:: VECTSP_2 semantic presentation begin Lm1: for L being non empty multLoopStr st L is well-unital holds 1. L = 1_ L proof let L be non empty multLoopStr ; ::_thesis: ( L is well-unital implies 1. L = 1_ L ) assume A1: L is well-unital ; ::_thesis: 1. L = 1_ L then for h being Element of L holds ( h * (1. L) = h & (1. L) * h = h ) by VECTSP_1:def_6; hence 1. L = 1_ L by A1, GROUP_1:def_4; ::_thesis: verum end; registration cluster non empty right_complementable strict unital distributive Abelian add-associative right_zeroed for doubleLoopStr ; existence ex b1 being non empty doubleLoopStr st ( b1 is strict & b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is unital & b1 is distributive ) proof set F = the strict Field; ( the strict Field is unital & the strict Field is distributive ) ; hence ex b1 being non empty doubleLoopStr st ( b1 is strict & b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is unital & b1 is distributive ) ; ::_thesis: verum end; end; definition let IT be non empty multLoopStr_0 ; attrIT is domRing-like means :Def1: :: VECTSP_2:def 1 for x, y being Element of IT holds ( not x * y = 0. IT or x = 0. IT or y = 0. IT ); end; :: deftheorem Def1 defines domRing-like VECTSP_2:def_1_:_ for IT being non empty multLoopStr_0 holds ( IT is domRing-like iff for x, y being Element of IT holds ( not x * y = 0. IT or x = 0. IT or y = 0. IT ) ); registration cluster non empty non degenerated right_complementable almost_left_invertible strict unital associative commutative right-distributive left-distributive right_unital well-unital distributive left_unital Abelian add-associative right_zeroed domRing-like for doubleLoopStr ; existence ex b1 being Ring st ( b1 is strict & not b1 is degenerated & b1 is commutative & b1 is almost_left_invertible & b1 is domRing-like ) proof set F = the strict Field; for x, y being Scalar of the strict Field holds ( not x * y = 0. the strict Field or x = 0. the strict Field or y = 0. the strict Field ) by VECTSP_1:12; then A1: the strict Field is domRing-like by Def1; reconsider F = the strict Field as Ring ; thus ex b1 being Ring st ( b1 is strict & not b1 is degenerated & b1 is commutative & b1 is almost_left_invertible & b1 is domRing-like ) by A1; ::_thesis: verum end; end; definition mode comRing is commutative Ring; end; definition mode domRing is non degenerated domRing-like comRing; end; theorem :: VECTSP_2:1 for F being Field holds F is domRing proof let F be Field; ::_thesis: F is domRing for x, y being Scalar of F holds ( not x * y = 0. F or x = 0. F or y = 0. F ) by VECTSP_1:12; hence F is domRing by Def1; ::_thesis: verum end; definition mode Skew-Field is non degenerated almost_left_invertible Ring; end; registration cluster non empty commutative left_unital -> non empty well-unital for multLoopStr ; coherence for b1 being non empty multLoopStr st b1 is commutative & b1 is left_unital holds b1 is well-unital proof let F be non empty multLoopStr ; ::_thesis: ( F is commutative & F is left_unital implies F is well-unital ) assume A1: ( F is commutative & F is left_unital ) ; ::_thesis: F is well-unital let x be Scalar of F; :: according to VECTSP_1:def_6 ::_thesis: ( x * (1. F) = x & (1. F) * x = x ) for F being non empty commutative multMagma for x, y being Element of F holds x * y = y * x ; then x * (1. F) = (1. F) * x by A1; hence ( x * (1. F) = x & (1. F) * x = x ) by A1, VECTSP_1:def_8; ::_thesis: verum end; cluster non empty commutative right_unital -> non empty well-unital for multLoopStr ; coherence for b1 being non empty multLoopStr st b1 is commutative & b1 is right_unital holds b1 is well-unital proof let F be non empty multLoopStr ; ::_thesis: ( F is commutative & F is right_unital implies F is well-unital ) assume A2: ( F is commutative & F is right_unital ) ; ::_thesis: F is well-unital let x be Element of F; :: according to VECTSP_1:def_6 ::_thesis: ( x * (1. F) = x & (1. F) * x = x ) for F being non empty commutative multMagma for x, y being Element of F holds x * y = y * x ; then x * (1. F) = (1. F) * x by A2; hence ( x * (1. F) = x & (1. F) * x = x ) by A2, VECTSP_1:def_4; ::_thesis: verum end; end; Lm2: for R being non empty right_complementable Abelian add-associative right_zeroed addLoopStr for x, y, z being Scalar of R st x + y = z holds x = z - y proof let R be non empty right_complementable Abelian add-associative right_zeroed addLoopStr ; ::_thesis: for x, y, z being Scalar of R st x + y = z holds x = z - y let x, y, z be Scalar of R; ::_thesis: ( x + y = z implies x = z - y ) assume A1: x + y = z ; ::_thesis: x = z - y thus x = x + (0. R) by RLVECT_1:4 .= x + (y + (- y)) by RLVECT_1:def_10 .= z - y by A1, RLVECT_1:def_3 ; ::_thesis: verum end; Lm3: for R being non empty right_complementable Abelian add-associative right_zeroed addLoopStr for x, z, y being Scalar of R st x = z - y holds x + y = z proof let R be non empty right_complementable Abelian add-associative right_zeroed addLoopStr ; ::_thesis: for x, z, y being Scalar of R st x = z - y holds x + y = z let x, z, y be Scalar of R; ::_thesis: ( x = z - y implies x + y = z ) assume x = z - y ; ::_thesis: x + y = z then x + y = z + (y + (- y)) by RLVECT_1:def_3 .= z + (0. R) by RLVECT_1:def_10 .= z by RLVECT_1:4 ; hence x + y = z ; ::_thesis: verum end; theorem :: VECTSP_2:2 for R being non empty right_complementable Abelian add-associative right_zeroed addLoopStr for x, y, z being Scalar of R holds ( ( x + y = z implies x = z - y ) & ( x = z - y implies x + y = z ) & ( x + y = z implies y = z - x ) & ( y = z - x implies x + y = z ) ) by Lm2, Lm3; theorem Th3: :: VECTSP_2:3 for R being non empty right_complementable add-associative right_zeroed addLoopStr for x being Element of R holds ( x = 0. R iff - x = 0. R ) proof let R be non empty right_complementable add-associative right_zeroed addLoopStr ; ::_thesis: for x being Element of R holds ( x = 0. R iff - x = 0. R ) let x be Element of R; ::_thesis: ( x = 0. R iff - x = 0. R ) thus ( x = 0. R implies - x = 0. R ) by RLVECT_1:12; ::_thesis: ( - x = 0. R implies x = 0. R ) assume - x = 0. R ; ::_thesis: x = 0. R then - (- x) = 0. R by RLVECT_1:12; hence x = 0. R by RLVECT_1:17; ::_thesis: verum end; theorem :: VECTSP_2:4 for R being non empty right_complementable Abelian add-associative right_zeroed addLoopStr for x, y being Element of R ex z being Element of R st ( x = y + z & x = z + y ) proof let R be non empty right_complementable Abelian add-associative right_zeroed addLoopStr ; ::_thesis: for x, y being Element of R ex z being Element of R st ( x = y + z & x = z + y ) let x, y be Element of R; ::_thesis: ex z being Element of R st ( x = y + z & x = z + y ) take z = (- y) + x; ::_thesis: ( x = y + z & x = z + y ) z + y = x + ((- y) + y) by RLVECT_1:def_3 .= x + (0. R) by RLVECT_1:5 .= x by RLVECT_1:4 ; hence ( x = y + z & x = z + y ) ; ::_thesis: verum end; theorem :: VECTSP_2:5 for F being non empty non degenerated right_complementable distributive add-associative right_zeroed doubleLoopStr for x, y being Element of F st x * y = 1. F holds ( x <> 0. F & y <> 0. F ) by VECTSP_1:6, VECTSP_1:7; theorem Th6: :: VECTSP_2:6 for SF being non empty non degenerated right_complementable almost_left_invertible associative well-unital distributive add-associative right_zeroed doubleLoopStr for x being Element of SF st x <> 0. SF holds ex y being Element of SF st x * y = 1. SF proof let SF be non empty non degenerated right_complementable almost_left_invertible associative right_unital well-unital distributive add-associative right_zeroed doubleLoopStr ; ::_thesis: for x being Element of SF st x <> 0. SF holds ex y being Element of SF st x * y = 1. SF let x be Element of SF; ::_thesis: ( x <> 0. SF implies ex y being Element of SF st x * y = 1. SF ) assume x <> 0. SF ; ::_thesis: ex y being Element of SF st x * y = 1. SF then consider y being Element of SF such that A1: y * x = 1. SF by VECTSP_1:def_9; take y ; ::_thesis: x * y = 1. SF y <> 0. SF by A1, VECTSP_1:7; then consider z being Element of SF such that A2: z * y = 1. SF by VECTSP_1:def_9; z = z * (y * x) by A1, VECTSP_1:def_6 .