begin
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
A being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like V164() )
PartFunc of ,) st
A : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
= dom f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like V164() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like V164() )
PartFunc of ,)
is_measurable_on A : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like V164() )
PartFunc of ,) is
nonnegative holds
(
Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like V164() )
PartFunc of ,) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
in REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) iff
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like V164() )
PartFunc of ,)
is_integrable_on M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
a,
b being ( ( ) (
ext-real V38()
real )
Real)
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) is
nonnegative &
a : ( ( ) (
ext-real V38()
real )
Real)
> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
b : ( ( ) (
ext-real V38()
real )
Real)
> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
(f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) to_power a : ( ( ) ( ext-real V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
(#) (f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) to_power b : ( ( ) ( ext-real V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
= f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
to_power (a : ( ( ) ( ext-real V38() real ) Real) + b : ( ( ) ( ext-real V38() real ) Real) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ;
theorem
for
seq1,
seq2 being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st ( for
n being ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
(
seq1 : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence)
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= (seq2 : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
to_power k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) &
seq2 : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence)
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
>= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) ) holds
(
seq1 : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence) is
convergent iff
seq2 : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence) is
convergent ) ;
theorem
for
seq being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence)
for
n,
m being ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) st
m : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
<= n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
(
abs (((Partial_Sums seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) - ((Partial_Sums seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) . m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
<= ((Partial_Sums (abs seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) ) : ( ( Function-like ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
- ((Partial_Sums (abs seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) ) : ( ( Function-like ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) . m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) &
abs (((Partial_Sums seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) - ((Partial_Sums seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) . m : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
<= (Partial_Sums (abs seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) ) : ( ( Function-like ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) ;
theorem
for
seq,
seq2 being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
seq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence) is
convergent & ( for
n being ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
seq2 : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence)
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= |.((lim seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) - (seq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Real_Sequence) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) .| : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
to_power k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) holds
(
seq2 : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence) is
convergent &
lim seq2 : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Real_Sequence) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) ;
begin
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
X : ( ( non
empty ) ( non
empty )
set )
= dom f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) & ( for
x being ( ( ) ( )
Element of
X : ( ( non
empty ) ( non
empty )
set ) ) st
x : ( ( ) ( )
Element of
b1 : ( ( non
empty ) ( non
empty )
set ) )
in dom f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) holds
0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
= f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
. x : ( ( ) ( )
Element of
b1 : ( ( non
empty ) ( non
empty )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) holds
(
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_integrable_on M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) ;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func Lp_Functions (
M,
k)
-> ( ( non
empty ) ( non
empty )
Subset of )
equals
{ f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) where f is ( ( Function-like ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) : ex Ef being ( ( ) ( ) Element of S : ( ( ) ( ) set ) ) st
( M : ( ( Function-like V41([:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) ) ) ( V1() V4([:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ) V5(X : ( ( ) ( ) set ) ) Function-like V41([:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) ) ) Element of bool [:[:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) . (Ef : ( ( ) ( ) Element of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( ) Element of bool X : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) = 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) & dom f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) : ( ( ) ( ) Element of bool X : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) = Ef : ( ( ) ( ) Element of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ) & f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) is_measurable_on Ef : ( ( ) ( ) Element of S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of X : ( ( non empty ) ( non empty ) set ) ) ) & (abs f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(X : ( ( ) ( ) set ) ) V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( Function-like V41([:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) ) ) ( V1() V4([:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ) V5(X : ( ( ) ( ) set ) ) Function-like V41([:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) ) ) Element of bool [:[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) : ( ( Function-like ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) is_integrable_on M : ( ( Function-like V41([:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) ) ) ( V1() V4([:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ) V5(X : ( ( ) ( ) set ) ) Function-like V41([:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) ) ) Element of bool [:[:X : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) ,X : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) : ( ( ) ( non empty ) set ) ) ) } ;
end;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
a,
b being ( ( ) (
ext-real V38()
real )
Real) st
b : ( ( ) (
ext-real V38()
real )
Real)
> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
((abs a : ( ( ) ( ext-real V38() real ) Real) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) to_power b : ( ( ) ( ext-real V38() real ) Real) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
(#) ((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power b : ( ( ) ( ext-real V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
= (abs (a : ( ( ) ( ext-real V38() real ) Real) (#) f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
to_power b : ( ( ) (
ext-real V38()
real )
Real) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
a,
b being ( ( ) (
ext-real V38()
real )
Real) st
a : ( ( ) (
ext-real V38()
real )
Real)
> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
b : ( ( ) (
ext-real V38()
real )
Real)
> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
(a : ( ( ) ( ext-real V38() real ) Real) to_power b : ( ( ) ( ext-real V38() real ) Real) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
