:: SPRECT_4 semantic presentation begin theorem Th1: :: SPRECT_4:1 for f being S-Sequence_in_R2 for Q being closed Subset of (TOP-REAL 2) st L~ f meets Q & not f /. 1 in Q holds (L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} proof let f be S-Sequence_in_R2; ::_thesis: for Q being closed Subset of (TOP-REAL 2) st L~ f meets Q & not f /. 1 in Q holds (L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} let Q be closed Subset of (TOP-REAL 2); ::_thesis: ( L~ f meets Q & not f /. 1 in Q implies (L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} ) assume that A1: L~ f meets Q and A2: not f /. 1 in Q ; ::_thesis: (L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} set p1 = f /. 1; set p2 = f /. (len f); set fp = First_Point ((L~ f),(f /. 1),(f /. (len f)),Q); A3: (L~ f) /\ Q is closed by TOPS_1:8; len f >= 1 + 1 by TOPREAL1:def_8; then A4: len f > 1 by NAT_1:13; L~ f is_an_arc_of f /. 1,f /. (len f) by TOPREAL1:25; then A5: First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in (L~ f) /\ Q by A1, A3, JORDAN5C:def_1; then A6: First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in L~ f by XBOOLE_0:def_4; then A7: 1 <= Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f) by JORDAN3:8; A8: Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f) <= len f by A6, JORDAN3:8; then A9: Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f) in dom f by A7, FINSEQ_3:25; A10: now__::_thesis:_(L~_(R_Cut_(f,(First_Point_((L~_f),(f_/._1),(f_/._(len_f)),Q)))))_/\_Q_c=_{(First_Point_((L~_f),(f_/._1),(f_/._(len_f)),Q))} assume not (L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q c= {(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} ; ::_thesis: contradiction then consider q being set such that A11: q in (L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q and A12: not q in {(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} by TARSKI:def_3; reconsider q = q as Point of (TOP-REAL 2) by A11; A13: q in L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)))) by A11, XBOOLE_0:def_4; A14: L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)))) c= L~ f by A6, JORDAN3:41; A15: q <> First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) by A12, TARSKI:def_1; q in Q by A11, XBOOLE_0:def_4; then A16: LE First_Point ((L~ f),(f /. 1),(f /. (len f)),Q),q, L~ f,f /. 1,f /. (len f) by A3, A13, A14, JORDAN5C:15; percases ( First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) = f . 1 or First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) <> f . 1 ) ; supposeA17: First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) = f . 1 ; ::_thesis: contradiction A18: len <*(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))*> = 1 by FINSEQ_1:39; q in L~ <*(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))*> by A13, A17, JORDAN3:def_4; hence contradiction by A18, TOPREAL1:22; ::_thesis: verum end; supposeA19: First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) <> f . 1 ; ::_thesis: contradiction set m = mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))); A20: Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f) < len f by A6, JORDAN3:8; len (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) = ((Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) -' 1) + 1 by A7, A8, JORDAN4:8; then A21: not mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))) is empty by CARD_1:27, NAT_1:11; A22: First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in LSeg (f,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))) by A6, JORDAN3:9; q in L~ ((mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) ^ <*(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))*>) by A13, A19, JORDAN3:def_4; then A23: q in (L~ (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))))) \/ (LSeg (((mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) /. (len (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))))),(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)))) by A21, SPPOL_2:19; now__::_thesis:_contradiction percases ( q in L~ (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) or q in LSeg (((mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) /. (len (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))))),(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))) ) by A23, XBOOLE_0:def_3; supposeA24: q in L~ (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) ; ::_thesis: contradiction A25: now__::_thesis:_not_Index_((First_Point_((L~_f),(f_/._1),(f_/._(len_f)),Q)),f)_<=_1 assume Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f) <= 1 ; ::_thesis: contradiction then Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f) = 1 by A7, XXREAL_0:1; then len (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) = 1 by A4, JORDAN4:15; hence contradiction by A24, TOPREAL1:22; ::_thesis: verum end; then A26: LE q,f /. (Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)), L~ f,f /. 1,f /. (len f) by A8, A24, SPRECT_3:17; f /. (Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) in LSeg ((f /. (Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))),(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))) by RLTOPSP1:68; then LE f /. (Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)), First_Point ((L~ f),(f /. 1),(f /. (len f)),Q), L~ f,f /. 1,f /. (len f) by A20, A22, A25, SPRECT_3:23; then LE q, First_Point ((L~ f),(f /. 1),(f /. (len f)),Q), L~ f,f /. 1,f /. (len f) by A26, JORDAN5C:13; hence contradiction by A15, A16, JORDAN5C:12, TOPREAL1:25; ::_thesis: verum end; supposeA27: q in LSeg (((mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) /. (len (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))))),(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))) ; ::_thesis: contradiction len (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) in dom (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) by A21, FINSEQ_5:6; then (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) /. (len (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))))) = (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)))) . (len (mid (f,1,(Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))))) by PARTFUN1:def_6 .= f . (Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) by A7, A8, JORDAN4:10 .= f /. (Index ((First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) by A9, PARTFUN1:def_6 ; then LE q, First_Point ((L~ f),(f /. 1),(f /. (len f)),Q), L~ f,f /. 1,f /. (len f) by A7, A20, A22, A27, SPRECT_3:23; hence contradiction by A15, A16, JORDAN5C:12, TOPREAL1:25; ::_thesis: verum end; end; end; hence contradiction ; ::_thesis: verum end; end; end; A28: First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in Q by A5, XBOOLE_0:def_4; 1 in dom f by A4, FINSEQ_3:25; then First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) <> f . 1 by A2, A28, PARTFUN1:def_6; then First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q)))) by A6, JORDAN5B:20; then First_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in (L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q by A28, XBOOLE_0:def_4; hence (L~ (R_Cut (f,(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(First_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} by A10, ZFMISC_1:33; ::_thesis: verum end; theorem :: SPRECT_4:2 for f being non empty FinSequence of (TOP-REAL 2) for p being Point of (TOP-REAL 2) st f is being_S-Seq & p = f /. (len f) holds L~ (L_Cut (f,p)) = {} proof let f be non empty FinSequence of (TOP-REAL 2); ::_thesis: for p being Point of (TOP-REAL 2) st f is being_S-Seq & p = f /. (len f) holds L~ (L_Cut (f,p)) = {} let p be Point of (TOP-REAL 2); ::_thesis: ( f is being_S-Seq & p = f /. (len f) implies L~ (L_Cut (f,p)) = {} ) assume that A1: f is being_S-Seq and A2: p = f /. (len f) ; ::_thesis: L~ (L_Cut (f,p)) = {} len f >= 2 by A1, TOPREAL1:def_8; then len f >= 1 by XXREAL_0:2; then len f in dom f by FINSEQ_3:25; then p = f . (len f) by A2, PARTFUN1:def_6; then L_Cut (f,p) = <*p*> by A1, JORDAN5B:17; then len (L_Cut (f,p)) = 1 by FINSEQ_1:39; hence L~ (L_Cut (f,p)) = {} by TOPREAL1:22; ::_thesis: verum end; theorem Th3: :: SPRECT_4:3 for f being S-Sequence_in_R2 for p being Point of (TOP-REAL 2) for j being Element of NAT st 1 <= j & j < len f & p in L~ (mid (f,j,(len f))) holds LE f /. j,p, L~ f,f /. 1,f /. (len f) proof let f be S-Sequence_in_R2; ::_thesis: for p being Point of (TOP-REAL 2) for j being Element of NAT st 1 <= j & j < len f & p in L~ (mid (f,j,(len f))) holds LE f /. j,p, L~ f,f /. 1,f /. (len f) let p be Point of (TOP-REAL 2); ::_thesis: for j being Element of NAT st 1 <= j & j < len f & p in L~ (mid (f,j,(len f))) holds LE f /. j,p, L~ f,f /. 1,f /. (len f) let j be Element of NAT ; ::_thesis: ( 1 <= j & j < len f & p in L~ (mid (f,j,(len f))) implies LE f /. j,p, L~ f,f /. 1,f /. (len f) ) assume that A1: 1 <= j and A2: j < len f and A3: p in L~ (mid (f,j,(len f))) ; ::_thesis: LE f /. j,p, L~ f,f /. 1,f /. (len f) consider i being Element of NAT such that A4: 1 <= i and A5: i + 1 <= len (mid (f,j,(len f))) and A6: p in LSeg ((mid (f,j,(len f))),i) by A3, SPPOL_2:13; A7: len (mid (f,j,(len f))) = ((len f) -' j) + 1 by A1, A2, JORDAN4:8; then i <= (len f) -' j by A5, XREAL_1:6; then A8: i + j <= len f by A2, NAT_D:54; j + i >= i by NAT_1:11; then A9: ((j + i) -' 1) + 1 <= len f by A4, A8, XREAL_1:235, XXREAL_0:2; 1 + 1 <= j + i by A1, A4, XREAL_1:7; then A10: 1 <= (j + i) -' 1 by NAT_D:49; j + 1 <= j + i by A4, XREAL_1:6; then A11: j <= (j + i) -' 1 by NAT_D:49; ((j + i) -' 1) + 1 >= (j + i) -' 1 by NAT_1:11; then len f >= (j + i) -' 1 by A9, XXREAL_0:2; then A12: LE f /. j,f /. ((j + i) -' 1), L~ f,f /. 1,f /. (len f) by A1, A11, JORDAN5C:24; i < ((len f) -' j) + 1 by A5, A7, NAT_1:13; then p in LSeg (f,((j + i) -' 1)) by A1, A2, A4, A6, JORDAN4:19; then LE f /. ((j + i) -' 1),p, L~ f,f /. 1,f /. (len f) by A10, A9, JORDAN5C:25; hence LE f /. j,p, L~ f,f /. 1,f /. (len f) by A12, JORDAN5C:13; ::_thesis: verum end; theorem Th4: :: SPRECT_4:4 for f being S-Sequence_in_R2 for p, q being Point of (TOP-REAL 2) for j being Element of NAT st 1 <= j & j < len f & p in LSeg (f,j) & q in LSeg (p,(f /. (j + 1))) holds LE p,q, L~ f,f /. 1,f /. (len f) proof let f be S-Sequence_in_R2; ::_thesis: for p, q being Point of (TOP-REAL 2) for j being Element of NAT st 1 <= j & j < len f & p in LSeg (f,j) & q in LSeg (p,(f /. (j + 1))) holds LE p,q, L~ f,f /. 1,f /. (len f) let p, q be Point of (TOP-REAL 2); ::_thesis: for j being Element of NAT st 1 <= j & j < len f & p in LSeg (f,j) & q in LSeg (p,(f /. (j + 1))) holds LE p,q, L~ f,f /. 1,f /. (len f) let j be Element of NAT ; ::_thesis: ( 1 <= j & j < len f & p in LSeg (f,j) & q in LSeg (p,(f /. (j + 1))) implies LE p,q, L~ f,f /. 1,f /. (len f) ) assume that A1: 1 <= j and A2: j < len f and A3: p in LSeg (f,j) and A4: q in LSeg (p,(f /. (j + 1))) ; ::_thesis: LE p,q, L~ f,f /. 1,f /. (len f) A5: j + 1 <= len f by A2, NAT_1:13; then A6: LSeg (f,j) = LSeg ((f /. j),(f /. (j + 1))) by A1, TOPREAL1:def_3; A7: f /. (j + 1) in LSeg (f,j) by A1, A5, TOPREAL1:21; then A8: LSeg (p,(f /. (j + 1))) c= LSeg (f,j) by A3, A6, TOPREAL1:6; then A9: q in LSeg (f,j) by A4; A10: LSeg (f,j) c= L~ f by TOPREAL3:19; percases ( p = q or q <> p ) ; suppose p = q ; ::_thesis: LE p,q, L~ f,f /. 1,f /. (len f) hence LE p,q, L~ f,f /. 1,f /. (len f) by A3, A10, JORDAN5C:9; ::_thesis: verum end; supposeA11: q <> p ; ::_thesis: LE p,q, L~ f,f /. 1,f /. (len f) for i, j being Element of NAT st p in LSeg (f,i) & q in LSeg (f,j) & 1 <= i & i + 1 <= len f & 1 <= j & j + 1 <= len f holds ( i <= j & ( i = j implies LE p,q,f /. i,f /. (i + 1) ) ) proof 1 <= j + 1 by NAT_1:11; then A12: j + 1 in dom f by A5, FINSEQ_3:25; let i1, i2 be Element of NAT ; ::_thesis: ( p in LSeg (f,i1) & q in LSeg (f,i2) & 1 <= i1 & i1 + 1 <= len f & 1 <= i2 & i2 + 1 <= len f implies ( i1 <= i2 & ( i1 = i2 implies LE p,q,f /. i1,f /. (i1 + 1) ) ) ) assume that A13: p in LSeg (f,i1) and A14: q in LSeg (f,i2) and 1 <= i1 and A15: i1 + 1 <= len f and A16: 1 <= i2 and i2 + 1 <= len f ; ::_thesis: ( i1 <= i2 & ( i1 = i2 implies LE p,q,f /. i1,f /. (i1 + 1) ) ) A17: p in (LSeg (f,i1)) /\ (LSeg (f,j)) by A3, A13, XBOOLE_0:def_4; then A18: LSeg (f,i1) meets LSeg (f,j) by XBOOLE_0:4; then A19: i1 + 1 >= j by TOPREAL1:def_7; A20: now__::_thesis:_not_j_+_1_=_i1 A21: j + (1 + 1) = (j + 1) + 1 ; assume j + 1 = i1 ; ::_thesis: contradiction then p in {(f /. (j + 1))} by A1, A15, A17, A21, TOPREAL1:def_6; then p = f /. (j + 1) by TARSKI:def_1; then q in {p} by A4, RLTOPSP1:70; hence contradiction by A11, TARSKI:def_1; ::_thesis: verum end; A22: now__::_thesis:_(_i2_+_1_>_j_&_j_+_1_>_i2_implies_i2_=_j_) assume that A23: i2 + 1 > j and A24: j + 1 > i2 ; ::_thesis: i2 = j A25: j <= i2 by A23, NAT_1:13; i2 <= j by A24, NAT_1:13; hence i2 = j by A25, XXREAL_0:1; ::_thesis: verum end; A26: now__::_thesis:_(_i1_+_1_>_j_&_j_+_1_>_i1_implies_i1_=_j_) assume that A27: i1 + 1 > j and A28: j + 1 > i1 ; ::_thesis: i1 = j A29: j <= i1 by A27, NAT_1:13; i1 <= j by A28, NAT_1:13; hence i1 = j by A29, XXREAL_0:1; ::_thesis: verum end; A30: q in (LSeg (f,i2)) /\ (LSeg (f,j)) by A4, A8, A14, XBOOLE_0:def_4; then A31: LSeg (f,i2) meets LSeg (f,j) by XBOOLE_0:4; then A32: j + 1 >= i2 by TOPREAL1:def_7; A33: j in dom f by A1, A2, FINSEQ_3:25; A34: now__::_thesis:_not_f_/._(j_+_1)_=_f_/._j assume f /. (j + 1) = f /. j ; ::_thesis: contradiction then j = j + 1 by A12, A33, PARTFUN2:10; hence contradiction ; ::_thesis: verum end; A35: now__::_thesis:_not_i2_+_1_=_j A36: i2 + (1 + 1) = (i2 + 1) + 1 ; assume i2 + 1 = j ; ::_thesis: contradiction then q in {(f /. j)} by A5, A16, A30, A36, TOPREAL1:def_6; then q = f /. j by TARSKI:def_1; hence contradiction by A3, A4, A6, A7, A11, A34, SPPOL_1:7, TOPREAL1:6; ::_thesis: verum end; i2 + 1 >= j by A31, TOPREAL1:def_7; then ( i2 + 1 = j or i2 = j or j + 1 = i2 ) by A22, A32, XXREAL_0:1; then A37: i2 >= j by A35, NAT_1:11; A38: j + 1 >= i1 by A18, TOPREAL1:def_7; then ( i1 + 1 = j or i1 = j ) by A26, A19, A20, XXREAL_0:1; then i1 <= j by NAT_1:11; hence i1 <= i2 by A37, XXREAL_0:2; ::_thesis: ( i1 = i2 implies LE p,q,f /. i1,f /. (i1 + 1) ) assume A39: i1 = i2 ; ::_thesis: LE p,q,f /. i1,f /. (i1 + 1) not p in LSeg (q,(f /. (j + 1))) by A4, A11, SPRECT_3:6; then not LE q,p,f /. j,f /. (j + 1) by JORDAN3:30; then LT p,q,f /. j,f /. (j + 1) by A3, A6, A14, A26, A19, A38, A20, A34, A35, A39, JORDAN3:28, XXREAL_0:1; hence LE p,q,f /. i1,f /. (i1 + 1) by A26, A19, A38, A20, A35, A39, JORDAN3:def_6, XXREAL_0:1; ::_thesis: verum end; hence LE p,q, L~ f,f /. 