:: COMPLSP1 semantic presentation

begin

definition
let n be ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) ;
func the_Complex_Space n -> ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopSpace) equals :: COMPLSP1:def 1
TopStruct(# (COMPLEX n : ( ( ) ( ) TopStruct ) ) : ( ( ) ( V15() V83() ) M13( COMPLEX : ( ( ) ( non empty V56() V62() V63() ) set ) )) ,(ComplexOpenSets n : ( ( ) ( ) TopStruct ) ) : ( ( ) ( ) Element of K10(K10((COMPLEX n : ( ( ) ( ) TopStruct ) ) : ( ( ) ( V15() V83() ) M13( COMPLEX : ( ( ) ( non empty V56() V62() V63() ) set ) )) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) #) : ( ( strict ) ( strict ) TopStruct ) ;
end;

registration
let n be ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) ;
cluster the_Complex_Space n : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict TopSpace-like ) ( strict TopSpace-like ) TopSpace) -> non empty strict TopSpace-like ;
end;

theorem :: COMPLSP1:1
for n being ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds the topology of (the_Complex_Space n : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopSpace) : ( ( ) ( non empty ) Element of K10(K10( the carrier of (the_Complex_Space b1 : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopSpace) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) = ComplexOpenSets n : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K10(K10((COMPLEX b1 : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty V15() V83() ) M13( COMPLEX : ( ( ) ( non empty V56() V62() V63() ) set ) )) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: COMPLSP1:2
for n being ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds the carrier of (the_Complex_Space n : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopSpace) : ( ( ) ( ) set ) = COMPLEX n : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty V15() V83() ) M13( COMPLEX : ( ( ) ( non empty V56() V62() V63() ) set ) )) ;

theorem :: COMPLSP1:3
for n being ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) )
for p being ( ( ) ( ) Point of ( ( ) ( ) set ) ) holds p : ( ( ) ( ) Point of ( ( ) ( ) set ) ) is ( ( ) ( V7() V10( NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) V11( COMPLEX : ( ( ) ( non empty V56() V62() V63() ) set ) ) V12() V46() V81() ) Element of COMPLEX n : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty V15() V83() ) M13( COMPLEX : ( ( ) ( non empty V56() V62() V63() ) set ) )) ) ;

theorem :: COMPLSP1:4
for n being ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) )
for V being ( ( ) ( ) Subset of )
for A being ( ( ) ( V15() ) Subset of ( ( ) ( non empty ) set ) ) st A : ( ( ) ( V15() ) Subset of ( ( ) ( non empty ) set ) ) = V : ( ( ) ( ) Subset of ) holds
( A : ( ( ) ( V15() ) Subset of ( ( ) ( non empty ) set ) ) is open iff V : ( ( ) ( ) Subset of ) is open ) ;

theorem :: COMPLSP1:5
for n being ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) )
for V being ( ( ) ( ) Subset of )
for A being ( ( ) ( V15() ) Subset of ( ( ) ( non empty ) set ) ) st A : ( ( ) ( V15() ) Subset of ( ( ) ( non empty ) set ) ) = V : ( ( ) ( ) Subset of ) holds
( A : ( ( ) ( V15() ) Subset of ( ( ) ( non empty ) set ) ) is closed iff V : ( ( ) ( ) Subset of ) is closed ) ;

theorem :: COMPLSP1:6
for n being ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds the_Complex_Space n : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopSpace) is T_2 ;

theorem :: COMPLSP1:7
for n being ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) holds the_Complex_Space n : ( ( ) ( V38() V39() V40() V41() V44() V45() V56() V57() V58() V59() V60() V61() ) Element of NAT : ( ( ) ( V56() V57() V58() V59() V60() V61() V62() ) Element of K10(REAL : ( ( ) ( non empty V56() V57() V58() V62() V63() ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( strict TopSpace-like ) ( non empty strict TopSpace-like ) TopSpace) is regular ;