(#) ((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power b : ( ( ) ( ext-real V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
= (a : ( ( ) ( ext-real V38() real ) Real) (#) (abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
to_power b : ( ( ) (
ext-real V38()
real )
Real) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) holds
(
(abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
to_power k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
is_integrable_on M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
(abs g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
to_power k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
is_integrable_on M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
+ ((abs g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
is_integrable_on M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
k being ( ( ) (
ext-real V38()
real )
Real) st
k : ( ( ) (
ext-real V38()
real )
Real)
> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
x being ( ( ) ( )
Element of
X : ( ( non
empty ) ( non
empty )
set ) ) st
x : ( ( ) ( )
Element of
b1 : ( ( non
empty ) ( non
empty )
set ) )
in (dom f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) )
/\ (dom g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) holds
((abs (f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) + g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( ) ( ext-real V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
. x : ( ( ) ( )
Element of
b1 : ( ( non
empty ) ( non
empty )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
<= ((2 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) to_power k : ( ( ) ( ext-real V38() real ) Real) ) : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) (#) (((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( ) ( ext-real V38() real ) Real) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) + ((abs g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( ) ( ext-real V38() real ) Real) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
. x : ( ( ) ( )
Element of
b1 : ( ( non
empty ) ( non
empty )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) holds
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
+ g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
a being ( ( ) (
ext-real V38()
real )
Real)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) holds
a : ( ( ) (
ext-real V38()
real )
Real)
(#) f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) holds
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
- g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) holds
abs f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset of ) ;
registration
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
cluster RLSStruct(#
(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ,
(In ((0. (RLSp_PFunct X : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) ) : ( ( ) ( V52( RLSp_PFunct X : ( ( non empty ) ( non empty ) set ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) ) ) Element of the carrier of (RLSp_PFunct X : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) )) : ( ( ) ( )
Element of
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non
empty V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) ,
(add| ((Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) ,(RLSp_PFunct X : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) )) : ( (
Function-like V41(
[:(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non
empty V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) ) (
V1()
V4(
[:(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non
empty )
set ) )
V5(
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non
empty V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) )
Function-like non
empty total V41(
[:(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non
empty V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) )
Element of
bool [:[:(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non empty ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
(Mult_ (Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) ) : ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non
empty V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non
empty )
set ) )
V5(
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non
empty V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) )
Function-like non
empty total V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
Element of
bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non
empty V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) )
Element of
bool [:[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non empty ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) Element of bool (bool X : ( ( non empty ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( non empty V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty add-closed multi-closed ) Subset of ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) #) : ( (
strict ) ( non
empty strict )
RLSStruct )
-> strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
end;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func RLSp_LpFunct (
M,
k)
-> ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct )
equals
RLSStruct(#
(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non
empty ) ( non
empty )
Subset of ) ,
(In ((0. (RLSp_PFunct X : ( ( ) ( ) set ) ) : ( ( non empty ) ( non empty ) RLSStruct ) ) : ( ( ) ( V52( RLSp_PFunct X : ( ( ) ( ) set ) : ( ( non empty ) ( non empty ) RLSStruct ) ) ) Element of the carrier of (RLSp_PFunct X : ( ( ) ( ) set ) ) : ( ( non empty ) ( non empty ) RLSStruct ) : ( ( ) ( non empty ) set ) ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) )) : ( ( ) ( )
Element of
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) ,
(add| ((Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(RLSp_PFunct X : ( ( ) ( ) set ) ) : ( ( non empty ) ( non empty ) RLSStruct ) )) : ( (
Function-like V41(
[:(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) ) (
V1()
V4(
[:(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) )
V5(
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) )
Function-like non
empty total V41(
[:(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) )
Element of
bool [:[:(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non empty ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
(Mult_ (Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ) : ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) )
V5(
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) )
Function-like non
empty total V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
Lp_Functions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) )
Element of
bool [:[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non empty ) set ) ,(Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) #) : ( (
strict ) ( non
empty strict )
RLSStruct ) ;
end;
begin
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
v,
u being ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
= v : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
= u : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) holds
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
+ g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
= v : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) )
+ u : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of the
carrier of
(RLSp_LpFunct (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b6 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
u being ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
= u : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) holds
(
u : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) )
+ ((- 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ext-real non positive negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) * u : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( )
Element of the
carrier of
(RLSp_LpFunct (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b5 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of the
carrier of
(RLSp_LpFunct (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b5 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) )
= (X : ( ( non empty ) ( non empty ) set ) --> 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V5(
RAT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V162() )
set ) )
V5(
INT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V160()
V162() )
set ) )
Function-like V163()
V164()
V165()