1,f /. (len f) by A3, A9, A10, A11, JORDAN5C:30; ::_thesis: verum end; end; end; theorem Th5: :: SPRECT_4:5 for f being S-Sequence_in_R2 for Q being closed Subset of (TOP-REAL 2) st L~ f meets Q & not f /. (len f) in Q holds (L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} proof let f be S-Sequence_in_R2; ::_thesis: for Q being closed Subset of (TOP-REAL 2) st L~ f meets Q & not f /. (len f) in Q holds (L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} let Q be closed Subset of (TOP-REAL 2); ::_thesis: ( L~ f meets Q & not f /. (len f) in Q implies (L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} ) assume that A1: L~ f meets Q and A2: not f /. (len f) in Q ; ::_thesis: (L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} set p1 = f /. 1; set p2 = f /. (len f); set lp = Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q); A3: (L~ f) /\ Q is closed by TOPS_1:8; len f >= 1 + 1 by TOPREAL1:def_8; then A4: len f > 1 by NAT_1:13; L~ f is_an_arc_of f /. 1,f /. (len f) by TOPREAL1:25; then A5: Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in (L~ f) /\ Q by A1, A3, JORDAN5C:def_2; then A6: Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in L~ f by XBOOLE_0:def_4; then A7: 1 <= Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f) by JORDAN3:8; A8: now__::_thesis:_(L~_(L_Cut_(f,(Last_Point_((L~_f),(f_/._1),(f_/._(len_f)),Q)))))_/\_Q_c=_{(Last_Point_((L~_f),(f_/._1),(f_/._(len_f)),Q))} set m = mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f)); assume not (L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q c= {(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} ; ::_thesis: contradiction then consider q being set such that A9: q in (L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q and A10: not q in {(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} by TARSKI:def_3; reconsider q = q as Point of (TOP-REAL 2) by A9; A11: q in L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)))) by A9, XBOOLE_0:def_4; A12: L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)))) c= L~ f by A6, JORDAN3:42; A13: Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f) < len f by A6, JORDAN3:8; then A14: (Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1 <= len f by NAT_1:13; A15: 1 <= (Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1 by NAT_1:11; then len (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) = ((len f) -' ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1)) + 1 by A14, JORDAN4:8; then A16: not mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f)) is empty by CARD_1:27, NAT_1:11; A17: q <> Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) by A10, TARSKI:def_1; q in Q by A9, XBOOLE_0:def_4; then A18: LE q, Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q), L~ f,f /. 1,f /. (len f) by A3, A11, A12, JORDAN5C:16; percases ( Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) = f . ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1) or Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) <> f . ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1) ) ; suppose Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) = f . ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1) ; ::_thesis: contradiction then A19: q in L~ (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) by A11, JORDAN3:def_3; now__::_thesis:_not_(Index_((Last_Point_((L~_f),(f_/._1),(f_/._(len_f)),Q)),f))_+_1_>=_len_f assume (Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1 >= len f ; ::_thesis: contradiction then (Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1 = len f by A14, XXREAL_0:1; then len (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) = 1 by A4, JORDAN4:15; hence contradiction by A19, TOPREAL1:22; ::_thesis: verum end; then A20: LE f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),q, L~ f,f /. 1,f /. (len f) by A19, Th3, NAT_1:11; A21: f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1) in LSeg ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),(f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1))) by RLTOPSP1:68; Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in LSeg (f,(Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))) by A6, JORDAN3:9; then LE Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q),f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1), L~ f,f /. 1,f /. (len f) by A7, A13, A21, Th4; then LE Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q),q, L~ f,f /. 1,f /. (len f) by A20, JORDAN5C:13; hence contradiction by A17, A18, JORDAN5C:12, TOPREAL1:25; ::_thesis: verum end; supposeA22: Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) <> f . ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1) ; ::_thesis: contradiction A23: Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in LSeg (f,(Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f))) by A6, JORDAN3:9; 1 <= (Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1 by NAT_1:11; then A24: (Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1 in dom f by A14, FINSEQ_3:25; q in L~ (<*(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))*> ^ (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f)))) by A11, A22, JORDAN3:def_3; then A25: q in (L~ (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f)))) \/ (LSeg (((mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) /. 1),(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)))) by A16, SPPOL_2:20; now__::_thesis:_contradiction percases ( q in L~ (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) or q in LSeg ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),((mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) /. 1)) ) by A25, XBOOLE_0:def_3; supposeA26: q in L~ (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) ; ::_thesis: contradiction now__::_thesis:_not_(Index_((Last_Point_((L~_f),(f_/._1),(f_/._(len_f)),Q)),f))_+_1_>=_len_f assume (Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1 >= len f ; ::_thesis: contradiction then (Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1 = len f by A14, XXREAL_0:1; then len (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) = 1 by A4, JORDAN4:15; hence contradiction by A26, TOPREAL1:22; ::_thesis: verum end; then A27: LE f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),q, L~ f,f /. 1,f /. (len f) by A26, Th3, NAT_1:11; f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1) in LSeg ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),(f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1))) by RLTOPSP1:68; then LE Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q),f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1), L~ f,f /. 1,f /. (len f) by A7, A13, A23, Th4; then LE Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q),q, L~ f,f /. 1,f /. (len f) by A27, JORDAN5C:13; hence contradiction by A17, A18, JORDAN5C:12, TOPREAL1:25; ::_thesis: verum end; supposeA28: q in LSeg ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),((mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) /. 1)) ; ::_thesis: contradiction 1 in dom (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) by A16, FINSEQ_5:6; then (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) /. 1 = (mid (f,((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1),(len f))) . 1 by PARTFUN1:def_6 .= f . ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1) by A4, A14, A15, FINSEQ_6:118 .= f /. ((Index ((Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)),f)) + 1) by A24, PARTFUN1:def_6 ; then LE Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q),q, L~ f,f /. 1,f /. (len f) by A7, A13, A23, A28, Th4; hence contradiction by A17, A18, JORDAN5C:12, TOPREAL1:25; ::_thesis: verum end; end; end; hence contradiction ; ::_thesis: verum end; end; end; A29: Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in Q by A5, XBOOLE_0:def_4; len f in dom f by A4, FINSEQ_3:25; then Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) <> f . (len f) by A2, A29, PARTFUN1:def_6; then Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q)))) by A6, JORDAN5B:19; then Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q) in (L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q by A29, XBOOLE_0:def_4; hence (L~ (L_Cut (f,(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))))) /\ Q = {(Last_Point ((L~ f),(f /. 1),(f /. (len f)),Q))} by A8, ZFMISC_1:33; ::_thesis: verum end; Lm1: for f being non constant standard clockwise_oriented special_circular_sequence st f /. 1 = N-min (L~ f) holds LeftComp f <> RightComp f proof let f be non constant standard clockwise_oriented special_circular_sequence; ::_thesis: ( f /. 1 = N-min (L~ f) implies LeftComp f <> RightComp f ) set A = N-min (L~ f); assume that A1: f /. 1 = N-min (L~ f) and A2: LeftComp f = RightComp f ; ::_thesis: contradiction A3: LeftComp (SpStSeq (L~ f)) c= LeftComp f by A1, SPRECT_3:41; consider i being Element of NAT such that A4: 1 <= i and A5: i < len (GoB f) and A6: N-min (L~ f) = (GoB f) * (i,(width (GoB f))) by SPRECT_3:28; set w = width (GoB f); A7: len f > 4 by GOBOARD7:34; A8: 1 + 1 <= len f by GOBOARD7:34, XXREAL_0:2; A9: width (GoB f) > 1 by GOBOARD7:33; then A10: ((width (GoB f)) -' 1) + 1 = width (GoB f) by XREAL_1:235; A11: [i,(width (GoB f))] in Indices (GoB f) by A4, A5, A9, MATRIX_1:36; A12: 1 <= i + 1 by NAT_1:11; A13: i + 1 <= len (GoB f) by A5, NAT_1:13; then A14: [(i + 1),(width (GoB f))] in Indices (GoB f) by A9, A12, MATRIX_1:36; A15: 1 in dom f by FINSEQ_5:6; A16: i in dom (GoB f) by A4, A5, FINSEQ_3:25; then A17: f /. (1 + 1) = (GoB f) * ((i + 1),(width (GoB f))) by A1, A6, SPRECT_3:29; then A18: right_cell (f,1) = cell ((GoB f),i,((width (GoB f)) -' 1)) by A1, A6, A8, A10, A11, A14, GOBOARD5:28; set z2 = (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))); set p1 = (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))); set p2 = (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))); A19: 1 <= (width (GoB f)) -' 1 by GOBOARD7:33, NAT_D:49; then A20: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) in Int (cell ((GoB f),i,((width (GoB f)) -' 1))) by A4, A10, A13, GOBOARD6:31; A21: Int (right_cell (f,1)) c= RightComp f by A8, GOBOARD9:25; A22: W-bound (L~ (SpStSeq (L~ f))) = W-bound (L~ f) by SPRECT_1:58; A23: S-bound (L~ (SpStSeq (L~ f))) = S-bound (L~ f) by SPRECT_1:59; A24: N-bound (L~ (SpStSeq (L~ f))) = N-bound (L~ f) by SPRECT_1:60; A25: E-bound (L~ (SpStSeq (L~ f))) = E-bound (L~ f) by SPRECT_1:61; A26: 1 < i + 1 by A4, NAT_1:13; A27: 1 <= len (GoB f) by A4, A5, XXREAL_0:2; A28: (width (GoB f)) -' 1 < width (GoB f) by A10, XREAL_1:29; A29: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) = (1 / 2) * ((N-min (L~ f)) + ((GoB f) * ((i + 1),((width (GoB f)) -' 1)))) by A4, A6, A10, A13, A19, GOBOARD7:9; then A30: ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `1 = (1 / 2) * (((N-min (L~ f)) + ((GoB f) * ((i + 1),((width (GoB f)) -' 1)))) `1) by TOPREAL3:4 .= (1 / 2) * (((N-min (L~ f)) `1) + (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `1)) by TOPREAL3:2 .= ((1 / 2) * ((N-min (L~ f)) `1)) + ((1 / 2) * (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `1)) ; A31: ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `2 = (1 / 2) * (((N-min (L~ f)) + ((GoB f) * ((i + 1),((width (GoB f)) -' 1)))) `2) by A29, TOPREAL3:4 .= (1 / 2) * (((N-min (L~ f)) `2) + (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2)) by TOPREAL3:2 .= (1 / 2) * ((N-bound (L~ f)) + (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2)) by EUCLID:52 .= ((1 / 2) * (N-bound (L~ f))) + ((1 / 2) * (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2)) ; A32: ((1 / 2) * (W-bound (L~ f))) + ((1 / 2) * (W-bound (L~ f))) = W-bound (L~ f) ; A33: ((1 / 2) * (S-bound (L~ f))) + ((1 / 2) * (S-bound (L~ f))) = S-bound (L~ f) ; A34: ((1 / 2) * (N-bound (L~ f))) + ((1 / 2) * (N-bound (L~ f))) = N-bound (L~ f) ; A35: ((1 / 2) * (E-bound (L~ f))) + ((1 / 2) * (E-bound (L~ f))) = E-bound (L~ f) ; N-min (L~ f) in L~ f by SPRECT_1:11; then (N-min (L~ f)) `1 >= W-bound (L~ f) by PSCOMP_1:24; then A36: (1 / 2) * ((N-min (L~ f)) `1) >= (1 / 2) * (W-bound (L~ f)) by XREAL_1:64; A37: ((GoB f) * (1,((width (GoB f)) -' 1))) `1 = ((GoB f) * (1,1)) `1 by A19, A27, A28, GOBOARD5:2; ((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `1 > ((GoB f) * (1,((width (GoB f)) -' 1))) `1 by A13, A19, A26, A28, GOBOARD5:3; then ((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `1 > W-bound (L~ f) by A37, JORDAN5D:37; then (1 / 2) * (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `1) > (1 / 2) * (W-bound (L~ f)) by XREAL_1:68; then A38: W-bound (L~ (SpStSeq (L~ f))) < ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `1 by A22, A30, A32, A36, XREAL_1:8; N-max (L~ f) in L~ f by SPRECT_1:11; then (N-max (L~ f)) `1 <= E-bound (L~ f) by PSCOMP_1:24; then (N-min (L~ f)) `1 < E-bound (L~ f) by SPRECT_2:51, XXREAL_0:2; then A39: (1 / 2) * ((N-min (L~ f)) `1) < (1 / 2) * (E-bound (L~ f)) by XREAL_1:68; A40: ((GoB f) * ((len (GoB f)),((width (GoB f)) -' 1))) `1 = ((GoB f) * ((len (GoB f)),1)) `1 by A19, A27, A28, GOBOARD5:2; ((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `1 <= ((GoB f) * ((len (GoB f)),((width (GoB f)) -' 1))) `1 by A12, A13, A19, A28, SPRECT_3:13; then ((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `1 <= E-bound (L~ f) by A40, JORDAN5D:39; then (1 / 2) * (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `1) <= (1 / 2) * (E-bound (L~ f)) by XREAL_1:64; then A41: ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `1 < E-bound (L~ (SpStSeq (L~ f))) by A25, A30, A35, A39, XREAL_1:8; A42: (1 / 2) * (N-bound (L~ f)) > (1 / 2) * (S-bound (L~ f)) by SPRECT_1:32, XREAL_1:68; A43: ((GoB f) * ((i + 1),1)) `2 = ((GoB f) * (1,1)) `2 by A9, A12, A13, GOBOARD5:1; ((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2 >= ((GoB f) * ((i + 1),1)) `2 by A12, A13, A19, A28, SPRECT_3:12; then ((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2 >= S-bound (L~ f) by A43, JORDAN5D:38; then (1 / 2) * (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2) >= (1 / 2) * (S-bound (L~ f)) by XREAL_1:64; then A44: S-bound (L~ (SpStSeq (L~ f))) < ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `2 by A23, A31, A33, A42, XREAL_1:8; A45: ((GoB f) * ((i + 1),(width (GoB f)))) `2 = ((GoB f) * (1,(width (GoB f)))) `2 by A9, A12, A13, GOBOARD5:1; ((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2 < ((GoB f) * ((i + 1),(width (GoB f)))) `2 by A12, A13, A19, A28, GOBOARD5:4; then ((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2 < N-bound (L~ f) by A45, JORDAN5D:40; then (1 / 2) * (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) `2) < (1 / 2) * (N-bound (L~ f)) by XREAL_1:68; then A46: ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `2 < N-bound (L~ (SpStSeq (L~ f))) by A24, A31, A34, XREAL_1:6; RightComp (SpStSeq (L~ f)) = { q where q is Point of (TOP-REAL 2) : ( W-bound (L~ (SpStSeq (L~ f))) < q `1 & q `1 < E-bound (L~ (SpStSeq (L~ f))) & S-bound (L~ (SpStSeq (L~ f))) < q `2 & q `2 < N-bound (L~ (SpStSeq (L~ f))) ) } by SPRECT_3:37; then A47: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) in RightComp (SpStSeq (L~ f)) by A38, A41, A44, A46; consider z1 being set such that A48: z1 in LeftComp (SpStSeq (L~ f)) by XBOOLE_0:def_1; LeftComp (SpStSeq (L~ f)) misses RightComp (SpStSeq (L~ f)) by SPRECT_1:88; then A49: z1 <> (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) by A47, A48, XBOOLE_0:3; reconsider z1 = z1 as Point of (TOP-REAL 2) by A48; consider P being Subset of (TOP-REAL 2) such that A50: P is_S-P_arc_joining z1,(1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) and A51: P c= RightComp f by A2, A3, A18, A20, A21, A48, A49, TOPREAL4:29; consider Red9 being FinSequence of (TOP-REAL 2) such that A52: Red9 is being_S-Seq and A53: P = L~ Red9 and A54: z1 = Red9 /. 