
Learning Complex Actions from Proofs in Theorem Proving

Zsolt Zombori1 and Josef Urban2

1 Alfréd Rényi Institute of Mathematics, Budapest
2 Czech Technical University in Prague

Introduction We propose to develop procedures that extend simple theorem provers with
complex actions that are the result of learning. Learning is based on traces of successful proof
attempts: we will use inductive logic programming (ILP) [5] to learn Prolog programs that can
reproduce (some repetitive parts of) the proofs found. Such programs are then incorporated
into the next iteration of the prover as new actions, resulting in a hierarchy of more advanced
provers. This approach has several motivations:

1. Long, repetitive parts of the proofs can be delegated to algorithms that are not burdened
with search, resulting in shorter proof search. This is a well established approach used in
current proof assistants and SMT solvers that implement a number of manually designed
algorithms, tactics and decision procedures combined in various ways with the proof
search.

2. We believe such algorithms are gradually learned by humans who generalize over the
proofs found so far. Our goal is to emulate this process, starting from simple actions and
generating more and more complex ones, in a similar way as when human mathematicians
develop more and more advanced proving methods. The generated programs are typically
much shorter and easier to understand than the proof traces, hence they foster human
understanding.

3. With more and more recent work related to theorem proving using learned guidance, we
argue that theorem provers should start moving focus from simple statistical learning
and guidance of the primitive actions to setups that also learn symbolically new (more
complicated) actions (executable symbolic programs) that are added to the portfolio of
statistically guided proof actions. Compared to standalone statistical learning, symbolic
programs enjoy a number of interesting properties - among others the possibility to for-
mally prove their correctness for certain classes of inputs.

Learning Setup We use the rlCoP [4] system, based on Monte Carlo Tree Search (MCTS)
guiding the leanCoP [6] connection tableau prover. We have back-ported the RL (reinforcement
learning) extensions to the Prolog language in which leanCoP was originally implemented. We
call this system plCoP. Prolog was chosen because both prover actions and ILP-learned programs
are easy to represent as Prolog clauses and it is easy to incorporate a learned program into the
set of valid inference steps. rlCoP learning consists of iterations of proof search using MCTS
(data collection) and model fitting (training XGBoost [1] policy and value regressors), following
the approach in [8].

One can very naturally interweave this process with occasional ILP-style program generation.
Once the prover has generated some proof traces, we try to generate a program that reproduces
the proofs. This program is incorporated into the prover as a new action: selecting this action
corresponds to executing the program on the current goal. The program is very similar to ITP
style tactics or SMT style decision procedures, with the important novelty that it was learned
from proof traces.

Learning Complex Actions from Proofs in Theorem Proving Zombori, Urban

Program Generation using Simple Inductive Logic Programming A proof trace in
leanCoP is a sequence of goal-action pairs. A goal is a literal and an action is an ordered formula
in clausal normal form, called contrapositive. For each step there is some substitution σ that
unifies goal G and the negation of the first literal of contrapositive A = A1 ∨A2 ∨ . . .∨An, i.e.
Gσ = ¬A1σ. Such a pair can be easily turned into the following Prolog clause:

A1σ :- ¬A2σ,¬A3σ . . .¬Anσ.

This rule is an instance of A specialized to goal G and it is typically too specific to be used in
the final generated program. However, if we consider several instantiations of the contrapositive
A (coming from one or more proofs), then we can compute the Least General Generalization
(lgg) [7] of the instances. For each contrapositive that occurs in the proof traces, we create a new
clause using the lgg operator. Next, the clauses are ordered (we illustrate program generation
in Appendix A):

1. If the head of clause C1 is more specific than that of clause C2, then C1 comes before C2.
2. If two clauses are incomparable with respect to head specificity, then the one that occurs

more frequently in the proof traces comes first.

Experiments Our experiments are preliminary. We ran plCoP on simple arithmetic equalities
of the form N1{·,+}N2 = N3 with Ni nonnegative integers, using the axioms of Robinson
Arithmetic, described in Appendix B. Proofs of these problems have a strong shared structure,
however, they can get very long as numbers increase. The training set consisted of all 200
problems with N1, N2 < 10. We ran two experiments: one using standard leanCoP and another
using leanCoP extended with paramodulation. Adding paramodulation to leanCoP makes it a
more powerful prover when it comes to equational reasoning. However, the presence of new
valid actions makes it harder to navigate in the search space. The addition of paramodulation
is so far manual, but it is also an example of a more complicated action that we can (given
enough background knowledge) try to learn automatically from many proof traces that use
equality and congruence axioms.

