:: SIN_COS6 semantic presentation begin theorem Th1: :: SIN_COS6:1 for r, s being real number st 0 <= r & r < s holds [\(r / s)/] = 0 proof let r, s be real number ; ::_thesis: ( 0 <= r & r < s implies [\(r / s)/] = 0 ) assume A1: ( 0 <= r & r < s ) ; ::_thesis: [\(r / s)/] = 0 then r / s < s / s by XREAL_1:74; then (r / s) - 1 < (s / s) - 1 by XREAL_1:9; then (r / s) - 1 < 1 - 1 by A1, XCMPLX_1:60; hence [\(r / s)/] = 0 by A1, INT_1:def_6; ::_thesis: verum end; theorem Th2: :: SIN_COS6:2 for f being Function for X, Y being set st f | X is one-to-one & Y c= X holds f | Y is one-to-one proof let f be Function; ::_thesis: for X, Y being set st f | X is one-to-one & Y c= X holds f | Y is one-to-one let X, Y be set ; ::_thesis: ( f | X is one-to-one & Y c= X implies f | Y is one-to-one ) assume that A1: f | X is one-to-one and A2: Y c= X ; ::_thesis: f | Y is one-to-one let x, y be set ; :: according to FUNCT_1:def_4 ::_thesis: ( not x in dom (f | Y) or not y in dom (f | Y) or not (f | Y) . x = (f | Y) . y or x = y ) A3: dom (f | Y) = (dom f) /\ Y by RELAT_1:61; assume A4: x in dom (f | Y) ; ::_thesis: ( not y in dom (f | Y) or not (f | Y) . x = (f | Y) . y or x = y ) then A5: x in Y by A3, XBOOLE_0:def_4; x in dom f by A3, A4, XBOOLE_0:def_4; then x in (dom f) /\ X by A2, A5, XBOOLE_0:def_4; then A6: x in dom (f | X) by RELAT_1:61; assume A7: y in dom (f | Y) ; ::_thesis: ( not (f | Y) . x = (f | Y) . y or x = y ) then A8: y in Y by A3, XBOOLE_0:def_4; y in dom f by A3, A7, XBOOLE_0:def_4; then y in (dom f) /\ X by A2, A8, XBOOLE_0:def_4; then A9: y in dom (f | X) by RELAT_1:61; assume A10: (f | Y) . x = (f | Y) . y ; ::_thesis: x = y (f | X) . x = f . x by A2, A5, FUNCT_1:49 .= (f | Y) . x by A5, FUNCT_1:49 .= f . y by A8, A10, FUNCT_1:49 .= (f | X) . y by A2, A8, FUNCT_1:49 ; hence x = y by A1, A6, A9, FUNCT_1:def_4; ::_thesis: verum end; begin theorem Th3: :: SIN_COS6:3 for r being real number holds - 1 <= sin r proof let r be real number ; ::_thesis: - 1 <= sin r sin . r in [.(- 1),1.] by COMPTRIG:27; then sin r in [.(- 1),1.] by SIN_COS:def_17; hence - 1 <= sin r by XXREAL_1:1; ::_thesis: verum end; theorem Th4: :: SIN_COS6:4 for r being real number holds sin r <= 1 proof let r be real number ; ::_thesis: sin r <= 1 sin . r in [.(- 1),1.] by COMPTRIG:27; then sin r in [.(- 1),1.] by SIN_COS:def_17; hence sin r <= 1 by XXREAL_1:1; ::_thesis: verum end; theorem Th5: :: SIN_COS6:5 for r being real number holds - 1 <= cos r proof let r be real number ; ::_thesis: - 1 <= cos r cos . r in [.(- 1),1.] by COMPTRIG:27; then cos r in [.(- 1),1.] by SIN_COS:def_19; hence - 1 <= cos r by XXREAL_1:1; ::_thesis: verum end; theorem Th6: :: SIN_COS6:6 for r being real number holds cos r <= 1 proof let r be real number ; ::_thesis: cos r <= 1 cos . r in [.(- 1),1.] by COMPTRIG:27; then cos r in [.(- 1),1.] by SIN_COS:def_19; hence cos r <= 1 by XXREAL_1:1; ::_thesis: verum end; deffunc H1( Integer) -> Element of REAL = (2 * PI) * $1; Lm1: [.((- (PI / 2)) + H1( 0 )),((PI / 2) + H1( 0 )).] = [.(- (PI / 2)),(PI / 2).] ; Lm2: [.((PI / 2) + H1( 0 )),(((3 / 2) * PI) + H1( 0 )).] = [.(PI / 2),((3 / 2) * PI).] ; Lm3: [.H1( 0 ),(PI + H1( 0 )).] = [.0,PI.] ; Lm4: [.(PI + H1( 0 )),((2 * PI) + H1( 0 )).] = [.PI,(2 * PI).] ; Lm5: for r, s being real number st (r ^2) + (s ^2) = 1 holds ( - 1 <= r & r <= 1 ) proof let r, s be real number ; ::_thesis: ( (r ^2) + (s ^2) = 1 implies ( - 1 <= r & r <= 1 ) ) s ^2 >= 0 by XREAL_1:63; then - (s ^2) <= - 0 ; then (r ^2) - ((r ^2) + (s ^2)) <= 0 ; hence ( (r ^2) + (s ^2) = 1 implies ( - 1 <= r & r <= 1 ) ) by SQUARE_1:43; ::_thesis: verum end; registration cluster PI -> positive ; coherence PI is positive proof PI in ].0,4.[ by SIN_COS:def_28; hence PI > 0 by XXREAL_1:4; :: according to XXREAL_0:def_6 ::_thesis: verum end; end; Lm6: PI / 2 < PI / 1 by XREAL_1:76; Lm7: 1 * PI < (3 / 2) * PI by XREAL_1:68; Lm8: 0 + H1(1) < (PI / 2) + H1(1) by XREAL_1:6; Lm9: (3 / 2) * PI < 2 * PI by XREAL_1:68; Lm10: 1 * PI < 2 * PI by XREAL_1:68; theorem Th7: :: SIN_COS6:7 ( sin (- (PI / 2)) = - 1 & sin . (- (PI / 2)) = - 1 ) proof sin . (- (PI / 2)) = sin . ((- (PI / 2)) + (2 * PI)) by SIN_COS:78 .= - 1 by SIN_COS:76 ; hence ( sin (- (PI / 2)) = - 1 & sin . (- (PI / 2)) = - 1 ) by SIN_COS:def_17; ::_thesis: verum end; theorem Th8: :: SIN_COS6:8 for r being real number for i being integer number holds sin . r = sin . (r + ((2 * PI) * i)) proof let r be real number ; ::_thesis: for i being integer number holds sin . r = sin . (r + ((2 * PI) * i)) let i be integer number ; ::_thesis: sin . r = sin . (r + ((2 * PI) * i)) thus sin . r = sin r by SIN_COS:def_17 .= sin (r + ((2 * PI) * i)) by COMPLEX2:8 .= sin . (r + ((2 * PI) * i)) by SIN_COS:def_17 ; ::_thesis: verum end; theorem Th9: :: SIN_COS6:9 ( cos (- (PI / 2)) = 0 & cos . (- (PI / 2)) = 0 ) proof cos . (- (PI / 2)) = cos . ((- (PI / 2)) + (2 * PI)) by SIN_COS:78 .= 0 by SIN_COS:76 ; hence ( cos (- (PI / 2)) = 0 & cos . (- (PI / 2)) = 0 ) by SIN_COS:def_19; ::_thesis: verum end; theorem Th10: :: SIN_COS6:10 for r being real number for i being integer number holds cos . r = cos . (r + ((2 * PI) * i)) proof let r be real number ; ::_thesis: for i being integer number holds cos . r = cos . (r + ((2 * PI) * i)) let i be integer number ; ::_thesis: cos . r = cos . (r + ((2 * PI) * i)) thus cos . r = cos r by SIN_COS:def_19 .= cos (r + ((2 * PI) * i)) by COMPLEX2:9 .= cos . (r + ((2 * PI) * i)) by SIN_COS:def_19 ; ::_thesis: verum end; theorem Th11: :: SIN_COS6:11 for r being real number for i being integer number st (2 * PI) * i < r & r < PI + ((2 * PI) * i) holds sin r > 0 proof let r be real number ; ::_thesis: for i being integer number st (2 * PI) * i < r & r < PI + ((2 * PI) * i) holds sin r > 0 let i be integer number ; ::_thesis: ( (2 * PI) * i < r & r < PI + ((2 * PI) * i) implies sin r > 0 ) assume ( H1(i) < r & r < PI + H1(i) ) ; ::_thesis: sin r > 0 then ( H1(i) - H1(i) < r - H1(i) & r - H1(i) < (PI + H1(i)) - H1(i) ) by XREAL_1:9; then r - H1(i) in ].0,PI.[ by XXREAL_1:4; then sin . (r + H1( - i)) > 0 by COMPTRIG:7; then sin . r > 0 by Th8; hence sin r > 0 by SIN_COS:def_17; ::_thesis: verum end; theorem Th12: :: SIN_COS6:12 for r being real number for i being integer number st PI + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) holds sin r < 0 proof let r be real number ; ::_thesis: for i being integer number st PI + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) holds sin r < 0 let i be integer number ; ::_thesis: ( PI + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) implies sin r < 0 ) assume ( PI + H1(i) < r & r < (2 * PI) + H1(i) ) ; ::_thesis: sin r < 0 then ( (PI + H1(i)) - H1(i) < r - H1(i) & r - H1(i) < ((2 * PI) + H1(i)) - H1(i) ) by XREAL_1:9; then r - H1(i) in ].PI,(2 * PI).[ by XXREAL_1:4; then sin . (r + H1( - i)) < 0 by COMPTRIG:9; then sin . r < 0 by Th8; hence sin r < 0 by SIN_COS:def_17; ::_thesis: verum end; theorem Th13: :: SIN_COS6:13 for r being real number for i being integer number st (- (PI / 2)) + ((2 * PI) * i) < r & r < (PI / 2) + ((2 * PI) * i) holds cos r > 0 proof let r be real number ; ::_thesis: for i being integer number st (- (PI / 2)) + ((2 * PI) * i) < r & r < (PI / 2) + ((2 * PI) * i) holds cos r > 0 let i be integer number ; ::_thesis: ( (- (PI / 2)) + ((2 * PI) * i) < r & r < (PI / 2) + ((2 * PI) * i) implies cos r > 0 ) assume that A1: (- (PI / 2)) + H1(i) < r and A2: r < (PI / 2) + H1(i) ; ::_thesis: cos r > 0 r + (PI / 2) < ((PI / 2) + H1(i)) + (PI / 2) by A2, XREAL_1:6; then A3: r + (PI / 2) < PI + H1(i) ; A4: sin (r + (PI / 2)) = cos r by SIN_COS:79; ((- (PI / 2)) + H1(i)) + (PI / 2) < r + (PI / 2) by A1, XREAL_1:6; hence cos r > 0 by A3, A4, Th11; ::_thesis: verum end; theorem Th14: :: SIN_COS6:14 for r being real number for i being integer number st (PI / 2) + ((2 * PI) * i) < r & r < ((3 / 2) * PI) + ((2 * PI) * i) holds cos r < 0 proof let r be real number ; ::_thesis: for i being integer number st (PI / 2) + ((2 * PI) * i) < r & r < ((3 / 2) * PI) + ((2 * PI) * i) holds cos r < 0 let i be integer number ; ::_thesis: ( (PI / 2) + ((2 * PI) * i) < r & r < ((3 / 2) * PI) + ((2 * PI) * i) implies cos r < 0 ) assume that A1: (PI / 2) + H1(i) < r and A2: r < ((3 / 2) * PI) + H1(i) ; ::_thesis: cos r < 0 ((PI / 2) + H1(i)) + (PI / 2) < r + (PI / 2) by A1, XREAL_1:6; then A3: PI + H1(i) < r + (PI / 2) ; r + (PI / 2) < (((3 / 2) * PI) + H1(i)) + (PI / 2) by A2, XREAL_1:6; then A4: r + (PI / 2) < (2 * PI) + H1(i) ; sin (r + (PI / 2)) = cos r by SIN_COS:79; hence cos r < 0 by A3, A4, Th12; ::_thesis: verum end; theorem Th15: :: SIN_COS6:15 for r being real number for i being integer number st ((3 / 2) * PI) + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) holds cos r > 0 proof let r be real number ; ::_thesis: for i being integer number st ((3 / 2) * PI) + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) holds cos r > 0 let i be integer number ; ::_thesis: ( ((3 / 2) * PI) + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) implies cos r > 0 ) assume that A1: ((3 / 2) * PI) + H1(i) < r and A2: r < (2 * PI) + H1(i) ; ::_thesis: cos r > 0 (((3 / 2) * PI) + H1(i)) - PI < r - PI by A1, XREAL_1:9; then A3: (PI / 2) + H1(i) < r - PI ; ( PI + H1(i) < ((3 / 2) * PI) + H1(i) & r - PI < ((2 * PI) + H1(i)) - PI ) by A2, COMPTRIG:5, XREAL_1:6, XREAL_1:9; then A4: r - PI < ((3 / 2) * PI) + H1(i) by XXREAL_0:2; cos (r - PI) = cos (- (PI - r)) .= cos (PI + (- r)) by SIN_COS:31 .= - (cos (- r)) by SIN_COS:79 .= - (cos r) by SIN_COS:31 ; hence cos r > 0 by A3, A4, Th14; ::_thesis: verum end; theorem :: SIN_COS6:16 for r being real number for i being integer number st (2 * PI) * i <= r & r <= PI + ((2 * PI) * i) holds sin r >= 0 proof let r be real number ; ::_thesis: for i being integer number st (2 * PI) * i <= r & r <= PI + ((2 * PI) * i) holds sin r >= 0 let i be integer number ; ::_thesis: ( (2 * PI) * i <= r & r <= PI + ((2 * PI) * i) implies sin r >= 0 ) assume A1: ( (2 * PI) * i <= r & r <= PI + ((2 * PI) * i) ) ; ::_thesis: sin r >= 0 percases ( ( (2 * PI) * i < r & r < PI + ((2 * PI) * i) ) or (2 * PI) * i = r or r = PI + ((2 * PI) * i) ) by A1, XXREAL_0:1; suppose ( (2 * PI) * i < r & r < PI + ((2 * PI) * i) ) ; ::_thesis: sin r >= 0 hence sin r >= 0 by Th11; ::_thesis: verum end; supposeA2: (2 * PI) * i = r ; ::_thesis: sin r >= 0 sin (0 + ((2 * PI) * i)) = sin 0 by COMPLEX2:8; hence sin r >= 0 by A2, SIN_COS:31; ::_thesis: verum end; suppose r = PI + ((2 * PI) * i) ; ::_thesis: sin r >= 0 hence sin r >= 0 by COMPLEX2:8, SIN_COS:77; ::_thesis: verum end; end; end; theorem :: SIN_COS6:17 for r being real number for i being integer number st PI + ((2 * PI) * i) <= r & r <= (2 * PI) + ((2 * PI) * i) holds sin r <= 0 proof let r be real number ; ::_thesis: for i being integer number st PI + ((2 * PI) * i) <= r & r <= (2 * PI) + ((2 * PI) * i) holds sin r <= 0 let i be integer number ; ::_thesis: ( PI + ((2 * PI) * i) <= r & r <= (2 * PI) + ((2 * PI) * i) implies sin r <= 0 ) assume ( PI + ((2 * PI) * i) <= r & r <= (2 * PI) + ((2 * PI) * i) ) ; ::_thesis: sin r <= 0 then ( ( PI + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) ) or PI + ((2 * PI) * i) = r or r = (2 * PI) + ((2 * PI) * i) ) by XXREAL_0:1; hence sin r <= 0 by Th12, COMPLEX2:8, SIN_COS:77; ::_thesis: verum end; theorem :: SIN_COS6:18 for r being real number for i being integer number st (- (PI / 2)) + ((2 * PI) * i) <= r & r <= (PI / 2) + ((2 * PI) * i) holds cos r >= 0 proof let r be real number ; ::_thesis: for i being integer number st (- (PI / 2)) + ((2 * PI) * i) <= r & r <= (PI / 2) + ((2 * PI) * i) holds cos r >= 0 let i be integer number ; ::_thesis: ( (- (PI / 2)) + ((2 * PI) * i) <= r & r <= (PI / 2) + ((2 * PI) * i) implies cos r >= 0 ) assume ( (- (PI / 2)) + ((2 * PI) * i) <= r & r <= (PI / 2) + ((2 * PI) * i) ) ; ::_thesis: cos r >= 0 then ( ( (- (PI / 2)) + ((2 * PI) * i) < r & r < (PI / 2) + ((2 * PI) * i) ) or (- (PI / 2)) + ((2 * PI) * i) = r or r = (PI / 2) + ((2 * PI) * i) ) by XXREAL_0:1; hence cos r >= 0 by Th9, Th13, COMPLEX2:9, SIN_COS:77; ::_thesis: verum end; theorem :: SIN_COS6:19 for r being real number for i being integer number st (PI / 2) + ((2 * PI) * i) <= r & r <= ((3 / 2) * PI) + ((2 * PI) * i) holds