1 and A55: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) = Red9 /. (len Red9) by A50, TOPREAL4:def_1; A56: L~ (SpStSeq (L~ f)) meets L~ Red9 by A47, A48, A52, A54, A55, SPRECT_3:33; A57: 2 in dom f by A8, FINSEQ_3:25; A58: len f in dom f by FINSEQ_5:6; A59: (len f) -' 1 >= 1 by A8, NAT_D:49; (len f) -' 1 <= len f by NAT_D:44; then A60: (len f) -' 1 in dom f by A59, FINSEQ_3:25; 1 <= len f by A58, FINSEQ_3:25; then A61: ((len f) -' 1) + 1 = len f by XREAL_1:235; then A62: (len f) -' 1 < len f by NAT_1:13; A63: <*(NW-corner (L~ f))*> is_in_the_area_of f by SPRECT_2:26; A64: (width (GoB f)) -' 1 < width (GoB f) by A10, NAT_1:13; then Int (cell ((GoB f),i,((width (GoB f)) -' 1))) misses L~ (SpStSeq (L~ f)) by A4, A5, A19, SPRECT_3:55; then A65: not (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) in L~ (SpStSeq (L~ f)) by A20, XBOOLE_0:3; A66: LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) c= L~ (SpStSeq (L~ f)) by SPRECT_3:14; A67: f /. 1 = f /. (len f) by FINSEQ_6:def_1; A68: NW-corner (L~ f) in LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by RLTOPSP1:68; A69: N-min (L~ f) in LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by SPRECT_3:15; then A70: LSeg ((NW-corner (L~ f)),(N-min (L~ f))) c= LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by A68, TOPREAL1:6; A71: LSeg ((NW-corner (L~ f)),(N-min (L~ f))) is horizontal by A70, SPRECT_1:9; 1 + 2 <= len f by GOBOARD7:34, XXREAL_0:2; then A72: (LSeg (f,1)) /\ (LSeg (f,(1 + 1))) = {(f /. (1 + 1))} by TOPREAL1:def_6; len f >= 2 + 1 by GOBOARD7:34, XXREAL_0:2; then (len f) -' 1 >= 1 + 1 by NAT_D:49; then ((len f) -' 1) -' 1 >= 1 by NAT_D:49; then A73: (len f) -' 2 >= 1 by NAT_D:45; A74: ((len f) -' 2) + 1 = (((len f) -' 1) -' 1) + 1 by NAT_D:45 .= (len f) -' 1 by A59, XREAL_1:235 ; ((len f) -' 2) + 2 = len f by A7, XREAL_1:235, XXREAL_0:2; then A75: (LSeg (f,((len f) -' 1))) /\ (LSeg (f,((len f) -' 2))) = {(f /. ((len f) -' 1))} by A73, A74, TOPREAL1:def_6; A76: f /. 2 in N-most (L~ f) by A1, SPRECT_2:30; N-most (L~ f) c= LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by XBOOLE_1:17; then A77: LSeg ((f /. 1),(f /. 2)) c= LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by A1, A69, A76, TOPREAL1:6; A78: ((GoB f) * (i,((width (GoB f)) -' 1))) `1 = ((GoB f) * (i,1)) `1 by A4, A5, A19, A64, GOBOARD5:2 .= (N-min (L~ f)) `1 by A4, A5, A6, A9, GOBOARD5:2 ; A79: ((GoB f) * ((i + 1),(width (GoB f)))) `2 = ((GoB f) * (1,(width (GoB f)))) `2 by A9, A12, A13, GOBOARD5:1 .= (N-min (L~ f)) `2 by A4, A5, A6, A9, GOBOARD5:1 ; then A80: (f /. 2) `2 = N-bound (L~ f) by A17, EUCLID:52; A81: <*((GoB f) * ((i + 1),(width (GoB f))))*> is_in_the_area_of f by A9, A12, A13, SPRECT_3:49; <*((GoB f) * (i,((width (GoB f)) -' 1)))*> is_in_the_area_of f by A4, A5, A19, A64, SPRECT_3:49; then <*((GoB f) * (i,((width (GoB f)) -' 1))),((GoB f) * ((i + 1),(width (GoB f))))*> is_in_the_area_of f by A81, SPRECT_3:42; then <*((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))*> is_in_the_area_of f by SPRECT_3:50; then A82: <*((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))*> is_in_the_area_of SpStSeq (L~ f) by SPRECT_3:53; A83: (GoB f) * (i,((width (GoB f)) -' 1)) = f /. ((len f) -' 1) by A1, A6, A16, SPRECT_3:29; then LSeg ((N-min (L~ f)),(f /. ((len f) -' 1))) is vertical by A78, SPPOL_1:16; then A84: (LSeg ((N-min (L~ f)),(f /. ((len f) -' 1)))) /\ (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) = {(N-min (L~ f))} by A70, SPRECT_1:9, SPRECT_3:10; A85: (NW-corner (L~ f)) `2 = (N-min (L~ f)) `2 by PSCOMP_1:37; A86: (NW-corner (L~ f)) `1 <= (N-min (L~ f)) `1 by PSCOMP_1:38; (N-min (L~ f)) `1 <= (f /. 2) `1 by A76, PSCOMP_1:39; then N-min (L~ f) in LSeg ((NW-corner (L~ f)),(f /. 2)) by A17, A79, A85, A86, GOBOARD7:8; then A87: (LSeg ((N-min (L~ f)),(f /. 2))) /\ (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) = {(N-min (L~ f))} by TOPREAL1:8; ((GoB f) * (i,(width (GoB f)))) `2 = ((GoB f) * (1,(width (GoB f)))) `2 by A4, A5, A9, GOBOARD5:1 .= ((GoB f) * ((i + 1),(width (GoB f)))) `2 by A9, A12, A13, GOBOARD5:1 ; then (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) `2 = (((GoB f) * (i,((width (GoB f)) -' 1))) `2) + (((GoB f) * ((i + 1),(width (GoB f)))) `2) by TOPREAL3:2 .= (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) `2 by TOPREAL3:2 ; then ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))) `2 = (1 / 2) * ((((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) `2) by TOPREAL3:4 .= ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `2 by TOPREAL3:4 ; then A88: LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) is horizontal by SPPOL_1:15; A89: f /. ((len f) -' 1) in LSeg ((f /. ((len f) -' 1)),(f /. (len f))) by RLTOPSP1:68; A90: (GoB f) * (i,(width (GoB f))) = f /. (len f) by A1, A6, FINSEQ_6:def_1; (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) = ((1 / 2) * ((GoB f) * (i,((width (GoB f)) -' 1)))) + ((1 - (1 / 2)) * ((GoB f) * (i,(width (GoB f))))) by EUCLID:32; then A91: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) in LSeg ((f /. ((len f) -' 1)),(f /. (len f))) by A83, A90; then A92: LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) c= LSeg ((f /. ((len f) -' 1)),(f /. (len f))) by A89, TOPREAL1:6; LSeg ((f /. ((len f) -' 1)),(f /. (len f))) = LSeg (f,((len f) -' 1)) by A59, A61, TOPREAL1:def_3; then A93: LSeg ((f /. ((len f) -' 1)),(f /. (len f))) c= L~ f by TOPREAL3:19; then A94: LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) c= L~ f by A92, XBOOLE_1:1; A95: LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) c= LSeg (f,((len f) -' 1)) by A59, A61, A92, TOPREAL1:def_3; A96: ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))) `1 = (1 / 2) * ((((GoB f) * (i,((width (GoB f)) -' 1))) + (N-min (L~ f))) `1) by A6, TOPREAL3:4 .= (1 / 2) * (((N-min (L~ f)) `1) + ((N-min (L~ f)) `1)) by A78, TOPREAL3:2 .= (N-min (L~ f)) `1 ; then A97: LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) is vertical by A78, A83, SPPOL_1:16; A98: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) by RLTOPSP1:68; then A99: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) in L~ f by A94; A100: now__::_thesis:_not_(1_/_2)_*_(((GoB_f)_*_(i,((width_(GoB_f))_-'_1)))_+_((GoB_f)_*_(i,(width_(GoB_f)))))_=_N-min_(L~_f) assume (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) = N-min (L~ f) ; ::_thesis: contradiction then f /. ((len f) -' 1) = f /. (len f) by A1, A6, A67, A83, SPRECT_3:5; hence contradiction by A58, A60, A61, GOBOARD7:29; ::_thesis: verum end; (1 + 1) + 1 <= len f by GOBOARD7:34, XXREAL_0:2; then A101: 1 + 1 <= (len f) -' 1 by NAT_D:49; then A102: 1 <= ((len f) -' 1) -' 1 by NAT_D:49; A103: (((len f) -' 1) -' 1) + 1 = (len f) -' 1 by A101, XREAL_1:235, XXREAL_0:2; A104: (((len f) -' 1) -' 1) + 2 = ((len f) -' 2) + 2 by NAT_D:45 .= len f by A7, XREAL_1:235, XXREAL_0:2 ; A105: for i, j being Element of NAT st 1 <= i & i <= j & j < (len f) -' 1 holds L~ (mid (f,i,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) proof let l, j be Element of NAT ; ::_thesis: ( 1 <= l & l <= j & j < (len f) -' 1 implies L~ (mid (f,l,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) ) assume that A106: 1 <= l and A107: l <= j and A108: j < (len f) -' 1 ; ::_thesis: L~ (mid (f,l,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) assume L~ (mid (f,l,j)) meets LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) ; ::_thesis: contradiction then (L~ (mid (f,l,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) <> {} by XBOOLE_0:def_7; then consider p being Point of (TOP-REAL 2) such that A109: p in (L~ (mid (f,l,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) by SUBSET_1:4; p in L~ (mid (f,l,j)) by A109, XBOOLE_0:def_4; then consider ii being Element of NAT such that A110: 1 <= ii and A111: ii + 1 <= len (mid (f,l,j)) and A112: p in LSeg ((mid (f,l,j)),ii) by SPPOL_2:13; (len f) -' 1 > l by A107, A108, XXREAL_0:2; then (len f) -' 1 > 1 by A106, XXREAL_0:2; then A113: (len f) -' 1 < len f by NAT_D:51; then A114: j < len f by A108, XXREAL_0:2; then len (mid (f,l,j)) = (j -' l) + 1 by A106, A107, JORDAN4:8; then A115: ii < (j -' l) + 1 by A111, NAT_1:13; set k = (ii + l) -' 1; A116: p in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) by A109, XBOOLE_0:def_4; percases ( l = j or l < j ) by A107, XXREAL_0:1; suppose l = j ; ::_thesis: contradiction then len (mid (f,l,j)) = 1 by A106, A114, JORDAN4:15; then L~ (mid (f,l,j)) = {} by TOPREAL1:22; hence contradiction by A112, SPPOL_2:17; ::_thesis: verum end; supposeA117: l < j ; ::_thesis: contradiction A118: ii + 1 >= 1 + 1 by A110, XREAL_1:6; ii + l >= ii + 1 by A106, XREAL_1:6; then A119: ii + l >= 1 + 1 by A118, XXREAL_0:2; then A120: (ii + l) -' 1 >= 1 by NAT_D:49; A121: ii + l >= 1 by A119, XXREAL_0:2; A122: now__::_thesis:_not_((ii_+_l)_-'_1)_+_1_>=_(len_f)_-'_1 assume ((ii + l) -' 1) + 1 >= (len f) -' 1 ; ::_thesis: contradiction then (ii + l) -' 1 >= ((len f) -' 1) -' 1 by NAT_D:53; then A123: ii + l >= (len f) -' 1 by A121, NAT_D:56; ii + l < ((j -' l) + 1) + l by A115, XREAL_1:6; then ii + l < ((j -' l) + l) + 1 ; then ii + l < j + 1 by A117, XREAL_1:235; then (len f) -' 1 < j + 1 by A123, XXREAL_0:2; hence contradiction by A108, NAT_1:13; ::_thesis: verum end; A124: (LSeg (f,1)) /\ (LSeg (f,((len f) -' 1))) = {(f . 1)} by JORDAN4:42 .= {(f /. 1)} by A15, PARTFUN1:def_6 ; LSeg ((mid (f,l,j)),ii) = LSeg (f,((ii + l) -' 1)) by A106, A114, A110, A115, A117, JORDAN4:19; then A125: p in (LSeg (f,((ii + l) -' 1))) /\ (LSeg (f,((len f) -' 1))) by A95, A116, A112, XBOOLE_0:def_4; then LSeg (f,((ii + l) -' 1)) meets LSeg (f,((len f) -' 1)) by XBOOLE_0:4; then (ii + l) -' 1 <= 1 by A113, A122, GOBOARD5:def_4; then (ii + l) -' 1 = 1 by A120, XXREAL_0:1; then p = f /. 1 by A125, A124, TARSKI:def_1; hence contradiction by A1, A67, A91, A100, A116, SPRECT_3:6; ::_thesis: verum end; end; end; A126: for j being Element of NAT st 1 <= j & j < (len f) -' 1 holds (L~ (mid (f,j,((len f) -' 1)))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) = {(f /. ((len f) -' 1))} proof let j be Element of NAT ; ::_thesis: ( 1 <= j & j < (len f) -' 1 implies (L~ (mid (f,j,((len f) -' 1)))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) = {(f /. ((len f) -' 1))} ) assume that A127: 1 <= j and A128: j < (len f) -' 1 ; ::_thesis: (L~ (mid (f,j,((len f) -' 1)))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) = {(f /. ((len f) -' 1))} A129: 1 <= (len f) -' 1 by A127, A128, XXREAL_0:2; A130: ((len f) -' 1) -' 1 = (len f) -' 2 by NAT_D:45; then A131: L~ (mid (f,j,((len f) -' 1))) = (LSeg (f,((len f) -' 2))) \/ (L~ (mid (f,j,((len f) -' 2)))) by A127, A128, NAT_D:35, SPRECT_3:20; j <= (len f) -' 2 by A128, A130, NAT_D:49; then LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) misses L~ (mid (f,j,((len f) -' 2))) by A105, A127, A129, A130, JORDAN5B:1; hence (L~ (mid (f,j,((len f) -' 1)))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) = (LSeg (f,((len f) -' 2))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) by A131, XBOOLE_1:78 .= {(f /. ((len f) -' 1))} by A75, A95, RLTOPSP1:68, ZFMISC_1:124 ; ::_thesis: verum end; A132: LSeg ((NW-corner (L~ f)),(N-min (L~ f))) misses LSeg ((f /. ((len f) -' 1)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) proof assume LSeg ((NW-corner (L~ f)),(N-min (L~ f))) meets LSeg ((f /. ((len f) -' 1)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) ; ::_thesis: contradiction then (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) /\ (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) <> {} by XBOOLE_0:def_7; then consider p being Point of (TOP-REAL 2) such that A133: p in (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) /\ (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) by SUBSET_1:4; A134: p in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) by A133, XBOOLE_0:def_4; p in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) by A133, XBOOLE_0:def_4; then p in {(N-min (L~ f))} by A1, A67, A84, A92, A134, XBOOLE_0:def_4; then p = N-min (L~ f) by TARSKI:def_1; hence contradiction by A1, A67, A91, A100, A134, SPRECT_3:6; ::_thesis: verum end; A135: ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))) `2 <> (N-min (L~ f)) `2 by A96, A100, TOPREAL3:6; set G = GoB f; A136: Int (cell ((GoB f),i,((width (GoB f)) -' 1))) misses L~ f by A5, A64, GOBOARD7:12; (L~ f) /\ ((Int (cell ((GoB f),i,((width (GoB f)) -' 1)))) \/ {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))}) = ((L~ f) /\ (Int (cell ((GoB f),i,((width (GoB f)) -' 1))))) \/ ((L~ f) /\ {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))}) by XBOOLE_1:23 .= {} \/ ((L~ f) /\ {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))}) by A136, XBOOLE_0:def_7 .