= (1. SF) * x by A2, GROUP_1:def_3 .= x by VECTSP_1:def_6 ; hence x * y = 1. SF by A2; ::_thesis: verum end; theorem Th7: :: VECTSP_2:7 for SF being non empty non degenerated right_complementable almost_left_invertible associative well-unital distributive add-associative right_zeroed doubleLoopStr for x, y being Element of SF st y * x = 1. SF holds x * y = 1. SF proof let SF be non empty non degenerated right_complementable almost_left_invertible associative well-unital distributive add-associative right_zeroed doubleLoopStr ; ::_thesis: for x, y being Element of SF st y * x = 1. SF holds x * y = 1. SF let x, y be Element of SF; ::_thesis: ( y * x = 1. SF implies x * y = 1. SF ) assume A1: y * x = 1. SF ; ::_thesis: x * y = 1. SF then x <> 0. SF by VECTSP_1:6; then consider z being Element of SF such that A2: x * z = 1_ SF by Th6; y = y * (x * z) by A2, VECTSP_1:def_4 .= (1_ SF) * z by A1, GROUP_1:def_3 .= z by VECTSP_1:def_8 ; hence x * y = 1. SF by A2; ::_thesis: verum end; theorem Th8: :: VECTSP_2:8 for SF being non empty non degenerated right_complementable almost_left_invertible associative well-unital distributive Abelian add-associative right_zeroed doubleLoopStr for x, y, z being Element of SF st x * y = x * z & x <> 0. SF holds y = z proof let SF be non empty non degenerated right_complementable almost_left_invertible associative well-unital distributive Abelian add-associative right_zeroed doubleLoopStr ; ::_thesis: for x, y, z being Element of SF st x * y = x * z & x <> 0. SF holds y = z let x, y, z be Element of SF; ::_thesis: ( x * y = x * z & x <> 0. SF implies y = z ) assume that A1: x * y = x * z and A2: x <> 0. SF ; ::_thesis: y = z consider u being Element of SF such that A3: x * u = 1_ SF by A2, Th6; A4: u * x = 1_ SF by A3, Th7; then y = (u * x) * y by VECTSP_1:def_8 .= u * (x * z) by A1, GROUP_1:def_3 .= (1_ SF) * z by A4, GROUP_1:def_3 .= z by VECTSP_1:def_8 ; hence y = z ; ::_thesis: verum end; definition let SF be non empty non degenerated right_complementable almost_left_invertible associative well-unital distributive add-associative right_zeroed doubleLoopStr ; let x be Element of SF; assume A1: x <> 0. SF ; redefine func x " means :Def2: :: VECTSP_2:def 2 it * x = 1. SF; compatibility for b1 being Element of the carrier of SF holds ( b1 = x " iff b1 * x = 1. SF ) proof let IT be Element of SF; ::_thesis: ( IT = x " iff IT * x = 1. SF ) A2: x is left_invertible by A1, ALGSTR_0:def_39; then consider y being Element of SF such that A3: y * x = 1. SF by ALGSTR_0:def_27; x is right_invertible proof take y ; :: according to ALGSTR_0:def_28 ::_thesis: x * y = 1. SF thus x * y = 1. SF by A3, Th7; ::_thesis: verum end; then consider x1 being Element of SF such that A4: x * x1 = 1. SF by ALGSTR_0:def_28; x is right_mult-cancelable proof let y, z be Element of SF; :: according to ALGSTR_0:def_21 ::_thesis: ( not y * x = z * x or y = z ) assume A5: y * x = z * x ; ::_thesis: y = z thus y = y * (1. SF) by VECTSP_1:def_6 .= (z * x) * x1 by A4, A5, GROUP_1:def_3 .= z * (1. SF) by A4, GROUP_1:def_3 .= z by VECTSP_1:def_6 ; ::_thesis: verum end; hence ( IT = x " iff IT * x = 1. SF ) by A2, ALGSTR_0:def_35; ::_thesis: verum end; end; :: deftheorem Def2 defines " VECTSP_2:def_2_:_ for SF being non empty non degenerated right_complementable almost_left_invertible associative well-unital distributive add-associative right_zeroed doubleLoopStr for x being Element of SF st x <> 0. SF holds for b3 being Element of the carrier of SF holds ( b3 = x " iff b3 * x = 1. SF ); definition let SF be Skew-Field; let x, y be Scalar of SF; funcx / y -> Scalar of SF equals :: VECTSP_2:def 3 x * (y "); correctness coherence x * (y ") is Scalar of SF; ; end; :: deftheorem defines / VECTSP_2:def_3_:_ for SF being Skew-Field for x, y being Scalar of SF holds x / y = x * (y "); theorem Th9: :: VECTSP_2:9 for SF being Skew-Field for x being Scalar of SF st x <> 0. SF holds ( x * (x ") = 1. SF & (x ") * x = 1. SF ) proof let SF be Skew-Field; ::_thesis: for x being Scalar of SF st x <> 0. SF holds ( x * (x ") = 1. SF & (x ") * x = 1. SF ) let x be Scalar of SF; ::_thesis: ( x <> 0. SF implies ( x * (x ") = 1. SF & (x ") * x = 1. SF ) ) assume x <> 0. SF ; ::_thesis: ( x * (x ") = 1. SF & (x ") * x = 1. SF ) then (x ") * x = 1_ SF by Def2; hence ( x * (x ") = 1. SF & (x ") * x = 1. SF ) by Th7; ::_thesis: verum end; theorem Th10: :: VECTSP_2:10 for SF being Skew-Field for y, x being Scalar of SF st y * x = 1_ SF holds ( x = y " & y = x " ) proof let SF be Skew-Field; ::_thesis: for y, x being Scalar of SF st y * x = 1_ SF holds ( x = y " & y = x " ) let y, x be Scalar of SF; ::_thesis: ( y * x = 1_ SF implies ( x = y " & y = x " ) ) A1: ( y * x = 1_ SF implies y = x " ) proof assume A2: y * x = 1_ SF ; ::_thesis: y = x " then x <> 0. SF by VECTSP_1:6; hence y = x " by A2, Def2; ::_thesis: verum end; ( y * x = 1_ SF implies x = y " ) proof assume y * x = 1_ SF ; ::_thesis: x = y " then ( y <> 0. SF & x * y = 1_ SF ) by Th7, VECTSP_1:7; hence x = y " by Def2; ::_thesis: verum end; hence ( y * x = 1_ SF implies ( x = y " & y = x " ) ) by A1; ::_thesis: verum end; theorem Th11: :: VECTSP_2:11 for SF being Skew-Field for x, y being Scalar of SF st x <> 0. SF & y <> 0. SF holds (x ") * (y ") = (y * x) " proof let SF be Skew-Field; ::_thesis: for x, y being Scalar of SF st x <> 0. SF & y <> 0. SF holds (x ") * (y ") = (y * x) " let x, y be Scalar of SF; ::_thesis: ( x <> 0. SF & y <> 0. SF implies (x ") * (y ") = (y * x) " ) assume A1: x <> 0. SF ; ::_thesis: ( not y <> 0. SF or (x ") * (y ") = (y * x) " ) assume A2: y <> 0. SF ; ::_thesis: (x ") * (y ") = (y * x) " ((x ") * (y ")) * (y * x) = (x ") * ((y ") * (y * x)) by GROUP_1:def_3 .= (x ") * (((y ") * y) * x) by GROUP_1:def_3 .= (x ") * ((1_ SF) * x) by A2, Th9 .= (x ") * x by VECTSP_1:def_8 .= 1_ SF by A1, Th9 ; hence (x ") * (y ") = (y * x) " by Th10; ::_thesis: verum end; theorem :: VECTSP_2:12 for SF being Skew-Field for x, y being Scalar of SF holds ( not x * y = 0. SF or x = 0. SF or y = 0. SF ) proof let SF be Skew-Field; ::_thesis: for x, y being Scalar of SF holds ( not x * y = 0. SF or x = 0. SF or y = 0. SF ) let x, y be Scalar of SF; ::_thesis: ( not x * y = 0. SF or x = 0. SF or y = 0. SF ) now__::_thesis:_(_x_*_y_=_0._SF_&_x_<>_0._SF_implies_y_=_0._SF_) assume that A1: x * y = 0. SF and A2: x <> 0. SF ; ::_thesis: y = 0. SF x * y = x * (0. SF) by A1, VECTSP_1:6; hence y = 0. SF by A2, Th8; ::_thesis: verum end; hence ( not x * y = 0. SF or x = 0. SF or y = 0. SF ) ; ::_thesis: verum end; theorem Th13: :: VECTSP_2:13 for SF being Skew-Field for x being Scalar of SF st x <> 0. SF holds x " <> 0. SF proof let SF be Skew-Field; ::_thesis: for x being Scalar of SF st x <> 0. SF holds x " <> 0. SF let x be Scalar of SF; ::_thesis: ( x <> 0. SF implies x " <> 0. SF ) assume A1: x <> 0. SF ; ::_thesis: x " <> 0. SF assume x " = 0. SF ; ::_thesis: contradiction then x * (x ") = 0. SF by VECTSP_1:6; then 1. SF = 0. SF by A1, Th9; hence contradiction ; ::_thesis: verum end; theorem Th14: :: VECTSP_2:14 for SF being Skew-Field for x being Scalar of SF st x <> 0. SF holds (x ") " = x proof let SF be Skew-Field; ::_thesis: for x being Scalar of SF st x <> 0. SF holds (x ") " = x let x be Scalar of SF; ::_thesis: ( x <> 0. SF implies (x ") " = x ) assume A1: x <> 0. SF ; ::_thesis: (x ") " = x then A2: x " <> 0. SF by Th13; (x ") " = ((x ") ") * (1_ SF) by VECTSP_1:def_4 .= ((x ") ") * ((x ") * x) by A1, Th9 .= (((x ") ") * (x ")) * x by GROUP_1:def_3 ; then (x ") " = (1_ SF) * x by A2, Th9; hence (x ") " = x by VECTSP_1:def_8; ::_thesis: verum end; theorem Th15: :: VECTSP_2:15 for SF being Skew-Field for x being Scalar of SF st x <> 0. SF holds ( (1_ SF) / x = x " & (1_ SF) / (x ") = x ) proof let SF be Skew-Field; ::_thesis: for x being Scalar of SF st x <> 0. SF holds ( (1_ SF) / x = x " & (1_ SF) / (x ") = x ) let x be Scalar of SF; ::_thesis: ( x <> 0. SF implies ( (1_ SF) / x = x " & (1_ SF) / (x ") = x ) ) ( x <> 0. SF implies (1_ SF) / (x ") = x ) proof assume A1: x <> 0. SF ; ::_thesis: (1_ SF) / (x ") = x (1_ SF) / (x ") = (x ") " by VECTSP_1:def_8 .