Lm1: 
 for r, g being   Real  st  0  < g holds 
( r - g < r & r < r + g )
 
Lm2: 
 for f1, f2 being   PartFunc of REAL,REAL
  for s being   Real_Sequence  st  rng s c=  dom (f2 * f1) holds 
(  rng s c=  dom f1 &  rng (f1 /* s) c=  dom f2 )
 
theorem 
 for 
x0 being   
Real  for 
f1, 
f2 being   
PartFunc of 
REAL,
REAL  st 
f1 is_convergent_in x0 & 
f2 is_left_convergent_in  lim (
f1,
x0) & (  for 
r1, 
r2 being   
Real  st 
r1 < x0 & 
x0 < r2 holds 
 ex 
g1, 
g2 being   
Real st 
( 
r1 < g1 & 
g1 < x0 & 
g1 in  dom (f2 * f1) & 
g2 < r2 & 
x0 < g2 & 
g2 in  dom (f2 * f1) ) ) &  ex 
g being   
Real st 
(  
0  < g & (  for 
r being   
Real  st 
r in (dom f1) /\ (].(x0 - g),x0.[ \/ ].x0,(x0 + g).[) holds 
f1 . r <  lim (
f1,
x0) ) ) holds 
( 
f2 * f1 is_convergent_in x0 &  
lim (
(f2 * f1),
x0) 
=  lim_left (
f2,
(lim (f1,x0))) )
 
theorem 
 for 
x0 being   
Real  for 
f1, 
f2 being   
PartFunc of 
REAL,
REAL  st 
f1 is_convergent_in x0 & 
f2 is_right_convergent_in  lim (
f1,
x0) & (  for 
r1, 
r2 being   
Real  st 
r1 < x0 & 
x0 < r2 holds 
 ex 
g1, 
g2 being   
Real st 
( 
r1 < g1 & 
g1 < x0 & 
g1 in  dom (f2 * f1) & 
g2 < r2 & 
x0 < g2 & 
g2 in  dom (f2 * f1) ) ) &  ex 
g being   
Real st 
(  
0  < g & (  for 
r being   
Real  st 
r in (dom f1) /\ (].(x0 - g),x0.[ \/ ].x0,(x0 + g).[) holds  
lim (
f1,
x0) 
< f1 . r ) ) holds 
( 
f2 * f1 is_convergent_in x0 &  
lim (
(f2 * f1),
x0) 
=  lim_right (
f2,
(lim (f1,x0))) )
 
theorem 
 for 
x0 being   
Real  for 
f1, 
f2 being   
PartFunc of 
REAL,
REAL  st 
f1 is_convergent_in x0 & 
f2 is_convergent_in  lim (
f1,
x0) & (  for 
r1, 
r2 being   
Real  st 
r1 < x0 & 
x0 < r2 holds 
 ex 
g1, 
g2 being   
Real st 
( 
r1 < g1 & 
g1 < x0 & 
g1 in  dom (f2 * f1) & 
g2 < r2 & 
x0 < g2 & 
g2 in  dom (f2 * f1) ) ) &  ex 
g being   
Real st 
(  
0  < g & (  for 
r being   
Real  st 
r in (dom f1) /\ (].(x0 - g),x0.[ \/ ].x0,(x0 + g).[) holds 
f1 . r <>  lim (
f1,
x0) ) ) holds 
( 
f2 * f1 is_convergent_in x0 &  
lim (
(f2 * f1),
x0) 
=  lim (
f2,
(lim (f1,x0))) )