cos r <= 0 proof let r be real number ; ::_thesis: for i being integer number st (PI / 2) + ((2 * PI) * i) <= r & r <= ((3 / 2) * PI) + ((2 * PI) * i) holds cos r <= 0 let i be integer number ; ::_thesis: ( (PI / 2) + ((2 * PI) * i) <= r & r <= ((3 / 2) * PI) + ((2 * PI) * i) implies cos r <= 0 ) assume ( (PI / 2) + ((2 * PI) * i) <= r & r <= ((3 / 2) * PI) + ((2 * PI) * i) ) ; ::_thesis: cos r <= 0 then ( ( (PI / 2) + ((2 * PI) * i) < r & r < ((3 / 2) * PI) + ((2 * PI) * i) ) or (PI / 2) + ((2 * PI) * i) = r or r = ((3 / 2) * PI) + ((2 * PI) * i) ) by XXREAL_0:1; hence cos r <= 0 by Th14, COMPLEX2:9, SIN_COS:77; ::_thesis: verum end; theorem :: SIN_COS6:20 for r being real number for i being integer number st ((3 / 2) * PI) + ((2 * PI) * i) <= r & r <= (2 * PI) + ((2 * PI) * i) holds cos r >= 0 proof let r be real number ; ::_thesis: for i being integer number st ((3 / 2) * PI) + ((2 * PI) * i) <= r & r <= (2 * PI) + ((2 * PI) * i) holds cos r >= 0 let i be integer number ; ::_thesis: ( ((3 / 2) * PI) + ((2 * PI) * i) <= r & r <= (2 * PI) + ((2 * PI) * i) implies cos r >= 0 ) assume A1: ( ((3 / 2) * PI) + ((2 * PI) * i) <= r & r <= (2 * PI) + ((2 * PI) * i) ) ; ::_thesis: cos r >= 0 percases ( ( ((3 / 2) * PI) + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) ) or ((3 / 2) * PI) + ((2 * PI) * i) = r or r = (2 * PI) + ((2 * PI) * i) ) by A1, XXREAL_0:1; suppose ( ((3 / 2) * PI) + ((2 * PI) * i) < r & r < (2 * PI) + ((2 * PI) * i) ) ; ::_thesis: cos r >= 0 hence cos r >= 0 by Th15; ::_thesis: verum end; suppose ((3 / 2) * PI) + ((2 * PI) * i) = r ; ::_thesis: cos r >= 0 hence cos r >= 0 by COMPLEX2:9, SIN_COS:77; ::_thesis: verum end; suppose r = (2 * PI) + ((2 * PI) * i) ; ::_thesis: cos r >= 0 hence cos r >= 0 by COMPLEX2:9, SIN_COS:77; ::_thesis: verum end; end; end; theorem Th21: :: SIN_COS6:21 for r being real number for i being integer number st (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & sin r = 0 & not r = (2 * PI) * i holds r = PI + ((2 * PI) * i) proof let r be real number ; ::_thesis: for i being integer number st (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & sin r = 0 & not r = (2 * PI) * i holds r = PI + ((2 * PI) * i) let i be integer number ; ::_thesis: ( (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & sin r = 0 & not r = (2 * PI) * i implies r = PI + ((2 * PI) * i) ) assume A1: ( H1(i) <= r & r < (2 * PI) + H1(i) ) ; ::_thesis: ( not sin r = 0 or r = (2 * PI) * i or r = PI + ((2 * PI) * i) ) assume A2: sin r = 0 ; ::_thesis: ( r = (2 * PI) * i or r = PI + ((2 * PI) * i) ) then A3: ( r <= PI + H1(i) or (2 * PI) + H1(i) <= r ) by Th12; ( r <= H1(i) or r >= PI + H1(i) ) by A2, Th11; hence ( r = (2 * PI) * i or r = PI + ((2 * PI) * i) ) by A1, A3, XXREAL_0:1; ::_thesis: verum end; theorem Th22: :: SIN_COS6:22 for r being real number for i being integer number st (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & cos r = 0 & not r = (PI / 2) + ((2 * PI) * i) holds r = ((3 / 2) * PI) + ((2 * PI) * i) proof let r be real number ; ::_thesis: for i being integer number st (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & cos r = 0 & not r = (PI / 2) + ((2 * PI) * i) holds r = ((3 / 2) * PI) + ((2 * PI) * i) let i be integer number ; ::_thesis: ( (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & cos r = 0 & not r = (PI / 2) + ((2 * PI) * i) implies r = ((3 / 2) * PI) + ((2 * PI) * i) ) assume that A1: H1(i) <= r and A2: r < (2 * PI) + H1(i) ; ::_thesis: ( not cos r = 0 or r = (PI / 2) + ((2 * PI) * i) or r = ((3 / 2) * PI) + ((2 * PI) * i) ) A3: (- (PI / 2)) + H1(i) < 0 + H1(i) by XREAL_1:6; assume A4: cos r = 0 ; ::_thesis: ( r = (PI / 2) + ((2 * PI) * i) or r = ((3 / 2) * PI) + ((2 * PI) * i) ) then A5: ( (PI / 2) + H1(i) >= r or r >= ((3 / 2) * PI) + H1(i) ) by Th14; ( (- (PI / 2)) + H1(i) >= r or r >= (PI / 2) + H1(i) ) by A4, Th13; then ( r = (PI / 2) + H1(i) or r = ((3 / 2) * PI) + H1(i) or r > ((3 / 2) * PI) + H1(i) ) by A1, A5, A3, XXREAL_0:1, XXREAL_0:2; hence ( r = (PI / 2) + ((2 * PI) * i) or r = ((3 / 2) * PI) + ((2 * PI) * i) ) by A2, A4, Th15; ::_thesis: verum end; theorem Th23: :: SIN_COS6:23 for r being real number st sin r = - 1 holds r = ((3 / 2) * PI) + ((2 * PI) * [\(r / (2 * PI))/]) proof let r be real number ; ::_thesis: ( sin r = - 1 implies r = ((3 / 2) * PI) + ((2 * PI) * [\(r / (2 * PI))/]) ) set i = [\(r / (2 * PI))/]; consider w being real number such that A1: w = ((2 * PI) * (- [\(r / (2 * PI))/])) + r and A2: ( 0 <= w & w < 2 * PI ) by COMPLEX2:1; assume A3: sin r = - 1 ; ::_thesis: r = ((3 / 2) * PI) + ((2 * PI) * [\(r / (2 * PI))/]) then ((cos r) * (cos r)) + ((- 1) * (- 1)) = 1 by SIN_COS:29; then A4: cos r = 0 ; ( 0 + H1([\(r / (2 * PI))/]) <= w + H1([\(r / (2 * PI))/]) & w + H1([\(r / (2 * PI))/]) < (2 * PI) + H1([\(r / (2 * PI))/]) ) by A2, XREAL_1:6; then ( r = (PI / 2) + H1([\(r / (2 * PI))/]) or r = ((3 / 2) * PI) + H1([\(r / (2 * PI))/]) ) by A1, A4, Th22; hence r = ((3 / 2) * PI) + ((2 * PI) * [\(r / (2 * PI))/]) by A3, COMPLEX2:8, SIN_COS:77; ::_thesis: verum end; theorem Th24: :: SIN_COS6:24 for r being real number st sin r = 1 holds r = (PI / 2) + ((2 * PI) * [\(r / (2 * PI))/]) proof let r be real number ; ::_thesis: ( sin r = 1 implies r = (PI / 2) + ((2 * PI) * [\(r / (2 * PI))/]) ) set i = [\(r / (2 * PI))/]; consider w being real number such that A1: w = ((2 * PI) * (- [\(r / (2 * PI))/])) + r and A2: ( 0 <= w & w < 2 * PI ) by COMPLEX2:1; assume A3: sin r = 1 ; ::_thesis: r = (PI / 2) + ((2 * PI) * [\(r / (2 * PI))/]) then ((cos r) * (cos r)) + (1 * 1) = 1 by SIN_COS:29; then A4: cos r = 0 ; ( 0 + H1([\(r / (2 * PI))/]) <= w + H1([\(r / (2 * PI))/]) & w + H1([\(r / (2 * PI))/]) < (2 * PI) + H1([\(r / (2 * PI))/]) ) by A2, XREAL_1:6; then ( r = (PI / 2) + H1([\(r / (2 * PI))/]) or r = ((3 / 2) * PI) + H1([\(r / (2 * PI))/]) ) by A1, A4, Th22; hence r = (PI / 2) + ((2 * PI) * [\(r / (2 * PI))/]) by A3, COMPLEX2:8, SIN_COS:77; ::_thesis: verum end; theorem Th25: :: SIN_COS6:25 for r being real number st cos r = - 1 holds r = PI + ((2 * PI) * [\(r / (2 * PI))/]) proof let r be real number ; ::_thesis: ( cos r = - 1 implies r = PI + ((2 * PI) * [\(r / (2 * PI))/]) ) set i = [\(r / (2 * PI))/]; consider w being real number such that A1: w = ((2 * PI) * (- [\(r / (2 * PI))/])) + r and A2: ( 0 <= w & w < 2 * PI ) by COMPLEX2:1; assume A3: cos r = - 1 ; ::_thesis: r = PI + ((2 * PI) * [\(r / (2 * PI))/]) then ((sin r) * (sin r)) + ((- 1) * (- 1)) = 1 by SIN_COS:29; then A4: sin r = 0 ; ( 0 + H1([\(r / (2 * PI))/]) <= w + H1([\(r / (2 * PI))/]) & w + H1([\(r / (2 * PI))/]) < (2 * PI) + H1([\(r / (2 * PI))/]) ) by A2, XREAL_1:6; then ( r = 0 + H1([\(r / (2 * PI))/]) or r = PI + H1([\(r / (2 * PI))/]) ) by A1, A4, Th21; hence r = PI + ((2 * PI) * [\(r / (2 * PI))/]) by A3, COMPLEX2:9, SIN_COS:31; ::_thesis: verum end; theorem Th26: :: SIN_COS6:26 for r being real number st cos r = 1 holds r = (2 * PI) * [\(r / (2 * PI))/] proof let r be real number ; ::_thesis: ( cos r = 1 implies r = (2 * PI) * [\(r / (2 * PI))/] ) set i = [\(r / (2 * PI))/]; consider w being real number such that A1: w = ((2 * PI) * (- [\(r / (2 * PI))/])) + r and A2: ( 0 <= w & w < 2 * PI ) by COMPLEX2:1; assume A3: cos r = 1 ; ::_thesis: r = (2 * PI) * [\(r / (2 * PI))/] then ((sin r) * (sin r)) + (1 * 1) = 1 by SIN_COS:29; then A4: sin r = 0 ; ( 0 + H1([\(r / (2 * PI))/]) <= w + H1([\(r / (2 * PI))/]) & w + H1([\(r / (2 * PI))/]) < (2 * PI) + H1([\(r / (2 * PI))/]) ) by A2, XREAL_1:6; then ( r = 0 + H1([\(r / (2 * PI))/]) or r = PI + H1([\(r / (2 * PI))/]) ) by A1, A4, Th21; hence r = (2 * PI) * [\(r / (2 * PI))/] by A3, COMPLEX2:9, SIN_COS:77; ::_thesis: verum end; theorem Th27: :: SIN_COS6:27 for r being real number st 0 <= r & r <= 2 * PI & sin r = - 1 holds r = (3 / 2) * PI proof let r be real number ; ::_thesis: ( 0 <= r & r <= 2 * PI & sin r = - 1 implies r = (3 / 2) * PI ) assume that A1: 0 <= r and A2: r <= 2 * PI and A3: sin r = - 1 ; ::_thesis: r = (3 / 2) * PI A4: ( r = 2 * PI or r < 2 * PI ) by A2, XXREAL_0:1; thus r = ((3 / 2) * PI) + ((2 * PI) * [\(r / (2 * PI))/]) by A3, Th23 .= ((3 / 2) * PI) + ((2 * PI) * 0) by A1, A3, A4, Th1, SIN_COS:77 .= (3 / 2) * PI ; ::_thesis: verum end; theorem Th28: :: SIN_COS6:28 for r being real number st 0 <= r & r <= 2 * PI & sin r = 1 holds r = PI / 2 proof let r be real number ; ::_thesis: ( 0 <= r & r <= 2 * PI & sin r = 1 implies r = PI / 2 ) assume that A1: 0 <= r and A2: r <= 2 * PI and A3: sin r = 1 ; ::_thesis: r = PI / 2 A4: ( r = 2 * PI or r < 2 * PI ) by A2, XXREAL_0:1; thus r = (PI / 2) + ((2 * PI) * [\(r / (2 * PI))/]) by A3, Th24 .= (PI / 2) + ((2 * PI) * 0) by A1, A3, A4, Th1, SIN_COS:77 .= PI / 2 ; ::_thesis: verum end; theorem Th29: :: SIN_COS6:29 for r being real number st 0 <= r & r <= 2 * PI & cos r = - 1 holds r = PI proof let r be real number ; ::_thesis: ( 0 <= r & r <= 2 * PI & cos r = - 1 implies r = PI ) assume that A1: 0 <= r and A2: r <= 2 * PI and A3: cos r = - 1 ; ::_thesis: r = PI A4: ( r = 2 * PI or r < 2 * PI ) by A2, XXREAL_0:1; thus r = PI + ((2 * PI) * [\(r / (2 * PI))/]) by A3, Th25 .= PI + ((2 * PI) * 0) by A1, A3, A4, Th1, SIN_COS:77 .= PI ; ::_thesis: verum end; theorem Th30: :: SIN_COS6:30 for r being real number st 0 <= r & r < PI / 2 holds sin r < 1 proof let r be real number ; ::_thesis: ( 0 <= r & r < PI / 2 implies sin r < 1 ) assume that A1: 0 <= r and A2: r < PI / 2 and A3: sin r >= 1 ; ::_thesis: contradiction A4: sin r <= 1 by Th4; (1 / 2) * PI <= 2 * PI by XREAL_1:64; then r < 2 * PI by A2, XXREAL_0:2; hence contradiction by A1, A2, A3, A4, Th28, XXREAL_0:1; ::_thesis: verum end; theorem Th31: :: SIN_COS6:31 for r being real number st 0 <= r & r < (3 / 2) * PI holds sin r > - 1 proof let r be real number ; ::_thesis: ( 0 <= r & r < (3 / 2) * PI implies sin r > - 1 ) assume that A1: 0 <= r and A2: r < (3 / 2) * PI and A3: sin r <= - 1 ; ::_thesis: contradiction A4: sin r >= - 1 by Th3; r <= 2 * PI by A2, Lm9, XXREAL_0:2; hence contradiction by A1, A2, A3, A4, Th27, XXREAL_0:1; ::_thesis: verum end; theorem Th32: :: SIN_COS6:32 for r being real number st (3 / 2) * PI < r & r <= 2 * PI holds sin r > - 1 proof let r be real number ; ::_thesis: ( (3 / 2) * PI < r & r <= 2 * PI implies sin r > - 1 ) assume A1: ( (3 / 2) * PI < r & r <= 2 * PI & sin r <= - 1 ) ; ::_thesis: contradiction sin r >= - 1 by Th3; hence contradiction by A1, Th27, XXREAL_0:1; ::_thesis: verum end; theorem Th33: :: SIN_COS6:33 for r being real number st PI / 2 < r & r <= 2 * PI holds sin r < 1 proof let r be real number ; ::_thesis: ( PI / 2 < r & r <= 2 * PI implies sin r < 1 ) assume A1: ( PI / 2 < r & r <= 2 * PI & sin r >= 1 ) ; ::_thesis: contradiction sin r <= 1 by Th4; hence contradiction by A1, Th28, XXREAL_0:1; ::_thesis: verum end; theorem Th34: :: SIN_COS6:34 for r being real number st 0 < r & r < 2 * PI holds cos r < 1 proof let r be real number ; ::_thesis: ( 0 < r & r < 2 * PI implies cos r < 1 ) assume ( 0 < r & r < 2 * PI ) ; ::_thesis: cos r < 1 then A1: cos r <> 1 by COMPTRIG:61; cos r <= 1 by Th6; hence cos r < 1 by A1, XXREAL_0:1; ::_thesis: verum end; theorem Th35: :: SIN_COS6:35 for r being real number st 0 <= r & r < PI holds cos r > - 1 proof let r be real number ; ::_thesis: ( 0 <= r & r < PI implies cos r > - 1 ) assume that A1: 0 <= r and A2: r < PI ; ::_thesis: cos r > - 1 A3: cos r >= - 1 by Th5; r <= 2 * PI by A2, Lm10, XXREAL_0:2; hence cos r > - 1 by A1, A2, A3, Th29, XXREAL_0:1; ::_thesis: verum end; theorem Th36: :: SIN_COS6:36 for r being real number st PI < r & r <= 2 * PI holds cos r > - 1 proof let r be real number ; ::_thesis: ( PI < r & r <= 2 * PI implies cos r > - 1 ) assume A1: ( PI < r & r <= 2 * PI ) ; ::_thesis: cos r > - 1 cos r >= - 1 by Th5; hence cos r > - 1 by A1, Th29, XXREAL_0:1; ::_thesis: verum end; theorem :: SIN_COS6:37 for r being real number for i being integer number st (2 * PI) * i <= r & r < (PI / 2) + ((2 * PI) * i) holds sin r < 1 proof let r be real number ; ::_thesis: for i being integer number st (2 * PI) * i <= r & r < (PI / 2) + ((2 * PI) * i) holds sin r < 1 let i be integer number ; ::_thesis: ( (2 * PI) * i <= r & r < (PI / 2) + ((2 * PI) * i) implies sin r < 1 ) assume that A1: ( H1(i) <= r & r < (PI / 2) + H1(i) ) and A2: sin r >= 1 ; ::_thesis: contradiction A3: ( H1(i) - H1(i) <= r - H1(i) & r - H1(i) < ((PI / 2) + H1(i)) - H1(i) ) by A1, XREAL_1:9; A4: sin r <= 1 by Th4; sin (r - H1(i)) = sin (r + H1( - i)) .