= x by A1, Th14 ; hence (1_ SF) / (x ") = x ; ::_thesis: verum end; hence ( x <> 0. SF implies ( (1_ SF) / x = x " & (1_ SF) / (x ") = x ) ) by VECTSP_1:def_8; ::_thesis: verum end; theorem :: VECTSP_2:16 for SF being Skew-Field for x being Scalar of SF st x <> 0. SF holds ( x * ((1_ SF) / x) = 1_ SF & ((1_ SF) / x) * x = 1_ SF ) proof let SF be Skew-Field; ::_thesis: for x being Scalar of SF st x <> 0. SF holds ( x * ((1_ SF) / x) = 1_ SF & ((1_ SF) / x) * x = 1_ SF ) let x be Scalar of SF; ::_thesis: ( x <> 0. SF implies ( x * ((1_ SF) / x) = 1_ SF & ((1_ SF) / x) * x = 1_ SF ) ) assume A1: x <> 0. SF ; ::_thesis: ( x * ((1_ SF) / x) = 1_ SF & ((1_ SF) / x) * x = 1_ SF ) hence x * ((1_ SF) / x) = x * (x ") by Th15 .= 1_ SF by A1, Th9 ; ::_thesis: ((1_ SF) / x) * x = 1_ SF thus ((1_ SF) / x) * x = (x ") * x by A1, Th15 .= 1_ SF by A1, Th9 ; ::_thesis: verum end; theorem :: VECTSP_2:17 for SF being Skew-Field for x being Scalar of SF st x <> 0. SF holds x / x = 1_ SF by Th9; theorem Th18: :: VECTSP_2:18 for SF being Skew-Field for y, z, x being Scalar of SF st y <> 0. SF & z <> 0. SF holds x / y = (x * z) / (y * z) proof let SF be Skew-Field; ::_thesis: for y, z, x being Scalar of SF st y <> 0. SF & z <> 0. SF holds x / y = (x * z) / (y * z) let y, z, x be Scalar of SF; ::_thesis: ( y <> 0. SF & z <> 0. SF implies x / y = (x * z) / (y * z) ) assume A1: y <> 0. SF ; ::_thesis: ( not z <> 0. SF or x / y = (x * z) / (y * z) ) assume A2: z <> 0. SF ; ::_thesis: x / y = (x * z) / (y * z) thus x / y = (x * (1_ SF)) * (y ") by VECTSP_1:def_4 .= (x * (z * (z "))) * (y ") by A2, Th9 .= ((x * z) * (z ")) * (y ") by GROUP_1:def_3 .= (x * z) * ((z ") * (y ")) by GROUP_1:def_3 .= (x * z) / (y * z) by A1, A2, Th11 ; ::_thesis: verum end; theorem Th19: :: VECTSP_2:19 for SF being Skew-Field for y, x being Scalar of SF st y <> 0. SF holds ( - (x / y) = (- x) / y & x / (- y) = - (x / y) ) proof let SF be Skew-Field; ::_thesis: for y, x being Scalar of SF st y <> 0. SF holds ( - (x / y) = (- x) / y & x / (- y) = - (x / y) ) let y, x be Scalar of SF; ::_thesis: ( y <> 0. SF implies ( - (x / y) = (- x) / y & x / (- y) = - (x / y) ) ) assume y <> 0. SF ; ::_thesis: ( - (x / y) = (- x) / y & x / (- y) = - (x / y) ) then A1: - y <> 0. SF by Th3; thus A2: - (x / y) = (- x) / y by VECTSP_1:9; ::_thesis: x / (- y) = - (x / y) - (1. SF) <> 0. SF by Th3; then x / (- y) = (x * (- (1_ SF))) / ((- y) * (- (1_ SF))) by A1, Th18; then x / (- y) = (- (x * (1_ SF))) / ((- y) * (- (1_ SF))) by VECTSP_1:8 .= (- x) / ((- y) * (- (1_ SF))) by VECTSP_1:def_4 .= (- x) / (- ((- y) * (1_ SF))) by VECTSP_1:8 .= (- x) / ((- (- y)) * (1_ SF)) by VECTSP_1:9 .= (- x) / (y * (1_ SF)) by RLVECT_1:17 .= - (x / y) by A2, VECTSP_1:def_4 ; hence x / (- y) = - (x / y) ; ::_thesis: verum end; theorem :: VECTSP_2:20 for SF being Skew-Field for z, x, y being Scalar of SF st z <> 0. SF holds ( (x / z) + (y / z) = (x + y) / z & (x / z) - (y / z) = (x - y) / z ) proof let SF be Skew-Field; ::_thesis: for z, x, y being Scalar of SF st z <> 0. SF holds ( (x / z) + (y / z) = (x + y) / z & (x / z) - (y / z) = (x - y) / z ) let z, x, y be Scalar of SF; ::_thesis: ( z <> 0. SF implies ( (x / z) + (y / z) = (x + y) / z & (x / z) - (y / z) = (x - y) / z ) ) ( z <> 0. SF implies (x / z) - (y / z) = (x - y) / z ) proof assume z <> 0. SF ; ::_thesis: (x / z) - (y / z) = (x - y) / z hence (x / z) - (y / z) = (x / z) + ((- y) / z) by Th19 .= (x - y) / z by VECTSP_1:def_7 ; ::_thesis: verum end; hence ( z <> 0. SF implies ( (x / z) + (y / z) = (x + y) / z & (x / z) - (y / z) = (x - y) / z ) ) by VECTSP_1:def_7; ::_thesis: verum end; theorem :: VECTSP_2:21 for SF being Skew-Field for y, z, x being Scalar of SF st y <> 0. SF & z <> 0. SF holds x / (y / z) = (x * z) / y proof let SF be Skew-Field; ::_thesis: for y, z, x being Scalar of SF st y <> 0. SF & z <> 0. SF holds x / (y / z) = (x * z) / y let y, z, x be Scalar of SF; ::_thesis: ( y <> 0. SF & z <> 0. SF implies x / (y / z) = (x * z) / y ) assume A1: y <> 0. SF ; ::_thesis: ( not z <> 0. SF or x / (y / z) = (x * z) / y ) assume A2: z <> 0. SF ; ::_thesis: x / (y / z) = (x * z) / y then z " <> 0. SF by Th13; hence x / (y / z) = x * (((z ") ") * (y ")) by A1, Th11 .= x * (z * (y ")) by A2, Th14 .= (x * z) / y by GROUP_1:def_3 ; ::_thesis: verum end; theorem :: VECTSP_2:22 for SF being Skew-Field for y, x being Scalar of SF st y <> 0. SF holds (x / y) * y = x proof let SF be Skew-Field; ::_thesis: for y, x being Scalar of SF st y <> 0. SF holds (x / y) * y = x let y, x be Scalar of SF; ::_thesis: ( y <> 0. SF implies (x / y) * y = x ) assume A1: y <> 0. SF ; ::_thesis: (x / y) * y = x thus (x / y) * y = x * ((y ") * y) by GROUP_1:def_3 .= x * (1_ SF) by A1, Th9 .= x by VECTSP_1:def_4 ; ::_thesis: verum end; definition let FS be 1-sorted ; attrc2 is strict ; struct RightModStr over FS -> addLoopStr ; aggrRightModStr(# carrier, addF, ZeroF, rmult #) -> RightModStr over FS; sel rmult c2 -> Function of [: the carrier of c2, the carrier of FS:], the carrier of c2; end; registration let FS be 1-sorted ; cluster non empty for RightModStr over FS; existence not for b1 being RightModStr over FS holds b1 is empty proof set A = the non empty set ; set a = the BinOp of the non empty set ; set Z = the Element of the non empty set ; set r = the Function of [: the non empty set , the carrier of FS:], the non empty set ; take RightModStr(# the non empty set , the BinOp of the non empty set , the Element of the non empty set , the Function of [: the non empty set , the carrier of FS:], the non empty set #) ; ::_thesis: not RightModStr(# the non empty set , the BinOp of the non empty set , the Element of the non empty set , the Function of [: the non empty set , the carrier of FS:], the non empty set #) is empty thus not the carrier of RightModStr(# the non empty set , the BinOp of the non empty set , the Element of the non empty set , the Function of [: the non empty set , the carrier of FS:], the non empty set #) is empty ; :: according to STRUCT_0:def_1 ::_thesis: verum end; end; registration let FS be 1-sorted ; let A be non empty set ; let a be BinOp of A; let Z be Element of A; let r be Function of [:A, the carrier of FS:],A; cluster RightModStr(# A,a,Z,r #) -> non empty ; coherence not RightModStr(# A,a,Z,r #) is empty ; end; definition let FS be non empty doubleLoopStr ; let RMS be non empty RightModStr over FS; mode Scalar of RMS is Element of FS; mode Vector of RMS is Element of RMS; end; definition let FS1, FS2 be 1-sorted ; attrc3 is strict ; struct BiModStr over FS1,FS2 -> VectSpStr over FS1, RightModStr over FS2; aggrBiModStr(# carrier, addF, ZeroF, lmult, rmult #) -> BiModStr over FS1,FS2; end; registration let FS1, FS2 be 1-sorted ; cluster non empty for BiModStr over FS1,FS2; existence not for b1 being BiModStr over FS1,FS2 holds b1 is empty proof set A = the non empty set ; set a = the BinOp of the non empty set ; set Z = the Element of the non empty set ; set l = the Function of [: the carrier of FS1, the non empty set :], the non empty set ; set r = the Function of [: the non empty set , the carrier of FS2:], the non empty set ; take BiModStr(# the non empty set , the BinOp of the non empty set , the Element of the non empty set , the Function of [: the carrier of FS1, the non empty set :], the non empty set , the Function of [: the non empty set , the carrier of FS2:], the non empty set #) ; ::_thesis: not BiModStr(# the non empty set , the BinOp of the non empty set , the Element of the non empty set , the Function of [: the carrier of FS1, the non empty set :], the non empty set , the Function of [: the non empty set , the carrier of FS2:], the non empty set #) is empty thus not the carrier of BiModStr(# the non empty set , the BinOp of the non empty set , the Element of the non empty set , the Function of [: the carrier of FS1, the non empty set :], the non empty set , the Function of [: the non empty set , the carrier of FS2:], the non empty set #) is empty ; :: according to STRUCT_0:def_1 ::_thesis: verum end; end; registration let FS1, FS2 be 1-sorted ; let A be non empty set ; let a be BinOp of A; let Z be Element of A; let l be Function of [: the carrier of FS1,A:],A; let r be Function of [:A, the carrier of FS2:],A; cluster BiModStr(# A,a,Z,l,r #) -> non empty ; coherence not BiModStr(# A,a,Z,l,r #) is empty ; end; definition let R be non empty right_complementable Abelian add-associative right_zeroed addLoopStr ; func AbGr R -> strict AbGroup equals :: VECTSP_2:def 4 addLoopStr(# the carrier of R, the addF of R,(0. R) #); coherence addLoopStr(# the carrier of R, the addF of R,(0. R) #) is strict AbGroup proof reconsider IT = addLoopStr(# the carrier of R, the addF of R,(0. R) #) as non empty addLoopStr ; A1: for x, y, z being Element of IT holds ( x + y = y + x & (x + y) + z = x + (y + z) & x + (0. IT) = x & ex v being Element of IT st x + v = 0. IT ) proof let x, y, z be Element of IT; ::_thesis: ( x + y = y + x & (x + y) + z = x + (y + z) & x + (0. IT) = x & ex v being Element of IT st x + v = 0. IT ) reconsider x9 = x, y9 = y, z9 = z as Scalar of R ; thus x + y = y9 + x9 by RLVECT_1:2 .