= (L~ f) /\ {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))} ; then A137: (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) /\ (L~ f) c= (L~ f) /\ {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))} by A4, A5, A10, A19, A64, GOBOARD6:40, XBOOLE_1:26; (L~ f) /\ {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))} c= {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))} by XBOOLE_1:17; then A138: (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) /\ (L~ f) c= {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))} by A137, XBOOLE_1:1; A139: for i, j being Element of NAT st 1 <= i & i < j & j < len f holds L~ (mid (f,i,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) proof len f >= 1 + 1 by GOBOARD7:34, XXREAL_0:2; then A140: (len f) -' 1 >= 1 by NAT_D:49; let l, j be Element of NAT ; ::_thesis: ( 1 <= l & l < j & j < len f implies L~ (mid (f,l,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) ) assume that A141: 1 <= l and A142: l < j and A143: j < len f ; ::_thesis: L~ (mid (f,l,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) assume L~ (mid (f,l,j)) meets LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) ; ::_thesis: contradiction then (L~ (mid (f,l,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) <> {} by XBOOLE_0:def_7; then consider p being Point of (TOP-REAL 2) such that A144: p in (L~ (mid (f,l,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) by SUBSET_1:4; p in L~ (mid (f,l,j)) by A144, XBOOLE_0:def_4; then consider ii being Element of NAT such that A145: 1 <= ii and A146: ii + 1 <= len (mid (f,l,j)) and A147: p in LSeg ((mid (f,l,j)),ii) by SPPOL_2:13; A148: len (mid (f,l,j)) = (j -' l) + 1 by A141, A142, A143, JORDAN4:8; then ii < (j -' l) + 1 by A146, NAT_1:13; then A149: p in LSeg (f,((ii + l) -' 1)) by A141, A142, A143, A145, A147, JORDAN4:19; set k = (ii + l) -' 1; A150: ii + 1 >= 1 + 1 by A145, XREAL_1:6; (LSeg (f,((ii + l) -' 1))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) c= (L~ f) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) by TOPREAL3:19, XBOOLE_1:26; then A151: (LSeg (f,((ii + l) -' 1))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) c= {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))} by A138, XBOOLE_1:1; p in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A144, XBOOLE_0:def_4; then p in (LSeg (f,((ii + l) -' 1))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) by A149, XBOOLE_0:def_4; then p = (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) by A151, TARSKI:def_1; then (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) in (LSeg (f,((ii + l) -' 1))) /\ (LSeg ((f /. ((len f) -' 1)),(f /. (len f)))) by A91, A149, XBOOLE_0:def_4; then A152: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) in (LSeg (f,((ii + l) -' 1))) /\ (LSeg (f,((len f) -' 1))) by A61, A140, TOPREAL1:def_3; then A153: LSeg (f,((ii + l) -' 1)) meets LSeg (f,((len f) -' 1)) by XBOOLE_0:4; ii + l >= ii + 1 by A141, XREAL_1:6; then ii + l >= 1 + 1 by A150, XXREAL_0:2; then A154: (ii + l) -' 1 >= 1 by NAT_D:49; percases ( (ii + l) -' 1 <= 1 or ((ii + l) -' 1) + 1 >= (len f) -' 1 ) by A62, A153, GOBOARD5:def_4; supposeA155: (ii + l) -' 1 <= 1 ; ::_thesis: contradiction A156: (LSeg (f,1)) /\ (LSeg (f,((len f) -' 1))) = {(f . 1)} by JORDAN4:42 .= {(f /. 1)} by A15, PARTFUN1:def_6 ; (ii + l) -' 1 = 1 by A154, A155, XXREAL_0:1; hence contradiction by A1, A100, A152, A156, TARSKI:def_1; ::_thesis: verum end; supposeA157: ((ii + l) -' 1) + 1 >= (len f) -' 1 ; ::_thesis: contradiction ii <= j -' l by A146, A148, XREAL_1:6; then ii + l <= j by A142, NAT_D:54; then A158: ii + l < len f by A143, XXREAL_0:2; ii + l >= l by NAT_1:11; then ii + l >= 1 by A141, XXREAL_0:2; then (ii + l) -' 1 < (len f) -' 1 by A158, NAT_D:56; then A159: (ii + l) -' 1 <= ((len f) -' 1) -' 1 by NAT_D:49; (ii + l) -' 1 >= ((len f) -' 1) -' 1 by A157, NAT_D:53; then (ii + l) -' 1 = ((len f) -' 1) -' 1 by A159, XXREAL_0:1; then (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) in {(f /. ((len f) -' 1))} by A102, A103, A104, A152, TOPREAL1:def_6; then (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) = f /. ((len f) -' 1) by TARSKI:def_1; hence contradiction by A6, A83, A100, SPRECT_3:5; ::_thesis: verum end; end; end; A160: <*((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))*> is_in_the_area_of f by A94, A98, SPRECT_2:21, SPRECT_3:46; then A161: <*((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))*> is_in_the_area_of SpStSeq (L~ f) by SPRECT_3:53; <*((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))*> = <*((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))*> ^ <*((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))*> by FINSEQ_1:def_9; then A162: (L~ (SpStSeq (L~ f))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) c= {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))} by A65, A82, A161, SPRECT_2:24, SPRECT_3:47; ((GoB f) * (i,((width (GoB f)) -' 1))) `1 = ((GoB f) * (i,1)) `1 by A4, A5, A19, GOBOARD5:2, NAT_D:35 .= ((GoB f) * (i,(width (GoB f)))) `1 by A4, A5, A9, GOBOARD5:2 ; then (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) `1 = (((GoB f) * (i,((width (GoB f)) -' 1))) `1) + (((GoB f) * ((i + 1),(width (GoB f)))) `1) by TOPREAL3:2 .= (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) `1 by TOPREAL3:2 ; then ((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `1 = (1 / 2) * ((((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) `1) by TOPREAL3:4 .= ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `1 by TOPREAL3:4 ; then A163: LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) is vertical by SPPOL_1:16; A164: f /. 2 in LSeg ((f /. 1),(f /. (1 + 1))) by RLTOPSP1:68; (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) = ((1 / 2) * ((GoB f) * (i,(width (GoB f))))) + ((1 - (1 / 2)) * ((GoB f) * ((i + 1),(width (GoB f))))) by EUCLID:32; then A165: (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in LSeg ((f /. 1),(f /. 2)) by A1, A6, A17; then A166: LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) c= LSeg ((f /. 1),(f /. 2)) by A164, TOPREAL1:6; A167: LSeg ((f /. 1),(f /. (1 + 1))) = LSeg (f,1) by A8, TOPREAL1:def_3; then A168: LSeg ((f /. 1),(f /. 2)) c= L~ f by TOPREAL3:19; then A169: LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) c= L~ f by A166, XBOOLE_1:1; A170: ((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `2 = (1 / 2) * (((N-min (L~ f)) + ((GoB f) * ((i + 1),(width (GoB f))))) `2) by A6, TOPREAL3:4 .= (1 / 2) * (((N-min (L~ f)) `2) + ((N-min (L~ f)) `2)) by A79, TOPREAL3:2 .= N-bound (L~ f) by EUCLID:52 ; A171: (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) by RLTOPSP1:68; A172: (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) <> N-min (L~ f) by A1, A6, A15, A17, A57, GOBOARD7:29, SPRECT_3:5; A173: for i, j being Element of NAT st 2 < i & i <= j & j <= len f holds L~ (mid (f,i,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) proof let l, j be Element of NAT ; ::_thesis: ( 2 < l & l <= j & j <= len f implies L~ (mid (f,l,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) ) assume that A174: 2 < l and A175: l <= j and A176: j <= len f ; ::_thesis: L~ (mid (f,l,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) assume L~ (mid (f,l,j)) meets LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) ; ::_thesis: contradiction then (L~ (mid (f,l,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) <> {} by XBOOLE_0:def_7; then consider p being Point of (TOP-REAL 2) such that A177: p in (L~ (mid (f,l,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) by SUBSET_1:4; A178: p in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) by A177, XBOOLE_0:def_4; p in L~ (mid (f,l,j)) by A177, XBOOLE_0:def_4; then consider ii being Element of NAT such that A179: 1 <= ii and A180: ii + 1 <= len (mid (f,l,j)) and A181: p in LSeg ((mid (f,l,j)),ii) by SPPOL_2:13; A182: 1 < l by A174, XXREAL_0:2; then A183: len (mid (f,l,j)) = (j -' l) + 1 by A175, A176, JORDAN4:8; then A184: ii < (j -' l) + 1 by A180, NAT_1:13; set k = (ii + l) -' 1; A185: ii + 2 >= 1 + 2 by A179, XREAL_1:6; ii + l > ii + 2 by A174, XREAL_1:6; then ii + l > 1 + 2 by A185, XXREAL_0:2; then A186: (ii + l) -' 1 > 1 + 1 by NAT_D:52; percases ( l = j or l < j ) by A175, XXREAL_0:1; suppose l = j ; ::_thesis: contradiction then len (mid (f,l,j)) = 1 by A176, A182, JORDAN4:15; then L~ (mid (f,l,j)) = {} by TOPREAL1:22; hence contradiction by A181, SPPOL_2:17; ::_thesis: verum end; supposeA187: l < j ; ::_thesis: contradiction A188: (LSeg (f,1)) /\ (LSeg (f,((len f) -' 1))) = {(f . 1)} by JORDAN4:42 .= {(f /. 1)} by A15, PARTFUN1:def_6 ; ii <= j -' l by A180, A183, XREAL_1:6; then ii + l <= j by A175, NAT_D:54; then ii + l <= len f by A176, XXREAL_0:2; then A189: (ii + l) -' 1 <= (len f) -' 1 by NAT_D:42; LSeg ((mid (f,l,j)),ii) = LSeg (f,((ii + l) -' 1)) by A176, A182, A179, A184, A187, JORDAN4:19; then A190: p in (LSeg (f,((ii + l) -' 1))) /\ (LSeg (f,1)) by A166, A167, A178, A181, XBOOLE_0:def_4; then LSeg (f,((ii + l) -' 1)) meets LSeg (f,1) by XBOOLE_0:4; then ((ii + l) -' 1) + 1 >= len f by A186, GOBOARD5:def_4; then (ii + l) -' 1 >= (len f) -' 1 by NAT_D:53; then (ii + l) -' 1 = (len f) -' 1 by A189, XXREAL_0:1; then p = f /. 1 by A190, A188, TARSKI:def_1; hence contradiction by A1, A165, A172, A178, SPRECT_3:6; ::_thesis: verum end; end; end; A191: for j being Element of NAT st 2 < j & j <= len f holds (L~ (mid (f,2,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) = {(f /. 2)} proof A192: f /. 2 in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) by RLTOPSP1:68; let j be Element of NAT ; ::_thesis: ( 2 < j & j <= len f implies (L~ (mid (f,2,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) = {(f /. 2)} ) assume that A193: 2 < j and A194: j <= len f ; ::_thesis: (L~ (mid (f,2,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) = {(f /. 2)} 2 + 1 <= j by A193, NAT_1:13; then A195: LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) misses L~ (mid (f,(2 + 1),j)) by A173, A194; L~ (mid (f,2,j)) = (LSeg (f,2)) \/ (L~ (mid (f,(2 + 1),j))) by A193, A194, SPRECT_3:19; hence (L~ (mid (f,2,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) = (LSeg (f,2)) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) by A195, XBOOLE_1:78 .= {(f /. 2)} by A72, A164, A165, A167, A192, TOPREAL1:6, ZFMISC_1:124 ; ::_thesis: verum end; A196: LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) misses LSeg ((NW-corner (L~ f)),(N-min (L~ f))) proof assume LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) meets LSeg ((NW-corner (L~ f)),(N-min (L~ f))) ; ::_thesis: contradiction then (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) <> {} by XBOOLE_0:def_7; then consider p being Point of (TOP-REAL 2) such that A197: p in (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) by SUBSET_1:4; A198: p in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) by A197, XBOOLE_0:def_4; p in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) by A197, XBOOLE_0:def_4; then p in {(N-min (L~ f))} by A1, A87, A166, A198, XBOOLE_0:def_4; then p = N-min (L~ f) by TARSKI:def_1; hence contradiction by A1, A165, A172, A198, SPRECT_3:6; ::_thesis: verum end; A199: LSeg ((NW-corner (L~ f)),(N-min (L~ f))) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) proof assume LSeg ((NW-corner (L~ f)),(N-min (L~ f))) meets LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) ; ::_thesis: contradiction then (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) <> {} by XBOOLE_0:def_7; then consider p being Point of (TOP-REAL 2) such that A200: p in (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) by SUBSET_1:4; A201: p in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A200, XBOOLE_0:def_4; A202: p in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) by A200, XBOOLE_0:def_4; (LSeg ((NW-corner (L~ f)),(NE-corner (L~ f)))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) = {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A77, A163, A165, SPRECT_3:11; then p in {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A70, A202, A201, XBOOLE_0:def_4; then (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) by A202, TARSKI:def_1; then (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ f) by A169, A171, XBOOLE_0:def_4; then (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in {(N-min (L~ f))} by PSCOMP_1:43; hence contradiction by A172, TARSKI:def_1; ::_thesis: verum end; A203: for i, j being Element of NAT st 1 < i & i < j & j <= len f holds L~ (mid (f,i,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) proof A204: len f >= 2 by GOBOARD7:34, XXREAL_0:2; A205: Int (cell ((GoB f),i,((width (GoB f)) -' 1))) misses L~ f by A5, A64, GOBOARD7:12; A206: (L~ f) /\ {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} c= {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by XBOOLE_1:17; let l, j be Element of NAT ; ::_thesis: ( 1 < l & l < j & j <= len f implies L~ (mid (f,l,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) ) assume that A207: 1 < l and A208: l < j and A209: j <= len f ; ::_thesis: L~ (mid (f,l,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) assume L~ (mid (f,l,j)) meets LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) ; ::_thesis: contradiction then (L~ (mid (f,l,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) <> {} by XBOOLE_0:def_7; then consider p being Point of (TOP-REAL 2) such that A210: p in (L~ (mid (f,l,j))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) by SUBSET_1:4; p in L~ (mid (f,l,j)) by A210, XBOOLE_0:def_4; then consider ii being Element of NAT such that A211: 1 <= ii and A212: ii + 1 <= len (mid (f,l,j)) and A213: p in LSeg ((mid (f,l,j)),ii) by SPPOL_2:13; A214: len (mid (f,l,j)) = (j -' l) + 1 by A207, A208, A209, JORDAN4:8; then ii < (j -' l) + 1 by A212, NAT_1:13; then A215: p in LSeg (f,((ii + l) -' 1)) by A207, A208, A209, A211, A213, JORDAN4:19; set k = (ii + l) -' 1; set G = GoB f; A216: (LSeg (f,((ii + l) -' 1))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) c= (L~ f) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) by TOPREAL3:19, XBOOLE_1:26; (L~ f) /\ ((Int (cell ((GoB f),i,((width (GoB f)) -' 1)))) \/ {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))}) = ((L~ f) /\ (Int (cell ((GoB f),i,((width (GoB f)) -' 1))))) \/ ((L~ f) /\ {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))}) by XBOOLE_1:23 .= {} \/ ((L~ f) /\ {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))}) by A205, XBOOLE_0:def_7 .