V166() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
| (dom f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V5(
RAT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V162() )
set ) )
V5(
INT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V160()
V162() )
set ) )
Function-like V163()
V164()
V165()
V166() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) & ex
v,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
(
v : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
v : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
= u : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) )
+ ((- 1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ext-real non positive negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) * u : ( ( ) ( ) VECTOR of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( )
Element of the
carrier of
(RLSp_LpFunct (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b5 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of the
carrier of
(RLSp_LpFunct (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b5 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
= X : ( ( non
empty ) ( non
empty )
set )
--> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V5(
RAT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V162() )
set ) )
V5(
INT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V160()
V162() )
set ) )
Function-like V163()
V164()
V165()
V166() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) &
v : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) ) ;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func AlmostZeroLpFunctions (
M,
k)
-> ( ( non
empty ) ( non
empty )
Subset of )
equals
{ f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) where f is ( ( Function-like ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) : ( f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) in Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( non empty ) ( non empty ) Subset of ) & f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) a.e.= X : ( ( ) ( ) set ) --> 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V5( RAT : ( ( ) ( non empty V27() V156() V157() V158() V159() V162() ) set ) ) V5( INT : ( ( ) ( non empty V27() V156() V157() V158() V159() V160() V162() ) set ) ) Function-like V163() V164() V165() V166() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ,M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ) } ;
end;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) holds
(
0. (RLSp_LpFunct (M : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) (
V52(
RLSp_LpFunct (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
b4 : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) ) )
Element of the
carrier of
(RLSp_LpFunct (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) )
= X : ( ( non
empty ) ( non
empty )
set )
--> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V5(
RAT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V162() )
set ) )
V5(
INT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V160()
V162() )
set ) )
Function-like V163()
V164()
V165()
V166() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) &
0. (RLSp_LpFunct (M : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) (
V52(
RLSp_LpFunct (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
b4 : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) ) )
Element of the
carrier of
(RLSp_LpFunct (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) )
in AlmostZeroLpFunctions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) ;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func RLSp_AlmostZeroLpFunct (
M,
k)
-> ( ( non
empty ) ( non
empty )
RLSStruct )
equals
RLSStruct(#
(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non
empty ) ( non
empty )
Subset of ) ,
(In ((0. (RLSp_LpFunct (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) ) : ( ( ) ( V52( RLSp_LpFunct (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) ) ) Element of the carrier of (RLSp_LpFunct (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) )) : ( ( ) ( )
Element of
AlmostZeroLpFunctions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) ,
(add| ((AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(RLSp_LpFunct (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) )) : ( (
Function-like V41(
[:(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
AlmostZeroLpFunctions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) ) (
V1()
V4(
[:(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) )
V5(
AlmostZeroLpFunctions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) )
Function-like non
empty total V41(
[:(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
AlmostZeroLpFunctions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) )
Element of
bool [:[:(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non empty ) set ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ,
(Mult_ (AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) ) : ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
AlmostZeroLpFunctions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) )
V5(
AlmostZeroLpFunctions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) )
Function-like non
empty total V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) ,
AlmostZeroLpFunctions (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset of ) ) )
Element of
bool [:[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non empty ) set ) ,(AlmostZeroLpFunctions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset of ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) #) : ( (
strict ) ( non
empty strict )
RLSStruct ) ;
end;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
v,
u being ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
= v : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
= u : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) holds
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
+ g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
= v : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) )
+ u : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of the
carrier of
(RLSp_AlmostZeroLpFunct (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b6 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
RLSStruct ) : ( ( ) ( non
empty )
set ) ) ;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let f be ( (
Function-like ) (
V1()
V4(
X : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func a.e-eq-class_Lp (
f,
M,
k)
-> ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
equals
{ h : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) where h is ( ( Function-like ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) : ( h : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) in Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( non empty ) ( non empty ) Subset of ) & f : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) a.e.= h : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ,M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ) } ;
end;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) holds
ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
dom f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) )
= E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
g,
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) holds
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
= dom f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) holds
(
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) holds
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
g,
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
= dom g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) &
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
<> {} : ( ( ) ( )
set ) &
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) holds
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) & ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
= dom g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) &
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) holds
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) holds
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) holds
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) holds
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
f1,
g,
g1 being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
= dom f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) & ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
= dom f1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