= y + x ; ::_thesis: ( (x + y) + z = x + (y + z) & x + (0. IT) = x & ex v being Element of IT st x + v = 0. IT ) thus (x + y) + z = (x9 + y9) + z9 .= x9 + (y9 + z9) by RLVECT_1:def_3 .= x + (y + z) ; ::_thesis: ( x + (0. IT) = x & ex v being Element of IT st x + v = 0. IT ) thus x + (0. IT) = x9 + (0. R) .= x by RLVECT_1:4 ; ::_thesis: ex v being Element of IT st x + v = 0. IT consider b being Scalar of R such that A2: x9 + b = 0. R by ALGSTR_0:def_11; reconsider b9 = b as Element of IT ; take b9 ; ::_thesis: x + b9 = 0. IT thus x + b9 = 0. IT by A2; ::_thesis: verum end; IT is right_complementable proof let x be Element of IT; :: according to ALGSTR_0:def_16 ::_thesis: x is right_complementable reconsider x9 = x as Scalar of R ; consider b being Scalar of R such that A3: x9 + b = 0. R by ALGSTR_0:def_11; reconsider b9 = b as Element of IT ; take b9 ; :: according to ALGSTR_0:def_11 ::_thesis: x + b9 = 0. IT thus x + b9 = 0. IT by A3; ::_thesis: verum end; hence addLoopStr(# the carrier of R, the addF of R,(0. R) #) is strict AbGroup by A1, RLVECT_1:def_2, RLVECT_1:def_3, RLVECT_1:def_4; ::_thesis: verum end; end; :: deftheorem defines AbGr VECTSP_2:def_4_:_ for R being non empty right_complementable Abelian add-associative right_zeroed addLoopStr holds AbGr R = addLoopStr(# the carrier of R, the addF of R,(0. R) #); deffunc H1( Ring) -> VectSpStr over $1 = VectSpStr(# the carrier of $1, the addF of $1,(0. $1), the multF of $1 #); Lm4: for R being Ring holds ( H1(R) is Abelian & H1(R) is add-associative & H1(R) is right_zeroed & H1(R) is right_complementable ) proof let R be Ring; ::_thesis: ( H1(R) is Abelian & H1(R) is add-associative & H1(R) is right_zeroed & H1(R) is right_complementable ) A1: for x, y, z being Scalar of R for x9, y9, z9 being Element of H1(R) st x = x9 & y = y9 & z = z9 holds x + y = x9 + y9 ; thus H1(R) is Abelian ::_thesis: ( H1(R) is add-associative & H1(R) is right_zeroed & H1(R) is right_complementable ) proof let x, y be Element of H1(R); :: according to RLVECT_1:def_2 ::_thesis: x + y = y + x reconsider x9 = x, y9 = y as Scalar of R ; thus x + y = y9 + x9 by A1 .= y + x ; ::_thesis: verum end; thus H1(R) is add-associative ::_thesis: ( H1(R) is right_zeroed & H1(R) is right_complementable ) proof let x, y, z be Element of H1(R); :: according to RLVECT_1:def_3 ::_thesis: (x + y) + z = x + (y + z) reconsider x9 = x, y9 = y, z9 = z as Scalar of R ; thus (x + y) + z = (x9 + y9) + z9 .= x9 + (y9 + z9) by RLVECT_1:def_3 .= x + (y + z) ; ::_thesis: verum end; thus H1(R) is right_zeroed ::_thesis: H1(R) is right_complementable proof let x be Element of H1(R); :: according to RLVECT_1:def_4 ::_thesis: x + (0. H1(R)) = x reconsider x9 = x as Scalar of R ; thus x + (0. H1(R)) = x9 + (0. R) .= x by RLVECT_1:4 ; ::_thesis: verum end; let x be Element of H1(R); :: according to ALGSTR_0:def_16 ::_thesis: x is right_complementable reconsider x9 = x as Scalar of R ; consider b9 being Scalar of R such that A2: x9 + b9 = 0. R by ALGSTR_0:def_11; reconsider b = b9 as Element of H1(R) ; take b ; :: according to ALGSTR_0:def_11 ::_thesis: x + b = 0. H1(R) thus x + b = 0. H1(R) by A2; ::_thesis: verum end; registration let R be Ring; cluster non empty right_complementable strict Abelian add-associative right_zeroed for VectSpStr over R; existence ex b1 being non empty VectSpStr over R st ( b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is strict ) proof ( H1(R) is Abelian & H1(R) is add-associative & H1(R) is right_zeroed & H1(R) is right_complementable ) by Lm4; hence ex b1 being non empty VectSpStr over R st ( b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is strict ) ; ::_thesis: verum end; end; definition let R be Ring; func LeftModule R -> non empty right_complementable strict Abelian add-associative right_zeroed VectSpStr over R equals :: VECTSP_2:def 5 VectSpStr(# the carrier of R, the addF of R,(0. R), the multF of R #); coherence VectSpStr(# the carrier of R, the addF of R,(0. R), the multF of R #) is non empty right_complementable strict Abelian add-associative right_zeroed VectSpStr over R by Lm4; end; :: deftheorem defines LeftModule VECTSP_2:def_5_:_ for R being Ring holds LeftModule R = VectSpStr(# the carrier of R, the addF of R,(0. R), the multF of R #); deffunc H2( Ring) -> RightModStr over $1 = RightModStr(# the carrier of $1, the addF of $1,(0. $1), the multF of $1 #); Lm5: for R being Ring holds ( H2(R) is Abelian & H2(R) is add-associative & H2(R) is right_zeroed & H2(R) is right_complementable ) proof let R be Ring; ::_thesis: ( H2(R) is Abelian & H2(R) is add-associative & H2(R) is right_zeroed & H2(R) is right_complementable ) A1: for x, y, z being Scalar of R for x9, y9, z9 being Element of H2(R) st x = x9 & y = y9 & z = z9 holds x + y = x9 + y9 ; thus H2(R) is Abelian ::_thesis: ( H2(R) is add-associative & H2(R) is right_zeroed & H2(R) is right_complementable ) proof let x, y be Element of H2(R); :: according to RLVECT_1:def_2 ::_thesis: x + y = y + x reconsider x9 = x, y9 = y as Scalar of R ; thus x + y = y9 + x9 by A1 .= y + x ; ::_thesis: verum end; thus H2(R) is add-associative ::_thesis: ( H2(R) is right_zeroed & H2(R) is right_complementable ) proof let x, y, z be Element of H2(R); :: according to RLVECT_1:def_3 ::_thesis: (x + y) + z = x + (y + z) reconsider x9 = x, y9 = y, z9 = z as Scalar of R ; thus (x + y) + z = (x9 + y9) + z9 .= x9 + (y9 + z9) by RLVECT_1:def_3 .= x + (y + z) ; ::_thesis: verum end; thus H2(R) is right_zeroed ::_thesis: H2(R) is right_complementable proof let x be Element of H2(R); :: according to RLVECT_1:def_4 ::_thesis: x + (0. H2(R)) = x reconsider x9 = x as Scalar of R ; thus x + (0. H2(R)) = x9 + (0. R) .= x by RLVECT_1:4 ; ::_thesis: verum end; let x be Element of H2(R); :: according to ALGSTR_0:def_16 ::_thesis: x is right_complementable reconsider x9 = x as Scalar of R ; consider b9 being Scalar of R such that A2: x9 + b9 = 0. R by ALGSTR_0:def_11; reconsider b = b9 as Element of H2(R) ; take b ; :: according to ALGSTR_0:def_11 ::_thesis: x + b = 0. H2(R) thus x + b = 0. H2(R) by A2; ::_thesis: verum end; registration let R be Ring; cluster non empty right_complementable Abelian add-associative right_zeroed strict for RightModStr over R; existence ex b1 being non empty RightModStr over R st ( b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is strict ) proof ( H2(R) is Abelian & H2(R) is add-associative & H2(R) is right_zeroed & H2(R) is right_complementable ) by Lm5; hence ex b1 being non empty RightModStr over R st ( b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is strict ) ; ::_thesis: verum end; end; definition let R be Ring; func RightModule R -> non empty right_complementable Abelian add-associative right_zeroed strict RightModStr over R equals :: VECTSP_2:def 6 RightModStr(# the carrier of R, the addF of R,(0. R), the multF of R #); coherence RightModStr(# the carrier of R, the addF of R,(0. R), the multF of R #) is non empty right_complementable Abelian add-associative right_zeroed strict RightModStr