The programs generated from plCoP proof traces can be found in Appendix C (leanCoP only)
and Appendix D (leanCoP plus paramodulation). In both cases, the generated programs can fall
into infinite loop by repeatedly applying some unproductive rules. However, such loops can be
avoided by only allowing regular proofs, i.e., the same goal cannot occur twice on the same path.
This is a well known optimization that does not affect completeness. We can ensure regularity
by writing a simple Prolog interpreter that keeps track of all literal on the current branch. We
provide the interpreter code in Appendix E. Once regularity is ensured, the programs in both
experiments can generate proofs for all problems, irrespective of the numbers inside. In this
example, the learned program solves a very specific class of problems, so its benefit is limited,
however, plCoP can be extended with it as an extra action and the system can learn when it is
worth using it.

Conclusion and Future Work Our project aims to extend theorem provers with complex
actions that are learned from proof traces using ILP. We believe that this approach is suitable to
delegate large parts of the proof task to deterministic algorithms, allowing proof search to focus
on parts that truly require search. So far, we have back-ported rlCoP to Prolog and experimented
with simple ILP for learning arithmetic from the proof traces. The next steps include addition of
more advanced ILP learning over richer domains with larger background knowledge and better
statistical guidance of the ILP search for suitable Prolog programs analogous to our existing
efficient statistical guidance of ATPs [4, 2, 3].

2

Learning Complex Actions from Proofs in Theorem Proving Zombori, Urban

References

[1] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pages 785–794, New York, NY, USA, 2016. ACM.

[2] Karel Chvalovský, Jan Jakubuv, Martin Suda, and Josef Urban. ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. In Pascal Fontaine, editor, Automated Deduction -
CADE 27 - 27th International Conference on Automated Deduction, Natal, Brazil, August 27-30,
2019, Proceedings, volume 11716 of Lecture Notes in Computer Science, pages 197–215. Springer,
2019.

[3] Jan Jakubuv and Josef Urban. Hammering mizar by learning clause guidance. In John Harrison,
John O’Leary, and Andrew Tolmach, editors, 10th International Conference on Interactive Theorem
Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, volume 141 of LIPIcs, pages 34:1–
34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[4] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olsák. Reinforcement learning
of theorem proving. In NeurIPS, pages 8836–8847, 2018.

[5] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. J. Log.
Program., 19/20:629–679, 1994.

[6] Jens Otten and Wolfgang Bibel. leanCoP: lean connection-based theorem proving. J. Symb. Com-
put., 36:139–161, 2003.

[7] Gordon D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163, 1970.

[8] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 550:354–, October 2017.

Appendix A Example Program Generation

Suppose our proof traces use the following contrapositives:

• X + s(Y) 6= s(X + Y) used on goals 0 + s(0) = X and s(0) + s(0) = X.

• X = Y ∨X 6= Z ∨ Z 6= Y) used on goals X + s(0) = s(s(0)) and s(0) +X = s(0).

The corresponding rule instances and their least general generalizations are

Rule1: 0 + s(0) = s(0 + 0).
Rule2: s(0) + s(0) = s(s(0) + 0).
Lgg: X + s(0) = s(X + 0).

Rule1: X + s(0) = s(s(0)) :- X + s(0) = Z,Z = s(s(0)).
Rule2: s(0) +X = s(0) :- s(0) +X = Z,Z = s(0).
Lgg: X + Y = s(V) :- X + Y = Z,Z = s(V).

We obtained two clauses with heads X + s(0) and X + Y . The former is more specific, so that
comes first. The resulting program is:

X+s(0) = s(X + 0).

X+Y = s(V):-

X + Y = Z, Z = s(V)

3

Learning Complex Actions from Proofs in Theorem Proving Zombori, Urban

Appendix B Axioms of Robinson Arithmetic

Our experiments with Robinson Arithmetic use the following axioms:

• ∀X : ¬(o = s(X))
• ∀X,Y : (s(X) = s(Y))⇒ (X = Y)
• ∀X : plus(X, o) = X
• ∀X,Y : plus(X, s(Y)) = s(plus(X,Y))
• ∀X : mul(X, o) = o
• ∀X,Y : mul(X, s(Y)) = plus(mul(X,Y), X)

The axioms are automatically extended in leanCoP with rules for handling equality:

• ∀X : X = X
• ∀X,Y : (X = Y)⇒ (Y = X)
• ∀X,Y, Z : (X = Y) ∧ (Y = Z)⇒ (X = Z)
• ∀X,Y : (X = Y)⇒ (s(X) = s(Y))
• ∀X1, X2, Y1, Y2 : (X1 = X2) ∧ (Y1 = Y2)⇒ plus(X1, Y1) = plus(X2, Y2)
• ∀X1, X2, Y1, Y2 : (X1 = X2) ∧ (Y1 = Y2)⇒ mul(X1, Y1) = mul(X2, Y2)

Appendix C Program Generation from Proof Traces in
leanCoP

After running plCoP on the arithmetic equalities described in Section , we used the successful
proof traces to generate the following program:

eq(mul(A,o),o).

eq(plus(A,s(B)),s(plus(A,B))).

eq(s(A),s(B)):-

eq(A,B).

eq(plus(A,o),A).

eq(plus(s(s(s(A))),s(s(B))),plus(s(s(s(A))),s(s(B)))):-

eq(s(s(s(A))),s(s(s(A)))),eq(s(s(B)),s(s(B))).

eq(A,A).

eq(mul(A,s(B)),plus(mul(A,B),A)).

eq(A,B):-

eq(A,C),eq(C,B).

eq(A,B):-

eq(B,A).

eq(A,B):-

eq(s(A),s(B)).

