:: ROBBINS2 semantic presentation

begin

definition
let L be ( ( non empty ) ( non empty ) ComplLLattStr ) ;
attr L is satisfying_DN_1 means :: ROBBINS2:def 1
for x, y, z, u being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds (((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) `) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) `) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) + ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) + ((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + u : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) `) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) ) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) `) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) ) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) `) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) ) : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) ` : ( ( ) ( ) M2( the U1 of L : ( ( ) ( ) OrthoLattStr ) : ( ( ) ( ) set ) )) = z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;
end;

registration
cluster TrivComplLat : ( ( strict ) ( non empty V42() V43() V48(1 : ( ( ) ( ) set ) ) join-commutative join-associative upper-bounded strict Robbins Huntington join-idempotent with_idempotent_element ) ComplLLattStr ) -> strict satisfying_DN_1 ;
cluster TrivOrtLat : ( ( strict ) ( non empty V42() V43() V48(1 : ( ( ) ( ) set ) ) join-commutative join-associative meet-commutative meet-associative meet-absorbing join-absorbing Lattice-like distributive modular lower-bounded upper-bounded V65() complemented Boolean strict Robbins Huntington join-idempotent well-complemented de_Morgan ) OrthoLattStr ) -> strict satisfying_DN_1 ;
end;

registration
cluster non empty join-commutative join-associative satisfying_DN_1 for ( ( ) ( ) ComplLLattStr ) ;
end;

theorem :: ROBBINS2:1
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z, u, v being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((((((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + u : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + v : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:2
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z, u being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + u : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:3
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:4
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z, u being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((((((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + u : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:5
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:6
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:7
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:8
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:9
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:10
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:11
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:12
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:13
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z, u being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((u : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:14
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:15
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:16
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:17
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:18
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:19
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:20
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:21
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:22
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:23
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:24
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:25
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:26
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:27
for L being ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

registration
cluster non empty satisfying_DN_1 -> non empty join-commutative for ( ( ) ( ) ComplLLattStr ) ;
end;

theorem :: ROBBINS2:28
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:29
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:30
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:31
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:32
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:33
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:34
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:35
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:36
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:37
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:38
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = ((z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:39
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:40
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:41
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:42
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:43
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:44
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:45
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:46
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:47
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ` : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:48
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((((((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:49
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:50
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:51
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (((y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:52
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds ((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:53
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:54
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:55
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:56
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

theorem :: ROBBINS2:57
for L being ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr )
for x, y, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) holds (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty satisfying_DN_1 ) ( non empty join-commutative satisfying_DN_1 ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ;

registration
cluster non empty satisfying_DN_1 -> non empty join-associative for ( ( ) ( ) ComplLLattStr ) ;
cluster non empty satisfying_DN_1 -> non empty Robbins for ( ( ) ( ) ComplLLattStr ) ;
end;

theorem :: ROBBINS2:58
for L being ( ( non empty ) ( non empty ) ComplLLattStr )
for x, z being ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) st L : ( ( non empty ) ( non empty ) ComplLLattStr ) is join-commutative & L : ( ( non empty ) ( non empty ) ComplLLattStr ) is join-associative & L : ( ( non empty ) ( non empty ) ComplLLattStr ) is Huntington holds
(z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty ) ( non empty ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) *' (z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty ) ( non empty ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) ) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty ) ( non empty ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) : ( ( ) ( ) M2( the U1 of b1 : ( ( non empty ) ( non empty ) ComplLLattStr ) : ( ( ) ( V11() ) set ) )) = z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;

theorem :: ROBBINS2:59
for L being ( ( non empty join-commutative join-associative ) ( non empty join-commutative join-associative ) ComplLLattStr ) st L : ( ( non empty join-commutative join-associative ) ( non empty join-commutative join-associative ) ComplLLattStr ) is Robbins holds
L : ( ( non empty join-commutative join-associative ) ( non empty join-commutative join-associative ) ComplLLattStr ) is satisfying_DN_1 ;

registration
cluster non empty join-commutative join-associative Robbins -> non empty satisfying_DN_1 for ( ( ) ( ) ComplLLattStr ) ;
end;

registration
cluster non empty join-commutative join-associative meet-commutative meet-associative meet-absorbing join-absorbing Lattice-like de_Morgan satisfying_DN_1 for ( ( ) ( ) OrthoLattStr ) ;
end;

registration
cluster non empty Lattice-like de_Morgan satisfying_DN_1 -> non empty Lattice-like Boolean for ( ( ) ( ) OrthoLattStr ) ;
cluster non empty Lattice-like Boolean well-complemented -> non empty Lattice-like well-complemented satisfying_DN_1 for ( ( ) ( ) OrthoLattStr ) ;
end;

begin

definition
let L be ( ( non empty ) ( non empty ) ComplLLattStr ) ;
attr L is satisfying_MD_1 means :: ROBBINS2:def 2
for x, y being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) `) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) = x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ;
attr L is satisfying_MD_2 means :: ROBBINS2:def 3
for x, y, z being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds (((x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) `) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) `) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) + (z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) = y : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + (z : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) + x : ( ( ) ( ) Element of ( ( ) ( V11() ) set ) ) ) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) : ( ( ) ( ) M2( the U1 of L : ( ( V33() ) ( V33() ) set ) : ( ( ) ( ) set ) )) ;
end;

registration
cluster non empty satisfying_MD_1 satisfying_MD_2 -> non empty join-commutative join-associative Huntington for ( ( ) ( ) ComplLLattStr ) ;
cluster non empty join-commutative join-associative Huntington -> non empty satisfying_MD_1 satisfying_MD_2 for ( ( ) ( ) ComplLLattStr ) ;
end;

registration
cluster non empty join-commutative join-associative meet-commutative meet-associative meet-absorbing join-absorbing Lattice-like de_Morgan satisfying_DN_1 satisfying_MD_1 satisfying_MD_2 for ( ( ) ( ) OrthoLattStr ) ;
end;

registration
cluster non empty Lattice-like de_Morgan satisfying_MD_1 satisfying_MD_2 -> non empty Lattice-like Boolean for ( ( ) ( ) OrthoLattStr ) ;
cluster non empty Lattice-like Boolean well-complemented -> non empty Lattice-like well-complemented satisfying_MD_1 satisfying_MD_2 for ( ( ) ( ) OrthoLattStr ) ;
end;