:: YELLOW11 semantic presentation

begin

theorem :: YELLOW11:1
3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) = {0 : ( ( ) ( empty V27() V28() V29() V31() V32() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ,2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) } : ( ( ) ( non empty ) Element of K32(NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW11:2
2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) \ 1 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K32(2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) set ) ) = {1 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) } : ( ( ) ( non empty ) Element of K32(NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW11:3
3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) \ 1 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K32(3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) set ) ) = {1 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ,2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) } : ( ( ) ( non empty ) Element of K32(NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW11:4
3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) \ 2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K32(3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) set ) ) = {2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) } : ( ( ) ( non empty ) Element of K32(NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) : ( ( ) ( non empty ) set ) ) ;

begin

theorem :: YELLOW11:5
for L being ( ( reflexive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive antisymmetric with_suprema with_infima ) RelStr )
for a, b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
( a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive antisymmetric with_suprema with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) = b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) iff a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive antisymmetric with_suprema with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ;

theorem :: YELLOW11:6
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE)
for a, b, c being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds (a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) "\/" (a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) <= a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" (b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW11:7
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE)
for a, b, c being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" (b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) <= (a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) "/\" (a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) ;

theorem :: YELLOW11:8
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE)
for a, b, c being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" (b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) <= (a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) ;

definition
func N_5 -> ( ( ) ( ) RelStr ) equals :: YELLOW11:def 1
InclPoset {0 : ( ( ) ( empty V27() V28() V29() V31() V32() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ,(3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) \ 1 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of K32(3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) set ) ) ,2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ,(3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) \ 2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of K32(3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) set ) ) ,3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) } : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict V58() reflexive transitive antisymmetric ) RelStr ) ;
end;

registration
cluster N_5 : ( ( ) ( ) RelStr ) -> strict reflexive transitive antisymmetric ;
cluster N_5 : ( ( ) ( ) RelStr ) -> with_suprema with_infima ;
end;

definition
func M_3 -> ( ( ) ( ) RelStr ) equals :: YELLOW11:def 2
InclPoset {0 : ( ( ) ( empty V27() V28() V29() V31() V32() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ,1 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ,(2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) \ 1 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of K32(2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) set ) ) ,(3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) \ 2 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( ) Element of K32(3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) ) : ( ( ) ( non empty ) set ) ) ,3 : ( ( ) ( non empty V18() V27() V28() V29() V33() ) Element of NAT : ( ( ) ( non empty V27() V28() V29() ) Element of K32(REAL : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) } : ( ( ) ( non empty ) set ) : ( ( strict ) ( non empty strict V58() reflexive transitive antisymmetric ) RelStr ) ;
end;

registration
cluster M_3 : ( ( ) ( ) RelStr ) -> strict reflexive transitive antisymmetric ;
cluster M_3 : ( ( ) ( ) RelStr ) -> with_suprema with_infima ;
end;

theorem :: YELLOW11:9
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) holds
( ex K being ( ( full meet-inheriting join-inheriting ) ( V58() reflexive transitive antisymmetric full meet-inheriting join-inheriting ) Sublattice of L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) ) st N_5 : ( ( ) ( non empty strict V58() reflexive transitive antisymmetric with_suprema with_infima ) RelStr ) ,K : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) are_isomorphic iff ex a, b, c, d, e being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

theorem :: YELLOW11:10
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) holds
( ex K being ( ( full meet-inheriting join-inheriting ) ( V58() reflexive transitive antisymmetric full meet-inheriting join-inheriting ) Sublattice of L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) ) st M_3 : ( ( ) ( non empty strict V58() reflexive transitive antisymmetric with_suprema with_infima ) RelStr ) ,K : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) are_isomorphic iff ex a, b, c, d, e being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st
( a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <> e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" d : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) = e : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) ) ;

begin

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
attr L is modular means :: YELLOW11:def 3
for a, b, c being ( ( ) ( ) Element of ( ( ) ( ) set ) ) st a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds
a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" (b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) : ( ( ) ( ) Element of the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) = (a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) "/\" c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) ;
end;

registration
cluster non empty reflexive antisymmetric with_infima distributive -> non empty reflexive antisymmetric with_infima modular for ( ( ) ( ) RelStr ) ;
end;

theorem :: YELLOW11:11
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) holds
( L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) is modular iff for K being ( ( full meet-inheriting join-inheriting ) ( V58() reflexive transitive antisymmetric full meet-inheriting join-inheriting ) Sublattice of L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) ) holds not N_5 : ( ( ) ( non empty strict V58() reflexive transitive antisymmetric with_suprema with_infima ) RelStr ) ,K : ( ( full meet-inheriting join-inheriting ) ( V58() reflexive transitive antisymmetric full meet-inheriting join-inheriting ) Sublattice of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) ) are_isomorphic ) ;

theorem :: YELLOW11:12
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) st L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) is modular holds
( L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) is distributive iff for K being ( ( full meet-inheriting join-inheriting ) ( V58() reflexive transitive antisymmetric full meet-inheriting join-inheriting ) Sublattice of L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) ) holds not M_3 : ( ( ) ( non empty strict V58() reflexive transitive antisymmetric with_suprema with_infima ) RelStr ) ,K : ( ( full meet-inheriting join-inheriting ) ( V58() reflexive transitive antisymmetric full meet-inheriting join-inheriting ) Sublattice of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) ) are_isomorphic ) ;