This program – when only regular proofs are allowed – can prove any of the arithmetic problems,
irrespective of the numbers inside.

The program contains some unnecessary rules, which can be iteratively removed, making sure
that the coverage does not change. After pruning, we obtain the following program:

eq(mul(A,o),o).

4

Learning Complex Actions from Proofs in Theorem Proving Zombori, Urban

eq(plus(A,s(B)),s(plus(A,B))).

eq(s(A),s(B)):-

eq(A,B).

eq(plus(A,o),A).

eq(mul(A,s(B)),plus(mul(A,B),A)).

eq(A,B):-

eq(A,C),eq(C,B).

Appendix D Program Generation from Proof Traces in
leanCoP Extended with Paramodulation

After running plCoP using paramodulation on the arithmetic equalities described in Section ,
we used the successful proof traces to generate the following program:

eq(plus(A,s(B)),s(plus(A,B))).

eq(plus(s(A),s(B)),plus(s(A),C)):-

eq(s(A),s(A)),eq(s(B),C).

eq(plus(A,s(B)),C):-

eq(s(plus(A,B)),C),true.

eq(s(A),plus(B,s(C))):-

eq(s(A),s(plus(B,C))),true.

eq(plus(A,o),A).

eq(plus(A,o),B):-

eq(A,B),true.

eq(A,plus(B,o)):-

eq(A,B),true.

eq(A,A).

eq(mul(s(s(s(A))),s(s(s(B)))),plus(mul(s(s(s(A))),s(s(B))),s(s(s(A))))).

eq(mul(s(o),s(s(o))),mul(s(o),plus(s(s(o)),o))):-

eq(s(o),s(o)),eq(s(s(o)),plus(s(s(o)),o)).

eq(mul(A,s(B)),C):-

eq(plus(mul(A,B),A),C),true.

eq(A,mul(s(B),s(C))):-

eq(A,plus(mul(s(B),C),s(B))),true.

eq(mul(A,o),o).

eq(s(plus(A,B)),C):-

eq(plus(A,s(B)),C),true.

eq(s(A),s(B)):-

eq(A,B).

eq(A,B):-

eq(B,A).

eq(A,B):-

eq(s(A),s(B)).

eq(A,B):-

eq(A,C),eq(C,B).

This program – when only regular proofs are allowed – can prove any of the arithmetic problems,

5

Learning Complex Actions from Proofs in Theorem Proving Zombori, Urban

irrespective of the numbers inside.

The program contains some unnecessary rules, which can be iteratively removed, making sure
that the coverage does not change. After pruning, we obtain the following program:

eq(plus(A,s(B)),C):-

eq(s(plus(A,B)),C),true.

eq(s(A),plus(B,s(C))):-

eq(s(A),s(plus(B,C))),true.

eq(plus(A,o),B):-

eq(A,B),true.

eq(A,plus(B,o)):-

eq(A,B),true.

eq(A,A).

eq(mul(A,s(B)),C):-

eq(plus(mul(A,B),A),C),true.

eq(A,mul(s(B),s(C))):-

eq(A,plus(mul(s(B),C),s(B))),true.

eq(mul(A,o),o).

eq(s(A),s(B)):-

eq(A,B).

Appendix E Prolog Interpreter

We provide a small Prolog interpreter (written in Prolog) that extends regular Prolog by adding
reduction step and and filtering irregular proofs.

execute(true, _, []):- !.

execute((G1, G2), Path, Proof):- !,

execute(G1, Path, Proof0),

execute(G2, Path, Proof1),

append(Proof0, Proof1, Proof).

execute(Goal, Path, Proof):-

(has_loop(Goal, Path) -> fail

; reduction(Goal, Path, Proof)

; extension(Goal, Path, Proof)

).

negate(neg(Goal), Goal):- !.

negate(Goal, neg(Goal)).

has_loop(Goal, Path):-

member(G, Path), G == Goal, !.

reduction(Goal, Path, [red(Clause)]):-

negate(Goal, NegGoal),

member(NegGoal, Path),

copy_term(Goal-NegGoal, Clause).

6

	Example Program Generation
	Axioms of Robinson Arithmetic
	Program Generation from Proof Traces in leanCoP
	Program Generation from Proof Traces in leanCoP Extended with Paramodulation
	Prolog Interpreter