f1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) & ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
= dom g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) & ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
= dom g1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
g1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) & not
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) is
empty & not
a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) is
empty &
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
f1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) &
a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) holds
a.e-eq-class_Lp (
(f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) + g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
(f1 : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) + g1 : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
f1,
g,
g1 being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
f1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
f1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) &
a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g1 : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) holds
a.e-eq-class_Lp (
(f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) + g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
(f1 : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) + g1 : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
a being ( ( ) (
ext-real V38()
real )
Real)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
dom f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) )
= E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) & ex
E being ( ( ) ( )
Element of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) st
(
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
. (E : ( ( ) ( ) Element of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) `) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real )
set )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
dom g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) )
= E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
is_measurable_on E : ( ( ) ( )
Element of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) & not
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) is
empty &
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) holds
a.e-eq-class_Lp (
(a : ( ( ) ( ext-real V38() real ) Real) (#) f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
(a : ( ( ) ( ext-real V38() real ) Real) (#) g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
a being ( ( ) (
ext-real V38()
real )
Real)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) holds
a.e-eq-class_Lp (
(a : ( ( ) ( ext-real V38() real ) Real) (#) f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
(a : ( ( ) ( ext-real V38() real ) Real) (#) g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func CosetSet (
M,
k)
-> ( ( non
empty ) ( non
empty )
Subset-Family of )
equals
{ (a.e-eq-class_Lp (f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ,M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( ) ( ) Subset of ( ( ) ( non empty ) set ) ) where f is ( ( Function-like ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) : f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) in Lp_Functions (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( non empty ) ( non empty ) Subset of ) } ;
end;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func addCoset (
M,
k)
-> ( (
Function-like V41(
[:(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ) (
V1()
V4(
[:(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) )
V5(
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
Function-like non
empty total V41(
[:(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) )
BinOp of
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
means
for
A,
B being ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
for
a,
b being ( (
Function-like ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
a : ( (
Function-like ) (
V1()
V4(
X : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in A : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) &
b : ( (
Function-like ) (
V1()
V4(
X : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in B : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) holds
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
. (
A : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ,
B : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ) : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
= a.e-eq-class_Lp (
(a : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) + b : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V4(
X : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
end;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func zeroCoset (
M,
k)
-> ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
equals
a.e-eq-class_Lp (
(X : ( ( ) ( ) set ) --> 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( (
Function-like ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V5(
RAT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V162() )
set ) )
V5(
INT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V160()
V162() )
set ) )
Function-like V163()
V164()
V165()
V166() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
end;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func lmultCoset (
M,
k)
-> ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) )
V5(
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
Function-like non
empty total V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) )
Function of
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
means
for
z being ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
for
A being ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
for
f being ( (
Function-like ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
f : ( (
Function-like ) (
V1()
V4(
X : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in A : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) holds
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
. (
z : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ,
A : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ) : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
= a.e-eq-class_Lp (
(z : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) (#) f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V4(
X : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ;
end;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func Pre-Lp-Space (
M,
k)
-> ( (
strict ) (
strict )
RLSStruct )
means
( the
carrier of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
set )
= CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) & the
addF of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( (
Function-like V41(
[: the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) , the
carrier of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
set ) ) ) (
V1()
V4(
[: the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) )
V5( the
carrier of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
set ) )
Function-like V41(
[: the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) , the
carrier of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
set ) ) )
Element of
bool [:[: the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) : ( ( ) ( non
empty )
set ) )
= addCoset (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( (
Function-like V41(
[:(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ) (
V1()
V4(
[:(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) )
V5(
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
Function-like non
empty total V41(
[:(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) )
BinOp of
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) &
0. it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of the
carrier of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
set ) )
= zeroCoset (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( ) ( )
Element of
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) & the
Mult of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) , the
carrier of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
set ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) )
V5( the
carrier of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
set ) )
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) , the
carrier of
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
set ) ) )
Element of