= sin r by COMPLEX2:8 .= 1 by A2, A4, XXREAL_0:1 ; hence contradiction by A3, Th30; ::_thesis: verum end; theorem :: SIN_COS6:38 for r being real number for i being integer number st (2 * PI) * i <= r & r < ((3 / 2) * PI) + ((2 * PI) * i) holds sin r > - 1 proof let r be real number ; ::_thesis: for i being integer number st (2 * PI) * i <= r & r < ((3 / 2) * PI) + ((2 * PI) * i) holds sin r > - 1 let i be integer number ; ::_thesis: ( (2 * PI) * i <= r & r < ((3 / 2) * PI) + ((2 * PI) * i) implies sin r > - 1 ) assume that A1: ( H1(i) <= r & r < ((3 / 2) * PI) + H1(i) ) and A2: sin r <= - 1 ; ::_thesis: contradiction A3: ( H1(i) - H1(i) <= r - H1(i) & r - H1(i) < (((3 / 2) * PI) + H1(i)) - H1(i) ) by A1, XREAL_1:9; A4: sin r >= - 1 by Th3; sin (r - H1(i)) = sin (r + H1( - i)) .= sin r by COMPLEX2:8 .= - 1 by A2, A4, XXREAL_0:1 ; hence contradiction by A3, Th31; ::_thesis: verum end; theorem :: SIN_COS6:39 for r being real number for i being integer number st ((3 / 2) * PI) + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) holds sin r > - 1 proof let r be real number ; ::_thesis: for i being integer number st ((3 / 2) * PI) + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) holds sin r > - 1 let i be integer number ; ::_thesis: ( ((3 / 2) * PI) + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) implies sin r > - 1 ) assume that A1: ( ((3 / 2) * PI) + H1(i) < r & r <= (2 * PI) + H1(i) ) and A2: sin r <= - 1 ; ::_thesis: contradiction A3: ( (((3 / 2) * PI) + H1(i)) - H1(i) < r - H1(i) & r - H1(i) <= ((2 * PI) + H1(i)) - H1(i) ) by A1, XREAL_1:9; A4: sin r >= - 1 by Th3; sin (r - H1(i)) = sin (r + H1( - i)) .= sin r by COMPLEX2:8 .= - 1 by A2, A4, XXREAL_0:1 ; hence contradiction by A3, Th32; ::_thesis: verum end; theorem :: SIN_COS6:40 for r being real number for i being integer number st (PI / 2) + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) holds sin r < 1 proof let r be real number ; ::_thesis: for i being integer number st (PI / 2) + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) holds sin r < 1 let i be integer number ; ::_thesis: ( (PI / 2) + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) implies sin r < 1 ) assume that A1: ( (PI / 2) + H1(i) < r & r <= (2 * PI) + H1(i) ) and A2: sin r >= 1 ; ::_thesis: contradiction A3: ( ((PI / 2) + H1(i)) - H1(i) < r - H1(i) & r - H1(i) <= ((2 * PI) + H1(i)) - H1(i) ) by A1, XREAL_1:9; A4: sin r <= 1 by Th4; sin (r - H1(i)) = sin (r + H1( - i)) .= sin r by COMPLEX2:8 .= 1 by A2, A4, XXREAL_0:1 ; hence contradiction by A3, Th33; ::_thesis: verum end; theorem :: SIN_COS6:41 for r being real number for i being integer number st (2 * PI) * i < r & r < (2 * PI) + ((2 * PI) * i) holds cos r < 1 proof let r be real number ; ::_thesis: for i being integer number st (2 * PI) * i < r & r < (2 * PI) + ((2 * PI) * i) holds cos r < 1 let i be integer number ; ::_thesis: ( (2 * PI) * i < r & r < (2 * PI) + ((2 * PI) * i) implies cos r < 1 ) assume that A1: ( H1(i) < r & r < (2 * PI) + H1(i) ) and A2: cos r >= 1 ; ::_thesis: contradiction A3: ( H1(i) - H1(i) < r - H1(i) & r - H1(i) < ((2 * PI) + H1(i)) - H1(i) ) by A1, XREAL_1:9; A4: cos r <= 1 by Th6; cos (r - H1(i)) = cos (r + H1( - i)) .= cos r by COMPLEX2:9 .= 1 by A2, A4, XXREAL_0:1 ; hence contradiction by A3, Th34; ::_thesis: verum end; theorem :: SIN_COS6:42 for r being real number for i being integer number st (2 * PI) * i <= r & r < PI + ((2 * PI) * i) holds cos r > - 1 proof let r be real number ; ::_thesis: for i being integer number st (2 * PI) * i <= r & r < PI + ((2 * PI) * i) holds cos r > - 1 let i be integer number ; ::_thesis: ( (2 * PI) * i <= r & r < PI + ((2 * PI) * i) implies cos r > - 1 ) assume that A1: ( H1(i) <= r & r < PI + H1(i) ) and A2: cos r <= - 1 ; ::_thesis: contradiction A3: ( H1(i) - H1(i) <= r - H1(i) & r - H1(i) < (PI + H1(i)) - H1(i) ) by A1, XREAL_1:9; A4: cos r >= - 1 by Th5; cos (r - H1(i)) = cos (r + H1( - i)) .= cos r by COMPLEX2:9 .= - 1 by A2, A4, XXREAL_0:1 ; hence contradiction by A3, Th35; ::_thesis: verum end; theorem :: SIN_COS6:43 for r being real number for i being integer number st PI + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) holds cos r > - 1 proof let r be real number ; ::_thesis: for i being integer number st PI + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) holds cos r > - 1 let i be integer number ; ::_thesis: ( PI + ((2 * PI) * i) < r & r <= (2 * PI) + ((2 * PI) * i) implies cos r > - 1 ) assume that A1: ( PI + H1(i) < r & r <= (2 * PI) + H1(i) ) and A2: cos r <= - 1 ; ::_thesis: contradiction A3: ( (PI + H1(i)) - H1(i) < r - H1(i) & r - H1(i) <= ((2 * PI) + H1(i)) - H1(i) ) by A1, XREAL_1:9; A4: cos r >= - 1 by Th5; cos (r - H1(i)) = cos (r + H1( - i)) .= cos r by COMPLEX2:9 .= - 1 by A2, A4, XXREAL_0:1 ; hence contradiction by A3, Th36; ::_thesis: verum end; theorem :: SIN_COS6:44 for r being real number st cos ((2 * PI) * r) = 1 holds r in INT proof let r be real number ; ::_thesis: ( cos ((2 * PI) * r) = 1 implies r in INT ) reconsider d = 2 as real positive number ; assume A1: cos ((2 * PI) * r) = 1 ; ::_thesis: r in INT assume not r in INT ; ::_thesis: contradiction then not r is integer by INT_1:def_2; then reconsider t = frac r as real positive number by INT_1:46; set s = [\r/]; A2: ( r = [\r/] + t & (d * PI) * t < (d * PI) * 1 ) by INT_1:42, INT_1:43, XREAL_1:68; cos ((2 * PI) * ([\r/] + t)) = cos (((2 * PI) * [\r/]) + ((2 * PI) * t)) .= cos ((2 * PI) * t) by COMPLEX2:9 ; hence contradiction by A1, A2, Th34; ::_thesis: verum end; theorem Th45: :: SIN_COS6:45 sin .: [.(- (PI / 2)),(PI / 2).] = [.(- 1),1.] by COMPTRIG:30, RELAT_1:115; theorem Th46: :: SIN_COS6:46 sin .: ].(- (PI / 2)),(PI / 2).[ = ].(- 1),1.[ proof sin | ].(- (PI / 2)),(PI / 2).[ c= sin | [.(- (PI / 2)),(PI / 2).] by RELAT_1:75, XXREAL_1:25; then A1: rng (sin | ].(- (PI / 2)),(PI / 2).[) c= rng (sin | [.(- (PI / 2)),(PI / 2).]) by RELAT_1:11; A2: rng (sin | ].(- (PI / 2)),(PI / 2).[) = sin .: ].(- (PI / 2)),(PI / 2).[ by RELAT_1:115; thus sin .: ].(- (PI / 2)),(PI / 2).[ c= ].(- 1),1.[ :: according to XBOOLE_0:def_10 ::_thesis: ].(- 1),1.[ c= sin .: ].(- (PI / 2)),(PI / 2).[ proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in sin .: ].(- (PI / 2)),(PI / 2).[ or x in ].(- 1),1.[ ) assume A3: x in sin .: ].(- (PI / 2)),(PI / 2).[ ; ::_thesis: x in ].(- 1),1.[ then consider a being set such that A4: a in dom sin and A5: a in ].(- (PI / 2)),(PI / 2).[ and A6: sin . a = x by FUNCT_1:def_6; reconsider a = a, x = x as Real by A4, A6; set i = [\(a / (2 * PI))/]; A7: H1([\(a / (2 * PI))/]) / ((2 * PI) * 1) = [\(a / (2 * PI))/] / 1 by XCMPLX_1:91; A8: sin . a = sin a by SIN_COS:def_17; A9: now__::_thesis:_not_x_=_1 assume x = 1 ; ::_thesis: contradiction then A10: a = (PI / 2) + H1([\(a / (2 * PI))/]) by A6, A8, Th24; then (PI / 2) + H1([\(a / (2 * PI))/]) < PI / 2 by A5, XXREAL_1:4; then ((PI / 2) + H1([\(a / (2 * PI))/])) - (PI / 2) < (PI / 2) - (PI / 2) by XREAL_1:9; then [\(a / (2 * PI))/] < 0 ; then A11: [\(a / (2 * PI))/] <= - 1 by INT_1:8; - (PI / 2) < (PI / 2) + H1([\(a / (2 * PI))/]) by A5, A10, XXREAL_1:4; then (- (PI / 2)) - (PI / 2) < ((PI / 2) + H1([\(a / (2 * PI))/])) - (PI / 2) by XREAL_1:9; then ((- 1) * PI) / (2 * PI) < [\(a / (2 * PI))/] by A7, XREAL_1:74; then (- 1) / 2 < [\(a / (2 * PI))/] by XCMPLX_1:91; hence contradiction by A11, XXREAL_0:2; ::_thesis: verum end; A12: now__::_thesis:_not_x_=_-_1 assume x = - 1 ; ::_thesis: contradiction then A13: a = ((3 / 2) * PI) + H1([\(a / (2 * PI))/]) by A6, A8, Th23; then - (PI / 2) < ((3 / 2) * PI) + H1([\(a / (2 * PI))/]) by A5, XXREAL_1:4; then (- (PI / 2)) - ((3 / 2) * PI) < (((3 / 2) * PI) + H1([\(a / (2 * PI))/])) - ((3 / 2) * PI) by XREAL_1:9; then (- (2 * PI)) / (2 * PI) < [\(a / (2 * PI))/] by A7, XREAL_1:74; then - ((2 * PI) / (2 * PI)) < [\(a / (2 * PI))/] by XCMPLX_1:187; then - 1 < [\(a / (2 * PI))/] by XCMPLX_1:60; then A14: (- 1) + 1 <= [\(a / (2 * PI))/] by INT_1:7; ((3 / 2) * PI) + H1([\(a / (2 * PI))/]) < PI / 2 by A5, A13, XXREAL_1:4; then (((3 / 2) * PI) + H1([\(a / (2 * PI))/])) - ((3 / 2) * PI) < (PI / 2) - ((3 / 2) * PI) by XREAL_1:9; then [\(a / (2 * PI))/] < (- PI) / (2 * PI) by A7, XREAL_1:74; hence contradiction by A14, XCMPLX_1:91; ::_thesis: verum end; x <= 1 by A1, A2, A3, COMPTRIG:30, XXREAL_1:1; then A15: x < 1 by A9, XXREAL_0:1; - 1 <= x by A1, A2, A3, COMPTRIG:30, XXREAL_1:1; then - 1 < x by A12, XXREAL_0:1; hence x in ].(- 1),1.[ by A15, XXREAL_1:4; ::_thesis: verum end; let a be set ; :: according to TARSKI:def_3 ::_thesis: ( not a in ].(- 1),1.[ or a in sin .: ].(- (PI / 2)),(PI / 2).[ ) assume A16: a in ].(- 1),1.[ ; ::_thesis: a in sin .: ].(- (PI / 2)),(PI / 2).[ then reconsider a = a as Real ; ( - 1 < a & a < 1 ) by A16, XXREAL_1:4; then a in rng (sin | [.(- (PI / 2)),(PI / 2).]) by COMPTRIG:30, XXREAL_1:1; then consider x being set such that A17: x in dom (sin | [.(- (PI / 2)),(PI / 2).]) and A18: (sin | [.(- (PI / 2)),(PI / 2).]) . x = a by FUNCT_1:def_3; reconsider x = x as Real by A17; A19: sin . x = a by A17, A18, FUNCT_1:47; dom (sin | [.(- (PI / 2)),(PI / 2).]) = [.(- (PI / 2)),(PI / 2).] by RELAT_1:62, SIN_COS:24; then ( - (PI / 2) <= x & x <= PI / 2 ) by A17, XXREAL_1:1; then ( ( - (PI / 2) < x & x < PI / 2 ) or - (PI / 2) = x or PI / 2 = x ) by XXREAL_0:1; then x in ].(- (PI / 2)),(PI / 2).[ by A16, A19, Th7, SIN_COS:76, XXREAL_1:4; hence a in sin .: ].(- (PI / 2)),(PI / 2).[ by A19, FUNCT_1:def_6, SIN_COS:24; ::_thesis: verum end; theorem :: SIN_COS6:47 sin .: [.(PI / 2),((3 / 2) * PI).] = [.(- 1),1.] by COMPTRIG:31, RELAT_1:115; theorem :: SIN_COS6:48 sin .: ].(PI / 2),((3 / 2) * PI).[ = ].(- 1),1.[ proof sin | ].(PI / 2),((3 / 2) * PI).[ c= sin | [.(PI / 2),((3 / 2) * PI).] by RELAT_1:75, XXREAL_1:25; then A1: rng (sin | ].(PI / 2),((3 / 2) * PI).[) c= rng (sin | [.(PI / 2),((3 / 2) * PI).]) by RELAT_1:11; A2: rng (sin | ].(PI / 2),((3 / 2) * PI).[) = sin .: ].(PI / 2),((3 / 2) * PI).[ by RELAT_1:115; thus sin .: ].(PI / 2),((3 / 2) * PI).[ c= ].(- 1),1.[ :: according to XBOOLE_0:def_10 ::_thesis: ].(- 1),1.[ c= sin .: ].(PI / 2),((3 / 2) * PI).[ proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in sin .: ].(PI / 2),((3 / 2) * PI).[ or x in ].(- 1),1.[ ) assume A3: x in sin .: ].(PI / 2),((3 / 2) * PI).[ ; ::_thesis: x in ].(- 1),1.[ then consider a being set such that A4: a in dom sin and A5: a in ].(PI / 2),((3 / 2) * PI).[ and A6: sin . a = x by FUNCT_1:def_6; reconsider a = a, x = x as Real by A4, A6; set i = [\(a / (2 * PI))/]; A7: H1([\(a / (2 * PI))/]) / ((2 * PI) * 1) = [\(a / (2 * PI))/] / 1 by XCMPLX_1:91; A8: sin . a = sin a by SIN_COS:def_17; A9: now__::_thesis:_not_x_=_1 assume x = 1 ; ::_thesis: contradiction then A10: a = (PI / 2) + H1([\(a / (2 * PI))/]) by A6, A8, Th24; then PI / 2 < (PI / 2) + H1([\(a / (2 * PI))/]) by A5, XXREAL_1:4; then (PI / 2) - (PI / 2) < ((PI / 2) + H1([\(a / (2 * PI))/])) - (PI / 2) by XREAL_1:9; then 0 < [\(a / (2 * PI))/] ; then A11: 0 + 1 <= [\(a / (2 * PI))/] by INT_1:7; (PI / 2) + H1([\(a / (2 * PI))/]) < (3 / 2) * PI by A5, A10, XXREAL_1:4; then ((PI / 2) + H1([\(a / (2 * PI))/])) - (PI / 2) < ((3 / 2) * PI) - (PI / 2) by XREAL_1:9; then [\(a / (2 * PI))/] < (1 * PI) / (2 * PI) by A7, XREAL_1:74; then [\(a / (2 * PI))/] < 1 / 2 by XCMPLX_1:91; hence contradiction by A11, XXREAL_0:2; ::_thesis: verum end; A12: now__::_thesis:_not_x_=_-_1 assume x = - 1 ; ::_thesis: contradiction then A13: a = ((3 / 2) * PI) + H1([\(a / (2 * PI))/]) by A6, A8, Th23; then ((3 / 2) * PI) + H1([\(a / (2 * PI))/]) < (3 / 2) * PI by A5, XXREAL_1:4; then (((3 / 2) * PI) + H1([\(a / (2 * PI))/])) - ((3 / 2) * PI) < ((3 / 2) * PI) - ((3 / 2) * PI) by XREAL_1:9; then [\(a / (2 * PI))/] < 0 ; then A14: [\(a / (2 * PI))/] <= - 1 by INT_1:8; PI / 2 < ((3 / 2) * PI) + H1([\(a / (2 * PI))/]) by A5, A13, XXREAL_1:4; then (PI / 2) - ((3 / 2) * PI) < (((3 / 2) * PI) + H1([\(a / (2 * PI))/])) - ((3 / 2) * PI) by XREAL_1:9; then ((- 1) * PI) / (2 * PI) < [\(a / (2 * PI))/] by A7, XREAL_1:74; then (- 1) / 2 < [\(a / (2 * PI))/] by XCMPLX_1:91; hence contradiction by A14, XXREAL_0:2; ::_thesis: verum end; x <= 1 by A1, A2, A3, COMPTRIG:31, XXREAL_1:1; then A15: x < 1 by A9, XXREAL_0:1; - 1 <= x by A1, A2, A3, COMPTRIG:31, XXREAL_1:1; then - 1 < x by A12, XXREAL_0:1; hence x in ].