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In automated theorem proving (ATP) the essential task is, not surprisingly, to produce a
proof for a given theorem. However, for human mathematicians such a task usually involves
also producing various conjectures that are proved, refuted, or more likely modified and which
help to clarify the problem in question. Clearly, to mimic such an approach in ATP is a very
challenging task. Moreover, the approaches proposed for computer generated conjecturing have
produced mostly toy or domain specific conjectures, see e.g. [9, 5, 4, 8, 6].

One of the core problems is to even decide whether a produced conjecture is fruitful. This
clearly depends on the particular task for which we want to use the conjectures. An activity
usually rich on generating conjectures is reading mathematical texts. For example, the reader
may anticipate the flow of the paper by guessing the next theorem based on the previous text.
This seems to be an interesting machine learning task that requires a non-trivial understanding
of a mathematical text. Another reading of this task is given a proof attempt what is a useful
lemma that helps to complete the proof. Hence the task is hard and it is probably better to
start with a related and more approachable problem namely the inverse task to what automated
theorem provers do—to produce a theorem given a proof. Clearly, even this can be, especially
without a proper context of the rest of the paper and for informal proofs, an extremely hard to
impossible task. Nevertheless, at least there are data available for learning. Hence we are here
interested in the problem of transforming a proof into a corresponding theorem.

It is much easier if we use a formalized mathematical library, in many cases it can be even
trivial to produce such a transformation. However, usually it requires some, at least statistical,
insight. For example, take the following tokenized1 proof from Mizar Mathematical Library [2]
(MML, contains over 50K theorems)

proof let L , M be non empty RelStr such that A1 : L , M are_isomorphic and A2 : L is

reflexive ; let x be Element of M ; M , L are_isomorphic by A1 , WAYBEL_1 : 6 ; then

consider f being Function of M , L such that A3 : f is isomorphic ; reconsider

fx = f . x as Element of L ; fx <= fx by A2 ; hence thesis by A3 , WAYBEL_0 : 66 ; end ;

as an input. The corresponding theorem is

theorem for L , M being non empty RelStr st L , M are_isomorphic & L is reflexive holds

M is reflexive

Our system is able to correctly produce this theorem. Although it is easy to extract the
assumptions from the proof, in this particular case, a bit of work is required to statistically infer
that we want to know that M is reflexive holds, because this fact does not occur explicitly
in the proof. Moreover, the system provides the correct output only as its third option with
for x being Element of M holds x is reflexive being the top candidate.

A preliminary version of our very simple system is based on a popular neural machine
translation toolkit OpenNMT-py and basically follows an approach [7] developed for text sum-
marization, because we can loosely speaking understand our task as a summarization task.
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1We tokenize all the inputs and outputs to make the task better suited to our tools.
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The model we employ is based on the sequence to sequence approach using a variant [1] of the
attention mechanism and importantly it is able to copy words directly from the input to the
output. Hence it can handle even words that it did not see during the training phase. We
also experimented with the Transformer [10] model, but the results have been slightly worse.
However, it is well known that this model is sensitive to the right choice of hyperparameters
and after tuning them it is likely to outperform the former model.

However, we should emphasize that although natural language processing (NLP) tools have
proven to be useful, they still suffer from several problems. Among them is the problem that
sentences produced by such systems are in many cases logically inconsistent. Hence it may seem
a bit silly to use the exactly same approach to produce mathematical theorems. However, as
our task boils down basically to extracting correct sub-sequences from a proof and adding a bit
of statistically plausible knowledge, it seems powerful enough for our purposes. Moreover, we
do not claim that such a simple approach should provide surprisingly complicated results, but
it has been experimentally shown [11] that NMT can be used to produce statistically plausible
results for MML. Hence it is not so surprising that for MML we get decent results: on a test
set the success rate, which means that we produce an exact match, is 0.28 (0.39 if compared
against the ten most probable outputs).

A clearly challenging task is to test a similar approach on LATEX documents from arXiv.org,
where it is in many cases easy to identify theorems and proofs, but the format of proofs vary
widely. We have performed a few preliminary experiments using the Stacks project, which
provides a curated and coherent playground suitable for our purposes. Not surprisingly, our
simple approach produces very poor results in this context. A relatively, for our purposes, small
size of the dataset (ca. 12K theorems) may contribute to this, but more likely the main problem
is that in such a general setting the task is no longer about selecting the right sub-sequences
and guessing a statistically plausible conclusion. It requires at least a superficial understating
of the problem in its entirety. Moreover, it would be helpful to take a bit more of context into
account, for example, use the previous theorems as a part of the input. In fact, it helps slightly
to see the previous theorems, because they provide additional sources of data.2 Although it is
possible to modify our task in many such ways, it is unlikely that such modifications will be
sufficient to produce reasonable results on informal texts.

We believe that producing conjectures based on a mathematical text is an important task.
And although narrowing it down to producing theorems from proofs looks much less interesting,
it is a task that connects both these notions in a non-proof theoretical way, a potentially
useful viewpoint on its own. Moreover, the attention mechanism makes it possible to weight
the contribution of tokens in the input and use this knowledge elsewhere, for example, for
fingerprinting mathematical object, cf. [3].
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