bool [:[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) , the carrier of it : ( ( Function-like V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) ( V1() V4(X : ( ( ) ( ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like total V41(X : ( ( ) ( ) set ) , REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) V163() V164() V165() ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) : ( ( ) ( non
empty )
set ) )
= lmultCoset (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) )
V5(
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
Function-like non
empty total V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) )
Function of
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) );
end;
begin
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) holds
Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) holds
(
Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
in REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) &
0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
<= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st ex
x being ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) st
(
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
VECTOR of ( ( ) ( non
empty )
set ) ) ) holds
(
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
x being ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) holds
(
(abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
to_power k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
is_integrable_on M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
x being ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) holds
(
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) &
Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) ) ;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func Lp-Norm (
M,
k)
-> ( (
Function-like V41( the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4( the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41( the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Function of the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
means
for
x being ( ( ) ( )
Point of ( ( ) ( )
set ) ) ex
f being ( (
Function-like ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
(
f : ( (
Function-like ) (
V1()
V4(
X : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) & ex
r being ( ( ) (
ext-real V38()
real )
Real) st
(
r : ( ( ) (
ext-real V38()
real )
Real)
= Integral (
M : ( (
Function-like V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( ) ( )
set ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( ) ( )
set ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
Element of
bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) (
V164() )
set ) : ( ( ) ( non
empty )
set ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(X : ( ( ) ( ) set ) ) V4(X : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( (
Function-like ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) &
it : ( (
Function-like V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
X : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like total V41(
X : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:X : ( ( ) ( ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) (
V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
. x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= r : ( ( ) (
ext-real V38()
real )
Real)
to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) );
end;
definition
let X be ( ( non
empty ) ( non
empty )
set ) ;
let S be ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ;
let M be ( (
Function-like V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) ) ) ;
let k be ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ;
func Lp-Space (
M,
k)
-> ( ( non
empty ) ( non
empty )
NORMSTR )
equals
NORMSTR(# the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) , the
ZeroF of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
Element of the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ) , the
addF of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( (
Function-like V41(
[: the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) , the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ) ) (
V1()
V4(
[: the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) )
V5( the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) )
Function-like V41(
[: the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) , the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ) )
Element of
bool [:[: the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) : ( ( ) ( non
empty )
set ) ) , the
Mult of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) , the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) )
V5( the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) )
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) , the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ) )
Element of
bool [:[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( ) set ) , the carrier of (Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( ( strict ) ( strict ) RLSStruct ) : ( ( ) ( ) set ) :] : ( ( ) ( )
set ) : ( ( ) ( non
empty )
set ) ) ,
(Lp-Norm (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
Function-like V41( the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4( the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41( the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Function of the
carrier of
(Pre-Lp-Space (M : ( ( Function-like V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(S : ( ( ) ( ) set ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(S : ( ( ) ( ) set ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) Element of bool [:S : ( ( ) ( ) set ) ,ExtREAL : ( ( ) ( non empty V157() ) set ) :] : ( ( ) ( V164() ) set ) : ( ( ) ( non empty ) set ) ) ,k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) )) : ( (
strict ) (
strict )
RLSStruct ) : ( ( ) ( )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) #) : ( (
strict ) (
strict )
NORMSTR ) ;
end;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
x being ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) holds
( ex
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
(
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) ) & ( for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) holds
ex
r being ( ( ) (
ext-real V38()
real )
Real) st
(
0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
<= r : ( ( ) (
ext-real V38()
real )
Real) &
r : ( ( ) (
ext-real V38()
real )
Real)
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) &
||.x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) .|| : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= r : ( ( ) (
ext-real V38()
real )
Real)
to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
a being ( ( ) (
ext-real V38()
real )
Real)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
x,
y being ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) holds
( (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in y : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) implies
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
+ g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) )
+ y : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b7 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) ) & (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) implies
a : ( ( ) (
ext-real V38()
real )
Real)
(#) f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in a : ( ( ) (
ext-real V38()
real )
Real)
* x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b7 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
x being ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) holds
(
x : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) & ex
r being ( ( ) (
ext-real V38()
real )
Real) st
(
0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
<= r : ( ( ) (
ext-real V38()
real )
Real) &
r : ( ( ) (
ext-real V38()
real )
Real)
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) &
||.x : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) .|| : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= r : ( ( ) (
ext-real V38()
real )
Real)
to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
a.e.= X : ( ( non
empty ) ( non
empty )
set )
--> 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V5(
RAT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V162() )
set ) )
V5(
INT : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V159()
V160()
V162() )
set ) )
Function-like V163()
V164()
V165()
V166() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
m,
n being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
(1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