= (L~ f) /\ {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} ; then (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) /\ (L~ f) c= (L~ f) /\ {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A4, A5, A10, A19, A64, GOBOARD6:41, XBOOLE_1:26; then (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) /\ (L~ f) c= {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A206, XBOOLE_1:1; then A217: (LSeg (f,((ii + l) -' 1))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) c= {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A216, XBOOLE_1:1; p in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A210, XBOOLE_0:def_4; then p in (LSeg (f,((ii + l) -' 1))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) by A215, XBOOLE_0:def_4; then p = (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) by A217, TARSKI:def_1; then (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in (LSeg (f,((ii + l) -' 1))) /\ (LSeg ((f /. 1),(f /. (1 + 1)))) by A165, A215, XBOOLE_0:def_4; then A218: (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in (LSeg (f,((ii + l) -' 1))) /\ (LSeg (f,1)) by A204, TOPREAL1:def_3; then LSeg (f,((ii + l) -' 1)) meets LSeg (f,1) by XBOOLE_0:4; then A219: ( (ii + l) -' 1 <= 1 + 1 or ((ii + l) -' 1) + 1 >= len f ) by GOBOARD5:def_4; A220: ii + 1 >= 1 + 1 by A211, XREAL_1:6; ii + l > ii + 1 by A207, XREAL_1:6; then ii + l > 1 + 1 by A220, XXREAL_0:2; then A221: (ii + l) -' 1 > 1 by NAT_D:52; percases ( (ii + l) -' 1 <= 2 or ((ii + l) -' 1) + 1 >= len f ) by A219; supposeA222: (ii + l) -' 1 <= 2 ; ::_thesis: contradiction (ii + l) -' 1 >= 1 + 1 by A221, NAT_1:13; then A223: (ii + l) -' 1 = 2 by A222, XXREAL_0:1; 1 + 2 <= len f by GOBOARD7:34, XXREAL_0:2; then (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in {(f /. (1 + 1))} by A218, A223, TOPREAL1:def_6; then (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) = f /. (1 + 1) by TARSKI:def_1; hence contradiction by A6, A17, A172, SPRECT_3:5; ::_thesis: verum end; supposeA224: ((ii + l) -' 1) + 1 >= len f ; ::_thesis: contradiction A225: (LSeg (f,1)) /\ (LSeg (f,((len f) -' 1))) = {(f . 1)} by JORDAN4:42 .= {(f /. 1)} by A15, PARTFUN1:def_6 ; ii <= j -' l by A212, A214, XREAL_1:6; then ii + l <= j by A208, NAT_D:54; then ii + l <= len f by A209, XXREAL_0:2; then A226: (ii + l) -' 1 <= (len f) -' 1 by NAT_D:42; (ii + l) -' 1 >= (len f) -' 1 by A224, NAT_D:53; then (ii + l) -' 1 = (len f) -' 1 by A226, XXREAL_0:1; hence contradiction by A1, A172, A218, A225, TARSKI:def_1; ::_thesis: verum end; end; end; LSeg ((f /. 1),(f /. 2)) c= L~ (SpStSeq (L~ f)) by A1, SPRECT_3:31; then A227: (L~ (SpStSeq (L~ f))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) = {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A65, A82, A165, SPRECT_3:48; A228: LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) is horizontal by A80, A170, SPPOL_1:15; A229: (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) by RLTOPSP1:68; then A230: (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in L~ f by A169; A231: <*((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))*> is_in_the_area_of f by A169, A229, SPRECT_2:21, SPRECT_3:46; A232: L~ f misses L~ Red9 by A51, A53, SPRECT_3:25, XBOOLE_1:63; reconsider Red9 = Red9 as S-Sequence_in_R2 by A52; len Red9 in dom Red9 by FINSEQ_5:6; then A233: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) in L~ Red9 by A55, SPPOL_2:44; set u1 = Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))); set Red = L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))); set u2 = First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))); set u3 = First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))); NW-corner (L~ (SpStSeq (L~ f))) = NW-corner (L~ f) by SPRECT_1:62; then A234: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) <> NW-corner (L~ f) by A47, A48, A54, A55, SPRECT_3:38; A235: L~ Red9 is_an_arc_of z1,(1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) by A54, A55, TOPREAL1:25; (L~ Red9) /\ (L~ (SpStSeq (L~ f))) is closed by TOPS_1:8; then A236: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (L~ Red9) /\ (L~ (SpStSeq (L~ f))) by A54, A55, A56, A235, JORDAN5C:def_2; then A237: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in L~ (SpStSeq (L~ f)) by XBOOLE_0:def_4; A238: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in L~ Red9 by A236, XBOOLE_0:def_4; A239: now__::_thesis:_not_Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f))))_in_L~_f assume Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in L~ f ; ::_thesis: contradiction then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (L~ f) /\ (L~ Red9) by A238, XBOOLE_0:def_4; hence contradiction by A232, XBOOLE_0:def_7; ::_thesis: verum end; len Red9 in dom Red9 by FINSEQ_5:6; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) <> Red9 . (len Red9) by A55, A65, A237, PARTFUN1:def_6; then reconsider Red = L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) as S-Sequence_in_R2 by A238, JORDAN3:34; 1 in dom Red by FINSEQ_5:6; then A240: Red /. 1 = Red . 1 by PARTFUN1:def_6 .= Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) by A238, JORDAN3:23 ; A241: (L~ (SpStSeq (L~ f))) /\ (L~ Red) = {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A55, A56, A65, Th5; len Red9 in dom Red9 by FINSEQ_5:6; then (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) = Red9 . (len Red9) by A55, PARTFUN1:def_6; then A242: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) in L~ Red by A65, A233, A237, A238, JORDAN5B:22; Red is_in_the_area_of SpStSeq (L~ f) by A47, A48, A54, A55, SPRECT_3:54; then A243: Red is_in_the_area_of f by SPRECT_3:53; A244: L~ Red c= L~ Red9 by A238, JORDAN3:42; A245: L~ f misses L~ Red by A232, A238, JORDAN3:42, XBOOLE_1:63; (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by RLTOPSP1:68; then A246: LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) meets L~ Red by A242, XBOOLE_0:3; (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by RLTOPSP1:68; then A247: LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) meets L~ Red by A242, XBOOLE_0:3; A248: (L~ Red) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) is closed by TOPS_1:8; A249: (L~ Red) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) is closed by TOPS_1:8; L~ Red is_an_arc_of Red /. 1,Red /. (len Red) by TOPREAL1:25; then A250: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) in (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) /\ (L~ Red) by A247, A249, JORDAN5C:def_1; then A251: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) in L~ Red by XBOOLE_0:def_4; A252: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A250, XBOOLE_0:def_4; A253: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) <> (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) by A94, A98, A232, A244, A251, XBOOLE_0:3; A254: (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by RLTOPSP1:68; then A255: LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))))) c= LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A252, TOPREAL1:6; then A256: LSeg ((NW-corner (L~ f)),(N-min (L~ f))) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A71, A88, A135, SPRECT_3:9, XBOOLE_1:63; A257: for i, j being Element of NAT st 1 <= i & i < j & j < len f holds L~ (mid (f,i,j)) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) proof let i, j be Element of NAT ; ::_thesis: ( 1 <= i & i < j & j < len f implies L~ (mid (f,i,j)) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) ) assume that A258: 1 <= i and A259: i < j and A260: j < len f ; ::_thesis: L~ (mid (f,i,j)) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) L~ (mid (f,i,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A139, A258, A259, A260; hence L~ (mid (f,i,j)) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A252, A254, TOPREAL1:6, XBOOLE_1:63; ::_thesis: verum end; A261: now__::_thesis:_not_First_Point_((L~_(L_Cut_(Red9,(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f)))))))),((L_Cut_(Red9,(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f)))))))_/._1),((L_Cut_(Red9,(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f)))))))_/._(len_(L_Cut_(Red9,(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f))))))))),(LSeg_(((1_/_2)_*_(((GoB_f)_*_(i,((width_(GoB_f))_-'_1)))_+_((GoB_f)_*_((i_+_1),(width_(GoB_f)))))),((1_/_2)_*_(((GoB_f)_*_(i,((width_(GoB_f))_-'_1)))_+_((GoB_f)_*_(i,(width_(GoB_f)))))))))_=_Red_._1 A262: 1 in dom Red by FINSEQ_5:6; assume First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) = Red . 1 ; ::_thesis: contradiction then First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) in L~ (SpStSeq (L~ f)) by A237, A240, A262, PARTFUN1:def_6; then First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) in (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) /\ (L~ (SpStSeq (L~ f))) by A252, XBOOLE_0:def_4; hence contradiction by A162, A253, TARSKI:def_1; ::_thesis: verum end; L~ Red is_an_arc_of Red /. 1,Red /. (len Red) by TOPREAL1:25; then A263: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) in (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) /\ (L~ Red) by A246, A248, JORDAN5C:def_1; then A264: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) in L~ Red by XBOOLE_0:def_4; A265: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A263, XBOOLE_0:def_4; A266: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) <> (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) by A169, A229, A232, A244, A264, XBOOLE_0:3; A267: (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by RLTOPSP1:68; then A268: LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))))) c= LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A265, TOPREAL1:6; A269: LSeg ((NW-corner (L~ f)),(N-min (L~ f))) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A199, A265, A267, TOPREAL1:6, XBOOLE_1:63; A270: for i, j being Element of NAT st 1 < i & i < j & j <= len f holds L~ (mid (f,i,j)) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) proof let i, j be Element of NAT ; ::_thesis: ( 1 < i & i < j & j <= len f implies L~ (mid (f,i,j)) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) ) assume that A271: 1 < i and A272: i < j and A273: j <= len f ; ::_thesis: L~ (mid (f,i,j)) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) L~ (mid (f,i,j)) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A203, A271, A272, A273; hence L~ (mid (f,i,j)) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A265, A267, TOPREAL1:6, XBOOLE_1:63; ::_thesis: verum end; A274: now__::_thesis:_not_First_Point_((L~_(L_Cut_(Red9,(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f)))))))),((L_Cut_(Red9,(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f)))))))_/._1),((L_Cut_(Red9,(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f)))))))_/._(len_(L_Cut_(Red9,(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f))))))))),(LSeg_(((1_/_2)_*_(((GoB_f)_*_(i,((width_(GoB_f))_-'_1)))_+_((GoB_f)_*_((i_+_1),(width_(GoB_f)))))),((1_/_2)_*_(((GoB_f)_*_(i,(width_(GoB_f))))_+_((GoB_f)_*_((i_+_1),(width_(GoB_f)))))))))_=_Red_._1 A275: 1 in dom Red by FINSEQ_5:6; assume First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) = Red . 1 ; ::_thesis: contradiction then First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) in L~ (SpStSeq (L~ f)) by A237, A240, A275, PARTFUN1:def_6; then First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) in {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A227, A265, XBOOLE_0:def_4; hence contradiction by A266, TARSKI:def_1; ::_thesis: verum end; reconsider Red2 = R_Cut (Red,(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))))) as S-Sequence_in_R2 by A251, A261, JORDAN3:35; A276: Red2 /. 1 = Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) by A240, A251, SPRECT_3:22; A277: len Red2 in dom Red2 by FINSEQ_5:6; A278: (Rev Red2) /. 1 = Red2 /. (len Red2) by FINSEQ_5:65 .= Red2 . (len Red2) by A277, PARTFUN1:def_6 .= First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) by A251, JORDAN3:24 ; then A279: ((Rev Red2) /. 1) `2 = ((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))) `2 by A88, A252, SPPOL_1:40; A280: (Rev Red2) /. 1 <> (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) by A94, A98, A232, A244, A251, A278, XBOOLE_0:3; A281: L~ (Rev Red2) = L~ Red2 by SPPOL_2:22; A282: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) in L~ Red2 by A251, A261, JORDAN5B:20; First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))))) by RLTOPSP1:68; then A283: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) in (L~ Red2) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))))) by A282, XBOOLE_0:def_4; now__::_thesis:_not_Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f))))_in_LSeg_(((1_/_2)_*_(((GoB_f)_*_(i,((width_(GoB_f))_-'_1)))_+_((GoB_f)_*_(i,(width_(GoB_f)))))),((1_/_2)_*_(((GoB_f)_*_(i,((width_(GoB_f))_-'_1)))_+_((GoB_f)_*_((i_+_1),(width_(GoB_f))))))) assume Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) ; ::_thesis: contradiction then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (L~ (SpStSeq (L~ f))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) by A237, XBOOLE_0:def_4; hence contradiction by A99, A162, A239, TARSKI:def_1; ::_thesis: verum end; then (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) /\ (L~ Red2) = {(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))))} by A240, A247, Th1; then (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))))) /\ (L~ Red2) c= {(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))))} by A252, A254, TOPREAL1:6, XBOOLE_1:26; then (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))))) /\ (L~ Red2) = {(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))))} by A283, ZFMISC_1:33; then reconsider RB2 = <*((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))*> ^ (Rev Red2) as S-Sequence_in_R2 by A278, A279, A280, A281, SPRECT_3:16; LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) misses L~ Red by A92, A93, A245, XBOOLE_1:1, XBOOLE_1:63; then LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) misses L~ Red2 by A251, JORDAN3:41, XBOOLE_1:63; then A284: (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) /\ (L~ Red2) = {} by XBOOLE_0:def_7; 1 in dom Red2 by FINSEQ_5:6; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in L~ Red2 by A276, SPPOL_2:44; then A285: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (L~ (SpStSeq (L~ f))) /\ (L~ Red2) by A237, XBOOLE_0:def_4; (L~ (SpStSeq (L~ f))) /\ (L~ Red2) c= {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A241, A251, JORDAN3:41, XBOOLE_1:26; then A286: (L~ (SpStSeq (L~ f))) /\ (L~ Red2) = {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A285, ZFMISC_1:33; reconsider Red1 = R_Cut (Red,(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))))) as S-Sequence_in_R2 by A264, A274, JORDAN3:35; len Red1 in dom Red1 by FINSEQ_5:6; then A287: Red1 /. (len Red1) = Red1 . (len Red1) by PARTFUN1:def_6 .