over R by Lm5; end; :: deftheorem defines RightModule VECTSP_2:def_6_:_ for R being Ring holds RightModule R = RightModStr(# the carrier of R, the addF of R,(0. R), the multF of R #); definition let R be non empty 1-sorted ; let V be non empty RightModStr over R; let x be Element of R; let v be Element of V; funcv * x -> Element of V equals :: VECTSP_2:def 7 the rmult of V . (v,x); coherence the rmult of V . (v,x) is Element of V ; end; :: deftheorem defines * VECTSP_2:def_7_:_ for R being non empty 1-sorted for V being non empty RightModStr over R for x being Element of R for v being Element of V holds v * x = the rmult of V . (v,x); deffunc H3( Ring, Ring) -> BiModStr over $1,$2 = BiModStr(# 1,op2,op0,(pr2 ( the carrier of $1,1)),(pr1 (1, the carrier of $2)) #); Lm6: for R1, R2 being Ring holds ( H3(R1,R2) is Abelian & H3(R1,R2) is add-associative & H3(R1,R2) is right_zeroed & H3(R1,R2) is right_complementable ) proof let R1, R2 be Ring; ::_thesis: ( H3(R1,R2) is Abelian & H3(R1,R2) is add-associative & H3(R1,R2) is right_zeroed & H3(R1,R2) is right_complementable ) set G = BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #); A1: now__::_thesis:_for_x,_y,_z_being_Element_of_BiModStr(#_1,op2,op0,(pr2_(_the_carrier_of_R1,1)),(pr1_(1,_the_carrier_of_R2))_#)_holds_ (_x_+_y_=_y_+_x_&_(x_+_y)_+_z_=_x_+_(y_+_z)_&_x_+_(0._BiModStr(#_1,op2,op0,(pr2_(_the_carrier_of_R1,1)),(pr1_(1,_the_carrier_of_R2))_#))_=_x_&_ex_x9_being_Element_of_BiModStr(#_1,op2,op0,(pr2_(_the_carrier_of_R1,1)),(pr1_(1,_the_carrier_of_R2))_#)_st_x_+_x9_=_0._BiModStr(#_1,op2,op0,(pr2_(_the_carrier_of_R1,1)),(pr1_(1,_the_carrier_of_R2))_#)_) let x, y, z be Element of BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #); ::_thesis: ( x + y = y + x & (x + y) + z = x + (y + z) & x + (0. BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #)) = x & ex x9 being Element of BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #) st x + x9 = 0. BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #) ) A2: x + (0. BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #)) = {} by CARD_1:49, TARSKI:def_1; ( x + y = {} & (x + y) + z = {} ) by CARD_1:49, TARSKI:def_1; hence ( x + y = y + x & (x + y) + z = x + (y + z) & x + (0. BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #)) = x & ex x9 being Element of BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #) st x + x9 = 0. BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #) ) by A2, CARD_1:49, TARSKI:def_1; ::_thesis: verum end; BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #) is right_complementable proof let x be Element of BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #); :: according to ALGSTR_0:def_16 ::_thesis: x is right_complementable take x ; :: according to ALGSTR_0:def_11 ::_thesis: x + x = 0. BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #) thus x + x = 0. BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #) by CARD_1:49, TARSKI:def_1; ::_thesis: verum end; hence ( H3(R1,R2) is Abelian & H3(R1,R2) is add-associative & H3(R1,R2) is right_zeroed & H3(R1,R2) is right_complementable ) by A1, RLVECT_1:def_2, RLVECT_1:def_3, RLVECT_1:def_4; ::_thesis: verum end; registration let R1, R2 be Ring; cluster non empty right_complementable Abelian add-associative right_zeroed strict for BiModStr over R1,R2; existence ex b1 being non empty BiModStr over R1,R2 st ( b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is strict ) proof ( H3(R1,R2) is Abelian & H3(R1,R2) is add-associative & H3(R1,R2) is right_zeroed & H3(R1,R2) is right_complementable ) by Lm6; hence ex b1 being non empty BiModStr over R1,R2 st ( b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is strict ) ; ::_thesis: verum end; end; definition let R1, R2 be Ring; func BiModule (R1,R2) -> non empty right_complementable Abelian add-associative right_zeroed strict BiModStr over R1,R2 equals :: VECTSP_2:def 8 BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #); coherence BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #) is non empty right_complementable Abelian add-associative right_zeroed strict BiModStr over R1,R2 by Lm6; end; :: deftheorem defines BiModule VECTSP_2:def_8_:_ for R1, R2 being Ring holds BiModule (R1,R2) = BiModStr(# 1,op2,op0,(pr2 ( the carrier of R1,1)),(pr1 (1, the carrier of R2)) #); theorem Th23: :: VECTSP_2:23 for R being Ring for x, y being Scalar of R for v, w being Vector of (LeftModule R) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. R) * v = v ) proof let R be Ring; ::_thesis: for x, y being Scalar of R for v, w being Vector of (LeftModule R) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. R) * v = v ) set MLT = the multF of R; set LS = VectSpStr(# the carrier of R, the addF of R,(0. R), the multF of R #); for x, y being Scalar of R for v, w being Vector of VectSpStr(# the carrier of R, the addF of R,(0. R), the multF of R #) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R) * v = v ) proof let x, y be Scalar of R; ::_thesis: for v, w being Vector of VectSpStr(# the carrier of R, the addF of R,(0. R), the multF of R #) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R) * v = v ) let v, w be Vector of VectSpStr(# the carrier of R, the addF of R,(0. R), the multF of R #); ::_thesis: ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R) * v = v ) reconsider v9 = v, w9 = w as Scalar of R ; thus x * (v + w) = x * (v9 + w9) .= (x * v9) + (x * w9) by VECTSP_1:def_7 .= (x * v) + (x * w) ; ::_thesis: ( (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R) * v = v ) thus (x + y) * v = (x + y) * v9 .= (x * v9) + (y * v9) by VECTSP_1:def_7 .= (x * v) + (y * v) ; ::_thesis: ( (x * y) * v = x * (y * v) & (1_ R) * v = v ) thus (x * y) * v = (x * y) * v9 .= x * (y * v9) by GROUP_1:def_3 .= x * (y * v) ; ::_thesis: (1_ R) * v = v thus (1_ R) * v = (1_ R) * v9 .= v by VECTSP_1:def_8 ; ::_thesis: verum end; hence for x, y being Scalar of R for v, w being Vector of (LeftModule R) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1. R) * v = v ) ; ::_thesis: verum end; registration let R be Ring; cluster non empty right_complementable strict vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed for VectSpStr over R; existence ex b1 being non empty VectSpStr over R st ( b1 is vector-distributive & b1 is scalar-distributive & b1 is scalar-associative & b1 is scalar-unital & b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is strict ) proof take LeftModule R ; ::_thesis: ( LeftModule R is vector-distributive & LeftModule R is scalar-distributive & LeftModule R is scalar-associative & LeftModule R is scalar-unital & LeftModule R is Abelian & LeftModule R is add-associative & LeftModule R is right_zeroed & LeftModule R is right_complementable & LeftModule R is strict ) thus for x being Scalar of R for v, w being Vector of (LeftModule R) holds x * (v + w) = (x * v) + (x * w) by Th23; :: according to VECTSP_1:def_14 ::_thesis: ( LeftModule R is scalar-distributive & LeftModule R is scalar-associative & LeftModule R is scalar-unital & LeftModule R is Abelian & LeftModule R is add-associative & LeftModule R is right_zeroed & LeftModule R is right_complementable & LeftModule R is strict ) thus for x, y being Scalar of R for v being Vector of (LeftModule R) holds (x + y) * v = (x * v) + (y * v) by Th23; :: according to VECTSP_1:def_15 ::_thesis: ( LeftModule R is scalar-associative & LeftModule R is scalar-unital & LeftModule R is Abelian & LeftModule R is add-associative & LeftModule R is right_zeroed & LeftModule R is right_complementable & LeftModule R is strict ) thus for x, y being Scalar of R for v being Vector of (LeftModule R) holds (x * y) * v = x * (y * v) by Th23; :: according to VECTSP_1:def_16 ::_thesis: ( LeftModule R is scalar-unital & LeftModule R is Abelian & LeftModule R is add-associative & LeftModule R is right_zeroed & LeftModule R is right_complementable & LeftModule R is strict ) thus for v being Vector of (LeftModule R) holds (1. R) * v = v by Th23; :: according to VECTSP_1:def_17 ::_thesis: ( LeftModule R is Abelian & LeftModule R is add-associative & LeftModule R