+ (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / n : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= 1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
m : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
n : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) holds
(
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
(#) g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in L1_Functions M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Element of
bool the
carrier of
(RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non
empty ) ( non
empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
(#) g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
is_integrable_on M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
m,
n being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) st
(1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
+ (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / n : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= 1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
m : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
n : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) holds
ex
r1 being ( ( ) (
ext-real V38()
real )
Real) st
(
r1 : ( ( ) (
ext-real V38()
real )
Real)
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) & ex
r2 being ( ( ) (
ext-real V38()
real )
Real) st
(
r2 : ( ( ) (
ext-real V38()
real )
Real)
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power n : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) &
Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
(abs (f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) (#) g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
<= (r1 : ( ( ) ( ext-real V38() real ) Real) to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
* (r2 : ( ( ) ( ext-real V38() real ) Real) to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / n : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
f,
g being ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
for
m being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
r1,
r2,
r3 being ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) st 1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
<= m : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) &
f : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
m : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
g : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
PartFunc of ,)
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
m : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
r1 : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) &
r2 : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) &
r3 : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs (f : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) + g : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) PartFunc of ,) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) holds
r3 : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
<= (r1 : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
+ (r2 : ( ( ) ( ext-real V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / m : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non empty ext-real positive non negative V38() real ) Element of REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ;
begin
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
Sq being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) ) ex
Fsq being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
X : ( ( non
empty ) ( non
empty )
set ) ) st
for
n being ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
(
Fsq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
Fsq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Sq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) ( )
Element of the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) &
Sq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) ( )
Element of the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
(Fsq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) & ex
r being ( ( ) (
ext-real V38()
real )
Real) st
(
r : ( ( ) (
ext-real V38()
real )
Real)
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs (Fsq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) &
||.(Sq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of (Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non empty ) ( non empty ) NORMSTR ) : ( ( ) ( non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( the carrier of (Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non empty ) ( non empty ) NORMSTR ) : ( ( ) ( non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of (Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non empty ) ( non empty ) NORMSTR ) : ( ( ) ( non empty ) set ) ) ) sequence of ( ( ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of the carrier of (Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non empty ) ( non empty ) NORMSTR ) : ( ( ) ( non empty ) set ) ) .|| : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= r : ( ( ) (
ext-real V38()
real )
Real)
to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
Sq being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) ) ex
Fsq being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
with_the_same_dom ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
with_the_same_dom )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
X : ( ( non
empty ) ( non
empty )
set ) ) st
for
n being ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
(
Fsq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
with_the_same_dom ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
with_the_same_dom )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) &
Fsq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
with_the_same_dom ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
with_the_same_dom )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Sq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) ( )
Element of the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) &
Sq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) )
. n : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) ( )
Element of the
carrier of
(Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non
empty ) ( non
empty )
NORMSTR ) : ( ( ) ( non
empty )
set ) )
= a.e-eq-class_Lp (
(Fsq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) with_the_same_dom ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) with_the_same_dom ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ,
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( ) ( )
Subset of ( ( ) ( non
empty )
set ) ) & ex
r being ( ( ) (
ext-real V38()
real )
Real) st
(
0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
<= r : ( ( ) (
ext-real V38()
real )
Real) &
r : ( ( ) (
ext-real V38()
real )
Real)
= Integral (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
((abs (Fsq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) with_the_same_dom ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) with_the_same_dom ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( Function-like ) ( V1() V4(b1 : ( ( non empty ) ( non empty ) set ) ) V5( REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) Function-like V163() V164() V165() nonnegative ) Element of bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non empty V163() V164() V165() ) set ) : ( ( ) ( non empty ) set ) ) to_power k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165()
nonnegative )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
ext-real )
Element of
ExtREAL : ( ( ) ( non
empty V157() )
set ) ) &
||.(Sq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of (Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non empty ) ( non empty ) NORMSTR ) : ( ( ) ( non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( the carrier of (Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non empty ) ( non empty ) NORMSTR ) : ( ( ) ( non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of (Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non empty ) ( non empty ) NORMSTR ) : ( ( ) ( non empty ) set ) ) ) sequence of ( ( ) ( non empty ) set ) ) . n : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of the carrier of (Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,b4 : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) )) : ( ( non empty ) ( non empty ) NORMSTR ) : ( ( ) ( non empty ) set ) ) .|| : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= r : ( ( ) (
ext-real V38()
real )
Real)