(- 1),1.[ by A15, XXREAL_1:4; ::_thesis: verum end; let a be set ; :: according to TARSKI:def_3 ::_thesis: ( not a in ].(- 1),1.[ or a in sin .: ].(PI / 2),((3 / 2) * PI).[ ) assume A16: a in ].(- 1),1.[ ; ::_thesis: a in sin .: ].(PI / 2),((3 / 2) * PI).[ then reconsider a = a as Real ; ( - 1 < a & a < 1 ) by A16, XXREAL_1:4; then a in rng (sin | [.(PI / 2),((3 / 2) * PI).]) by COMPTRIG:31, XXREAL_1:1; then consider x being set such that A17: x in dom (sin | [.(PI / 2),((3 / 2) * PI).]) and A18: (sin | [.(PI / 2),((3 / 2) * PI).]) . x = a by FUNCT_1:def_3; reconsider x = x as Real by A17; A19: sin . x = a by A17, A18, FUNCT_1:47; dom (sin | [.(PI / 2),((3 / 2) * PI).]) = [.(PI / 2),((3 / 2) * PI).] by RELAT_1:62, SIN_COS:24; then ( PI / 2 <= x & x <= (3 / 2) * PI ) by A17, XXREAL_1:1; then ( ( PI / 2 < x & x < (3 / 2) * PI ) or PI / 2 = x or (3 / 2) * PI = x ) by XXREAL_0:1; then x in ].(PI / 2),((3 / 2) * PI).[ by A16, A19, SIN_COS:76, XXREAL_1:4; hence a in sin .: ].(PI / 2),((3 / 2) * PI).[ by A19, FUNCT_1:def_6, SIN_COS:24; ::_thesis: verum end; theorem Th49: :: SIN_COS6:49 cos .: [.0,PI.] = [.(- 1),1.] by COMPTRIG:32, RELAT_1:115; theorem Th50: :: SIN_COS6:50 cos .: ].0,PI.[ = ].(- 1),1.[ proof cos | ].0,PI.[ c= cos | [.0,PI.] by RELAT_1:75, XXREAL_1:25; then A1: rng (cos | ].0,PI.[) c= rng (cos | [.0,PI.]) by RELAT_1:11; A2: rng (cos | ].0,PI.[) = cos .: ].0,PI.[ by RELAT_1:115; thus cos .: ].0,PI.[ c= ].(- 1),1.[ :: according to XBOOLE_0:def_10 ::_thesis: ].(- 1),1.[ c= cos .: ].0,PI.[ proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in cos .: ].0,PI.[ or x in ].(- 1),1.[ ) assume A3: x in cos .: ].0,PI.[ ; ::_thesis: x in ].(- 1),1.[ then consider a being set such that A4: a in dom cos and A5: a in ].0,PI.[ and A6: cos . a = x by FUNCT_1:def_6; reconsider a = a, x = x as Real by A4, A6; set i = [\(a / (2 * PI))/]; A7: H1([\(a / (2 * PI))/]) / ((2 * PI) * 1) = [\(a / (2 * PI))/] / 1 by XCMPLX_1:91; A8: cos . a = cos a by SIN_COS:def_19; A9: now__::_thesis:_not_x_=_1 assume x = 1 ; ::_thesis: contradiction then A10: a = H1([\(a / (2 * PI))/]) by A6, A8, Th26; then H1([\(a / (2 * PI))/]) < PI by A5, XXREAL_1:4; then [\(a / (2 * PI))/] < (1 * PI) / (2 * PI) by A7, XREAL_1:74; then A11: [\(a / (2 * PI))/] < 1 / 2 by XCMPLX_1:91; 0 < [\(a / (2 * PI))/] by A5, A10, XXREAL_1:4; then 0 + 1 <= [\(a / (2 * PI))/] by INT_1:7; hence contradiction by A11, XXREAL_0:2; ::_thesis: verum end; A12: now__::_thesis:_not_x_=_-_1 assume x = - 1 ; ::_thesis: contradiction then A13: a = PI + H1([\(a / (2 * PI))/]) by A6, A8, Th25; then 0 < PI + H1([\(a / (2 * PI))/]) by A5, XXREAL_1:4; then 0 - PI < (PI + H1([\(a / (2 * PI))/])) - PI by XREAL_1:9; then (- PI) / (2 * PI) < H1([\(a / (2 * PI))/]) / (2 * PI) by XREAL_1:74; then - ((1 * PI) / (2 * PI)) < [\(a / (2 * PI))/] by A7, XCMPLX_1:187; then A14: - (1 / 2) < [\(a / (2 * PI))/] by XCMPLX_1:91; PI + H1([\(a / (2 * PI))/]) < PI by A5, A13, XXREAL_1:4; then (PI + H1([\(a / (2 * PI))/])) - PI < PI - PI by XREAL_1:9; then [\(a / (2 * PI))/] < 0 ; then [\(a / (2 * PI))/] <= - 1 by INT_1:8; hence contradiction by A14, XXREAL_0:2; ::_thesis: verum end; x <= 1 by A1, A2, A3, COMPTRIG:32, XXREAL_1:1; then A15: x < 1 by A9, XXREAL_0:1; - 1 <= x by A1, A2, A3, COMPTRIG:32, XXREAL_1:1; then - 1 < x by A12, XXREAL_0:1; hence x in ].(- 1),1.[ by A15, XXREAL_1:4; ::_thesis: verum end; let a be set ; :: according to TARSKI:def_3 ::_thesis: ( not a in ].(- 1),1.[ or a in cos .: ].0,PI.[ ) assume A16: a in ].(- 1),1.[ ; ::_thesis: a in cos .: ].0,PI.[ then reconsider a = a as Real ; ( - 1 < a & a < 1 ) by A16, XXREAL_1:4; then a in rng (cos | [.0,PI.]) by COMPTRIG:32, XXREAL_1:1; then consider x being set such that A17: x in dom (cos | [.0,PI.]) and A18: (cos | [.0,PI.]) . x = a by FUNCT_1:def_3; reconsider x = x as Real by A17; A19: cos . x = a by A17, A18, FUNCT_1:47; A20: dom (cos | [.0,PI.]) = [.0,PI.] by RELAT_1:62, SIN_COS:24; then x <= PI by A17, XXREAL_1:1; then ( ( 0 < x & x < PI ) or 0 = x or PI = x ) by A17, A20, XXREAL_0:1, XXREAL_1:1; then x in ].0,PI.[ by A16, A19, SIN_COS:30, SIN_COS:76, XXREAL_1:4; hence a in cos .: ].0,PI.[ by A19, FUNCT_1:def_6, SIN_COS:24; ::_thesis: verum end; theorem :: SIN_COS6:51 cos .: [.PI,(2 * PI).] = [.(- 1),1.] by COMPTRIG:33, RELAT_1:115; theorem :: SIN_COS6:52 cos .: ].PI,(2 * PI).[ = ].(- 1),1.[ proof cos | ].PI,(2 * PI).[ c= cos | [.PI,(2 * PI).] by RELAT_1:75, XXREAL_1:25; then A1: rng (cos | ].PI,(2 * PI).[) c= rng (cos | [.PI,(2 * PI).]) by RELAT_1:11; A2: rng (cos | ].PI,(2 * PI).[) = cos .: ].PI,(2 * PI).[ by RELAT_1:115; thus cos .: ].PI,(2 * PI).[ c= ].(- 1),1.[ :: according to XBOOLE_0:def_10 ::_thesis: ].(- 1),1.[ c= cos .: ].PI,(2 * PI).[ proof let x be set ; :: according to TARSKI:def_3 ::_thesis: ( not x in cos .: ].PI,(2 * PI).[ or x in ].(- 1),1.[ ) assume A3: x in cos .: ].PI,(2 * PI).[ ; ::_thesis: x in ].(- 1),1.[ then consider a being set such that A4: a in dom cos and A5: a in ].PI,(2 * PI).[ and A6: cos . a = x by FUNCT_1:def_6; reconsider a = a, x = x as Real by A4, A6; set i = [\(a / (2 * PI))/]; A7: H1([\(a / (2 * PI))/]) / ((2 * PI) * 1) = [\(a / (2 * PI))/] / 1 by XCMPLX_1:91; A8: cos . a = cos a by SIN_COS:def_19; A9: now__::_thesis:_not_x_=_1 assume x = 1 ; ::_thesis: contradiction then A10: a = H1([\(a / (2 * PI))/]) by A6, A8, Th26; then H1([\(a / (2 * PI))/]) < 2 * PI by A5, XXREAL_1:4; then [\(a / (2 * PI))/] < (2 * PI) / (2 * PI) by A7, XREAL_1:74; then A11: [\(a / (2 * PI))/] < 1 + 0 by XCMPLX_1:60; PI < H1([\(a / (2 * PI))/]) by A5, A10, XXREAL_1:4; hence contradiction by A7, A11, INT_1:7; ::_thesis: verum end; A12: now__::_thesis:_not_x_=_-_1 assume x = - 1 ; ::_thesis: contradiction then A13: a = PI + H1([\(a / (2 * PI))/]) by A6, A8, Th25; then PI < PI + H1([\(a / (2 * PI))/]) by A5, XXREAL_1:4; then PI - PI < (PI + H1([\(a / (2 * PI))/])) - PI by XREAL_1:9; then 0 / (2 * PI) < [\(a / (2 * PI))/] ; then A14: 0 + 1 <= [\(a / (2 * PI))/] by INT_1:7; PI + H1([\(a / (2 * PI))/]) < 2 * PI by A5, A13, XXREAL_1:4; then (PI + H1([\(a / (2 * PI))/])) - PI < (2 * PI) - PI by XREAL_1:9; then [\(a / (2 * PI))/] < (1 * PI) / (2 * PI) by A7, XREAL_1:74; then [\(a / (2 * PI))/] <= 1 / 2 by XCMPLX_1:91; hence contradiction by A14, XXREAL_0:2; ::_thesis: verum end; x <= 1 by A1, A2, A3, COMPTRIG:33, XXREAL_1:1; then A15: x < 1 by A9, XXREAL_0:1; - 1 <= x by A1, A2, A3, COMPTRIG:33, XXREAL_1:1; then - 1 < x by A12, XXREAL_0:1; hence x in ].(- 1),1.[ by A15, XXREAL_1:4; ::_thesis: verum end; let a be set ; :: according to TARSKI:def_3 ::_thesis: ( not a in ].(- 1),1.[ or a in cos .: ].PI,(2 * PI).[ ) assume A16: a in ].(- 1),1.[ ; ::_thesis: a in cos .: ].PI,(2 * PI).[ then reconsider a = a as Real ; ( - 1 < a & a < 1 ) by A16, XXREAL_1:4; then a in rng (cos | [.PI,(2 * PI).]) by COMPTRIG:33, XXREAL_1:1; then consider x being set such that A17: x in dom (cos | [.PI,(2 * PI).]) and A18: (cos | [.PI,(2 * PI).]) . x = a by FUNCT_1:def_3; reconsider x = x as Real by A17; A19: cos . x = a by A17, A18, FUNCT_1:47; dom (cos | [.PI,(2 * PI).]) = [.PI,(2 * PI).] by RELAT_1:62, SIN_COS:24; then ( PI <= x & x <= 2 * PI ) by A17, XXREAL_1:1; then ( ( PI < x & x < 2 * PI ) or PI = x or 2 * PI = x ) by XXREAL_0:1; then x in ].PI,(2 * PI).[ by A16, A19, SIN_COS:76, XXREAL_1:4; hence a in cos .: ].PI,(2 * PI).[ by A19, FUNCT_1:def_6, SIN_COS:24; ::_thesis: verum end; Lm11: now__::_thesis:_for_i_being_integer_number_ for_r,_p1,_p2_being_real_number_st_r_in_[.(p1_+_H1(i)),(p2_+_H1(i)).]_holds_ r_+_(2_*_PI)_in_[.(p1_+_H1(i_+_1)),(p2_+_H1(i_+_1)).] let i be integer number ; ::_thesis: for r, p1, p2 being real number st r in [.(p1 + H1(i)),(p2 + H1(i)).] holds r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] let r be real number ; ::_thesis: for p1, p2 being real number st r in [.(p1 + H1(i)),(p2 + H1(i)).] holds r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] let p1, p2 be real number ; ::_thesis: ( r in [.(p1 + H1(i)),(p2 + H1(i)).] implies r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] ) assume A1: r in [.(p1 + H1(i)),(p2 + H1(i)).] ; ::_thesis: r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] then r <= p2 + H1(i) by XXREAL_1:1; then A2: r + (2 * PI) <= (p2 + H1(i)) + (2 * PI) by XREAL_1:6; p1 + H1(i) <= r by A1, XXREAL_1:1; then (p1 + H1(i)) + (2 * PI) <= r + (2 * PI) by XREAL_1:6; hence r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] by A2, XXREAL_1:1; ::_thesis: verum end; Lm12: now__::_thesis:_for_i_being_integer_number_ for_r,_p1,_p2_being_real_number_st_r_in_[.(p1_+_H1(i)),(p2_+_H1(i)).]_/\_REAL_holds_ r_+_(2_*_PI)_in_[.(p1_+_H1(i_+_1)),(p2_+_H1(i_+_1)).]_/\_REAL let i be integer number ; ::_thesis: for r, p1, p2 being real number st r in [.(p1 + H1(i)),(p2 + H1(i)).] /\ REAL holds r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] /\ REAL let r be real number ; ::_thesis: for p1, p2 being real number st r in [.(p1 + H1(i)),(p2 + H1(i)).] /\ REAL holds r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] /\ REAL let p1, p2 be real number ; ::_thesis: ( r in [.(p1 + H1(i)),(p2 + H1(i)).] /\ REAL implies r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] /\ REAL ) assume r in [.(p1 + H1(i)),(p2 + H1(i)).] /\ REAL ; ::_thesis: r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] /\ REAL then r in [.(p1 + H1(i)),(p2 + H1(i)).] by XBOOLE_0:def_4; then r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] by Lm11; hence r + (2 * PI) in [.(p1 + H1(i + 1)),(p2 + H1(i + 1)).] /\ REAL by XBOOLE_0:def_4; ::_thesis: verum end; Lm13: now__::_thesis:_for_i_being_integer_number_ for_r,_p1,_p2_being_real_number_st_r_in_[.(p1_+_H1(i)),(p2_+_H1(i)).]_holds_ r_-_(2_*_PI)_in_[.(p1_+_H1(i_-_1)),(p2_+_H1(i_-_1)).] let i be integer number ; ::_thesis: for r, p1, p2 being real number st r in [.(p1 + H1(i)),(p2 + H1(i)).] holds r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] let r be real number ; ::_thesis: for p1, p2 being real number st r in [.(p1 + H1(i)),(p2 + H1(i)).] holds r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] let p1, p2 be real number ; ::_thesis: ( r in [.(p1 + H1(i)),(p2 + H1(i)).] implies r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] ) assume A1: r in [.(p1 + H1(i)),(p2 + H1(i)).] ; ::_thesis: r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] then r <= p2 + H1(i) by XXREAL_1:1; then A2: r - (2 * PI) <= (p2 + H1(i)) - (2 * PI) by XREAL_1:9; p1 + H1(i) <= r by A1, XXREAL_1:1; then (p1 + H1(i)) - (2 * PI) <= r - (2 * PI) by XREAL_1:9; hence r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] by A2, XXREAL_1:1; ::_thesis: verum end; Lm14: now__::_thesis:_for_i_being_integer_number_ for_r,_p1,_p2_being_real_number_st_r_in_[.(p1_+_H1(i)),(p2_+_H1(i)).]_/\_REAL_holds_ r_-_(2_*_PI)_in_[.(p1_+_H1(i_-_1)),(p2_+_H1(i_-_1)).]_/\_REAL let i be integer number ; ::_thesis: for r, p1, p2 being real number st r in [.(p1 + H1(i)),(p2 + H1(i)).] /\ REAL holds r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] /\ REAL let r be real number ; ::_thesis: for p1, p2 being real number st r in [.(p1 + H1(i)),(p2 + H1(i)).] /\ REAL holds r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] /\ REAL let p1, p2 be real number ; ::_thesis: ( r in [.(p1 + H1(i)),(p2 + H1(i)).] /\ REAL implies r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] /\ REAL ) assume r in [.(p1 + H1(i)),(p2 + H1(i)).] /\ REAL ; ::_thesis: r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] /\ REAL then r in [.(p1 + H1(i)),(p2 + H1(i)).] by XBOOLE_0:def_4; then r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] by Lm13; hence r - (2 * PI) in [.(p1 + H1(i - 1)),(p2 + H1(i - 1)).] /\ REAL by XBOOLE_0:def_4; ::_thesis: verum end; theorem Th53: :: SIN_COS6:53 for i being integer number holds sin | [.((- (PI / 2)) + ((2 * PI) * i)),((PI / 2) + ((2 * PI) * i)).] is increasing proof let i be integer number ; ::_thesis: sin | [.((- (PI / 2)) + ((2 * PI) * i)),((PI / 2) + ((2 * PI) * i)).] is increasing defpred S1[ Integer] means sin | [.