is right_zeroed & LeftModule R is right_complementable & LeftModule R is strict ) thus ( LeftModule R is Abelian & LeftModule R is add-associative & LeftModule R is right_zeroed & LeftModule R is right_complementable & LeftModule R is strict ) ; ::_thesis: verum end; end; definition let R be Ring; mode LeftMod of R is non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed VectSpStr over R; end; Lm7: for R being Ring holds ( LeftModule R is vector-distributive & LeftModule R is scalar-distributive & LeftModule R is scalar-associative & LeftModule R is scalar-unital ) proof let R be Ring; ::_thesis: ( LeftModule R is vector-distributive & LeftModule R is scalar-distributive & LeftModule R is scalar-associative & LeftModule R is scalar-unital ) thus for x being Scalar of R for v, w being Vector of (LeftModule R) holds x * (v + w) = (x * v) + (x * w) by Th23; :: according to VECTSP_1:def_14 ::_thesis: ( LeftModule R is scalar-distributive & LeftModule R is scalar-associative & LeftModule R is scalar-unital ) thus for x, y being Scalar of R for v being Vector of (LeftModule R) holds (x + y) * v = (x * v) + (y * v) by Th23; :: according to VECTSP_1:def_15 ::_thesis: ( LeftModule R is scalar-associative & LeftModule R is scalar-unital ) thus for x, y being Scalar of R for v being Vector of (LeftModule R) holds (x * y) * v = x * (y * v) by Th23; :: according to VECTSP_1:def_16 ::_thesis: LeftModule R is scalar-unital thus for v being Vector of (LeftModule R) holds (1. R) * v = v by Th23; :: according to VECTSP_1:def_17 ::_thesis: verum end; registration let R be Ring; cluster LeftModule R -> non empty right_complementable strict vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed ; coherence ( LeftModule R is Abelian & LeftModule R is add-associative & LeftModule R is right_zeroed & LeftModule R is right_complementable & LeftModule R is strict & LeftModule R is vector-distributive & LeftModule R is scalar-distributive & LeftModule R is scalar-associative & LeftModule R is scalar-unital ) by Lm7; end; theorem Th24: :: VECTSP_2:24 for R being Ring for x, y being Scalar of R for v, w being Vector of (RightModule R) holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) proof let R be Ring; ::_thesis: for x, y being Scalar of R for v, w being Vector of (RightModule R) holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) set MLT = the multF of R; set LS = RightModStr(# the carrier of R, the addF of R,(0. R), the multF of R #); for x, y being Scalar of R for v, w being Vector of RightModStr(# the carrier of R, the addF of R,(0. R), the multF of R #) holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) proof let x, y be Scalar of R; ::_thesis: for v, w being Vector of RightModStr(# the carrier of R, the addF of R,(0. R), the multF of R #) holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) let v, w be Vector of RightModStr(# the carrier of R, the addF of R,(0. R), the multF of R #); ::_thesis: ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) reconsider v9 = v, w9 = w as Scalar of R ; thus (v + w) * x = (v9 + w9) * x .= (v9 * x) + (w9 * x) by VECTSP_1:def_7 .= (v * x) + (w * x) ; ::_thesis: ( v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) thus v * (x + y) = v9 * (x + y) .= (v9 * x) + (v9 * y) by VECTSP_1:def_7 .= (v * x) + (v * y) ; ::_thesis: ( v * (y * x) = (v * y) * x & v * (1_ R) = v ) thus v * (y * x) = v9 * (y * x) .= (v9 * y) * x by GROUP_1:def_3 .= (v * y) * x ; ::_thesis: v * (1_ R) = v thus v * (1_ R) = v9 * (1_ R) .= v by VECTSP_1:def_4 ; ::_thesis: verum end; hence for x, y being Scalar of R for v, w being Vector of (RightModule R) holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) ; ::_thesis: verum end; definition let R be non empty doubleLoopStr ; let IT be non empty RightModStr over R; attrIT is RightMod-like means :Def9: :: VECTSP_2:def 9 for x, y being Scalar of R for v, w being Vector of IT holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ); end; :: deftheorem Def9 defines RightMod-like VECTSP_2:def_9_:_ for R being non empty doubleLoopStr for IT being non empty RightModStr over R holds ( IT is RightMod-like iff for x, y being Scalar of R for v, w being Vector of IT holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) ); registration let R be Ring; cluster non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like for RightModStr over R; existence ex b1 being non empty RightModStr over R st ( b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is RightMod-like & b1 is strict ) proof take RightModule R ; ::_thesis: ( RightModule R is Abelian & RightModule R is add-associative & RightModule R is right_zeroed & RightModule R is right_complementable & RightModule R is RightMod-like & RightModule R is strict ) thus ( RightModule R is Abelian & RightModule R is add-associative & RightModule R is right_zeroed & RightModule R is right_complementable ) ; ::_thesis: ( RightModule R is RightMod-like & RightModule R is strict ) thus for x, y being Scalar of R for v, w being Vector of (RightModule R) holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) by Th24; :: according to VECTSP_2:def_9 ::_thesis: RightModule R is strict thus RightModule R is strict ; ::_thesis: verum end; end; definition let R be Ring; mode RightMod of R is non empty right_complementable Abelian add-associative right_zeroed RightMod-like RightModStr over R; end; Lm8: for R being Ring holds RightModule R is RightMod-like proof let R be Ring; ::_thesis: RightModule R is RightMod-like let x, y be Scalar of R; :: according to VECTSP_2:def_9 ::_thesis: for v, w being Vector of (RightModule R) holds ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) let v, w be Vector of (RightModule R); ::_thesis: ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) thus ( (v + w) * x = (v * x) + (w * x) & v * (x + y) = (v * x) + (v * y) & v * (y * x) = (v * y) * x & v * (1_ R) = v ) by Th24; ::_thesis: verum end; registration let R be Ring; cluster RightModule R -> non empty right_complementable Abelian add-associative right_zeroed strict RightMod-like ; coherence ( RightModule R is Abelian & RightModule R is add-associative & RightModule R is right_zeroed & RightModule R is right_complementable & RightModule R is RightMod-like ) by Lm8; end; Lm9: for R1, R2 being Ring for x, y being Scalar of R1 for p, q being Scalar of R2 for v, w being Vector of (BiModule (R1,R2)) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v & (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) proof let R1, R2 be Ring; ::_thesis: for x, y being Scalar of R1 for p, q being Scalar of R2 for v, w being Vector of (BiModule (R1,R2)) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v & (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) set a = {} ; set G = BiModule (R1,R2); let x, y be Scalar of R1; ::_thesis: for p, q being Scalar of R2 for v, w being Vector of (BiModule (R1,R2)) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v & (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) let p, q be Scalar of R2; ::_thesis: for v, w being Vector of (BiModule (R1,R2)) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v & (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) let v, w be Vector of (BiModule (R1,R2)); ::_thesis: ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v & (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) A1: ( (x * y) * v = {} & (1_ R1) * v = {} ) by CARD_1:49, TARSKI:def_1; ( x * (v + w) = {} & (x + y) * v = {} ) by CARD_1:49, TARSKI:def_1; hence ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v ) by A1, CARD_1:49, TARSKI:def_1; ::_thesis: ( (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) A2: ( v * (q * p) = {} & v * (1_ R2) = {} ) by CARD_1:49, TARSKI:def_1; A3: x * (v * p) = {} by CARD_1:49, TARSKI:def_1; ( (v + w) * p = {} & v * (p + q) = {} ) by CARD_1:49, TARSKI:def_1; hence ( (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) by A2, A3, CARD_1:49, TARSKI:def_1; ::_thesis: verum end; definition let R1, R2 be Ring; let IT be non empty BiModStr over R1,R2; attrIT is BiMod-like means :Def10: :: VECTSP_2:def 10 for x being Scalar of R1 for p being Scalar of R2 for v being Vector of IT holds x * (v * p) = (x * v) * p; end; :: deftheorem Def10 defines BiMod-like VECTSP_2:def_10_:_ for R1, R2 being Ring for IT being non empty BiModStr over R1,R2 holds ( IT is BiMod-like iff for x being Scalar of R1 for p being Scalar of R2 for v being Vector of IT holds x * (v * p) = (x * v) * p ); registration let R1, R2 be Ring; cluster non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed strict RightMod-like BiMod-like for BiModStr over R1,R2; existence ex b1 being non empty BiModStr over R1,R2 st ( b1 is Abelian & b1 is add-associative & b1 is right_zeroed & b1 is right_complementable & b1 is RightMod-like & b1 is vector-distributive & b1 is scalar-distributive & b1 is scalar-associative & b1 is scalar-unital & b1 is BiMod-like & b1 is strict ) proof take BiModule (R1,R2) ; ::_thesis: ( BiModule (R1,R2) is Abelian & BiModule (R1,R2) is add-associative & BiModule (R1,R2) is right_zeroed & BiModule (R1,R2) is right_complementable & BiModule (R1,R2) is RightMod-like & BiModule (R1,R2) is vector-distributive & BiModule (R1,R2) is scalar-distributive & BiModule (R1,R2) is scalar-associative & BiModule (R1,R2) is scalar-unital & BiModule (R1,R2) is BiMod-like & BiModule (R1,R2) is strict ) thus ( BiModule (R1,R2) is Abelian & BiModule (R1,R2) is add-associative & BiModule (R1,R2) is right_zeroed & BiModule (R1,R2) is right_complementable ) ; ::_thesis: ( BiModule (R1,R2) is RightMod-like & BiModule (R1,R2) is vector-distributive & BiModule (R1,R2) is scalar-distributive & BiModule (R1,R2) is scalar-associative & BiModule (R1,R2) is scalar-unital & BiModule (R1,R2) is BiMod-like & BiModule (R1,R2) is strict ) for x, y being Scalar of R1 for p, q being Scalar of R2 for v, w being Vector of (BiModule (R1,R2)) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v & (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) by Lm9; hence ( BiModule (R1,R2) is RightMod-like & BiModule (R1,R2) is vector-distributive & BiModule (R1,R2) is scalar-distributive & BiModule (R1,R2) is scalar-associative & BiModule (R1,R2) is scalar-unital & BiModule (R1,R2) is BiMod-like & BiModule (R1,R2) is strict ) by Def9, Def10, VECTSP_1:def_14, VECTSP_1:def_15, VECTSP_1:def_16, VECTSP_1:def_17; ::_thesis: verum end; end; definition let R1, R2 be Ring; mode BiMod of R1,R2 is non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed RightMod-like BiMod-like BiModStr over R1,R2; end; theorem :: VECTSP_2:25 for R1, R2 being Ring for V being non empty BiModStr over R1,R2 holds ( ( for x, y being Scalar of R1 for p, q being Scalar of R2 for v, w being Vector of V holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v & (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) ) iff ( V is RightMod-like & V is vector-distributive & V is scalar-distributive & V is scalar-associative & V is scalar-unital & V is BiMod-like ) ) by Def9, Def10, VECTSP_1:def_14, VECTSP_1:def_15, VECTSP_1:def_16, VECTSP_1:def_17; theorem Th26: :: VECTSP_2:26 for R1, R2 being Ring holds BiModule (R1,R2) is BiMod of R1,R2 proof let R1, R2 be Ring; ::_thesis: BiModule (R1,R2) is BiMod of R1,R2 for x, y being Scalar of R1 for p, q being Scalar of R2 for v, w being Vector of (BiModule (R1,R2)) holds ( x * (v + w) = (x * v) + (x * w) & (x + y) * v = (x * v) + (y * v) & (x * y) * v = x * (y * v) & (1_ R1) * v = v & (v + w) * p = (v * p) + (w * p) & v * (p + q) = (v * p) + (v * q) & v * (q * p) = (v * q) * p & v * (1_ R2) = v & x * (v * p) = (x * v) * p ) by Lm9; hence BiModule (R1,R2) is BiMod of R1,R2 by Def9, Def10, VECTSP_1:def_14, VECTSP_1:def_15, VECTSP_1:def_16, VECTSP_1:def_17; ::_thesis: verum end; registration let R1, R2 be Ring; cluster BiModule (R1,R2) -> non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed strict RightMod-like BiMod-like ; coherence ( BiModule (R1,R2) is Abelian & BiModule (R1,R2) is add-associative & BiModule (R1,R2) is right_zeroed & BiModule (R1,R2) is right_complementable & BiModule (R1,R2) is RightMod-like & BiModule (R1,R2) is vector-distributive & BiModule (R1,R2) is scalar-distributive & BiModule (R1,R2) is scalar-associative & BiModule (R1,R2) is scalar-unital & BiModule (R1,R2) is BiMod-like ) by Th26; end; theorem :: VECTSP_2:27 for L being non empty multLoopStr st L is well-unital holds 1. L = 1_ L by Lm1; begin theorem :: VECTSP_2:28 for K being non empty right_complementable right-distributive right_unital add-associative right_zeroed doubleLoopStr for a being Element of K holds a * (- (1. K)) = - a proof let K be non empty right_complementable right-distributive right_unital add-associative right_zeroed doubleLoopStr ; ::_thesis: for a being Element of K holds a * (- (1. K)) = - a let x be Element of K; ::_thesis: x * (- (1. K)) = - x thus x * (- (1. K)) = x * ((0. K) - (1. K)) by RLVECT_1:14 .= (x * (0. K)) - (x * (1. K)) by VECTSP_1:11 .= (0. K) - (x * (1. K)) by VECTSP_1:6 .= - (x * (1. K)) by RLVECT_1:14 .= - x by VECTSP_1:def_4 ; ::_thesis: verum end; theorem :: VECTSP_2:29 for K being non empty right_complementable left-distributive left_unital add-associative right_zeroed doubleLoopStr for a being Element of K holds (- (1. K)) * a = - a proof let K be non empty right_complementable left-distributive left_unital add-associative right_zeroed doubleLoopStr ; ::_thesis: for a being Element of K holds (- (1. K)) * a = - a let x be Element of K; ::_thesis: (- (1. K)) * x = - x thus (- (1. K)) * x = ((0. K) - (1. K)) * x by RLVECT_1:14 .= ((0. K) * x) - ((1. K) * x) by VECTSP_1:13 .= (0. K) - ((1. K) * x) by VECTSP_1:7 .= - ((1. K) * x) by RLVECT_1:14 .= - x by VECTSP_1:def_8 ; ::_thesis: verum end; theorem :: VECTSP_2:30 for F being non degenerated almost_left_invertible Ring for x being Scalar of F for V being non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital add-associative right_zeroed VectSpStr over F for v being Vector of V holds ( x * v = 0. V iff ( x = 0. F or v = 0. V ) ) proof let F be non degenerated almost_left_invertible Ring; ::_thesis: for x being Scalar of F for V being non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital add-associative right_zeroed VectSpStr over F for v being Vector of V holds ( x * v = 0. V iff ( x = 0. F or v = 0. V ) ) let x be Scalar of F; ::_thesis: for V being non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital add-associative right_zeroed VectSpStr over F for v being Vector of V holds ( x * v = 0. V iff ( x = 0. F or v = 0. V ) ) let V be non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital add-associative right_zeroed VectSpStr over F; ::_thesis: for v being Vector of V holds ( x * v = 0. V iff ( x = 0. F or v = 0. V ) ) let v be Vector of V; ::_thesis: ( x * v = 0. V iff ( x = 0. F or v = 0. V ) ) ( not x * v = 0. V or x = 0. F or v = 0. V ) proof assume x * v = 0. V ; ::_thesis: ( x = 0. F or v = 0. V ) then A1: ((x ") * x) * v = (x ") * (0. V) by VECTSP_1:def_16 .= 0. V by VECTSP_1:14 ; assume x <> 0. F ; ::_thesis: v = 0. V then 0. V = (1_ F) * v by A1, Th9; hence v = 0. V by VECTSP_1:def_17; ::_thesis: verum end; hence ( x * v = 0. V iff ( x = 0. F or v = 0. V ) ) by VECTSP_1:14; ::_thesis: verum end; theorem :: VECTSP_2:31 for F being non degenerated almost_left_invertible Ring for x being Scalar of F for V being non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital add-associative right_zeroed VectSpStr over F for v being Vector of V st x <> 0. F holds (x ") * (x * v) = v proof let F be non degenerated almost_left_invertible Ring; ::_thesis: for x being Scalar of F for V being non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital add-associative right_zeroed VectSpStr over F for v being Vector of V st x <> 0. F holds (x ") * (x * v) = v let x be Scalar of F; ::_thesis: for V being non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital add-associative right_zeroed VectSpStr over F for v being Vector of V st x <> 0. F holds (x ") * (x * v) = v let V be non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital add-associative right_zeroed VectSpStr over F; ::_thesis: for v being Vector of V st x <> 0. F holds (x ") * (x * v) = v let v be Vector of V; ::_thesis: ( x <> 0. F implies (x ") * (x * v) = v ) assume A1: x <> 0. F ; ::_thesis: (x ") * (x * v) = v (x ") * (x * v) = ((x ") * x) * v by VECTSP_1:def_16 .