to_power (1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) / k : ( ( positive ) ( non empty ext-real positive non negative V38() real ) Real) ) : ( ( ) ( non
empty ext-real positive non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) ) ;
theorem
for
X being ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace)
for
Sq being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) )
for
Sq0 being ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) st
||.(Sq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) sequence of ( ( ) ( non empty ) set ) ) - Sq0 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) .|| : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) is
convergent &
lim ||.(Sq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) sequence of ( ( ) ( non empty ) set ) ) - Sq0 : ( ( ) ( ) Point of ( ( ) ( non empty ) set ) ) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) .|| : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
= 0 : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
(
Sq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) ) is
convergent &
lim Sq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) )
= Sq0 : ( ( ) ( )
Point of ( ( ) ( non
empty )
set ) ) ) ;
theorem
for
X being ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace)
for
Sq being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) ) st
Sq : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5( the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) , the
carrier of
b1 : ( ( non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non
empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like )
RealNormSpace) : ( ( ) ( non
empty )
set ) ) )
sequence of ( ( ) ( non
empty )
set ) ) is
Cauchy_sequence_by_Norm holds
ex
N being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V167() ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V163()
V164()
V165()
V166()
V167()
V169() )
sequence of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) st
for
i,
j being ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) st
j : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
>= N : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V167() ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V163()
V164()
V165()
V166()
V167()
V169() )
sequence of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
. i : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) : ( ( ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) holds
||.((Sq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) sequence of ( ( ) ( non empty ) set ) ) . j : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) - (Sq : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) sequence of ( ( ) ( non empty ) set ) ) . (N : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V167() ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V163() V164() V165() V166() V167() V169() ) sequence of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) . i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ) ( non empty left_complementable right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed discerning reflexive RealNormSpace-like ) RealNormSpace) : ( ( ) ( non empty ) set ) ) .|| : ( ( ) (
ext-real non
negative V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
< 2 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
to_power (- i : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) (
ext-real non
positive V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
for
k being ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real)
for
F being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
X : ( ( non
empty ) ( non
empty )
set ) ) st ( for
m being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) holds
F : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) )
. m : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ) holds
for
m being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) holds
(Partial_Sums F : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Element of
bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,(PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) )) : ( ( ) ( functional non empty ) set ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) )
. m : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
in Lp_Functions (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,
k : ( (
positive ) ( non
empty ext-real positive non
negative V38()
real )
Real) ) : ( ( non
empty ) ( non
empty add-closed multi-closed )
Subset of ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
F being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
X : ( ( non
empty ) ( non
empty )
set ) ) st ( for
m being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) holds
F : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) )
. m : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) is
nonnegative ) holds
for
m being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) holds
(Partial_Sums F : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Element of
bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,(PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) )) : ( ( ) ( functional non empty ) set ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) )
. m : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) is
nonnegative ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
F being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
X : ( ( non
empty ) ( non
empty )
set ) )
for
x being ( ( ) ( )
Element of
X : ( ( non
empty ) ( non
empty )
set ) )
for
n,
m being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) st
F : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) ) is
with_the_same_dom &
x : ( ( ) ( )
Element of
b1 : ( ( non
empty ) ( non
empty )
set ) )
in dom (F : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) . 0 : ( ( ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) : ( ( ) ( )
Element of
bool b1 : ( ( non
empty ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) & ( for
k being ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) holds
F : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) )
. k : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) ) is
nonnegative ) &
n : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat)
<= m : ( (
natural ) (
epsilon-transitive epsilon-connected ordinal natural ext-real non
negative V38()
real )
Nat) holds
((Partial_Sums F : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,(PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) )) : ( ( ) ( functional non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) . n : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real ) Nat) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
. x : ( ( ) ( )
Element of
b1 : ( ( non
empty ) ( non
empty )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
<= ((Partial_Sums F : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Functional_Sequence of ( ( ) ( functional non empty ) set ) ,b1 : ( ( non empty ) ( non empty ) set ) ) ) : ( ( Function-like V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) ( V1() V4( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) V5( PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) Function-like non empty total V41( NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) , PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ) : ( ( ) ( functional non empty ) set ) ) ) Element of bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,(PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) )) : ( ( ) ( functional non empty ) set ) :] : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) . m : ( ( natural ) ( epsilon-transitive epsilon-connected ordinal natural ext-real non negative V38() real ) Nat) ) : ( (
Function-like ) (
V1()
V4(
b1 : ( ( non
empty ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like V163()
V164()
V165() )
Element of
bool [:b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
. x : ( ( ) ( )
Element of
b1 : ( ( non
empty ) ( non
empty )
set ) ) : ( ( ) (
ext-real V38()
real )
Element of
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
F being ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
X : ( ( non
empty ) ( non
empty )
set ) ) st
F : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) ) is
with_the_same_dom holds
abs F : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Functional_Sequence of ( ( ) (
functional non
empty )
set ) ,
b1 : ( ( non
empty ) ( non
empty )
set ) ) : ( (
Function-like V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) ) (
V1()
V4(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) )
V5(