begin

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let a, b be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
func [#a,b#] -> ( ( ) ( ) Subset of ) means :: YELLOW11:def 4
for c being ( ( ) ( ) Element of ( ( ) ( ) set ) ) holds
( c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) in it : ( ( Function-like V21(a : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) ) ( V7() V10(a : ( ( ) ( ) set ) ) V11( the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) Function-like V21(a : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) ) Element of K32(K33(a : ( ( ) ( ) set ) , the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) iff ( a : ( ( ) ( ) set ) <= c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) & c : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) <= b : ( ( ) ( V7() V10(a : ( ( ) ( ) set ) ) V11(a : ( ( ) ( ) set ) ) ) Element of K32(K33(a : ( ( ) ( ) set ) ,a : ( ( ) ( ) set ) ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ) );
end;

definition
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let IT be ( ( ) ( ) Subset of ) ;
attr IT is interval means :: YELLOW11:def 5
ex a, b being ( ( ) ( ) Element of ( ( ) ( ) set ) ) st IT : ( ( ) ( ) set ) = [#a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) #] : ( ( ) ( ) Subset of ) ;
end;

registration
let L be ( ( non empty reflexive transitive ) ( non empty V58() reflexive transitive ) RelStr ) ;
cluster non empty interval -> directed for ( ( ) ( ) Element of K32( the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ;
cluster non empty interval -> filtered for ( ( ) ( ) Element of K32( the carrier of L : ( ( ) ( ) set ) : ( ( ) ( ) set ) ) : ( ( ) ( non empty ) set ) ) ;
end;

registration
let L be ( ( non empty ) ( non empty ) RelStr ) ;
let a, b be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
cluster [#a : ( ( ) ( ) Element of the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) ,b : ( ( ) ( ) Element of the carrier of L : ( ( non empty ) ( non empty ) RelStr ) : ( ( ) ( non empty ) set ) ) #] : ( ( ) ( ) Subset of ) -> interval ;
end;

theorem :: YELLOW11:13
for L being ( ( non empty reflexive transitive ) ( non empty V58() reflexive transitive ) RelStr )
for a, b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) holds [#a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) #] : ( ( ) ( interval ) Subset of ) = (uparrow a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty V58() reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) /\ (downarrow b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty V58() reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( ) Element of K32( the carrier of b1 : ( ( non empty reflexive transitive ) ( non empty V58() reflexive transitive ) RelStr ) : ( ( ) ( non empty ) set ) ) : ( ( ) ( non empty ) set ) ) ;

registration
let L be ( ( reflexive transitive antisymmetric with_infima ) ( non empty V58() reflexive transitive antisymmetric with_infima ) Poset) ;
let a, b be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
cluster subrelstr [#a : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty V58() reflexive transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) ,b : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty V58() reflexive transitive antisymmetric with_infima ) RelStr ) : ( ( ) ( non empty ) set ) ) #] : ( ( ) ( interval ) Subset of ) : ( ( strict full ) ( strict V58() reflexive transitive antisymmetric full ) SubRelStr of L : ( ( reflexive transitive antisymmetric with_infima ) ( non empty V58() reflexive transitive antisymmetric with_infima ) RelStr ) ) -> strict full meet-inheriting ;
end;

registration
let L be ( ( reflexive transitive antisymmetric with_suprema ) ( non empty V58() reflexive transitive antisymmetric with_suprema ) Poset) ;
let a, b be ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ;
cluster subrelstr [#a : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty V58() reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) ,b : ( ( ) ( ) Element of the carrier of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty V58() reflexive transitive antisymmetric with_suprema ) RelStr ) : ( ( ) ( non empty ) set ) ) #] : ( ( ) ( interval ) Subset of ) : ( ( strict full ) ( strict V58() reflexive transitive antisymmetric full ) SubRelStr of L : ( ( reflexive transitive antisymmetric with_suprema ) ( non empty V58() reflexive transitive antisymmetric with_suprema ) RelStr ) ) -> strict full join-inheriting ;
end;

theorem :: YELLOW11:14
for L being ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE)
for a, b being ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) st L : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) is modular holds
subrelstr [#b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ,(a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "\/" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) #] : ( ( ) ( interval ) Subset of ) : ( ( strict full ) ( strict V58() reflexive transitive antisymmetric full meet-inheriting join-inheriting ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) ) , subrelstr [#(a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) "/\" b : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) ) : ( ( ) ( ) Element of the carrier of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) : ( ( ) ( non empty ) set ) ) ,a : ( ( ) ( ) Element of ( ( ) ( non empty ) set ) ) #] : ( ( ) ( interval ) Subset of ) : ( ( strict full ) ( strict V58() reflexive transitive antisymmetric full meet-inheriting join-inheriting ) SubRelStr of b1 : ( ( reflexive transitive antisymmetric with_suprema with_infima ) ( non empty V58() reflexive transitive antisymmetric with_suprema with_infima ) LATTICE) ) are_isomorphic ;

registration
cluster non empty finite V58() reflexive transitive antisymmetric with_suprema with_infima for ( ( ) ( ) RelStr ) ;
end;

registration
cluster finite reflexive transitive antisymmetric with_infima -> reflexive transitive antisymmetric with_infima lower-bounded for ( ( ) ( ) RelStr ) ;
end;

registration
cluster finite reflexive transitive antisymmetric with_suprema with_infima -> reflexive transitive antisymmetric with_suprema with_infima complete for ( ( ) ( ) RelStr ) ;
end;