((- (PI / 2)) + H1($1)),((PI / 2) + H1($1)).] is increasing ; A1: for i being integer number st S1[i] holds ( S1[i - 1] & S1[i + 1] ) proof let i be integer number ; ::_thesis: ( S1[i] implies ( S1[i - 1] & S1[i + 1] ) ) assume A2: S1[i] ; ::_thesis: ( S1[i - 1] & S1[i + 1] ) set Z = [.((- (PI / 2)) + H1((i - 1) + 1)),((PI / 2) + H1((i - 1) + 1)).]; thus S1[i - 1] ::_thesis: S1[i + 1] proof set Y = [.((- (PI / 2)) + H1(i - 1)),((PI / 2) + H1(i - 1)).]; now__::_thesis:_for_r1,_r2_being_Element_of_REAL_st_r1_in_[.((-_(PI_/_2))_+_H1(i_-_1)),((PI_/_2)_+_H1(i_-_1)).]_/\_(dom_sin)_&_r2_in_[.((-_(PI_/_2))_+_H1(i_-_1)),((PI_/_2)_+_H1(i_-_1)).]_/\_(dom_sin)_&_r1_<_r2_holds_ sin_._r1_<_sin_._r2 let r1, r2 be Element of REAL ; ::_thesis: ( r1 in [.((- (PI / 2)) + H1(i - 1)),((PI / 2) + H1(i - 1)).] /\ (dom sin) & r2 in [.((- (PI / 2)) + H1(i - 1)),((PI / 2) + H1(i - 1)).] /\ (dom sin) & r1 < r2 implies sin . r1 < sin . r2 ) assume ( r1 in [.((- (PI / 2)) + H1(i - 1)),((PI / 2) + H1(i - 1)).] /\ (dom sin) & r2 in [.((- (PI / 2)) + H1(i - 1)),((PI / 2) + H1(i - 1)).] /\ (dom sin) ) ; ::_thesis: ( r1 < r2 implies sin . r1 < sin . r2 ) then A3: ( r1 + (2 * PI) in [.((- (PI / 2)) + H1((i - 1) + 1)),((PI / 2) + H1((i - 1) + 1)).] /\ (dom sin) & r2 + (2 * PI) in [.((- (PI / 2)) + H1((i - 1) + 1)),((PI / 2) + H1((i - 1) + 1)).] /\ (dom sin) ) by Lm12, SIN_COS:24; assume r1 < r2 ; ::_thesis: sin . r1 < sin . r2 then r1 + (2 * PI) < r2 + (2 * PI) by XREAL_1:6; then sin . (r1 + (2 * PI)) < sin . (r2 + ((2 * PI) * 1)) by A2, A3, RFUNCT_2:20; then sin . (r1 + ((2 * PI) * 1)) < sin . r2 by Th8; hence sin . r1 < sin . r2 by Th8; ::_thesis: verum end; hence S1[i - 1] by RFUNCT_2:20; ::_thesis: verum end; set Y = [.((- (PI / 2)) + H1(i + 1)),((PI / 2) + H1(i + 1)).]; A4: [.((- (PI / 2)) + H1((i - 1) + 1)),((PI / 2) + H1((i - 1) + 1)).] = [.((- (PI / 2)) + H1((i + 1) - 1)),((PI / 2) + H1((i + 1) - 1)).] ; now__::_thesis:_for_r1,_r2_being_Element_of_REAL_st_r1_in_[.((-_(PI_/_2))_+_H1(i_+_1)),((PI_/_2)_+_H1(i_+_1)).]_/\_(dom_sin)_&_r2_in_[.((-_(PI_/_2))_+_H1(i_+_1)),((PI_/_2)_+_H1(i_+_1)).]_/\_(dom_sin)_&_r1_<_r2_holds_ sin_._r1_<_sin_._r2 let r1, r2 be Element of REAL ; ::_thesis: ( r1 in [.((- (PI / 2)) + H1(i + 1)),((PI / 2) + H1(i + 1)).] /\ (dom sin) & r2 in [.((- (PI / 2)) + H1(i + 1)),((PI / 2) + H1(i + 1)).] /\ (dom sin) & r1 < r2 implies sin . r1 < sin . r2 ) assume ( r1 in [.((- (PI / 2)) + H1(i + 1)),((PI / 2) + H1(i + 1)).] /\ (dom sin) & r2 in [.((- (PI / 2)) + H1(i + 1)),((PI / 2) + H1(i + 1)).] /\ (dom sin) ) ; ::_thesis: ( r1 < r2 implies sin . r1 < sin . r2 ) then A5: ( r1 - (2 * PI) in [.((- (PI / 2)) + H1((i - 1) + 1)),((PI / 2) + H1((i - 1) + 1)).] /\ (dom sin) & r2 - (2 * PI) in [.((- (PI / 2)) + H1((i - 1) + 1)),((PI / 2) + H1((i - 1) + 1)).] /\ (dom sin) ) by A4, Lm14, SIN_COS:24; assume r1 < r2 ; ::_thesis: sin . r1 < sin . r2 then r1 - (2 * PI) < r2 - (2 * PI) by XREAL_1:9; then sin . (r1 - (2 * PI)) < sin . (r2 + ((2 * PI) * (- 1))) by A2, A5, RFUNCT_2:20; then sin . (r1 + ((2 * PI) * (- 1))) < sin . r2 by Th8; hence sin . r1 < sin . r2 by Th8; ::_thesis: verum end; hence S1[i + 1] by RFUNCT_2:20; ::_thesis: verum end; A6: S1[ 0 ] by COMPTRIG:23; for i being integer number holds S1[i] from INT_1:sch_4(A6, A1); hence sin | [.((- (PI / 2)) + ((2 * PI) * i)),((PI / 2) + ((2 * PI) * i)).] is increasing ; ::_thesis: verum end; theorem Th54: :: SIN_COS6:54 for i being integer number holds sin | [.((PI / 2) + ((2 * PI) * i)),(((3 / 2) * PI) + ((2 * PI) * i)).] is decreasing proof let i be integer number ; ::_thesis: sin | [.((PI / 2) + ((2 * PI) * i)),(((3 / 2) * PI) + ((2 * PI) * i)).] is decreasing defpred S1[ Integer] means sin | [.((PI / 2) + H1($1)),(((3 / 2) * PI) + H1($1)).] is decreasing ; A1: for i being integer number st S1[i] holds ( S1[i - 1] & S1[i + 1] ) proof let i be integer number ; ::_thesis: ( S1[i] implies ( S1[i - 1] & S1[i + 1] ) ) assume A2: S1[i] ; ::_thesis: ( S1[i - 1] & S1[i + 1] ) set Z = [.((PI / 2) + H1((i - 1) + 1)),(((3 / 2) * PI) + H1((i - 1) + 1)).]; thus S1[i - 1] ::_thesis: S1[i + 1] proof set Y = [.((PI / 2) + H1(i - 1)),(((3 / 2) * PI) + H1(i - 1)).]; now__::_thesis:_for_r1,_r2_being_Element_of_REAL_st_r1_in_[.((PI_/_2)_+_H1(i_-_1)),(((3_/_2)_*_PI)_+_H1(i_-_1)).]_/\_(dom_sin)_&_r2_in_[.((PI_/_2)_+_H1(i_-_1)),(((3_/_2)_*_PI)_+_H1(i_-_1)).]_/\_(dom_sin)_&_r1_<_r2_holds_ sin_._r1_>_sin_._r2 let r1, r2 be Element of REAL ; ::_thesis: ( r1 in [.((PI / 2) + H1(i - 1)),(((3 / 2) * PI) + H1(i - 1)).] /\ (dom sin) & r2 in [.((PI / 2) + H1(i - 1)),(((3 / 2) * PI) + H1(i - 1)).] /\ (dom sin) & r1 < r2 implies sin . r1 > sin . r2 ) assume ( r1 in [.((PI / 2) + H1(i - 1)),(((3 / 2) * PI) + H1(i - 1)).] /\ (dom sin) & r2 in [.((PI / 2) + H1(i - 1)),(((3 / 2) * PI) + H1(i - 1)).] /\ (dom sin) ) ; ::_thesis: ( r1 < r2 implies sin . r1 > sin . r2 ) then A3: ( r1 + (2 * PI) in [.((PI / 2) + H1((i - 1) + 1)),(((3 / 2) * PI) + H1((i - 1) + 1)).] /\ (dom sin) & r2 + (2 * PI) in [.((PI / 2) + H1((i - 1) + 1)),(((3 / 2) * PI) + H1((i - 1) + 1)).] /\ (dom sin) ) by Lm12, SIN_COS:24; assume r1 < r2 ; ::_thesis: sin . r1 > sin . r2 then r1 + (2 * PI) < r2 + (2 * PI) by XREAL_1:6; then sin . (r1 + (2 * PI)) > sin . (r2 + ((2 * PI) * 1)) by A2, A3, RFUNCT_2:21; then sin . (r1 + ((2 * PI) * 1)) > sin . r2 by Th8; hence sin . r1 > sin . r2 by Th8; ::_thesis: verum end; hence S1[i - 1] by RFUNCT_2:21; ::_thesis: verum end; set Y = [.((PI / 2) + H1(i + 1)),(((3 / 2) * PI) + H1(i + 1)).]; A4: [.((PI / 2) + H1((i - 1) + 1)),(((3 / 2) * PI) + H1((i - 1) + 1)).] = [.((PI / 2) + H1((i + 1) - 1)),(((3 / 2) * PI) + H1((i + 1) - 1)).] ; now__::_thesis:_for_r1,_r2_being_Element_of_REAL_st_r1_in_[.((PI_/_2)_+_H1(i_+_1)),(((3_/_2)_*_PI)_+_H1(i_+_1)).]_/\_(dom_sin)_&_r2_in_[.((PI_/_2)_+_H1(i_+_1)),(((3_/_2)_*_PI)_+_H1(i_+_1)).]_/\_(dom_sin)_&_r1_<_r2_holds_ sin_._r1_>_sin_._r2 let r1, r2 be Element of REAL ; ::_thesis: ( r1 in [.((PI / 2) + H1(i + 1)),(((3 / 2) * PI) + H1(i + 1)).] /\ (dom sin) & r2 in [.((PI / 2) + H1(i + 1)),(((3 / 2) * PI) + H1(i + 1)).] /\ (dom sin) & r1 < r2 implies sin . r1 > sin . r2 ) assume ( r1 in [.((PI / 2) + H1(i + 1)),(((3 / 2) * PI) + H1(i + 1)).] /\ (dom sin) & r2 in [.((PI / 2) + H1(i + 1)),(((3 / 2) * PI) + H1(i + 1)).] /\ (dom sin) ) ; ::_thesis: ( r1 < r2 implies sin . r1 > sin . r2 ) then A5: ( r1 - (2 * PI) in [.((PI / 2) + H1((i - 1) + 1)),(((3 / 2) * PI) + H1((i - 1) + 1)).] /\ (dom sin) & r2 - (2 * PI) in [.((PI / 2) + H1((i - 1) + 1)),(((3 / 2) * PI) + H1((i - 1) + 1)).] /\ (dom sin) ) by A4, Lm14, SIN_COS:24; assume r1 < r2 ; ::_thesis: sin . r1 > sin . r2 then r1 - (2 * PI) < r2 - (2 * PI) by XREAL_1:9; then sin . (r1 - (2 * PI)) > sin . (r2 + ((2 * PI) * (- 1))) by A2, A5, RFUNCT_2:21; then sin . (r1 + ((2 * PI) * (- 1))) > sin . r2 by Th8; hence sin . r1 > sin . r2 by Th8; ::_thesis: verum end; hence S1[i + 1] by RFUNCT_2:21; ::_thesis: verum end; A6: S1[ 0 ] by COMPTRIG:24; for i being integer number holds S1[i] from INT_1:sch_4(A6, A1); hence sin | [.((PI / 2) + ((2 * PI) * i)),(((3 / 2) * PI) + ((2 * PI) * i)).] is decreasing ; ::_thesis: verum end; theorem Th55: :: SIN_COS6:55 for i being integer number holds cos | [.((2 * PI) * i),(PI + ((2 * PI) * i)).] is decreasing proof let i be integer number ; ::_thesis: cos | [.((2 * PI) * i),(PI + ((2 * PI) * i)).] is decreasing defpred S1[ Integer] means cos | [.H1($1),(PI + H1($1)).] is decreasing ; A1: for i being integer number st S1[i] holds ( S1[i - 1] & S1[i + 1] ) proof let i be integer number ; ::_thesis: ( S1[i] implies ( S1[i - 1] & S1[i + 1] ) ) assume A2: S1[i] ; ::_thesis: ( S1[i - 1] & S1[i + 1] ) set Z = [.(0 + H1((i - 1) + 1)),(PI + H1((i - 1) + 1)).]; thus S1[i - 1] ::_thesis: S1[i + 1] proof set Y = [.H1(i - 1),(PI + H1(i - 1)).]; A3: [.H1(i - 1),(PI + H1(i - 1)).] = [.(0 + H1(i - 1)),(PI + H1(i - 1)).] ; now__::_thesis:_for_r1,_r2_being_Element_of_REAL_st_r1_in_[.H1(i_-_1),(PI_+_H1(i_-_1)).]_/\_(dom_cos)_&_r2_in_[.H1(i_-_1),(PI_+_H1(i_-_1)).]_/\_(dom_cos)_&_r1_<_r2_holds_ cos_._r1_>_cos_._r2 let r1, r2 be Element of REAL ; ::_thesis: ( r1 in [.H1(i - 1),(PI + H1(i - 1)).] /\ (dom cos) & r2 in [.H1(i - 1),(PI + H1(i - 1)).] /\ (dom cos) & r1 < r2 implies cos . r1 > cos . r2 ) assume ( r1 in [.H1(i - 1),(PI + H1(i - 1)).] /\ (dom cos) & r2 in [.H1(i - 1),(PI + H1(i - 1)).] /\ (dom cos) ) ; ::_thesis: ( r1 < r2 implies cos . r1 > cos . r2 ) then A4: ( r1 + (2 * PI) in [.(0 + H1((i - 1) + 1)),(PI + H1((i - 1) + 1)).] /\ (dom cos) & r2 + (2 * PI) in [.(0 + H1((i - 1) + 1)),(PI + H1((i - 1) + 1)).] /\ (dom cos) ) by A3, Lm12, SIN_COS:24; assume r1 < r2 ; ::_thesis: cos . r1 > cos . r2 then r1 + (2 * PI) < r2 + (2 * PI) by XREAL_1:6; then cos . (r1 + (2 * PI)) > cos . (r2 + ((2 * PI) * 1)) by A2, A4, RFUNCT_2:21; then cos . (r1 + ((2 * PI) * 1)) > cos . r2 by Th10; hence cos . r1 > cos . r2 by Th10; ::_thesis: verum end; hence S1[i - 1] by RFUNCT_2:21; ::_thesis: verum end; set Y = [.H1(i + 1),(PI + H1(i + 1)).]; A5: ( [.H1(i + 1),(PI + H1(i + 1)).] = [.(0 + H1(i + 1)),(PI + H1(i + 1)).] & [.(0 + H1((i - 1) + 1)),(PI + H1((i - 1) + 1)).] = [.H1((i + 1) - 1),(PI + H1((i + 1) - 1)).] ) ; now__::_thesis:_for_r1,_r2_being_Element_of_REAL_st_r1_in_[.H1(i_+_1),(PI_+_H1(i_+_1)).]_/\_(dom_cos)_&_r2_in_[.H1(i_+_1),(PI_+_H1(i_+_1)).]_/\_(dom_cos)_&_r1_<_r2_holds_ cos_._r1_>_cos_._r2 let r1, r2 be Element of REAL ; ::_thesis: ( r1 in [.H1(i + 1),(PI + H1(i + 1)).] /\ (dom cos) & r2 in [.H1(i + 1),(PI + H1(i + 1)).] /\ (dom cos) & r1 < r2 implies cos . r1 > cos . r2 ) assume ( r1 in [.H1(i + 1),(PI + H1(i + 1)).] /\ (dom cos) & r2 in [.H1(i + 1),(PI + H1(i + 1)).] /\ (dom cos) ) ; ::_thesis: ( r1 < r2 implies cos . r1 > cos . r2 ) then A6: ( r1 - (2 * PI) in [.(0 + H1((i - 1) + 1)),(PI + H1((i - 1) + 1)).] /\ (dom cos) & r2 - (2 * PI) in [.(0 + H1((i - 1) + 1)),(PI + H1((i - 1) + 1)).] /\ (dom cos) ) by A5, Lm14, SIN_COS:24; assume r1 < r2 ; ::_thesis: cos . r1 > cos . r2 then r1 - (2 * PI) < r2 - (2 * PI) by XREAL_1:9; then cos . (r1 - (2 * PI)) > cos . (r2 + ((2 * PI) * (- 1))) by A2, A6, RFUNCT_2:21; then cos . (r1 + ((2 * PI) * (- 1))) > cos . r2 by Th10; hence cos . r1 > cos . r2 by Th10; ::_thesis: verum end; hence S1[i + 1] by RFUNCT_2:21; ::_thesis: verum end; A7: S1[ 0 ] by COMPTRIG:25; for i being integer number holds S1[i] from INT_1:sch_4(A7, A1); hence cos | [.((2 * PI) * i),(PI + ((2 * PI) * i)).] is decreasing ; ::_thesis: verum end; theorem Th56: :: SIN_COS6:56 for i being integer number holds cos | [.(PI + ((2 * PI) * i)),((2 * PI) + ((2 * PI) * i)).] is increasing proof let i be integer number ; ::_thesis: cos | [.(PI + ((2 * PI) * i)),((2 * PI) + ((2 * PI) * i)).] is increasing defpred S1[ Integer] means cos | [.(PI + H1($1)),((2 * PI) + H1($1)).] is increasing ; A1: for i being integer number st S1[i] holds ( S1[i - 1] & S1[i + 1] ) proof let i be integer number ; ::_thesis: ( S1[i] implies ( S1[i - 1] & S1[i + 1] ) ) assume A2: S1[i] ; ::_thesis: ( S1[i - 1] & S1[i + 1] ) set Z = [.(PI + H1((i - 1) + 1)),((2 * PI) + H1((i - 1) + 1)).]; thus S1[i - 1] ::_thesis: S1[i + 1] proof set Y = [.(PI + H1(i - 1)),((2 * PI) + H1(i - 1)).]; now__::_thesis:_for_r1,_r2_being_Element_of_REAL_st_r1_in_[.(PI_+_H1(i_-_1)),((2_*_PI)_+_H1(i_-_1)).]_/\_(dom_cos)_&_r2_in_[.(PI_+_H1(i_-_1)),((2_*_PI)_+_H1(i_-_1)).]_/\_(dom_cos)_&_r1_<_r2_holds_ cos_._r1_<_cos_._r2 let r1, r2 be Element of REAL ; ::_thesis: ( r1 in [.(PI + H1(i - 1)),((2 * PI) + H1(i - 1)).] /\ (dom cos) & r2 in [.(PI + H1(i - 1)),((2 * PI) + H1(i - 1)).] /\ (dom cos) & r1 < r2 implies cos . r1 < cos . r2 ) assume ( r1 in [.(PI + H1(i - 1)),((2 * PI) + H1(i - 1)).] /\ (dom cos) & r2 in [.(PI + H1(i - 1)),((2 * PI) + H1(i - 1)).] /\ (dom cos) ) ; ::_thesis: ( r1 < r2 implies cos . r1 < cos . r2 ) then A3: ( r1 + (2 * PI) in [.(PI + H1((i - 1) + 1)),((2 * PI) + H1((i - 1) + 1)).] /\ (dom cos) & r2 + (2 * PI) in [.(PI + H1((i - 1) + 1)),((2 * PI) + H1((i - 1) + 1)).] /\ (dom cos) ) by Lm12, SIN_COS:24; assume r1 < r2 ; ::_thesis: cos . r1 < cos . r2 then r1 + (2 * PI) < r2 + (2 * PI) by XREAL_1:6; then cos . (r1 + (2 * PI)) < cos . (r2 + ((2 * PI) * 1)) by A2, A3, RFUNCT_2:20; then cos . (r1 + ((2 * PI) * 1)) < cos . r2 by Th10; hence cos . r1 < cos . r2 by Th10; ::_thesis: verum end; hence S1[i - 1] by RFUNCT_2:20; ::_thesis: verum end; set Y = [.