= (1_ F) * v by A1, Th9 .= v by VECTSP_1:def_17 ; hence (x ") * (x * v) = v ; ::_thesis: verum end; theorem Th32: :: VECTSP_2:32 for R being non empty right_complementable associative right_unital well-unital distributive Abelian add-associative right_zeroed doubleLoopStr for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R for x being Scalar of R for v being Vector of V holds ( v * (0. R) = 0. V & v * (- (1_ R)) = - v & (0. V) * x = 0. V ) proof let R be non empty right_complementable associative right_unital well-unital distributive Abelian add-associative right_zeroed doubleLoopStr ; ::_thesis: for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R for x being Scalar of R for v being Vector of V holds ( v * (0. R) = 0. V & v * (- (1_ R)) = - v & (0. V) * x = 0. V ) let V be non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R; ::_thesis: for x being Scalar of R for v being Vector of V holds ( v * (0. R) = 0. V & v * (- (1_ R)) = - v & (0. V) * x = 0. V ) let x be Scalar of R; ::_thesis: for v being Vector of V holds ( v * (0. R) = 0. V & v * (- (1_ R)) = - v & (0. V) * x = 0. V ) let v be Vector of V; ::_thesis: ( v * (0. R) = 0. V & v * (- (1_ R)) = - v & (0. V) * x = 0. V ) v + (v * (0. R)) = (v * (1_ R)) + (v * (0. R)) by Def9 .= v * ((1_ R) + (0. R)) by Def9 .= v * (1_ R) by RLVECT_1:4 .= v by Def9 .= v + (0. V) by RLVECT_1:4 ; hence A1: v * (0. R) = 0. V by RLVECT_1:8; ::_thesis: ( v * (- (1_ R)) = - v & (0. V) * x = 0. V ) (v * (- (1_ R))) + v = (v * (- (1_ R))) + (v * (1_ R)) by Def9 .= v * ((- (1_ R)) + (1_ R)) by Def9 .= 0. V by A1, RLVECT_1:5 ; then (v * (- (1_ R))) + (v + (- v)) = (0. V) + (- v) by RLVECT_1:def_3; then (0. V) + (- v) = (v * (- (1_ R))) + (0. V) by RLVECT_1:5 .= v * (- (1_ R)) by RLVECT_1:4 ; hence v * (- (1_ R)) = - v by RLVECT_1:4; ::_thesis: (0. V) * x = 0. V (0. V) * x = v * ((0. R) * x) by A1, Def9 .= 0. V by A1, VECTSP_1:7 ; hence (0. V) * x = 0. V ; ::_thesis: verum end; theorem Th33: :: VECTSP_2:33 for R being non empty right_complementable associative right_unital well-unital distributive Abelian add-associative right_zeroed doubleLoopStr for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R for x being Scalar of R for v, w being Vector of V holds ( - (v * x) = v * (- x) & w - (v * x) = w + (v * (- x)) ) proof let R be non empty right_complementable associative right_unital well-unital distributive Abelian add-associative right_zeroed doubleLoopStr ; ::_thesis: for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R for x being Scalar of R for v, w being Vector of V holds ( - (v * x) = v * (- x) & w - (v * x) = w + (v * (- x)) ) let V be non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R; ::_thesis: for x being Scalar of R for v, w being Vector of V holds ( - (v * x) = v * (- x) & w - (v * x) = w + (v * (- x)) ) let x be Scalar of R; ::_thesis: for v, w being Vector of V holds ( - (v * x) = v * (- x) & w - (v * x) = w + (v * (- x)) ) let v, w be Vector of V; ::_thesis: ( - (v * x) = v * (- x) & w - (v * x) = w + (v * (- x)) ) A1: - (v * x) = (v * x) * (- (1_ R)) by Th32 .= v * (x * (- (1_ R))) by Def9 .= v * (- (x * (1_ R))) by VECTSP_1:8 ; hence - (v * x) = v * (- x) by VECTSP_1:def_4; ::_thesis: w - (v * x) = w + (v * (- x)) thus w - (v * x) = w + (v * (- x)) by A1, VECTSP_1:def_4; ::_thesis: verum end; theorem Th34: :: VECTSP_2:34 for R being non empty right_complementable associative right_unital well-unital distributive Abelian add-associative right_zeroed doubleLoopStr for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R for x being Scalar of R for v being Vector of V holds (- v) * x = - (v * x) proof let R be non empty right_complementable associative right_unital well-unital distributive Abelian add-associative right_zeroed doubleLoopStr ; ::_thesis: for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R for x being Scalar of R for v being Vector of V holds (- v) * x = - (v * x) let V be non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R; ::_thesis: for x being Scalar of R for v being Vector of V holds (- v) * x = - (v * x) let x be Scalar of R; ::_thesis: for v being Vector of V holds (- v) * x = - (v * x) let v be Vector of V; ::_thesis: (- v) * x = - (v * x) (- v) * x = (v * (- (1_ R))) * x by Th32 .= v * ((- (1_ R)) * x) by Def9 .= v * (- ((1_ R) * x)) by VECTSP_1:9 .= v * (- x) by VECTSP_1:def_8 ; hence (- v) * x = - (v * x) by Th33; ::_thesis: verum end; theorem :: VECTSP_2:35 for R being non empty right_complementable associative right_unital well-unital distributive Abelian add-associative right_zeroed doubleLoopStr for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R for x being Scalar of R for v, w being Vector of V holds (v - w) * x = (v * x) - (w * x) proof let R be non empty right_complementable associative right_unital well-unital distributive Abelian add-associative right_zeroed doubleLoopStr ; ::_thesis: for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R for x being Scalar of R for v, w being Vector of V holds (v - w) * x = (v * x) - (w * x) let V be non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over R; ::_thesis: for x being Scalar of R for v, w being Vector of V holds (v - w) * x = (v * x) - (w * x) let x be Scalar of R; ::_thesis: for v, w being Vector of V holds (v - w) * x = (v * x) - (w * x) let v, w be Vector of V; ::_thesis: (v - w) * x = (v * x) - (w * x) (v - w) * x = (v + (- w)) * x .= (v * x) + ((- w) * x) by Def9 .= (v * x) + (- (w * x)) by Th34 ; hence (v - w) * x = (v * x) - (w * x) ; ::_thesis: verum end; theorem :: VECTSP_2:36 for F being non degenerated almost_left_invertible Ring for x being Scalar of F for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over F for v being Vector of V holds ( v * x = 0. V iff ( x = 0. F or v = 0. V ) ) proof let F be non degenerated almost_left_invertible Ring; ::_thesis: for x being Scalar of F for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over F for v being Vector of V holds ( v * x = 0. V iff ( x = 0. F or v = 0. V ) ) let x be Scalar of F; ::_thesis: for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over F for v being Vector of V holds ( v * x = 0. V iff ( x = 0. F or v = 0. V ) ) let V be non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over F; ::_thesis: for v being Vector of V holds ( v * x = 0. V iff ( x = 0. F or v = 0. V ) ) let v be Vector of V; ::_thesis: ( v * x = 0. V iff ( x = 0. F or v = 0. V ) ) ( not v * x = 0. V or x = 0. F or v = 0. V ) proof assume v * x = 0. V ; ::_thesis: ( x = 0. F or v = 0. V ) then A1: v * (x * (x ")) = (0. V) * (x ") by Def9 .= 0. V by Th32 ; assume x <> 0. F ; ::_thesis: v = 0. V then 0. V = v * (1_ F) by A1, Th9; hence v = 0. V by Def9; ::_thesis: verum end; hence ( v * x = 0. V iff ( x = 0. F or v = 0. V ) ) by Th32; ::_thesis: verum end; theorem :: VECTSP_2:37 for F being non degenerated almost_left_invertible Ring for x being Scalar of F for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over F for v being Vector of V st x <> 0. F holds (v * x) * (x ") = v proof let F be non degenerated almost_left_invertible Ring; ::_thesis: for x being Scalar of F for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over F for v being Vector of V st x <> 0. F holds (v * x) * (x ") = v let x be Scalar of F; ::_thesis: for V being non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over F for v being Vector of V st x <> 0. F holds (v * x) * (x ") = v let V be non empty right_complementable add-associative right_zeroed RightMod-like RightModStr over F; ::_thesis: for v being Vector of V st x <> 0. F holds (v * x) * (x ") = v let v be Vector of V; ::_thesis: ( x <> 0. F implies (v * x) * (x ") = v ) assume A1: x <> 0. F ; ::_thesis: (v * x) * (x ") = v (v * x) * (x ") = v * (x * (x ")) by Def9 .= v * (1_ F) by A1, Th9 .= v by Def9 ; hence (v * x) * (x ") = v ; ::_thesis: verum end;