= First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) by A264, JORDAN3:24 ; A288: Red1 /. 1 = Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) by A240, A264, SPRECT_3:22; A289: (Red1 /. (len Red1)) `1 = ((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))) `1 by A163, A265, A287, SPPOL_1:41; A290: Red1 /. (len Red1) <> (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) by A169, A229, A232, A244, A264, A287, XBOOLE_0:3; A291: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) in L~ Red1 by A264, A274, JORDAN5B:20; First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))))) by RLTOPSP1:68; then A292: First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) in (L~ Red1) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))))) by A291, XBOOLE_0:def_4; now__::_thesis:_not_Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f))))_in_LSeg_(((1_/_2)_*_(((GoB_f)_*_(i,(width_(GoB_f))))_+_((GoB_f)_*_((i_+_1),(width_(GoB_f)))))),((1_/_2)_*_(((GoB_f)_*_(i,((width_(GoB_f))_-'_1)))_+_((GoB_f)_*_((i_+_1),(width_(GoB_f))))))) assume Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))))) ; ::_thesis: contradiction then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (L~ (SpStSeq (L~ f))) /\ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) by A237, XBOOLE_0:def_4; hence contradiction by A227, A230, A239, TARSKI:def_1; ::_thesis: verum end; then (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) /\ (L~ Red1) = {(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))))} by A240, A246, Th1; then (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))))) /\ (L~ Red1) c= {(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))))} by A265, A267, TOPREAL1:6, XBOOLE_1:26; then (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))))) /\ (L~ Red1) = {(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))))} by A292, ZFMISC_1:33; then reconsider RB1 = Red1 ^ <*((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))*> as S-Sequence_in_R2 by A287, A289, A290, SPRECT_2:61; LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) misses L~ Red by A166, A168, A245, XBOOLE_1:1, XBOOLE_1:63; then LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) misses L~ Red1 by A264, JORDAN3:41, XBOOLE_1:63; then A293: (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (L~ Red1) = {} by XBOOLE_0:def_7; 1 in dom Red1 by FINSEQ_5:6; then A294: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in L~ Red1 by A288, SPPOL_2:44; then A295: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (L~ (SpStSeq (L~ f))) /\ (L~ Red1) by A237, XBOOLE_0:def_4; (L~ (SpStSeq (L~ f))) /\ (L~ Red1) c= {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A241, A264, JORDAN3:41, XBOOLE_1:26; then A296: (L~ (SpStSeq (L~ f))) /\ (L~ Red1) = {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A295, ZFMISC_1:33; len (Rev Red2) = len Red2 by FINSEQ_5:def_3; then A297: RB2 /. (len RB2) = (Rev Red2) /. (len Red2) by SPRECT_3:1 .= Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) by A276, FINSEQ_5:65 ; A298: RB2 /. 1 = (1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))) by FINSEQ_5:15; L~ (Rev Red2) = L~ Red2 by SPPOL_2:22; then A299: L~ RB2 = (L~ Red2) \/ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))))) by A278, SPPOL_2:20; then A300: (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) /\ (L~ RB2) = {} \/ ((LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1)))) /\ (LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) by A284, XBOOLE_1:23 .= {((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))} by A88, A97, A255, SPRECT_1:9, SPRECT_3:10 ; <*(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))))*> is_in_the_area_of f by A243, A251, SPRECT_3:46; then Red2 is_in_the_area_of f by A243, A251, SPRECT_3:52; then Rev Red2 is_in_the_area_of f by SPRECT_3:51; then A301: RB2 is_in_the_area_of f by A160, SPRECT_2:24; 1 in dom Red1 by FINSEQ_5:6; then A302: RB1 /. 1 = Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) by A288, FINSEQ_4:68; len <*((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))*> = 1 by FINSEQ_1:39; then len RB1 = (len Red1) + 1 by FINSEQ_1:22; then A303: RB1 /. (len RB1) = (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) by FINSEQ_4:67; A304: L~ RB1 = (L~ Red1) \/ (LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) by A287, SPPOL_2:19; then A305: (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (L~ RB1) = {} \/ ((LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))) by A293, XBOOLE_1:23 .= {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A163, A228, A268, SPRECT_1:10, SPRECT_3:10 ; <*(First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))))))*> is_in_the_area_of f by A243, A264, SPRECT_3:46; then Red1 is_in_the_area_of f by A243, A264, SPRECT_3:52; then A306: RB1 is_in_the_area_of f by A231, SPRECT_2:24; A307: L~ Red9 is_an_arc_of z1,(1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f))))) by A50, A53, TOPREAL4:2; (L~ Red9) /\ (L~ (SpStSeq (L~ f))) is closed by TOPS_1:8; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (L~ Red9) /\ (L~ (SpStSeq (L~ f))) by A54, A55, A56, A307, JORDAN5C:def_2; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in L~ (SpStSeq (L~ f)) by XBOOLE_0:def_4; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in ((LSeg ((NW-corner (L~ f)),(NE-corner (L~ f)))) \/ (LSeg ((NE-corner (L~ f)),(SE-corner (L~ f))))) \/ ((LSeg ((SE-corner (L~ f)),(SW-corner (L~ f)))) \/ (LSeg ((SW-corner (L~ f)),(NW-corner (L~ f))))) by SPRECT_1:41; then A308: ( Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (LSeg ((NW-corner (L~ f)),(NE-corner (L~ f)))) \/ (LSeg ((NE-corner (L~ f)),(SE-corner (L~ f)))) or Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (LSeg ((SE-corner (L~ f)),(SW-corner (L~ f)))) \/ (LSeg ((SW-corner (L~ f)),(NW-corner (L~ f)))) ) by XBOOLE_0:def_3; A309: N-most (L~ f) c= LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by XBOOLE_1:17; A310: N-min (L~ f) in N-most (L~ f) by PSCOMP_1:42; then LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) = (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) \/ (LSeg ((N-min (L~ f)),(NE-corner (L~ f)))) by A309, TOPREAL1:5; then A311: ( not Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) or Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) or Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((N-min (L~ f)),(NE-corner (L~ f))) ) by XBOOLE_0:def_3; percases ( Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) or ( Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((N-min (L~ f)),(NE-corner (L~ f))) & N-min (L~ f) = NW-corner (L~ f) ) or ( Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((N-min (L~ f)),(NE-corner (L~ f))) & N-min (L~ f) <> NW-corner (L~ f) ) or ( Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NE-corner (L~ f)),(SE-corner (L~ f))) & N-min (L~ f) = W-max (L~ f) ) or ( Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NE-corner (L~ f)),(SE-corner (L~ f))) & N-min (L~ f) <> W-max (L~ f) ) or Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((SE-corner (L~ f)),(SW-corner (L~ f))) or Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((SW-corner (L~ f)),(NW-corner (L~ f))) ) by A308, A311, XBOOLE_0:def_3; supposeA312: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) ; ::_thesis: contradiction A313: NW-corner (L~ f) in LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by RLTOPSP1:68; then LSeg ((NW-corner (L~ f)),(N-min (L~ f))) c= LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by A309, A310, TOPREAL1:6; then LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) c= LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by A312, A313, TOPREAL1:6; then LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) c= L~ (SpStSeq (L~ f)) by A66, XBOOLE_1:1; then A314: (LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /\ (L~ Red1) c= {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A296, XBOOLE_1:26; A315: (N-min (L~ f)) `2 = N-bound (L~ f) by EUCLID:52; A316: NW-corner (L~ f) in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) by RLTOPSP1:68; then LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A269, A312, TOPREAL1:6, XBOOLE_1:63; then A317: (LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /\ (LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))) = {} by XBOOLE_0:def_7; Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) by RLTOPSP1:68; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /\ (L~ Red1) by A294, XBOOLE_0:def_4; then {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} c= (LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /\ (L~ Red1) by ZFMISC_1:31; then (LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /\ (L~ Red1) = {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A314, XBOOLE_0:def_10; then A318: (LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /\ (L~ RB1) = {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} \/ {} by A304, A317, XBOOLE_1:23 .= {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} ; (NW-corner (L~ f)) `2 = N-bound (L~ f) by EUCLID:52; then (Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))) `2 = (NW-corner (L~ f)) `2 by A312, A315, GOBOARD7:6; then reconsider M3 = <*(NW-corner (L~ f))*> ^ RB1 as S-Sequence_in_R2 by A234, A302, A318, SPRECT_3:16; A319: L~ M3 = (LSeg ((NW-corner (L~ f)),(RB1 /. 1))) \/ (L~ RB1) by SPPOL_2:20; set i1 = (S-min (L~ f)) .. f; set i2 = (E-min (L~ f)) .. f; (N-max (L~ f)) .. f > 1 by A1, SPRECT_2:69; then (N-max (L~ f)) .. f >= 1 + 1 by NAT_1:13; then 2 <= (E-max (L~ f)) .. f by A1, SPRECT_2:70, XXREAL_0:2; then A320: 2 < (E-min (L~ f)) .. f by A1, SPRECT_2:71, XXREAL_0:2; LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) misses LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) by A196, A312, A316, TOPREAL1:6, XBOOLE_1:63; then (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) = {} by XBOOLE_0:def_7; then A321: (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (L~ M3) = {} \/ ((LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (L~ RB1)) by A302, A319, XBOOLE_1:23 .= {((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))} by A305 ; A322: L~ M3 = (LSeg ((NW-corner (L~ f)),(RB1 /. 1))) \/ (L~ RB1) by SPPOL_2:20; (W-min (L~ f)) .. f < len f by A1, SPRECT_2:76; then A323: (S-min (L~ f)) .. f < len f by A1, SPRECT_2:74, XXREAL_0:2; A324: E-min (L~ f) in rng f by SPRECT_2:45; then A325: (E-min (L~ f)) .. f in dom f by FINSEQ_4:20; then A326: (E-min (L~ f)) .. f <= len f by FINSEQ_3:25; then reconsider M4 = mid (f,2,((E-min (L~ f)) .. f)) as S-Sequence_in_R2 by A320, JORDAN4:40; L~ M4 misses L~ Red by A57, A245, A325, SPRECT_3:18, XBOOLE_1:63; then A327: L~ M4 misses L~ Red1 by A264, JORDAN3:41, XBOOLE_1:63; (S-max (L~ f)) .. f < (S-min (L~ f)) .. f by A1, SPRECT_2:73; then A328: (E-min (L~ f)) .. f < (S-min (L~ f)) .. f by A1, SPRECT_2:72, XXREAL_0:2; then A329: 2 < (S-min (L~ f)) .. f by A320, XXREAL_0:2; then 1 < (S-min (L~ f)) .. f by XXREAL_0:2; then reconsider M1 = mid (f,((S-min (L~ f)) .. f),(len f)) as S-Sequence_in_R2 by A323, JORDAN4:40; A330: L~ M1 misses L~ M4 by A328, A323, A320, SPRECT_2:47; A331: L~ M1 misses LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) by A173, A323, A329; A332: len M1 >= 2 by TOPREAL1:def_8; A333: M4 /. 1 = f /. 2 by A57, A325, SPRECT_2:8; L~ M4 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A270, A320, A326; then A334: L~ RB1 misses L~ M4 by A304, A327, XBOOLE_1:70; A335: LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) c= LSeg ((NW-corner (L~ f)),(N-min (L~ f))) by A312, A316, TOPREAL1:6; A336: now__::_thesis:_not_L~_f_meets_LSeg_((NW-corner_(L~_f)),(Last_Point_((L~_Red9),(Red9_/._1),(Red9_/._(len_Red9)),(L~_(SpStSeq_(L~_f)))))) A337: (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ f) = {(N-min (L~ f))} by PSCOMP_1:43; assume L~ f meets LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) ; ::_thesis: contradiction then consider u being set such that A338: u in L~ f and A339: u in LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) by XBOOLE_0:3; reconsider u = u as Point of (TOP-REAL 2) by A338; u in (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ f) by A335, A338, A339, XBOOLE_0:def_4; then u = N-min (L~ f) by A337, TARSKI:def_1; hence contradiction by A239, A312, A338, A339, SPRECT_3:6; ::_thesis: verum end; then L~ M4 misses LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) by A57, A325, SPRECT_3:18, XBOOLE_1:63; then A340: L~ M3 misses L~ M4 by A302, A319, A334, XBOOLE_1:70; A341: S-min (L~ f) in rng f by SPRECT_2:41; then A342: (S-min (L~ f)) .. f in dom f by FINSEQ_4:20; then A343: M1 is_in_the_area_of f by A58, SPRECT_2:23; A344: (M1 /. (len M1)) `2 = (f /. (len f)) `2 by A58, A342, SPRECT_2:9 .= (f /. 1) `2 by FINSEQ_6:def_1 .= N-bound (L~ f) by A1, EUCLID:52 ; (M1 /. 1) `2 = (f /. ((S-min (L~ f)) .. f)) `2 by A58, A342, SPRECT_2:8 .= (S-min (L~ f)) `2 by A341, FINSEQ_5:38 .= S-bound (L~ f) by EUCLID:52 ; then A345: M1 is_a_v.c._for f by A343, A344, SPRECT_2:def_3; A346: <*(NW-corner (L~ f))*> ^ RB1 is_in_the_area_of f by A63, A306, SPRECT_2:24; 1 < (S-min (L~ f)) .. f by A329, XXREAL_0:2; then A347: L~ M1 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A270, A323; A348: M3 /. (len M3) = (1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))) by A303, SPRECT_3:1; (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2))) /\ (L~ M4) = {(f /. 2)} by A191, A320, A326; then reconsider M2 = M3 ^ M4 as S-Sequence_in_R2 by A80, A170, A348, A333, A340, A321, SPRECT_3:21; M2 = <*(NW-corner (L~ f))*> ^ (RB1 ^ (mid (f,2,((E-min (L~ f)) .. f)))) by FINSEQ_1:32; then A349: (M2 /. 1) `1 = (NW-corner (L~ f)) `1 by FINSEQ_5:15 .= W-bound (L~ f) by EUCLID:52 ; mid (f,2,((E-min (L~ f)) .. f)) is_in_the_area_of f by A57, A325, SPRECT_2:23; then A350: M2 is_in_the_area_of f by A346, SPRECT_2:24; (M2 /. (len M2)) `1 = ((mid (f,2,((E-min (L~ f)) .. f))) /. (len (mid (f,2,((E-min (L~ f)) .. f))))) `1 by SPRECT_3:1 .= (f /. ((E-min (L~ f)) .. f)) `1 by A57, A325, SPRECT_2:9 .= (E-min (L~ f)) `1 by A324, FINSEQ_5:38 .= E-bound (L~ f) by EUCLID:52 ; then A351: M2 is_a_h.c._for f by A350, A349, SPRECT_2:def_2; A352: L~ M2 = ((L~ M3) \/ (LSeg ((M3 /. (len M3)),(M4 /. 1)))) \/ (L~ M4) by SPPOL_2:23; len M2 >= 2 by TOPREAL1:def_8; then L~ M1 meets L~ M2 by A332, A345, A351, SPRECT_2:29; then L~ M1 meets (L~ M3) \/ (LSeg ((M3 /. (len M3)),(M4 /. 