(PI + H1(i + 1)),((2 * PI) + H1(i + 1)).]; A4: [.(PI + H1((i - 1) + 1)),((2 * PI) + H1((i - 1) + 1)).] = [.(PI + H1((i + 1) - 1)),((2 * PI) + H1((i + 1) - 1)).] ; now__::_thesis:_for_r1,_r2_being_Element_of_REAL_st_r1_in_[.(PI_+_H1(i_+_1)),((2_*_PI)_+_H1(i_+_1)).]_/\_(dom_cos)_&_r2_in_[.(PI_+_H1(i_+_1)),((2_*_PI)_+_H1(i_+_1)).]_/\_(dom_cos)_&_r1_<_r2_holds_ cos_._r1_<_cos_._r2 let r1, r2 be Element of REAL ; ::_thesis: ( r1 in [.(PI + H1(i + 1)),((2 * PI) + H1(i + 1)).] /\ (dom cos) & r2 in [.(PI + H1(i + 1)),((2 * PI) + H1(i + 1)).] /\ (dom cos) & r1 < r2 implies cos . r1 < cos . r2 ) assume ( r1 in [.(PI + H1(i + 1)),((2 * PI) + H1(i + 1)).] /\ (dom cos) & r2 in [.(PI + H1(i + 1)),((2 * PI) + H1(i + 1)).] /\ (dom cos) ) ; ::_thesis: ( r1 < r2 implies cos . r1 < cos . r2 ) then A5: ( r1 - (2 * PI) in [.(PI + H1((i - 1) + 1)),((2 * PI) + H1((i - 1) + 1)).] /\ (dom cos) & r2 - (2 * PI) in [.(PI + H1((i - 1) + 1)),((2 * PI) + H1((i - 1) + 1)).] /\ (dom cos) ) by A4, Lm14, SIN_COS:24; assume r1 < r2 ; ::_thesis: cos . r1 < cos . r2 then r1 - (2 * PI) < r2 - (2 * PI) by XREAL_1:9; then cos . (r1 - (2 * PI)) < cos . (r2 + ((2 * PI) * (- 1))) by A2, A5, RFUNCT_2:20; then cos . (r1 + ((2 * PI) * (- 1))) < cos . r2 by Th10; hence cos . r1 < cos . r2 by Th10; ::_thesis: verum end; hence S1[i + 1] by RFUNCT_2:20; ::_thesis: verum end; A6: S1[ 0 ] by COMPTRIG:26; for i being integer number holds S1[i] from INT_1:sch_4(A6, A1); hence cos | [.(PI + ((2 * PI) * i)),((2 * PI) + ((2 * PI) * i)).] is increasing ; ::_thesis: verum end; theorem Th57: :: SIN_COS6:57 for i being integer number holds sin | [.((- (PI / 2)) + ((2 * PI) * i)),((PI / 2) + ((2 * PI) * i)).] is one-to-one proof let i be integer number ; ::_thesis: sin | [.((- (PI / 2)) + ((2 * PI) * i)),((PI / 2) + ((2 * PI) * i)).] is one-to-one set Q = [.((- (PI / 2)) + ((2 * PI) * i)),((PI / 2) + ((2 * PI) * i)).]; sin | [.((- (PI / 2)) + ((2 * PI) * i)),((PI / 2) + ((2 * PI) * i)).] is increasing by Th53; hence sin | [.((- (PI / 2)) + ((2 * PI) * i)),((PI / 2) + ((2 * PI) * i)).] is one-to-one by FCONT_3:8; ::_thesis: verum end; theorem Th58: :: SIN_COS6:58 for i being integer number holds sin | [.((PI / 2) + ((2 * PI) * i)),(((3 / 2) * PI) + ((2 * PI) * i)).] is one-to-one proof let i be integer number ; ::_thesis: sin | [.((PI / 2) + ((2 * PI) * i)),(((3 / 2) * PI) + ((2 * PI) * i)).] is one-to-one set Q = [.((PI / 2) + ((2 * PI) * i)),(((3 / 2) * PI) + ((2 * PI) * i)).]; sin | [.((PI / 2) + ((2 * PI) * i)),(((3 / 2) * PI) + ((2 * PI) * i)).] is decreasing by Th54; hence sin | [.((PI / 2) + ((2 * PI) * i)),(((3 / 2) * PI) + ((2 * PI) * i)).] is one-to-one by FCONT_3:8; ::_thesis: verum end; registration clustersin | [.(- (PI / 2)),(PI / 2).] -> one-to-one ; coherence sin | [.(- (PI / 2)),(PI / 2).] is one-to-one by Lm1, Th57; clustersin | [.(PI / 2),((3 / 2) * PI).] -> one-to-one ; coherence sin | [.(PI / 2),((3 / 2) * PI).] is one-to-one by Lm2, Th58; end; registration clustersin | [.(- (PI / 2)),0.] -> one-to-one ; coherence sin | [.(- (PI / 2)),0.] is one-to-one proof sin | [.(- (PI / 2)),(PI / 2).] is one-to-one ; hence sin | [.(- (PI / 2)),0.] is one-to-one by Th2, XXREAL_1:34; ::_thesis: verum end; clustersin | [.0,(PI / 2).] -> one-to-one ; coherence sin | [.0,(PI / 2).] is one-to-one proof sin | [.(- (PI / 2)),(PI / 2).] is one-to-one ; hence sin | [.0,(PI / 2).] is one-to-one by Th2, XXREAL_1:34; ::_thesis: verum end; clustersin | [.(PI / 2),PI.] -> one-to-one ; coherence sin | [.(PI / 2),PI.] is one-to-one proof sin | [.(PI / 2),((3 / 2) * PI).] is one-to-one ; hence sin | [.(PI / 2),PI.] is one-to-one by Lm7, Th2, XXREAL_1:34; ::_thesis: verum end; clustersin | [.PI,((3 / 2) * PI).] -> one-to-one ; coherence sin | [.PI,((3 / 2) * PI).] is one-to-one proof sin | [.(PI / 2),((3 / 2) * PI).] is one-to-one ; hence sin | [.PI,((3 / 2) * PI).] is one-to-one by Lm6, Th2, XXREAL_1:34; ::_thesis: verum end; clustersin | [.((3 / 2) * PI),(2 * PI).] -> one-to-one ; coherence sin | [.((3 / 2) * PI),(2 * PI).] is one-to-one proof sin | [.((- (PI / 2)) + H1(1)),((PI / 2) + H1(1)).] is one-to-one by Th57; hence sin | [.((3 / 2) * PI),(2 * PI).] is one-to-one by Lm8, Th2, XXREAL_1:34; ::_thesis: verum end; end; registration clustersin | ].(- (PI / 2)),(PI / 2).[ -> one-to-one ; coherence sin | ].(- (PI / 2)),(PI / 2).[ is one-to-one proof sin | [.(- (PI / 2)),(PI / 2).] is one-to-one ; hence sin | ].(- (PI / 2)),(PI / 2).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustersin | ].(PI / 2),((3 / 2) * PI).[ -> one-to-one ; coherence sin | ].(PI / 2),((3 / 2) * PI).[ is one-to-one proof sin | [.(PI / 2),((3 / 2) * PI).] is one-to-one ; hence sin | ].(PI / 2),((3 / 2) * PI).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustersin | ].(- (PI / 2)),0.[ -> one-to-one ; coherence sin | ].(- (PI / 2)),0.[ is one-to-one proof sin | [.(- (PI / 2)),0.] is one-to-one ; hence sin | ].(- (PI / 2)),0.[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustersin | ].0,(PI / 2).[ -> one-to-one ; coherence sin | ].0,(PI / 2).[ is one-to-one proof sin | [.0,(PI / 2).] is one-to-one ; hence sin | ].0,(PI / 2).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustersin | ].(PI / 2),PI.[ -> one-to-one ; coherence sin | ].(PI / 2),PI.[ is one-to-one proof sin | [.(PI / 2),PI.] is one-to-one ; hence sin | ].(PI / 2),PI.[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustersin | ].PI,((3 / 2) * PI).[ -> one-to-one ; coherence sin | ].PI,((3 / 2) * PI).[ is one-to-one proof sin | [.PI,((3 / 2) * PI).] is one-to-one ; hence sin | ].PI,((3 / 2) * PI).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustersin | ].((3 / 2) * PI),(2 * PI).[ -> one-to-one ; coherence sin | ].((3 / 2) * PI),(2 * PI).[ is one-to-one proof sin | [.((3 / 2) * PI),(2 * PI).] is one-to-one ; hence sin | ].((3 / 2) * PI),(2 * PI).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; end; theorem Th59: :: SIN_COS6:59 for i being integer number holds cos | [.((2 * PI) * i),(PI + ((2 * PI) * i)).] is one-to-one proof let i be integer number ; ::_thesis: cos | [.((2 * PI) * i),(PI + ((2 * PI) * i)).] is one-to-one set Q1 = [.((2 * PI) * i),(PI + ((2 * PI) * i)).]; cos | [.((2 * PI) * i),(PI + ((2 * PI) * i)).] is decreasing by Th55; hence cos | [.((2 * PI) * i),(PI + ((2 * PI) * i)).] is one-to-one by FCONT_3:8; ::_thesis: verum end; theorem Th60: :: SIN_COS6:60 for i being integer number holds cos | [.(PI + ((2 * PI) * i)),((2 * PI) + ((2 * PI) * i)).] is one-to-one proof let i be integer number ; ::_thesis: cos | [.(PI + ((2 * PI) * i)),((2 * PI) + ((2 * PI) * i)).] is one-to-one set Q1 = [.(PI + ((2 * PI) * i)),((2 * PI) + ((2 * PI) * i)).]; cos | [.(PI + ((2 * PI) * i)),((2 * PI) + ((2 * PI) * i)).] is increasing by Th56; hence cos | [.(PI + ((2 * PI) * i)),((2 * PI) + ((2 * PI) * i)).] is one-to-one by FCONT_3:8; ::_thesis: verum end; registration clustercos | [.0,PI.] -> one-to-one ; coherence cos | [.0,PI.] is one-to-one by Lm3, Th59; clustercos | [.PI,(2 * PI).] -> one-to-one ; coherence cos | [.PI,(2 * PI).] is one-to-one by Lm4, Th60; end; registration clustercos | [.0,(PI / 2).] -> one-to-one ; coherence cos | [.0,(PI / 2).] is one-to-one proof cos | [.0,PI.] is one-to-one ; hence cos | [.0,(PI / 2).] is one-to-one by Lm6, Th2, XXREAL_1:34; ::_thesis: verum end; clustercos | [.(PI / 2),PI.] -> one-to-one ; coherence cos | [.(PI / 2),PI.] is one-to-one proof cos | [.0,PI.] is one-to-one ; hence cos | [.(PI / 2),PI.] is one-to-one by Th2, XXREAL_1:34; ::_thesis: verum end; clustercos | [.PI,((3 / 2) * PI).] -> one-to-one ; coherence cos | [.PI,((3 / 2) * PI).] is one-to-one proof cos | [.PI,(2 * PI).] is one-to-one ; hence cos | [.PI,((3 / 2) * PI).] is one-to-one by Lm9, Th2, XXREAL_1:34; ::_thesis: verum end; clustercos | [.((3 / 2) * PI),(2 * PI).] -> one-to-one ; coherence cos | [.((3 / 2) * PI),(2 * PI).] is one-to-one proof cos | [.PI,(2 * PI).] is one-to-one ; hence cos | [.((3 / 2) * PI),(2 * PI).] is one-to-one by Lm7, Th2, XXREAL_1:34; ::_thesis: verum end; end; registration clustercos | ].0,PI.[ -> one-to-one ; coherence cos | ].0,PI.[ is one-to-one proof cos | [.0,PI.] is one-to-one ; hence cos | ].0,PI.[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustercos | ].PI,(2 * PI).[ -> one-to-one ; coherence cos | ].PI,(2 * PI).[ is one-to-one proof cos | [.PI,(2 * PI).] is one-to-one ; hence cos | ].PI,(2 * PI).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustercos | ].0,(PI / 2).[ -> one-to-one ; coherence cos | ].0,(PI / 2).[ is one-to-one proof cos | [.0,(PI / 2).] is one-to-one ; hence cos | ].0,(PI / 2).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustercos | ].(PI / 2),PI.[ -> one-to-one ; coherence cos | ].(PI / 2),PI.[ is one-to-one proof cos | [.(PI / 2),PI.] is one-to-one ; hence cos | ].(PI / 2),PI.[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustercos | ].PI,((3 / 2) * PI).[ -> one-to-one ; coherence cos | ].PI,((3 / 2) * PI).[ is one-to-one proof cos | [.PI,((3 / 2) * PI).] is one-to-one ; hence cos | ].PI,((3 / 2) * PI).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; clustercos | ].((3 / 2) * PI),(2 * PI).[ -> one-to-one ; coherence cos | ].((3 / 2) * PI),(2 * PI).[ is one-to-one proof cos | [.((3 / 2) * PI),(2 * PI).] is one-to-one ; hence cos | ].((3 / 2) * PI),(2 * PI).[ is one-to-one by Th2, XXREAL_1:25; ::_thesis: verum end; end; theorem :: SIN_COS6:61 for r, s being real number for i being integer number st (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & (2 * PI) * i <= s & s < (2 * PI) + ((2 * PI) * i) & sin r = sin s & cos r = cos s holds r = s proof let r, s be real number ; ::_thesis: for i being integer number st (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & (2 * PI) * i <= s & s < (2 * PI) + ((2 * PI) * i) & sin r = sin s & cos r = cos s holds r = s let i be integer number ; ::_thesis: ( (2 * PI) * i <= r & r < (2 * PI) + ((2 * PI) * i) & (2 * PI) * i <= s & s < (2 * PI) + ((2 * PI) * i) & sin r = sin s & cos r = cos s implies r = s ) assume that A1: (2 * PI) * i <= r and A2: ( r < (2 * PI) + ((2 * PI) * i) & (2 * PI) * i <= s ) and A3: s < (2 * PI) + ((2 * PI) * i) and A4: ( sin r = sin s & cos r = cos s ) ; ::_thesis: r = s A5: cos (r - s) = ((cos r) * (cos s)) + ((sin r) * (sin s)) by COMPLEX2:3 .= 1 by A4, SIN_COS:29 ; A6: sin (r - s) = ((sin r) * (cos s)) - ((cos r) * (sin s)) by COMPLEX2:3 .= 0 by A4 ; A7: cos (s - r) = ((cos r) * (cos s)) + ((sin r) * (sin s)) by COMPLEX2:3 .= 1 by A4, SIN_COS:29 ; A8: sin (s - r) = ((sin s) * (cos r)) - ((cos s) * (sin r)) by COMPLEX2:3 .= 0 by A4 ; percases ( r > s or r < s or r = s ) by XXREAL_0:1; supposeA9: r > s ; ::_thesis: r = s r + ((2 * PI) * i) < ((2 * PI) + ((2 * PI) * i)) + s by A2, XREAL_1:8; then (r + ((2 * PI) * i)) - ((2 * PI) * i) < (((2 * PI) + ((2 * PI) * i)) + s) - ((2 * PI) * i) by XREAL_1:9; then r < (2 * PI) + s ; then A10: r - s < 2 * PI by XREAL_1:19; r > s + 0 by A9; then 0 <= r - s by XREAL_1:20; then ( r - s = 0 or r - s = PI ) by A6, A10, COMPTRIG:17; hence r = s by A5, SIN_COS:77; ::_thesis: verum end; supposeA11: r < s ; ::_thesis: r = s s + ((2 * PI) * i) < ((2 * PI) + ((2 * PI) * i)) + r by A1, A3, XREAL_1:8; then (s + ((2 * PI) * i)) - ((2 * PI) * i) < (((2 * PI) + ((2 * PI) * i)) + r) - ((2 * PI) * i) by XREAL_1:9; then s < (2 * PI) + r ; then A12: s - r < 2 * PI by XREAL_1:19; s > r + 0 by A11; then 0 <= s - r by XREAL_1:20; then ( s - r = 0 or s - r = PI ) by A8, A12, COMPTRIG:17; hence r = s by A7, SIN_COS:77; ::_thesis: verum end; suppose r = s ; ::_thesis: r = s hence r = s ; ::_thesis: verum end; end; end; begin definition func arcsin -> PartFunc of REAL,REAL equals :: SIN_COS6:def 1 (sin | [.(- (PI / 2)),(PI / 2).]) " ; coherence (sin | [.(- (PI / 2)),(PI / 2).]) " is PartFunc of REAL,REAL ; end; :: deftheorem defines arcsin SIN_COS6:def_1_:_ arcsin = (sin | [.(- (PI / 2)),(PI / 2).]) " ; definition let r be set ; func arcsin r -> set equals :: SIN_COS6:def 2 arcsin . r; coherence arcsin . r is set ; end; :: deftheorem defines arcsin SIN_COS6:def_2_:_ for r being set holds arcsin r = arcsin . r; definition let r be set ; :: original: arcsin redefine func arcsin r -> Real; coherence arcsin r is Real ; end; Lm15: arcsin " = sin | [.