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital RealUnitarySpace-like complete for UNITSTR ; existence ex b1 being RealUnitarySpace st b1 is complete proof take l2_Space ; ::_thesis: l2_Space is complete thus l2_Space is complete ; ::_thesis: verum end; end; definition mode RealHilbertSpace is complete RealUnitarySpace; end; begin theorem :: RSSPACE2:3 for r being Real_Sequence st ( for n being Element of NAT holds 0 <= r . n ) holds ( ( for n being Element of NAT holds 0 <= (Partial_Sums r) . n ) & ( for n being Element of NAT holds r . n <= (Partial_Sums r) . n ) & ( r is summable implies ( ( for n being Element of NAT holds (Partial_Sums r) . n <= Sum r ) & ( for n being Element of NAT holds r . n <= Sum r ) ) ) ) by Lm1; theorem :: RSSPACE2:4 ( ( for x, y being Real holds (x + y) * (x + y) <= ((2 * x) * x) + ((2 * y) * y) ) & ( for x, y being Real holds x * x <= ((2 * (x - y)) * (x - y)) + ((2 * y) * y) ) ) by Lm2; theorem :: RSSPACE2:5 for e being Real for s being Real_Sequence st s is convergent & ex k being Element of NAT st for i being Element of NAT st k <= i holds s . i <= e holds lim s <= e by Lm3; theorem :: RSSPACE2:6 for c being Real for s being Real_Sequence st s is convergent holds for r being Real_Sequence st ( for i being Element of NAT holds r . i = ((s . i) - c) * ((s . i) - c) ) holds ( r is convergent & lim r = ((lim s) - c) * ((lim s) - c) ) by Lm4; theorem :: RSSPACE2:7 for c being Real for s, s1 being Real_Sequence st s is convergent & s1 is convergent holds for r being Real_Sequence st ( for i being Element of NAT holds r . i = (((s . i) - c) * ((s . i) - c)) + (s1 . i) ) holds ( r is convergent & lim r = (((lim s) - c) * ((lim s) - c)) + (lim s1) ) by Lm5;