1))) by A352, A330, XBOOLE_1:70; then A353: L~ M1 meets L~ M3 by A348, A333, A331, XBOOLE_1:70; L~ M1 misses LSeg ((NW-corner (L~ f)),(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))) by A58, A342, A336, SPRECT_3:18, XBOOLE_1:63; then L~ M1 meets L~ RB1 by A302, A353, A322, XBOOLE_1:70; then L~ M1 meets L~ Red1 by A304, A347, XBOOLE_1:70; then L~ M1 meets L~ Red by A264, JORDAN3:41, XBOOLE_1:63; hence contradiction by A58, A245, A342, SPRECT_3:18, XBOOLE_1:63; ::_thesis: verum end; supposethat A354: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((N-min (L~ f)),(NE-corner (L~ f))) and A355: N-min (L~ f) = NW-corner (L~ f) ; ::_thesis: contradiction set i1 = (S-max (L~ f)) .. f; set i2 = (E-max (L~ f)) .. f; (N-max (L~ f)) .. f > 1 by A1, SPRECT_2:69; then A356: 1 < (E-max (L~ f)) .. f by A1, SPRECT_2:70, XXREAL_0:2; (S-min (L~ f)) .. f <= (W-min (L~ f)) .. f by A1, SPRECT_2:74; then (S-max (L~ f)) .. f < (W-min (L~ f)) .. f by A1, SPRECT_2:73, XXREAL_0:2; then ((S-max (L~ f)) .. f) + 1 <= (W-min (L~ f)) .. f by NAT_1:13; then ((S-max (L~ f)) .. f) + 1 < len f by A1, SPRECT_2:76, XXREAL_0:2; then A357: (S-max (L~ f)) .. f < (len f) -' 1 by A61, XREAL_1:6; (E-max (L~ f)) .. f < (E-min (L~ f)) .. f by A1, SPRECT_2:71; then A358: (E-max (L~ f)) .. f < (S-max (L~ f)) .. f by A1, SPRECT_2:72, XXREAL_0:2; then A359: 1 < (S-max (L~ f)) .. f by A356, XXREAL_0:2; then reconsider M4 = mid (f,((S-max (L~ f)) .. f),((len f) -' 1)) as S-Sequence_in_R2 by A61, A357, JORDAN4:39; A360: L~ M4 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A62, A257, A357, A359; (S-max (L~ f)) .. f < len f by A357, NAT_D:44; then A361: (E-max (L~ f)) .. f < len f by A358, XXREAL_0:2; then ((E-max (L~ f)) .. f) + 1 <= len f by NAT_1:13; then reconsider M2 = mid (f,1,((E-max (L~ f)) .. f)) as S-Sequence_in_R2 by A356, JORDAN4:39; A362: L~ M2 misses L~ M4 by A62, A358, A357, A356, SPRECT_2:47; (E-max (L~ f)) .. f < (len f) -' 1 by A358, A357, XXREAL_0:2; then A363: L~ M2 misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) by A105, A356; A364: len M2 >= 2 by TOPREAL1:def_8; A365: L~ M2 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A257, A356, A361; A366: E-max (L~ f) in rng f by SPRECT_2:46; then A367: (E-max (L~ f)) .. f in dom f by FINSEQ_4:20; then A368: (M2 /. (len M2)) `1 = (f /. ((E-max (L~ f)) .. f)) `1 by A15, SPRECT_2:9 .= (E-max (L~ f)) `1 by A366, FINSEQ_5:38 .= E-bound (L~ f) by EUCLID:52 ; A369: S-max (L~ f) in rng f by SPRECT_2:42; then A370: (S-max (L~ f)) .. f in dom f by FINSEQ_4:20; then L~ M4 misses L~ Red by A60, A245, SPRECT_3:18, XBOOLE_1:63; then L~ M4 misses L~ Red2 by A251, JORDAN3:41, XBOOLE_1:63; then A371: L~ RB2 misses L~ M4 by A299, A360, XBOOLE_1:70; A372: M2 is_in_the_area_of f by A15, A367, SPRECT_2:23; (M2 /. 1) `1 = (f /. 1) `1 by A15, A367, SPRECT_2:8 .= W-bound (L~ f) by A1, A355, EUCLID:52 ; then A373: M2 is_a_h.c._for f by A372, A368, SPRECT_2:def_2; A374: (N-min (L~ f)) `2 = N-bound (L~ f) by EUCLID:52; A375: (NE-corner (L~ f)) `2 = N-bound (L~ f) by EUCLID:52; A376: M4 /. (len M4) = f /. ((len f) -' 1) by A60, A370, SPRECT_2:9; then (LSeg ((M4 /. (len M4)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) /\ (L~ M4) = {(M4 /. (len M4))} by A126, A357, A359; then reconsider M1 = M4 ^ RB2 as S-Sequence_in_R2 by A78, A83, A96, A298, A300, A376, A371, SPRECT_3:21; mid (f,((S-max (L~ f)) .. f),((len f) -' 1)) is_in_the_area_of f by A60, A370, SPRECT_2:23; then A377: M1 is_in_the_area_of f by A301, SPRECT_2:24; A378: (M1 /. (len M1)) `2 = (RB2 /. (len RB2)) `2 by SPRECT_3:1 .= N-bound (L~ f) by A297, A354, A375, A374, GOBOARD7:6 ; not mid (f,((S-max (L~ f)) .. f),((len f) -' 1)) is empty by A60, A370, SPRECT_2:7; then 1 in dom (mid (f,((S-max (L~ f)) .. f),((len f) -' 1))) by FINSEQ_5:6; then (M1 /. 1) `2 = ((mid (f,((S-max (L~ f)) .. f),((len f) -' 1))) /. 1) `2 by FINSEQ_4:68 .= (f /. ((S-max (L~ f)) .. f)) `2 by A60, A370, SPRECT_2:8 .= (S-max (L~ f)) `2 by A369, FINSEQ_5:38 .= S-bound (L~ f) by EUCLID:52 ; then A379: M1 is_a_v.c._for f by A377, A378, SPRECT_2:def_3; A380: L~ M1 = ((L~ M4) \/ (LSeg ((M4 /. (len M4)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) \/ (L~ RB2) by A298, SPPOL_2:23 .= (L~ M4) \/ ((LSeg ((M4 /. (len M4)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) \/ (L~ RB2)) by XBOOLE_1:4 ; len M1 >= 2 by TOPREAL1:def_8; then L~ M1 meets L~ M2 by A364, A379, A373, SPRECT_2:29; then L~ M2 meets (L~ RB2) \/ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(M4 /. (len M4)))) by A380, A362, XBOOLE_1:70; then L~ M2 meets L~ RB2 by A376, A363, XBOOLE_1:70; then L~ M2 meets L~ Red2 by A299, A365, XBOOLE_1:70; then L~ M2 meets L~ Red by A251, JORDAN3:41, XBOOLE_1:63; hence contradiction by A15, A245, A367, SPRECT_3:18, XBOOLE_1:63; ::_thesis: verum end; supposethat A381: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((N-min (L~ f)),(NE-corner (L~ f))) and A382: N-min (L~ f) <> NW-corner (L~ f) ; ::_thesis: contradiction set i1 = (S-min (L~ f)) .. f; set i2 = (E-max (L~ f)) .. f; A383: (S-min (L~ f)) .. f <= (W-min (L~ f)) .. f by A1, SPRECT_2:74; W-max (L~ f) <> N-min (L~ f) by A382, PSCOMP_1:61; then (S-min (L~ f)) .. f < (W-max (L~ f)) .. f by A1, A383, SPRECT_2:75, XXREAL_0:2; then ((S-min (L~ f)) .. f) + 1 <= (W-max (L~ f)) .. f by NAT_1:13; then ((S-min (L~ f)) .. f) + 1 < len f by A1, SPRECT_2:77, XXREAL_0:2; then A384: (S-min (L~ f)) .. f < (len f) -' 1 by A61, XREAL_1:6; A385: N-min (L~ f) in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) by RLTOPSP1:68; A386: (N-min (L~ f)) `2 = (NW-corner (L~ f)) `2 by PSCOMP_1:37; (N-max (L~ f)) .. f > 1 by A1, SPRECT_2:69; then A387: 1 < (E-max (L~ f)) .. f by A1, SPRECT_2:70, XXREAL_0:2; (E-max (L~ f)) .. f < (E-min (L~ f)) .. f by A1, SPRECT_2:71; then (E-max (L~ f)) .. f < (S-max (L~ f)) .. f by A1, SPRECT_2:72, XXREAL_0:2; then A388: (E-max (L~ f)) .. f < (S-min (L~ f)) .. f by A1, SPRECT_2:73, XXREAL_0:2; then A389: 1 < (S-min (L~ f)) .. f by A387, XXREAL_0:2; then reconsider M4 = mid (f,((S-min (L~ f)) .. f),((len f) -' 1)) as S-Sequence_in_R2 by A61, A384, JORDAN4:39; A390: L~ M4 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A62, A257, A384, A389; (S-min (L~ f)) .. f < len f by A384, NAT_D:44; then A391: (E-max (L~ f)) .. f < len f by A388, XXREAL_0:2; then ((E-max (L~ f)) .. f) + 1 <= len f by NAT_1:13; then reconsider M3 = mid (f,1,((E-max (L~ f)) .. f)) as S-Sequence_in_R2 by A387, JORDAN4:39; A392: L~ M3 misses L~ M4 by A62, A388, A384, A387, SPRECT_2:47; (E-max (L~ f)) .. f < (len f) -' 1 by A388, A384, XXREAL_0:2; then A393: L~ M3 misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) by A105, A387; A394: L~ M3 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A257, A387, A391; A395: E-max (L~ f) in rng f by SPRECT_2:46; then A396: (E-max (L~ f)) .. f in dom f by FINSEQ_4:20; then A397: M3 /. 1 = N-min (L~ f) by A1, A15, SPRECT_2:8; A398: S-min (L~ f) in rng f by SPRECT_2:41; then A399: (S-min (L~ f)) .. f in dom f by FINSEQ_4:20; then L~ M4 misses L~ Red by A60, A245, SPRECT_3:18, XBOOLE_1:63; then L~ M4 misses L~ Red2 by A251, JORDAN3:41, XBOOLE_1:63; then A400: L~ RB2 misses L~ M4 by A299, A390, XBOOLE_1:70; A401: M4 /. (len M4) = f /. ((len f) -' 1) by A60, A399, SPRECT_2:9; then (LSeg ((M4 /. (len M4)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) /\ (L~ M4) = {(M4 /. (len M4))} by A126, A384, A389; then reconsider M1 = M4 ^ RB2 as S-Sequence_in_R2 by A78, A83, A96, A298, A300, A401, A400, SPRECT_3:21; A402: L~ M1 = ((L~ M4) \/ (LSeg ((M4 /. (len M4)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) \/ (L~ RB2) by A298, SPPOL_2:23 .= (L~ M4) \/ ((LSeg ((M4 /. (len M4)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) \/ (L~ RB2)) by XBOOLE_1:4 ; 1 in dom M3 by FINSEQ_5:6; then N-min (L~ f) in L~ M3 by A397, SPPOL_2:44; then N-min (L~ f) in (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ M3) by A385, XBOOLE_0:def_4; then A403: {(N-min (L~ f))} c= (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ M3) by ZFMISC_1:31; A404: (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ f) = {(N-min (L~ f))} by PSCOMP_1:43; then (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ M3) c= {(N-min (L~ f))} by A15, A396, SPRECT_3:18, XBOOLE_1:26; then (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ M3) = {(N-min (L~ f))} by A403, XBOOLE_0:def_10; then reconsider M2 = <*(NW-corner (L~ f))*> ^ M3 as S-Sequence_in_R2 by A382, A386, A397, SPRECT_3:16; A405: (M2 /. 1) `1 = (NW-corner (L~ f)) `1 by FINSEQ_5:15 .= W-bound (L~ f) by EUCLID:52 ; A406: now__::_thesis:_not_LSeg_((NW-corner_(L~_f)),(N-min_(L~_f)))_meets_L~_M4 assume LSeg ((NW-corner (L~ f)),(N-min (L~ f))) meets L~ M4 ; ::_thesis: contradiction then A407: (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ M4) <> {} by XBOOLE_0:def_7; (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ M4) c= {(N-min (L~ f))} by A60, A399, A404, SPRECT_3:18, XBOOLE_1:26; then (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ M4) = {(N-min (L~ f))} by A407, ZFMISC_1:33; then N-min (L~ f) in (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ M4) by TARSKI:def_1; then N-min (L~ f) in L~ M4 by XBOOLE_0:def_4; hence contradiction by A1, A62, A384, A389, SPRECT_3:30; ::_thesis: verum end; A408: (N-min (L~ f)) `2 = N-bound (L~ f) by EUCLID:52; A409: (NE-corner (L~ f)) `2 = N-bound (L~ f) by EUCLID:52; mid (f,1,((E-max (L~ f)) .. f)) is_in_the_area_of f by A15, A396, SPRECT_2:23; then A410: M2 is_in_the_area_of f by A63, SPRECT_2:24; (M2 /. (len M2)) `1 = ((mid (f,1,((E-max (L~ f)) .. f))) /. (len (mid (f,1,((E-max (L~ f)) .. f))))) `1 by SPRECT_3:1 .= (f /. ((E-max (L~ f)) .. f)) `1 by A15, A396, SPRECT_2:9 .= (E-max (L~ f)) `1 by A395, FINSEQ_5:38 .= E-bound (L~ f) by EUCLID:52 ; then A411: M2 is_a_h.c._for f by A410, A405, SPRECT_2:def_2; A412: L~ M2 = (LSeg ((NW-corner (L~ f)),(M3 /. 1))) \/ (L~ M3) by SPPOL_2:20; mid (f,((S-min (L~ f)) .. f),((len f) -' 1)) is_in_the_area_of f by A60, A399, SPRECT_2:23; then A413: M1 is_in_the_area_of f by A301, SPRECT_2:24; A414: (M1 /. (len M1)) `2 = (Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))) `2 by A297, SPRECT_3:1 .= N-bound (L~ f) by A381, A409, A408, GOBOARD7:6 ; not mid (f,((S-min (L~ f)) .. f),((len f) -' 1)) is empty by A60, A399, SPRECT_2:7; then 1 in dom (mid (f,((S-min (L~ f)) .. f),((len f) -' 1))) by FINSEQ_5:6; then (M1 /. 1) `2 = ((mid (f,((S-min (L~ f)) .. f),((len f) -' 1))) /. 1) `2 by FINSEQ_4:68 .= (f /. ((S-min (L~ f)) .. f)) `2 by A60, A399, SPRECT_2:8 .= (S-min (L~ f)) `2 by A398, FINSEQ_5:38 .= S-bound (L~ f) by EUCLID:52 ; then A415: M1 is_a_v.c._for f by A413, A414, SPRECT_2:def_3; A416: len M1 >= 2 by TOPREAL1:def_8; now__::_thesis:_not_LSeg_((NW-corner_(L~_f)),(N-min_(L~_f)))_meets_L~_Red2 NW-corner (L~ f) in LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by RLTOPSP1:68; then LSeg ((NW-corner (L~ f)),(N-min (L~ f))) c= LSeg ((NW-corner (L~ f)),(NE-corner (L~ f))) by A309, A310, TOPREAL1:6; then LSeg ((NW-corner (L~ f)),(N-min (L~ f))) c= L~ (SpStSeq (L~ f)) by A66, XBOOLE_1:1; then A417: (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ Red2) c= {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A286, XBOOLE_1:26; assume LSeg ((NW-corner (L~ f)),(N-min (L~ f))) meets L~ Red2 ; ::_thesis: contradiction then (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ Red2) <> {} by XBOOLE_0:def_7; then (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ Red2) = {(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))} by A417, ZFMISC_1:33; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (L~ Red2) by TARSKI:def_1; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NW-corner (L~ f)),(N-min (L~ f))) by XBOOLE_0:def_4; then A418: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (LSeg ((N-min (L~ f)),(NE-corner (L~ f)))) by A381, XBOOLE_0:def_4; (LSeg ((NW-corner (L~ f)),(N-min (L~ f)))) /\ (LSeg ((N-min (L~ f)),(NE-corner (L~ f)))) = {(N-min (L~ f))} by A309, A310, TOPREAL1:8; then Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) = N-min (L~ f) by A418, TARSKI:def_1; hence contradiction by A239, SPRECT_1:11; ::_thesis: verum end; then LSeg ((NW-corner (L~ f)),(N-min (L~ f))) misses L~ RB2 by A256, A299, XBOOLE_1:70; then LSeg ((NW-corner (L~ f)),(N-min (L~ f))) misses (LSeg ((M4 /. (len M4)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) \/ (L~ RB2) by A132, A401, XBOOLE_1:70; then A419: LSeg ((NW-corner (L~ f)),(N-min (L~ f))) misses L~ M1 by A402, A406, XBOOLE_1:70; len M2 >= 2 by TOPREAL1:def_8; then A420: L~ M1 meets L~ M2 by A416, A415, A411, SPRECT_2:29; M3 /. 1 = f /. 1 by A15, A396, SPRECT_2:8; then L~ M3 meets L~ M1 by A1, A420, A419, A412, XBOOLE_1:70; then L~ M3 meets (L~ RB2) \/ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(M4 /. (len M4)))) by A402, A392, XBOOLE_1:70; then L~ M3 meets L~ RB2 by A401, A393, XBOOLE_1:70; then L~ M3 meets L~ Red2 by A299, A394, XBOOLE_1:70; then L~ M3 meets L~ Red by A251, JORDAN3:41, XBOOLE_1:63; hence contradiction by A15, A245, A396, SPRECT_3:18, XBOOLE_1:63; ::_thesis: verum end; supposethat A421: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NE-corner (L~ f)),(SE-corner (L~ f))) and A422: N-min (L~ f) = W-max (L~ f) ; ::_thesis: contradiction A423: (RB2 /. 1) `1 = W-bound (L~ f) by A96, A298, A422, EUCLID:52; A424: (SE-corner (L~ f)) `1 = E-bound (L~ f) by EUCLID:52; (NE-corner (L~ f)) `1 = E-bound (L~ f) by EUCLID:52; then (RB2 /. (len RB2)) `1 = E-bound (L~ f) by A297, A421, A424, GOBOARD7:5; then A425: RB2 is_a_h.c._for f by A301, A423, SPRECT_2:def_2; set i1 = (S-max (L~ f)) .. f; set i2 = (N-max (L~ f)) .. f; set i3 = (W-min (L~ f)) .. f; A426: mid (f,((S-max (L~ f)) .. f),((N-max (L~ f)) .. f)) = Rev (mid (f,((N-max (L~ f)) .. f),((S-max (L~ f)) .. f))) by JORDAN4:18; (N-max (L~ f)) .. f <= (E-max (L~ f)) .. f by A1, SPRECT_2:70; then (N-max (L~ f)) .. f < (E-min (L~ f)) .. f by A1, SPRECT_2:71, XXREAL_0:2; then A427: (N-max (L~ f)) .. f < (S-max (L~ f)) .. f by A1, SPRECT_2:72, XXREAL_0:2; W-min (L~ f) in rng f by SPRECT_2:43; then (W-min (L~ f)) .. f in dom f by FINSEQ_4:20; then A428: (W-min (L~ f)) .. f <= len f by FINSEQ_3:25; A429: 1 < (N-max (L~ f)) .. f by A1, SPRECT_2:69; A430: S-max (L~ f) in rng f by SPRECT_2:42; then A431: (S-max (L~ f)) .. f in dom f by FINSEQ_4:20; then (S-max (L~ f)) .. f <= len f by FINSEQ_3:25; then mid (f,((N-max (L~ f)) .. f),((S-max (L~ f)) .. f)) is S-Sequence_in_R2 by A429, A427, JORDAN4:40; then reconsider M1 = mid (f,((S-max (L~ f)) .. f),((N-max (L~ f)) .. f)) as S-Sequence_in_R2 by A426; A432: len RB2 >= 2 by TOPREAL1:def_8; (S-max (L~ f)) .. f < (S-min (L~ f)) .. f by A1, SPRECT_2:73; then (W-min (L~ f)) .. f > (S-max (L~ f)) .. f by A1, SPRECT_2:74, XXREAL_0:2; then (S-max (L~ f)) .. f < len f by A428, XXREAL_0:2; then L~ (mid (f,((N-max (L~ f)) .. f),((S-max (L~ f)) .. f))) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A257, A429, A427; then A433: L~ M1 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A426, SPPOL_2:22; A434: N-max (L~ f) in rng f by SPRECT_2:40; then A435: (N-max (L~ f)) .. f in dom f by FINSEQ_4:20; then A436: (M1 /. (len M1)) `2 = (f /. ((N-max (L~ f)) .. f)) `2 by A431, SPRECT_2:9 .