(- (PI / 2)),(PI / 2).] by FUNCT_1:43; theorem Th62: :: SIN_COS6:62 rng arcsin = [.(- (PI / 2)),(PI / 2).] proof dom (sin | [.(- (PI / 2)),(PI / 2).]) = [.(- (PI / 2)),(PI / 2).] by RELAT_1:62, SIN_COS:24; hence rng arcsin = [.(- (PI / 2)),(PI / 2).] by FUNCT_1:33; ::_thesis: verum end; registration cluster arcsin -> one-to-one ; coherence arcsin is one-to-one ; end; theorem Th63: :: SIN_COS6:63 dom arcsin = [.(- 1),1.] by COMPTRIG:30, FUNCT_1:33; theorem Th64: :: SIN_COS6:64 (sin | [.(- (PI / 2)),(PI / 2).]) * arcsin = id [.(- 1),1.] by COMPTRIG:30, FUNCT_1:39; theorem :: SIN_COS6:65 arcsin * (sin | [.(- (PI / 2)),(PI / 2).]) = id [.(- 1),1.] by COMPTRIG:30, FUNCT_1:39; theorem Th66: :: SIN_COS6:66 (sin | [.(- (PI / 2)),(PI / 2).]) * arcsin = id [.(- (PI / 2)),(PI / 2).] by Lm15, Th62, FUNCT_1:39; theorem :: SIN_COS6:67 arcsin * (sin | [.(- (PI / 2)),(PI / 2).]) = id [.(- (PI / 2)),(PI / 2).] by Lm15, Th62, FUNCT_1:39; theorem Th68: :: SIN_COS6:68 for r being real number st - 1 <= r & r <= 1 holds sin (arcsin r) = r proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies sin (arcsin r) = r ) assume ( - 1 <= r & r <= 1 ) ; ::_thesis: sin (arcsin r) = r then A1: r in [.(- 1),1.] by XXREAL_1:1; then A2: arcsin . r in [.(- (PI / 2)),(PI / 2).] by Th62, Th63, FUNCT_1:def_3; thus sin (arcsin r) = sin . (arcsin . r) by SIN_COS:def_17 .= (sin | [.(- (PI / 2)),(PI / 2).]) . (arcsin . r) by A2, FUNCT_1:49 .= (id [.(- 1),1.]) . r by A1, Th63, Th64, FUNCT_1:13 .= r by A1, FUNCT_1:18 ; ::_thesis: verum end; theorem Th69: :: SIN_COS6:69 for r being real number st - (PI / 2) <= r & r <= PI / 2 holds arcsin (sin r) = r proof let r be real number ; ::_thesis: ( - (PI / 2) <= r & r <= PI / 2 implies arcsin (sin r) = r ) A1: dom (sin | [.(- (PI / 2)),(PI / 2).]) = [.(- (PI / 2)),(PI / 2).] by RELAT_1:62, SIN_COS:24; assume ( - (PI / 2) <= r & r <= PI / 2 ) ; ::_thesis: arcsin (sin r) = r then A2: r in [.(- (PI / 2)),(PI / 2).] by XXREAL_1:1; thus arcsin (sin r) = arcsin . (sin . r) by SIN_COS:def_17 .= arcsin . ((sin | [.(- (PI / 2)),(PI / 2).]) . r) by A2, FUNCT_1:49 .= (id [.(- (PI / 2)),(PI / 2).]) . r by A2, A1, Th66, FUNCT_1:13 .= r by A2, FUNCT_1:18 ; ::_thesis: verum end; theorem :: SIN_COS6:70 arcsin (- 1) = - (PI / 2) by Th7, Th69; theorem :: SIN_COS6:71 arcsin 0 = 0 by Th69, SIN_COS:31; theorem :: SIN_COS6:72 arcsin 1 = PI / 2 by Th69, SIN_COS:77; theorem :: SIN_COS6:73 for r being real number st - 1 <= r & r <= 1 & arcsin r = - (PI / 2) holds r = - 1 by Th7, Th68; theorem :: SIN_COS6:74 for r being real number st - 1 <= r & r <= 1 & arcsin r = 0 holds r = 0 by Th68, SIN_COS:31; theorem :: SIN_COS6:75 for r being real number st - 1 <= r & r <= 1 & arcsin r = PI / 2 holds r = 1 by Th68, SIN_COS:77; theorem Th76: :: SIN_COS6:76 for r being real number st - 1 <= r & r <= 1 holds ( - (PI / 2) <= arcsin r & arcsin r <= PI / 2 ) proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies ( - (PI / 2) <= arcsin r & arcsin r <= PI / 2 ) ) assume ( - 1 <= r & r <= 1 ) ; ::_thesis: ( - (PI / 2) <= arcsin r & arcsin r <= PI / 2 ) then r in [.(- 1),1.] by XXREAL_1:1; then arcsin . r in rng arcsin by Th63, FUNCT_1:def_3; hence ( - (PI / 2) <= arcsin r & arcsin r <= PI / 2 ) by Th62, XXREAL_1:1; ::_thesis: verum end; theorem Th77: :: SIN_COS6:77 for r being real number st - 1 < r & r < 1 holds ( - (PI / 2) < arcsin r & arcsin r < PI / 2 ) proof let r be real number ; ::_thesis: ( - 1 < r & r < 1 implies ( - (PI / 2) < arcsin r & arcsin r < PI / 2 ) ) assume A1: ( - 1 < r & r < 1 ) ; ::_thesis: ( - (PI / 2) < arcsin r & arcsin r < PI / 2 ) then ( - (PI / 2) <= arcsin r & arcsin r <= PI / 2 ) by Th76; then ( ( - (PI / 2) < arcsin r & arcsin r < PI / 2 ) or - (PI / 2) = arcsin r or arcsin r = PI / 2 ) by XXREAL_0:1; hence ( - (PI / 2) < arcsin r & arcsin r < PI / 2 ) by A1, Th7, Th68, SIN_COS:77; ::_thesis: verum end; theorem Th78: :: SIN_COS6:78 for r being real number st - 1 <= r & r <= 1 holds arcsin r = - (arcsin (- r)) proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies arcsin r = - (arcsin (- r)) ) assume ( - 1 <= r & r <= 1 ) ; ::_thesis: arcsin r = - (arcsin (- r)) then A1: ( - (- 1) >= - r & - r >= - 1 ) by XREAL_1:24; then arcsin (- r) <= PI / 2 by Th76; then A2: - (PI / 2) <= - (arcsin (- r)) by XREAL_1:24; - (PI / 2) <= arcsin (- r) by A1, Th76; then A3: - (arcsin (- r)) <= - (- (PI / 2)) by XREAL_1:24; r = 0 - (1 * (- r)) .= ((sin 0) * (cos (arcsin (- r)))) - ((cos 0) * (sin (arcsin (- r)))) by A1, Th68, SIN_COS:31 .= sin (0 - (arcsin (- r))) by COMPLEX2:3 ; hence arcsin r = - (arcsin (- r)) by A2, A3, Th69; ::_thesis: verum end; theorem Th79: :: SIN_COS6:79 for s, r being real number st 0 <= s & (r ^2) + (s ^2) = 1 holds cos (arcsin r) = s proof let s, r be real number ; ::_thesis: ( 0 <= s & (r ^2) + (s ^2) = 1 implies cos (arcsin r) = s ) set x = arcsin r; assume that A1: 0 <= s and A2: (r ^2) + (s ^2) = 1 ; ::_thesis: cos (arcsin r) = s A3: ( - 1 <= r & r <= 1 ) by A2, Lm5; then ( - (PI / 2) <= arcsin r & arcsin r <= PI / 2 ) by Th76; then A4: arcsin r in [.(- (PI / 2)),(PI / 2).] by XXREAL_1:1; ((sin . (arcsin r)) ^2) + ((cos . (arcsin r)) ^2) = 1 by SIN_COS:28; then (cos . (arcsin r)) ^2 = 1 - ((sin . (arcsin r)) ^2) .= 1 - ((sin (arcsin r)) ^2) by SIN_COS:def_17 .= 1 - (r ^2) by A3, Th68 ; then A5: ( cos . (arcsin r) = s or cos . (arcsin r) = - s ) by A2, SQUARE_1:40; ( - (- (- s)) < 0 or s = 0 ) by A1; hence cos (arcsin r) = s by A5, A4, COMPTRIG:12, SIN_COS:def_19; ::_thesis: verum end; theorem :: SIN_COS6:80 for s, r being real number st s <= 0 & (r ^2) + (s ^2) = 1 holds cos (arcsin r) = - s proof let s, r be real number ; ::_thesis: ( s <= 0 & (r ^2) + (s ^2) = 1 implies cos (arcsin r) = - s ) set x = arcsin r; assume that A1: s <= 0 and A2: (r ^2) + (s ^2) = 1 ; ::_thesis: cos (arcsin r) = - s A3: ( - 1 <= r & r <= 1 ) by A2, Lm5; then ( - (PI / 2) <= arcsin r & arcsin r <= PI / 2 ) by Th76; then A4: arcsin r in [.(- (PI / 2)),(PI / 2).] by XXREAL_1:1; ((sin . (arcsin r)) ^2) + ((cos . (arcsin r)) ^2) = 1 by SIN_COS:28; then (cos . (arcsin r)) ^2 = 1 - ((sin . (arcsin r)) ^2) .= 1 - ((sin (arcsin r)) ^2) by SIN_COS:def_17 .= 1 - (r ^2) by A3, Th68 ; then A5: ( cos . (arcsin r) = s or cos . (arcsin r) = - s ) by A2, SQUARE_1:40; ( 0 > s or s = 0 ) by A1; hence cos (arcsin r) = - s by A5, A4, COMPTRIG:12, SIN_COS:def_19; ::_thesis: verum end; theorem Th81: :: SIN_COS6:81 for r being real number st - 1 <= r & r <= 1 holds cos (arcsin r) = sqrt (1 - (r ^2)) proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies cos (arcsin r) = sqrt (1 - (r ^2)) ) set s = sqrt (1 - (r ^2)); assume ( - 1 <= r & r <= 1 ) ; ::_thesis: cos (arcsin r) = sqrt (1 - (r ^2)) then (r ^2) + 0 <= 1 ^2 by SQUARE_1:49; then 0 <= 1 - (r ^2) by XREAL_1:19; then ( 0 <= sqrt (1 - (r ^2)) & (r ^2) + ((sqrt (1 - (r ^2))) ^2) = (r ^2) + (1 - (r ^2)) ) by SQUARE_1:def_2; hence cos (arcsin r) = sqrt (1 - (r ^2)) by Th79; ::_thesis: verum end; theorem :: SIN_COS6:82 arcsin | [.(- 1),1.] is increasing proof set f = sin | [.(- (PI / 2)),(PI / 2).]; ( (sin | [.(- (PI / 2)),(PI / 2).]) .: [.(- (PI / 2)),(PI / 2).] = [.(- 1),1.] & (((sin | [.(- (PI / 2)),(PI / 2).]) | [.(- (PI / 2)),(PI / 2).]) ") | ((sin | [.(- (PI / 2)),(PI / 2).]) .: [.(- (PI / 2)),(PI / 2).]) is increasing ) by Th45, COMPTRIG:23, FCONT_3:9, RELAT_1:129; hence arcsin | [.(- 1),1.] is increasing by RELAT_1:72; ::_thesis: verum end; theorem :: SIN_COS6:83 for r being real number holds ( arcsin is_differentiable_on ].(- 1),1.[ & ( - 1 < r & r < 1 implies diff (arcsin,r) = 1 / (sqrt (1 - (r ^2))) ) ) proof let r be real number ; ::_thesis: ( arcsin is_differentiable_on ].(- 1),1.[ & ( - 1 < r & r < 1 implies diff (arcsin,r) = 1 / (sqrt (1 - (r ^2))) ) ) set g = arcsin | ].(- 1),1.[; set h = sin | [.(- (PI / 2)),(PI / 2).]; set f = sin | ].(- (PI / 2)),(PI / 2).[; A1: dom (sin | ].(- (PI / 2)),(PI / 2).[) = ].(- (PI / 2)),(PI / 2).[ /\ REAL by RELAT_1:61, SIN_COS:24 .= ].(- (PI / 2)),(PI / 2).[ by XBOOLE_1:28 ; set x = arcsin . r; set s = sqrt (1 - (r ^2)); A2: ].(- 1),1.[ c= dom arcsin by Th63, XXREAL_1:25; A3: sin is_differentiable_on ].(- (PI / 2)),(PI / 2).[ by FDIFF_1:26, SIN_COS:68; then A4: sin | ].(- (PI / 2)),(PI / 2).[ is_differentiable_on ].(- (PI / 2)),(PI / 2).[ by FDIFF_2:16; A5: now__::_thesis:_for_x0_being_Real_st_x0_in_].(-_(PI_/_2)),(PI_/_2).[_holds_ 0_<_diff_((sin_|_].(-_(PI_/_2)),(PI_/_2).[),x0) let x0 be Real; ::_thesis: ( x0 in ].(- (PI / 2)),(PI / 2).[ implies 0 < diff ((sin | ].(- (PI / 2)),(PI / 2).[),x0) ) assume A6: x0 in ].(- (PI / 2)),(PI / 2).[ ; ::_thesis: 0 < diff ((sin | ].(- (PI / 2)),(PI / 2).[),x0) diff ((sin | ].(- (PI / 2)),(PI / 2).[),x0) = ((sin | ].(- (PI / 2)),(PI / 2).[) `| ].(- (PI / 2)),(PI / 2).[) . x0 by A4, A6, FDIFF_1:def_7 .= (sin `| ].(- (PI / 2)),(PI / 2).[) . x0 by A3, FDIFF_2:16 .= diff (sin,x0) by A3, A6, FDIFF_1:def_7 .= cos . x0 by SIN_COS:68 ; hence 0 < diff ((sin | ].(- (PI / 2)),(PI / 2).[),x0) by A6, COMPTRIG:11; ::_thesis: verum end; A7: (sin | ].(- (PI / 2)),(PI / 2).[) " = ((sin | [.(- (PI / 2)),(PI / 2).]) | ].(- (PI / 2)),(PI / 2).[) " by RELAT_1:74, XXREAL_1:25 .= ((sin | [.(- (PI / 2)),(PI / 2).]) ") | ((sin | [.(- (PI / 2)),(PI / 2).]) .: ].(- (PI / 2)),(PI / 2).[) by RFUNCT_2:17 .= arcsin | ].(- 1),1.[ by Th46, RELAT_1:129, XXREAL_1:25 ; then A8: ( (sin | ].(- (PI / 2)),(PI / 2).[) | ].(- (PI / 2)),(PI / 2).[ = sin | ].(- (PI / 2)),(PI / 2).[ & dom ((sin | ].(- (PI / 2)),(PI / 2).[) ") = ].(- 1),1.[ ) by Th63, RELAT_1:62, RELAT_1:72, XXREAL_1:25; then A9: arcsin | ].(- 1),1.[ is_differentiable_on ].(- 1),1.[ by A7, A4, A1, A5, FDIFF_2:48; then for x being Real st x in ].(- 1),1.[ holds arcsin | ].(- 1),1.[ is_differentiable_in x by FDIFF_1:9; hence A10: arcsin is_differentiable_on ].(- 1),1.[ by A2, FDIFF_1:def_6; ::_thesis: ( - 1 < r & r < 1 implies diff (arcsin,r) = 1 / (sqrt (1 - (r ^2))) ) assume A11: ( - 1 < r & r < 1 ) ; ::_thesis: diff (arcsin,r) = 1 / (sqrt (1 - (r ^2))) then A12: r in ].(- 1),1.[ by XXREAL_1:4; then A13: (arcsin | ].(- 1),1.[) . r = arcsin . r by FUNCT_1:49; arcsin . r = arcsin r ; then ( - (PI / 2) < arcsin . r & arcsin . r < PI / 2 ) by A11, Th77; then A14: arcsin . r in ].(- (PI / 2)),(PI / 2).[ by XXREAL_1:4; then A15: diff ((sin | ].(- (PI / 2)),(PI / 2).[),(arcsin . r)) = ((sin | ].(- (PI / 2)),(PI / 2).[) `| ].(- (PI / 2)),(PI / 2).[) . (arcsin . r) by A4, FDIFF_1:def_7 .= (sin `| ].(- (PI / 2)),(PI / 2).[) . (arcsin . r) by A3, FDIFF_2:16 .= diff (sin,(arcsin . r)) by A3, A14, FDIFF_1:def_7 .= cos . (arcsin . r) by SIN_COS:68 .= cos (arcsin r) by SIN_COS:def_19 .= sqrt (1 - (r ^2)) by A11, Th81 ; thus diff (arcsin,r) = (arcsin `| ].(- 1),1.[) . r by A10, A12, FDIFF_1:def_7 .= ((arcsin | ].(- 1),1.[) `| ].(- 1),1.[) . r by A10, FDIFF_2:16 .= diff ((arcsin | ].(- 1),1.[),r) by A9, A12, FDIFF_1:def_7 .= 1 / (sqrt (1 - (r ^2))) by A7, A8, A4, A1, A5, A12, A13, A15, FDIFF_2:48 ; ::_thesis: verum end; theorem :: SIN_COS6:84 arcsin | [.(- 1),1.] is continuous proof set f = sin | [.(- (PI / 2)),(PI / 2).]; dom (sin | [.(- (PI / 2)),(PI / 2).]) = [.(- (PI / 2)),(PI / 2).] by RELAT_1:62, SIN_COS:24; then ( (sin | [.(- (PI / 2)),(PI / 2).]) | [.(- (PI / 2)),(PI / 2).] = sin | [.(- (PI / 2)),(PI / 2).] & (((sin | [.(- (PI / 2)),(PI / 2).]) | [.(- (PI / 2)),(PI / 2).]) ") | ((sin | [.(- (PI / 2)),(PI / 2).]) .: [.(- (PI / 2)),(PI / 2).]) is continuous ) by COMPTRIG:23, FCONT_1:47, RELAT_1:73; hence arcsin | [.(- 1),1.] is continuous by COMPTRIG:30, RELAT_1:115; ::_thesis: verum end; begin definition func arccos -> PartFunc of REAL,REAL equals :: SIN_COS6:def 3 (cos | [.0,PI.]) " ; coherence (cos | [.0,PI.]) " is PartFunc of REAL,REAL ; end; :: deftheorem defines arccos SIN_COS6:def_3_:_ arccos = (cos | [.0,PI.]) " ; definition let r be set ; func arccos r -> set equals :: SIN_COS6:def 4 arccos . r; coherence arccos . r is set ; end; :: deftheorem defines arccos SIN_COS6:def_4_:_ for r being set holds arccos r = arccos . r; definition let r be set ; :: original: arccos redefine func arccos r -> Real; coherence arccos r is Real ; end; Lm16: arccos " = cos | [.0,PI.] by FUNCT_1:43; theorem Th85: :: SIN_COS6:85 rng arccos = [.0,PI.] proof dom (cos | [.0,PI.]) = [.0,PI.] by RELAT_1:62, SIN_COS:24; hence rng arccos = [.0,PI.] by FUNCT_1:33; ::_thesis: verum end; registration cluster arccos -> one-to-one ; coherence arccos is one-to-one ; end; theorem Th86: :: SIN_COS6:86 dom arccos = [.