:: QUIN_1 semantic presentation

begin

definition
let a, b, c be ( ( complex ) ( complex ) number ) ;
func delta (a,b,c) -> ( ( ) ( ) set ) equals :: QUIN_1:def 1
(b : ( ( ext-real ) ( ext-real ) set ) ^2) : ( ( ) ( ) set ) - ((4 : ( ( ) ( non zero natural complex ext-real positive real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) * a : ( ( ext-real ) ( ext-real ) set ) ) : ( ( ) ( ) set ) * c : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) : ( ( ) ( ) set ) ;
end;

registration
let a, b, c be ( ( complex ) ( complex ) number ) ;
cluster delta (a : ( ( complex ) ( complex ) set ) ,b : ( ( complex ) ( complex ) set ) ,c : ( ( complex ) ( complex ) set ) ) : ( ( ) ( ) set ) -> complex ;
end;

registration
let a, b, c be ( ( real ) ( complex ext-real real ) number ) ;
cluster delta (a : ( ( real ) ( complex ext-real real ) set ) ,b : ( ( real ) ( complex ext-real real ) set ) ,c : ( ( real ) ( complex ext-real real ) set ) ) : ( ( ) ( complex ) set ) -> real ;
end;

definition
let a, b, c be ( ( ) ( complex ext-real real ) Real) ;
:: original: delta
redefine func delta (a,b,c) -> ( ( ) ( complex ext-real real ) Real) ;
end;

theorem :: QUIN_1:1
for a, b, c, x being ( ( complex ) ( complex ) number ) st a : ( ( complex ) ( complex ) number ) <> 0 : ( ( ) ( natural complex ext-real real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) holds
((a : ( ( complex ) ( complex ) number ) * (x : ( ( complex ) ( complex ) number ) ^2) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) + (b : ( ( complex ) ( complex ) number ) * x : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) + c : ( ( complex ) ( complex ) number ) : ( ( ) ( complex ) set ) = (a : ( ( complex ) ( complex ) number ) * ((x : ( ( complex ) ( complex ) number ) + (b : ( ( complex ) ( complex ) number ) / (2 : ( ( ) ( non zero natural complex ext-real positive real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) * a : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) ^2) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) - ((delta (a : ( ( complex ) ( complex ) number ) ,b : ( ( complex ) ( complex ) number ) ,c : ( ( complex ) ( complex ) number ) )) : ( ( ) ( complex ) set ) / (4 : ( ( ) ( non zero natural complex ext-real positive real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) * a : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) : ( ( ) ( complex ) set ) ;

theorem :: QUIN_1:2
errorfrm ;

theorem :: QUIN_1:3
errorfrm ;

theorem :: QUIN_1:4
errorfrm ;

theorem :: QUIN_1:5
errorfrm ;

theorem :: QUIN_1:6
errorfrm ;

theorem :: QUIN_1:7
errorfrm ;

theorem :: QUIN_1:8
errorfrm ;

theorem :: QUIN_1:9
errorfrm ;

theorem :: QUIN_1:10
errorfrm ;

theorem :: QUIN_1:11
errorfrm ;

theorem :: QUIN_1:12
errorfrm ;

theorem :: QUIN_1:13
errorfrm ;

theorem :: QUIN_1:14
for a, b, c, x being ( ( complex ) ( complex ) number ) st a : ( ( complex ) ( complex ) number ) <> 0 : ( ( ) ( natural complex ext-real real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) & ((a : ( ( complex ) ( complex ) number ) * (x : ( ( complex ) ( complex ) number ) ^2) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) + (b : ( ( complex ) ( complex ) number ) * x : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) + c : ( ( complex ) ( complex ) number ) : ( ( ) ( complex ) set ) = 0 : ( ( ) ( natural complex ext-real real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) holds
((((2 : ( ( ) ( non zero natural complex ext-real positive real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) * a : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) * x : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) + b : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) ^2) : ( ( ) ( complex ) set ) - (delta (a : ( ( complex ) ( complex ) number ) ,b : ( ( complex ) ( complex ) number ) ,c : ( ( complex ) ( complex ) number ) )) : ( ( ) ( complex ) set ) : ( ( ) ( complex ) set ) = 0 : ( ( ) ( natural complex ext-real real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) ;

theorem :: QUIN_1:15
errorfrm ;

theorem :: QUIN_1:16
errorfrm ;

theorem :: QUIN_1:17
errorfrm ;

theorem :: QUIN_1:18
errorfrm ;

theorem :: QUIN_1:19
errorfrm ;

theorem :: QUIN_1:20
for a, b, c, x being ( ( complex ) ( complex ) number ) st a : ( ( complex ) ( complex ) number ) <> 0 : ( ( ) ( natural complex ext-real real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) & delta (a : ( ( complex ) ( complex ) number ) ,b : ( ( complex ) ( complex ) number ) ,c : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) = 0 : ( ( ) ( natural complex ext-real real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) & ((a : ( ( complex ) ( complex ) number ) * (x : ( ( complex ) ( complex ) number ) ^2) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) + (b : ( ( complex ) ( complex ) number ) * x : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) + c : ( ( complex ) ( complex ) number ) : ( ( ) ( complex ) set ) = 0 : ( ( ) ( natural complex ext-real real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) holds
x : ( ( complex ) ( complex ) number ) = - (b : ( ( complex ) ( complex ) number ) / (2 : ( ( ) ( non zero natural complex ext-real positive real V16() V17() V18() V19() V20() V21() ) M3( REAL : ( ( ) ( V16() V17() V18() V22() ) set ) , NAT : ( ( ) ( V16() V17() V18() V19() V20() V21() V22() ) M2(K6(REAL : ( ( ) ( V16() V17() V18() V22() ) set ) ) : ( ( ) ( ) set ) )) )) * a : ( ( complex ) ( complex ) number ) ) : ( ( ) ( complex ) set ) ) : ( ( ) ( complex ) set ) : ( ( complex ) ( complex ) set ) ;

theorem :: QUIN_1:21
errorfrm ;

theorem :: QUIN_1:22
errorfrm ;

theorem :: QUIN_1:23
errorfrm ;

theorem :: QUIN_1:24
errorfrm ;

theorem :: QUIN_1:25
errorfrm ;

theorem :: QUIN_1:26
errorfrm ;

theorem :: QUIN_1:27
errorfrm ;