= (N-max (L~ f)) `2 by A434, FINSEQ_5:38 .= N-bound (L~ f) by EUCLID:52 ; A437: M1 is_in_the_area_of f by A431, A435, SPRECT_2:23; (M1 /. 1) `2 = (f /. ((S-max (L~ f)) .. f)) `2 by A431, A435, SPRECT_2:8 .= (S-max (L~ f)) `2 by A430, FINSEQ_5:38 .= S-bound (L~ f) by EUCLID:52 ; then A438: M1 is_a_v.c._for f by A437, A436, SPRECT_2:def_3; len M1 >= 2 by TOPREAL1:def_8; then L~ M1 meets L~ RB2 by A432, A438, A425, SPRECT_2:29; then L~ M1 meets L~ Red2 by A299, A433, XBOOLE_1:70; then L~ M1 meets L~ Red by A251, JORDAN3:41, XBOOLE_1:63; hence contradiction by A245, A431, A435, SPRECT_3:18, XBOOLE_1:63; ::_thesis: verum end; supposethat A439: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((NE-corner (L~ f)),(SE-corner (L~ f))) and A440: N-min (L~ f) <> W-max (L~ f) ; ::_thesis: contradiction set i1 = (S-max (L~ f)) .. f; set i2 = (N-max (L~ f)) .. f; set i3 = (W-min (L~ f)) .. f; (W-max (L~ f)) .. f <= (len f) -' 1 by A1, NAT_D:49, SPRECT_2:77; then A441: (W-min (L~ f)) .. f < (len f) -' 1 by A1, A440, SPRECT_2:75, XXREAL_0:2; A442: W-min (L~ f) in rng f by SPRECT_2:43; then A443: (W-min (L~ f)) .. f in dom f by FINSEQ_4:20; then A444: 1 <= (W-min (L~ f)) .. f by FINSEQ_3:25; then reconsider M3 = mid (f,((W-min (L~ f)) .. f),((len f) -' 1)) as S-Sequence_in_R2 by A61, A441, JORDAN4:39; L~ M3 misses L~ Red by A60, A245, A443, SPRECT_3:18, XBOOLE_1:63; then A445: L~ M3 misses L~ Red2 by A251, JORDAN3:41, XBOOLE_1:63; L~ M3 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A62, A257, A441, A444; then A446: L~ RB2 misses L~ M3 by A299, A445, XBOOLE_1:70; A447: M3 /. (len M3) = f /. ((len f) -' 1) by A60, A443, SPRECT_2:9; then (LSeg ((M3 /. (len M3)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) /\ (L~ M3) = {(M3 /. (len M3))} by A126, A441, A444; then reconsider M2 = M3 ^ RB2 as S-Sequence_in_R2 by A78, A83, A96, A298, A300, A447, A446, SPRECT_3:21; mid (f,((W-min (L~ f)) .. f),((len f) -' 1)) is_in_the_area_of f by A60, A443, SPRECT_2:23; then A448: M2 is_in_the_area_of f by A301, SPRECT_2:24; A449: mid (f,((S-max (L~ f)) .. f),((N-max (L~ f)) .. f)) = Rev (mid (f,((N-max (L~ f)) .. f),((S-max (L~ f)) .. f))) by JORDAN4:18; A450: 1 < (N-max (L~ f)) .. f by A1, SPRECT_2:69; (N-max (L~ f)) .. f <= (E-max (L~ f)) .. f by A1, SPRECT_2:70; then (N-max (L~ f)) .. f < (E-min (L~ f)) .. f by A1, SPRECT_2:71, XXREAL_0:2; then A451: (N-max (L~ f)) .. f < (S-max (L~ f)) .. f by A1, SPRECT_2:72, XXREAL_0:2; A452: S-max (L~ f) in rng f by SPRECT_2:42; then A453: (S-max (L~ f)) .. f in dom f by FINSEQ_4:20; then (S-max (L~ f)) .. f <= len f by FINSEQ_3:25; then mid (f,((N-max (L~ f)) .. f),((S-max (L~ f)) .. f)) is S-Sequence_in_R2 by A450, A451, JORDAN4:40; then reconsider M1 = mid (f,((S-max (L~ f)) .. f),((N-max (L~ f)) .. f)) as S-Sequence_in_R2 by A449; (S-max (L~ f)) .. f < (S-min (L~ f)) .. f by A1, SPRECT_2:73; then A454: (W-min (L~ f)) .. f > (S-max (L~ f)) .. f by A1, SPRECT_2:74, XXREAL_0:2; then A455: L~ M1 misses L~ M3 by A62, A450, A451, A441, SPRECT_2:50; (W-min (L~ f)) .. f < len f by A61, A441, NAT_1:13; then (S-max (L~ f)) .. f < len f by A454, XXREAL_0:2; then L~ (mid (f,((N-max (L~ f)) .. f),((S-max (L~ f)) .. f))) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A257, A450, A451; then A456: L~ M1 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))) by A449, SPPOL_2:22; A457: len M1 >= 2 by TOPREAL1:def_8; A458: N-max (L~ f) in rng f by SPRECT_2:40; then A459: (N-max (L~ f)) .. f in dom f by FINSEQ_4:20; then A460: (M1 /. (len M1)) `2 = (f /. ((N-max (L~ f)) .. f)) `2 by A453, SPRECT_2:9 .= (N-max (L~ f)) `2 by A458, FINSEQ_5:38 .= N-bound (L~ f) by EUCLID:52 ; (S-max (L~ f)) .. f < (len f) -' 1 by A454, A441, XXREAL_0:2; then L~ (mid (f,((N-max (L~ f)) .. f),((S-max (L~ f)) .. f))) misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) by A105, A450, A451; then A461: L~ M1 misses LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(f /. ((len f) -' 1))) by A449, SPPOL_2:22; A462: (SE-corner (L~ f)) `1 = E-bound (L~ f) by EUCLID:52; A463: (NE-corner (L~ f)) `1 = E-bound (L~ f) by EUCLID:52; A464: (M2 /. (len M2)) `1 = (RB2 /. (len RB2)) `1 by SPRECT_3:1 .= E-bound (L~ f) by A297, A439, A463, A462, GOBOARD7:5 ; not mid (f,((W-min (L~ f)) .. f),((len f) -' 1)) is empty by A60, A443, SPRECT_2:7; then 1 in dom (mid (f,((W-min (L~ f)) .. f),((len f) -' 1))) by FINSEQ_5:6; then (M2 /. 1) `1 = ((mid (f,((W-min (L~ f)) .. f),((len f) -' 1))) /. 1) `1 by FINSEQ_4:68 .= (f /. ((W-min (L~ f)) .. f)) `1 by A60, A443, SPRECT_2:8 .= (W-min (L~ f)) `1 by A442, FINSEQ_5:38 .= W-bound (L~ f) by EUCLID:52 ; then A465: M2 is_a_h.c._for f by A448, A464, SPRECT_2:def_2; A466: L~ M2 = ((L~ M3) \/ (LSeg ((M3 /. (len M3)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f))))))))) \/ (L~ RB2) by A298, SPPOL_2:23 .= (L~ M3) \/ ((LSeg ((M3 /. (len M3)),((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))))) \/ (L~ RB2)) by XBOOLE_1:4 ; A467: M1 is_in_the_area_of f by A453, A459, SPRECT_2:23; (M1 /. 1) `2 = (f /. ((S-max (L~ f)) .. f)) `2 by A453, A459, SPRECT_2:8 .= (S-max (L~ f)) `2 by A452, FINSEQ_5:38 .= S-bound (L~ f) by EUCLID:52 ; then A468: M1 is_a_v.c._for f by A467, A460, SPRECT_2:def_3; len M2 >= 2 by TOPREAL1:def_8; then L~ M1 meets L~ M2 by A457, A468, A465, SPRECT_2:29; then L~ M1 meets (L~ RB2) \/ (LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * (i,(width (GoB f)))))),(M3 /. (len M3)))) by A466, A455, XBOOLE_1:70; then L~ M1 meets L~ RB2 by A447, A461, XBOOLE_1:70; then L~ M1 meets L~ Red2 by A299, A456, XBOOLE_1:70; then L~ M1 meets L~ Red by A251, JORDAN3:41, XBOOLE_1:63; hence contradiction by A245, A453, A459, SPRECT_3:18, XBOOLE_1:63; ::_thesis: verum end; supposeA469: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((SE-corner (L~ f)),(SW-corner (L~ f))) ; ::_thesis: contradiction A470: (SW-corner (L~ f)) `2 = S-bound (L~ f) by EUCLID:52; (SE-corner (L~ f)) `2 = S-bound (L~ f) by EUCLID:52; then (RB1 /. 1) `2 = S-bound (L~ f) by A302, A469, A470, GOBOARD7:6; then A471: RB1 is_a_v.c._for f by A170, A303, A306, SPRECT_2:def_3; A472: len RB1 >= 2 by TOPREAL1:def_8; set i1 = (E-min (L~ f)) .. f; set i2 = (W-min (L~ f)) .. f; A473: mid (f,((W-min (L~ f)) .. f),((E-min (L~ f)) .. f)) = Rev (mid (f,((E-min (L~ f)) .. f),((W-min (L~ f)) .. f))) by JORDAN4:18; (E-min (L~ f)) .. f <= (S-max (L~ f)) .. f by A1, SPRECT_2:72; then (E-min (L~ f)) .. f < (S-min (L~ f)) .. f by A1, SPRECT_2:73, XXREAL_0:2; then A474: (E-min (L~ f)) .. f < (W-min (L~ f)) .. f by A1, SPRECT_2:74, XXREAL_0:2; (N-max (L~ f)) .. f > 1 by A1, SPRECT_2:69; then (E-max (L~ f)) .. f > 1 by A1, SPRECT_2:70, XXREAL_0:2; then A475: 1 < (E-min (L~ f)) .. f by A1, SPRECT_2:71, XXREAL_0:2; A476: W-min (L~ f) in rng f by SPRECT_2:43; then A477: (W-min (L~ f)) .. f in dom f by FINSEQ_4:20; then A478: (W-min (L~ f)) .. f <= len f by FINSEQ_3:25; then mid (f,((E-min (L~ f)) .. f),((W-min (L~ f)) .. f)) is S-Sequence_in_R2 by A475, A474, JORDAN4:40; then reconsider M2 = mid (f,((W-min (L~ f)) .. f),((E-min (L~ f)) .. f)) as S-Sequence_in_R2 by A473; L~ (mid (f,((E-min (L~ f)) .. f),((W-min (L~ f)) .. f))) misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A270, A475, A474, A478; then A479: L~ M2 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A473, SPPOL_2:22; A480: E-min (L~ f) in rng f by SPRECT_2:45; then A481: (E-min (L~ f)) .. f in dom f by FINSEQ_4:20; then A482: M2 is_in_the_area_of f by A477, SPRECT_2:23; A483: (M2 /. 1) `1 = (f /. ((W-min (L~ f)) .. f)) `1 by A481, A477, SPRECT_2:8 .= (W-min (L~ f)) `1 by A476, FINSEQ_5:38 .= W-bound (L~ f) by EUCLID:52 ; (M2 /. (len M2)) `1 = (f /. ((E-min (L~ f)) .. f)) `1 by A481, A477, SPRECT_2:9 .= (E-min (L~ f)) `1 by A480, FINSEQ_5:38 .= E-bound (L~ f) by EUCLID:52 ; then A484: M2 is_a_h.c._for f by A482, A483, SPRECT_2:def_2; len M2 >= 2 by TOPREAL1:def_8; then L~ RB1 meets L~ M2 by A472, A471, A484, SPRECT_2:29; then L~ M2 meets L~ Red1 by A304, A479, XBOOLE_1:70; then L~ M2 meets L~ Red by A264, JORDAN3:41, XBOOLE_1:63; hence contradiction by A245, A481, A477, SPRECT_3:18, XBOOLE_1:63; ::_thesis: verum end; supposeA485: Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))) in LSeg ((SW-corner (L~ f)),(NW-corner (L~ f))) ; ::_thesis: contradiction A486: (SW-corner (L~ f)) `1 = W-bound (L~ f) by EUCLID:52; set i1 = (S-min (L~ f)) .. f; set i3 = (E-min (L~ f)) .. f; A487: (NW-corner (L~ f)) `1 = W-bound (L~ f) by EUCLID:52; (N-max (L~ f)) .. f > 1 by A1, SPRECT_2:69; then (E-max (L~ f)) .. f > 1 by A1, SPRECT_2:70, XXREAL_0:2; then (E-max (L~ f)) .. f >= 1 + 1 by NAT_1:13; then A488: 2 < (E-min (L~ f)) .. f by A1, SPRECT_2:71, XXREAL_0:2; A489: E-min (L~ f) in rng f by SPRECT_2:45; then A490: (E-min (L~ f)) .. f in dom f by FINSEQ_4:20; then A491: (E-min (L~ f)) .. f <= len f by FINSEQ_3:25; then reconsider M3 = mid (f,2,((E-min (L~ f)) .. f)) as S-Sequence_in_R2 by A488, JORDAN4:40; L~ M3 misses L~ Red by A57, A245, A490, SPRECT_3:18, XBOOLE_1:63; then A492: L~ M3 misses L~ Red1 by A264, JORDAN3:41, XBOOLE_1:63; L~ M3 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A270, A488, A491; then A493: L~ RB1 misses L~ M3 by A304, A492, XBOOLE_1:70; A494: M3 /. 1 = f /. 2 by A57, A490, SPRECT_2:8; then (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(M3 /. 1))) /\ (L~ M3) = {(M3 /. 1)} by A191, A488, A491; then reconsider M2 = RB1 ^ M3 as S-Sequence_in_R2 by A80, A170, A303, A305, A494, A493, SPRECT_3:21; A495: (M2 /. (len M2)) `1 = ((mid (f,2,((E-min (L~ f)) .. f))) /. (len (mid (f,2,((E-min (L~ f)) .. f))))) `1 by SPRECT_3:1 .= (f /. ((E-min (L~ f)) .. f)) `1 by A57, A490, SPRECT_2:9 .= (E-min (L~ f)) `1 by A489, FINSEQ_5:38 .= E-bound (L~ f) by EUCLID:52 ; mid (f,2,((E-min (L~ f)) .. f)) is_in_the_area_of f by A57, A490, SPRECT_2:23; then A496: M2 is_in_the_area_of f by A306, SPRECT_2:24; 1 in dom RB1 by FINSEQ_5:6; then (M2 /. 1) `1 = (RB1 /. 1) `1 by FINSEQ_4:68 .= W-bound (L~ f) by A302, A485, A487, A486, GOBOARD7:5 ; then A497: M2 is_a_h.c._for f by A496, A495, SPRECT_2:def_2; A498: L~ M2 = ((L~ RB1) \/ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(M3 /. 1)))) \/ (L~ M3) by A303, SPPOL_2:23; (W-min (L~ f)) .. f < len f by A1, SPRECT_2:76; then A499: (S-min (L~ f)) .. f < len f by A1, SPRECT_2:74, XXREAL_0:2; (E-min (L~ f)) .. f <= (S-max (L~ f)) .. f by A1, SPRECT_2:72; then A500: (E-min (L~ f)) .. f < (S-min (L~ f)) .. f by A1, SPRECT_2:73, XXREAL_0:2; then A501: 2 < (S-min (L~ f)) .. f by A488, XXREAL_0:2; then A502: 1 < (S-min (L~ f)) .. f by XXREAL_0:2; then reconsider M1 = mid (f,((S-min (L~ f)) .. f),(len f)) as S-Sequence_in_R2 by A499, JORDAN4:40; A503: L~ M1 misses L~ M3 by A500, A499, A488, SPRECT_2:47; A504: L~ M1 misses LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(f /. 2)) by A173, A499, A501; A505: S-min (L~ f) in rng f by SPRECT_2:41; then A506: (S-min (L~ f)) .. f in dom f by FINSEQ_4:20; then A507: M1 is_in_the_area_of f by A58, SPRECT_2:23; A508: (M1 /. (len M1)) `2 = (f /. (len f)) `2 by A58, A506, SPRECT_2:9 .= (f /. 1) `2 by FINSEQ_6:def_1 .= N-bound (L~ f) by A1, EUCLID:52 ; (M1 /. 1) `2 = (f /. ((S-min (L~ f)) .. f)) `2 by A58, A506, SPRECT_2:8 .= (S-min (L~ f)) `2 by A505, FINSEQ_5:38 .= S-bound (L~ f) by EUCLID:52 ; then A509: M1 is_a_v.c._for f by A507, A508, SPRECT_2:def_3; A510: L~ M1 misses LSeg ((First_Point ((L~ (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f)))))))),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. 1),((L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))) /. (len (L_Cut (Red9,(Last_Point ((L~ Red9),(Red9 /. 1),(Red9 /. (len Red9)),(L~ (SpStSeq (L~ f))))))))),(LSeg (((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))))))),((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f))))))) by A270, A499, A502; A511: len M1 >= 2 by TOPREAL1:def_8; len M2 >= 2 by TOPREAL1:def_8; then L~ M1 meets L~ M2 by A511, A509, A497, SPRECT_2:29; then L~ M1 meets (L~ RB1) \/ (LSeg (((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))),(M3 /. 1))) by A498, A503, XBOOLE_1:70; then L~ M1 meets L~ RB1 by A494, A504, XBOOLE_1:70; then L~ M1 meets L~ Red1 by A304, A510, XBOOLE_1:70; then L~ M1 meets L~ Red by A264, JORDAN3:41, XBOOLE_1:63; hence contradiction by A58, A245, A506, SPRECT_3:18, XBOOLE_1:63; ::_thesis: verum end; end; end; Lm2: for f being non constant standard special_circular_sequence st f /. 1 = N-min (L~ f) holds LeftComp f <> RightComp f proof let f be non constant standard special_circular_sequence; ::_thesis: ( f /. 1 = N-min (L~ f) implies LeftComp f <> RightComp f ) assume A1: f /. 1 = N-min (L~ f) ; ::_thesis: LeftComp f <> RightComp f percases ( f is clockwise_oriented or Rev f is clockwise_oriented ) by REVROT_1:38; suppose f is clockwise_oriented ; ::_thesis: LeftComp f <> RightComp f hence LeftComp f <> RightComp f by A1, Lm1; ::_thesis: verum end; supposeA2: Rev f is clockwise_oriented ; ::_thesis: LeftComp f <> RightComp f A3: LeftComp (Rev f) = RightComp f by GOBOARD9:23; A4: RightComp (Rev f) = LeftComp f by GOBOARD9:24; N-min (L~ (Rev f)) = N-min (L~ f) by SPPOL_2:22 .= (Rev f) /. (len f) by A1, FINSEQ_5:65 .= (Rev f) /. (len (Rev f)) by FINSEQ_5:def_3 .= (Rev f) /. 1 by FINSEQ_6:def_1 ; hence LeftComp f <> RightComp f by A2, A3, A4, Lm1; ::_thesis: verum end; end; end; theorem :: SPRECT_4:6 for f being non constant standard special_circular_sequence holds LeftComp f <> RightComp f proof let f be non constant standard special_circular_sequence; ::_thesis: LeftComp f <> RightComp f set g = Rotate (f,(N-min (L~ f))); A1: L~ f = L~ (Rotate (f,(N-min (L~ f)))) by REVROT_1:33; N-min (L~ f) in rng f by SPRECT_2:39; then A2: (Rotate (f,(N-min (L~ f)))) /. 1 = N-min (L~ (Rotate (f,(N-min (L~ f))))) by A1, FINSEQ_6:92; A3: RightComp (Rotate (f,(N-min (L~ f)))) = RightComp f by REVROT_1:37; LeftComp (Rotate (f,(N-min (L~ f)))) = LeftComp f by REVROT_1:36; hence LeftComp f <> RightComp f by A2, A3, Lm2; ::_thesis: verum end;