(- 1),1.] by COMPTRIG:32, FUNCT_1:33; theorem Th87: :: SIN_COS6:87 (cos | [.0,PI.]) * arccos = id [.(- 1),1.] by COMPTRIG:32, FUNCT_1:39; theorem :: SIN_COS6:88 arccos * (cos | [.0,PI.]) = id [.(- 1),1.] by COMPTRIG:32, FUNCT_1:39; theorem Th89: :: SIN_COS6:89 (cos | [.0,PI.]) * arccos = id [.0,PI.] by Lm16, Th85, FUNCT_1:39; theorem :: SIN_COS6:90 arccos * (cos | [.0,PI.]) = id [.0,PI.] by Lm16, Th85, FUNCT_1:39; theorem Th91: :: SIN_COS6:91 for r being real number st - 1 <= r & r <= 1 holds cos (arccos r) = r proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies cos (arccos r) = r ) assume ( - 1 <= r & r <= 1 ) ; ::_thesis: cos (arccos r) = r then A1: r in [.(- 1),1.] by XXREAL_1:1; then A2: arccos . r in [.0,PI.] by Th85, Th86, FUNCT_1:def_3; thus cos (arccos r) = cos . (arccos . r) by SIN_COS:def_19 .= (cos | [.0,PI.]) . (arccos . r) by A2, FUNCT_1:49 .= (id [.(- 1),1.]) . r by A1, Th86, Th87, FUNCT_1:13 .= r by A1, FUNCT_1:18 ; ::_thesis: verum end; theorem Th92: :: SIN_COS6:92 for r being real number st 0 <= r & r <= PI holds arccos (cos r) = r proof let r be real number ; ::_thesis: ( 0 <= r & r <= PI implies arccos (cos r) = r ) A1: dom (cos | [.0,PI.]) = [.0,PI.] by RELAT_1:62, SIN_COS:24; assume ( 0 <= r & r <= PI ) ; ::_thesis: arccos (cos r) = r then A2: r in [.0,PI.] by XXREAL_1:1; thus arccos (cos r) = arccos . (cos . r) by SIN_COS:def_19 .= arccos . ((cos | [.0,PI.]) . r) by A2, FUNCT_1:49 .= (id [.0,PI.]) . r by A2, A1, Th89, FUNCT_1:13 .= r by A2, FUNCT_1:18 ; ::_thesis: verum end; theorem :: SIN_COS6:93 arccos (- 1) = PI by Th92, SIN_COS:77; theorem :: SIN_COS6:94 arccos 0 = PI / 2 by Lm6, Th92, SIN_COS:77; theorem :: SIN_COS6:95 arccos 1 = 0 by Th92, SIN_COS:31; theorem :: SIN_COS6:96 for r being real number st - 1 <= r & r <= 1 & arccos r = 0 holds r = 1 by Th91, SIN_COS:31; theorem :: SIN_COS6:97 for r being real number st - 1 <= r & r <= 1 & arccos r = PI / 2 holds r = 0 by Th91, SIN_COS:77; theorem :: SIN_COS6:98 for r being real number st - 1 <= r & r <= 1 & arccos r = PI holds r = - 1 by Th91, SIN_COS:77; theorem Th99: :: SIN_COS6:99 for r being real number st - 1 <= r & r <= 1 holds ( 0 <= arccos r & arccos r <= PI ) proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies ( 0 <= arccos r & arccos r <= PI ) ) assume ( - 1 <= r & r <= 1 ) ; ::_thesis: ( 0 <= arccos r & arccos r <= PI ) then r in [.(- 1),1.] by XXREAL_1:1; then arccos . r in rng arccos by Th86, FUNCT_1:def_3; hence ( 0 <= arccos r & arccos r <= PI ) by Th85, XXREAL_1:1; ::_thesis: verum end; theorem Th100: :: SIN_COS6:100 for r being real number st - 1 < r & r < 1 holds ( 0 < arccos r & arccos r < PI ) proof let r be real number ; ::_thesis: ( - 1 < r & r < 1 implies ( 0 < arccos r & arccos r < PI ) ) assume A1: ( - 1 < r & r < 1 ) ; ::_thesis: ( 0 < arccos r & arccos r < PI ) then arccos r <= PI by Th99; then ( ( 0 < arccos r & arccos r < PI ) or 0 = arccos r or arccos r = PI ) by A1, Th99, XXREAL_0:1; hence ( 0 < arccos r & arccos r < PI ) by A1, Th91, SIN_COS:31, SIN_COS:77; ::_thesis: verum end; theorem Th101: :: SIN_COS6:101 for r being real number st - 1 <= r & r <= 1 holds arccos r = PI - (arccos (- r)) proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies arccos r = PI - (arccos (- r)) ) assume ( - 1 <= r & r <= 1 ) ; ::_thesis: arccos r = PI - (arccos (- r)) then A1: ( - (- 1) >= - r & - r >= - 1 ) by XREAL_1:24; then 0 + (arccos (- r)) <= PI by Th99; then A2: 0 <= PI - (arccos (- r)) by XREAL_1:19; 0 <= arccos (- r) by A1, Th99; then PI + 0 <= PI + (arccos (- r)) by XREAL_1:6; then A3: PI - (arccos (- r)) <= PI by XREAL_1:20; r = (- 1) * (- r) .= ((cos PI) * (cos (arccos (- r)))) + ((sin PI) * (sin (arccos (- r)))) by A1, Th91, SIN_COS:77 .= cos (PI - (arccos (- r))) by COMPLEX2:3 ; hence arccos r = PI - (arccos (- r)) by A2, A3, Th92; ::_thesis: verum end; theorem Th102: :: SIN_COS6:102 for s, r being real number st 0 <= s & (r ^2) + (s ^2) = 1 holds sin (arccos r) = s proof let s, r be real number ; ::_thesis: ( 0 <= s & (r ^2) + (s ^2) = 1 implies sin (arccos r) = s ) set x = arccos r; assume that A1: 0 <= s and A2: (r ^2) + (s ^2) = 1 ; ::_thesis: sin (arccos r) = s A3: ( - 1 <= r & r <= 1 ) by A2, Lm5; then ( 0 <= arccos r & arccos r <= PI ) by Th99; then A4: arccos r in [.0,PI.] by XXREAL_1:1; ((sin . (arccos r)) ^2) + ((cos . (arccos r)) ^2) = 1 by SIN_COS:28; then (sin . (arccos r)) ^2 = 1 - ((cos . (arccos r)) ^2) .= 1 - ((cos (arccos r)) ^2) by SIN_COS:def_19 .= 1 - (r ^2) by A3, Th91 ; then A5: ( sin . (arccos r) = s or sin . (arccos r) = - s ) by A2, SQUARE_1:40; ( - (- (- s)) < 0 or s = 0 ) by A1; hence sin (arccos r) = s by A5, A4, COMPTRIG:8, SIN_COS:def_17; ::_thesis: verum end; theorem :: SIN_COS6:103 for s, r being real number st s <= 0 & (r ^2) + (s ^2) = 1 holds sin (arccos r) = - s proof let s, r be real number ; ::_thesis: ( s <= 0 & (r ^2) + (s ^2) = 1 implies sin (arccos r) = - s ) set x = arccos r; assume that A1: s <= 0 and A2: (r ^2) + (s ^2) = 1 ; ::_thesis: sin (arccos r) = - s A3: ( - 1 <= r & r <= 1 ) by A2, Lm5; then ( 0 <= arccos r & arccos r <= PI ) by Th99; then A4: arccos r in [.0,PI.] by XXREAL_1:1; ((sin . (arccos r)) ^2) + ((cos . (arccos r)) ^2) = 1 by SIN_COS:28; then (sin . (arccos r)) ^2 = 1 - ((cos . (arccos r)) ^2) .= 1 - ((cos (arccos r)) ^2) by SIN_COS:def_19 .= 1 - (r ^2) by A3, Th91 ; then A5: ( sin . (arccos r) = s or sin . (arccos r) = - s ) by A2, SQUARE_1:40; ( 0 > s or s = 0 ) by A1; hence sin (arccos r) = - s by A5, A4, COMPTRIG:8, SIN_COS:def_17; ::_thesis: verum end; theorem Th104: :: SIN_COS6:104 for r being real number st - 1 <= r & r <= 1 holds sin (arccos r) = sqrt (1 - (r ^2)) proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies sin (arccos r) = sqrt (1 - (r ^2)) ) set s = sqrt (1 - (r ^2)); assume ( - 1 <= r & r <= 1 ) ; ::_thesis: sin (arccos r) = sqrt (1 - (r ^2)) then (r ^2) + 0 <= 1 ^2 by SQUARE_1:49; then 0 <= 1 - (r ^2) by XREAL_1:19; then ( 0 <= sqrt (1 - (r ^2)) & (r ^2) + ((sqrt (1 - (r ^2))) ^2) = (r ^2) + (1 - (r ^2)) ) by SQUARE_1:def_2; hence sin (arccos r) = sqrt (1 - (r ^2)) by Th102; ::_thesis: verum end; theorem :: SIN_COS6:105 arccos | [.(- 1),1.] is decreasing proof set f = cos | [.0,PI.]; ( (cos | [.0,PI.]) .: [.0,PI.] = [.(- 1),1.] & (((cos | [.0,PI.]) | [.0,PI.]) ") | ((cos | [.0,PI.]) .: [.0,PI.]) is decreasing ) by Th49, COMPTRIG:25, FCONT_3:10, RELAT_1:129; hence arccos | [.(- 1),1.] is decreasing by RELAT_1:72; ::_thesis: verum end; theorem :: SIN_COS6:106 for r being real number holds ( arccos is_differentiable_on ].(- 1),1.[ & ( - 1 < r & r < 1 implies diff (arccos,r) = - (1 / (sqrt (1 - (r ^2)))) ) ) proof let r be real number ; ::_thesis: ( arccos is_differentiable_on ].(- 1),1.[ & ( - 1 < r & r < 1 implies diff (arccos,r) = - (1 / (sqrt (1 - (r ^2)))) ) ) set g = arccos | ].(- 1),1.[; set h = cos | [.0,PI.]; set f = cos | ].0,PI.[; A1: dom (cos | ].0,PI.[) = ].0,PI.[ /\ REAL by RELAT_1:61, SIN_COS:24 .= ].0,PI.[ by XBOOLE_1:28 ; set x = arccos . r; set s = sqrt (1 - (r ^2)); A2: ].(- 1),1.[ c= dom arccos by Th86, XXREAL_1:25; A3: cos is_differentiable_on ].0,PI.[ by FDIFF_1:26, SIN_COS:67; then A4: cos | ].0,PI.[ is_differentiable_on ].0,PI.[ by FDIFF_2:16; A5: now__::_thesis:_for_x0_being_Real_st_x0_in_].0,PI.[_holds_ 0_>_diff_((cos_|_].0,PI.[),x0) let x0 be Real; ::_thesis: ( x0 in ].0,PI.[ implies 0 > diff ((cos | ].0,PI.[),x0) ) assume A6: x0 in ].0,PI.[ ; ::_thesis: 0 > diff ((cos | ].0,PI.[),x0) A7: - (- (sin . x0)) > 0 by A6, COMPTRIG:7; diff ((cos | ].0,PI.[),x0) = ((cos | ].0,PI.[) `| ].0,PI.[) . x0 by A4, A6, FDIFF_1:def_7 .= (cos `| ].0,PI.[) . x0 by A3, FDIFF_2:16 .= diff (cos,x0) by A3, A6, FDIFF_1:def_7 .= - (sin . x0) by SIN_COS:67 ; hence 0 > diff ((cos | ].0,PI.[),x0) by A7; ::_thesis: verum end; A8: (cos | ].0,PI.[) " = ((cos | [.0,PI.]) | ].0,PI.[) " by RELAT_1:74, XXREAL_1:25 .= ((cos | [.0,PI.]) ") | ((cos | [.0,PI.]) .: ].0,PI.[) by RFUNCT_2:17 .= arccos | ].(- 1),1.[ by Th50, RELAT_1:129, XXREAL_1:25 ; then A9: ( (cos | ].0,PI.[) | ].0,PI.[ = cos | ].0,PI.[ & dom ((cos | ].0,PI.[) ") = ].(- 1),1.[ ) by Th86, RELAT_1:62, RELAT_1:72, XXREAL_1:25; then A10: arccos | ].(- 1),1.[ is_differentiable_on ].(- 1),1.[ by A8, A4, A1, A5, FDIFF_2:48; then for x being Real st x in ].(- 1),1.[ holds arccos | ].(- 1),1.[ is_differentiable_in x by FDIFF_1:9; hence A11: arccos is_differentiable_on ].(- 1),1.[ by A2, FDIFF_1:def_6; ::_thesis: ( - 1 < r & r < 1 implies diff (arccos,r) = - (1 / (sqrt (1 - (r ^2)))) ) assume A12: ( - 1 < r & r < 1 ) ; ::_thesis: diff (arccos,r) = - (1 / (sqrt (1 - (r ^2)))) then A13: r in ].(- 1),1.[ by XXREAL_1:4; then A14: (arccos | ].(- 1),1.[) . r = arccos . r by FUNCT_1:49; arccos . r = arccos r ; then ( 0 < arccos . r & arccos . r < PI ) by A12, Th100; then A15: arccos . r in ].0,PI.[ by XXREAL_1:4; then A16: diff ((cos | ].0,PI.[),(arccos . r)) = ((cos | ].0,PI.[) `| ].0,PI.[) . (arccos . r) by A4, FDIFF_1:def_7 .= (cos `| ].0,PI.[) . (arccos . r) by A3, FDIFF_2:16 .= diff (cos,(arccos . r)) by A3, A15, FDIFF_1:def_7 .= - (sin . (arccos . r)) by SIN_COS:67 .= - (sin (arccos r)) by SIN_COS:def_17 .= - (sqrt (1 - (r ^2))) by A12, Th104 ; thus diff (arccos,r) = (arccos `| ].(- 1),1.[) . r by A11, A13, FDIFF_1:def_7 .= ((arccos | ].(- 1),1.[) `| ].(- 1),1.[) . r by A11, FDIFF_2:16 .= diff ((arccos | ].(- 1),1.[),r) by A10, A13, FDIFF_1:def_7 .= 1 / (- (sqrt (1 - (r ^2)))) by A8, A9, A4, A1, A5, A13, A14, A16, FDIFF_2:48 .= (- 1) / (sqrt (1 - (r ^2))) by XCMPLX_1:192 .= - (1 / (sqrt (1 - (r ^2)))) by XCMPLX_1:187 ; ::_thesis: verum end; theorem :: SIN_COS6:107 arccos | [.(- 1),1.] is continuous proof set f = cos | [.0,PI.]; dom (cos | [.0,PI.]) = [.0,PI.] by RELAT_1:62, SIN_COS:24; then ( (cos | [.0,PI.]) | [.0,PI.] = cos | [.0,PI.] & (((cos | [.0,PI.]) | [.0,PI.]) ") | ((cos | [.0,PI.]) .: [.0,PI.]) is continuous ) by COMPTRIG:25, FCONT_1:47, RELAT_1:73; hence arccos | [.(- 1),1.] is continuous by COMPTRIG:32, RELAT_1:115; ::_thesis: verum end; theorem Th108: :: SIN_COS6:108 for r being real number st - 1 <= r & r <= 1 holds (arcsin r) + (arccos r) = PI / 2 proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies (arcsin r) + (arccos r) = PI / 2 ) assume A1: ( - 1 <= r & r <= 1 ) ; ::_thesis: (arcsin r) + (arccos r) = PI / 2 then (- (PI / 2)) + (PI / 2) <= arccos r by Th99; then - (PI / 2) <= (arccos r) - (PI / 2) by XREAL_1:19; then A2: - (- (PI / 2)) >= - ((arccos r) - (PI / 2)) by XREAL_1:24; arccos r <= (PI / 2) + (PI / 2) by A1, Th99; then (arccos r) - (PI / 2) <= PI / 2 by XREAL_1:20; then A3: - ((arccos r) - (PI / 2)) >= - (PI / 2) by XREAL_1:24; r = ((sin (PI / 2)) * (cos (arccos r))) - ((cos (PI / 2)) * (sin (arccos r))) by A1, Th91, SIN_COS:77 .= sin ((PI / 2) - (arccos r)) by COMPLEX2:3 ; then arcsin r = (PI / 2) - (arccos r) by A2, A3, Th69; hence (arcsin r) + (arccos r) = PI / 2 ; ::_thesis: verum end; theorem :: SIN_COS6:109 for r being real number st - 1 <= r & r <= 1 holds (arccos (- r)) - (arcsin r) = PI / 2 proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies (arccos (- r)) - (arcsin r) = PI / 2 ) assume A1: ( - 1 <= r & r <= 1 ) ; ::_thesis: (arccos (- r)) - (arcsin r) = PI / 2 then A2: (arcsin r) + (arccos r) = (PI / 2) + 0 by Th108; ( - (- 1) >= - r & - r >= - 1 ) by A1, XREAL_1:24; then arccos (- r) = PI - (arccos (- (- r))) by Th101 .= (arcsin r) + (PI / 2) by A2 ; hence (arccos (- r)) - (arcsin r) = PI / 2 ; ::_thesis: verum end; theorem :: SIN_COS6:110 for r being real number st - 1 <= r & r <= 1 holds (arccos r) - (arcsin (- r)) = PI / 2 proof let r be real number ; ::_thesis: ( - 1 <= r & r <= 1 implies (arccos r) - (arcsin (- r)) = PI / 2 ) assume A1: ( - 1 <= r & r <= 1 ) ; ::_thesis: (arccos r) - (arcsin (- r)) = PI / 2 then A2: (arcsin r) + (arccos r) = (PI / 2) + 0 by Th108; ( - (- 1) >= - r & - r >= - 1 ) by A1, XREAL_1:24; then arcsin (- r) = - (arcsin (- (- r))) by Th78 .= (arccos r) - (PI / 2) by A2 ; hence (arccos r) - (arcsin (- r)) = PI / 2 ; ::_thesis: verum end;