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) )
Function-like non
empty total V41(
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ,
PFuncs (
b1 : ( ( non
empty ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) : ( ( ) (
functional non
empty )
set ) ) )
Element of
bool [:NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ,(PFuncs (b1 : ( ( non empty ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) )) : ( ( ) ( functional non empty ) set ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) is
with_the_same_dom ;
begin
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) holds
addCoset M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( (
Function-like V41(
[:(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( non
empty ) ( non
empty )
Element of
bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ) ) (
V1()
V4(
[:(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non
empty )
set ) )
V5(
CosetSet b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( non
empty ) ( non
empty )
Element of
bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
Function-like non
empty total V41(
[:(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( non
empty ) ( non
empty )
Element of
bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ) )
Element of
bool [:[:(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non empty ) set ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) )
= addCoset (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( (
Function-like V41(
[:(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ) (
V1()
V4(
[:(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) )
V5(
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
Function-like non
empty total V41(
[:(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) ,(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) )
BinOp of
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) holds
zeroCoset M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( ) ( )
Element of
CosetSet b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( non
empty ) ( non
empty )
Element of
bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
= zeroCoset (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( ) ( )
Element of
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) holds
lmultCoset M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( non
empty ) ( non
empty )
Element of
bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non
empty )
set ) )
V5(
CosetSet b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( non
empty ) ( non
empty )
Element of
bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) )
Function-like non
empty total V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( ( non
empty ) ( non
empty )
Element of
bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) ) ) )
Element of
bool [:[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non empty ) set ) ,(CosetSet b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty ) Element of bool (bool (L1_Functions b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty ) ( non empty add-closed multi-closed ) Element of bool the carrier of (RLSp_PFunct b1 : ( ( non empty ) ( non empty ) set ) ) : ( ( non empty ) ( non empty strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) : ( ( ) ( non empty ) set ) ) :] : ( ( ) ( non
empty )
set ) : ( ( ) ( non
empty )
set ) )
= lmultCoset (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( (
Function-like V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ) (
V1()
V4(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) )
V5(
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) )
Function-like non
empty total V41(
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) )
Function of
[:REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) ,(CosetSet (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( ( non empty ) ( non empty ) Subset-Family of ) :] : ( ( ) ( non
empty )
set ) ,
CosetSet (
b3 : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( ( non
empty ) ( non
empty )
Subset-Family of ) ) ;
theorem
for
X being ( ( non
empty ) ( non
empty )
set )
for
S being ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
X : ( ( non
empty ) ( non
empty )
set ) )
for
M being ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
S : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) holds
L-1-Norm M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) : ( (
Function-like V41( the
carrier of
(Pre-L-Space b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non
empty right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty left_complementable right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4( the
carrier of
(Pre-L-Space b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non
empty right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty left_complementable right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41( the
carrier of
(Pre-L-Space b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non
empty right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non
empty left_complementable right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Element of
bool [: the carrier of (Pre-L-Space b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ) : ( ( non empty right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ) ( non empty left_complementable right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed ) RLSStruct ) : ( ( ) ( non empty ) set ) ,REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) :] : ( ( ) ( non
empty V163()
V164()
V165() )
set ) : ( ( ) ( non
empty )
set ) )
= Lp-Norm (
M : ( (
Function-like V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V172()
nonnegative sigma-additive ) (
V1()
V4(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) )
V5(
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
Function-like non
empty total V41(
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ,
ExtREAL : ( ( ) ( non
empty V157() )
set ) )
V164()
V172()
nonnegative sigma-additive )
sigma_Measure of
b2 : ( ( non
empty compl-closed sigma-multiplicative ) ( non
empty compl-closed sigma-multiplicative V152()
V153()
V154()
sigma-additive )
SigmaField of
b1 : ( ( non
empty ) ( non
empty )
set ) ) ) ,1 : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non
negative V38()
real V104()
V156()
V157()
V158()
V159()
V160()
V161()
V194() )
Element of
NAT : ( ( ) ( non
empty epsilon-transitive epsilon-connected ordinal V156()
V157()
V158()
V159()
V160()
V161()
V162() )
Element of
bool REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) : ( ( ) ( non
empty )
set ) ) ) ) : ( (
Function-like V41( the
carrier of
(Pre-Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( (
strict ) ( non
empty left_complementable right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ) (
V1()
V4( the
carrier of
(Pre-Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( (
strict ) ( non
empty left_complementable right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) )
V5(
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
Function-like non
empty total V41( the
carrier of
(Pre-Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( (
strict ) ( non
empty left_complementable right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) )
V163()
V164()
V165() )
Function of the
carrier of
(Pre-Lp-Space (b3 : ( ( Function-like V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V172() nonnegative sigma-additive ) ( V1() V4(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) V5( ExtREAL : ( ( ) ( non empty V157() ) set ) ) Function-like non empty total V41(b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) , ExtREAL : ( ( ) ( non empty V157() ) set ) ) V164() V172() nonnegative sigma-additive ) sigma_Measure of b2 : ( ( non empty compl-closed sigma-multiplicative ) ( non empty compl-closed sigma-multiplicative V152() V153() V154() sigma-additive ) SigmaField of b1 : ( ( non empty ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal natural ext-real positive non negative V38() real V104() V156() V157() V158() V159() V160() V161() V194() ) Element of NAT : ( ( ) ( non empty epsilon-transitive epsilon-connected ordinal V156() V157() V158() V159() V160() V161() V162() ) Element of bool REAL : ( ( ) ( non empty V27() V156() V157() V158() V162() ) set ) : ( ( ) ( non empty ) set ) ) ) )) : ( (
strict ) ( non
empty left_complementable right_complementable strict Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital zeroed )
RLSStruct ) : ( ( ) ( non
empty )
set ) ,
REAL : ( ( ) ( non
empty V27()
V156()
V157()
V158()
V162() )
set ) ) ;