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Overview of the Methods and Experiments

• MML: Mizar Mathematical Library

= large corpus of formalized mathematics

• MPTP: Mizar Problems for Theorem Provers

= translation of MML theorems to First-Order Logic (FOL)

• ATP: Automated Theorem Provers for FOL

• MizAR: Mizar + ATPs (Automated Reasoning)

• Evaluation in two premise selection schemes:

1. Bushy: Use the premises extracted from user-written

dependencies in Mizar files.

2. Hammer: Use all theorems available in MML (at the given

time) as premises.

• Challenge: Use machine learning (ML) and ATPs to improve.

• Previously at Mizar40: 56% (bushy) / 40.6% (hammer)
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AITP Challenges/Bets from 2014

• 3 AITP bets from JU’s 2014 talk at Institut Henri Poincare

• In 20 years, 80% of Mizar and Flyspeck toplevel theorems will

be provable automatically (same hardware, same libraries as in

2014 - about 40% then)

• The same in 30 years - I’ll give you 2:1. In 10 years: 60% (i.e.

a 50% more than Mizar40/Flyspeck)

• In 25 years, 50% of the toplevel statements in LaTeX-written

Msc-level math curriculum textbooks will be parsed

automatically and with correct formal semantics

• No betting: all this could be today done in 5 years with

reasonable resources

• Hurry up: I will only accept bets up to 10k EUR total

• The 50% improvement promised in my 2014 ERC proposal

• TacticToe has done 66%-69% on HOL already in 2017/18

• Hence we were left with the Mizar 60% challenge
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ENIGMA: Machine Learning for ATPs

• ENIGMA: Efficient Learning Based Inference Guiding Machine

• Machine learning for given clause selection guidance in ATPs.

• Reported at IJCAR’20: Learning-guided ATP that improves

over state-of-the-art ATPs (IJCAR’20).

• ENIGMA and other ML-based methods are used on Mizar.

• Experiments typically involve train/evaluation loop.
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ENIGMA: Training & Evaluation Loop

1. Evaluate problems using a prover.

2. Obtain train samples from proofs:

• positive = proof clauses

• negative = other processed

3. Train a classifier model.

4. Use the model inside the prover.

5. Obtain new proofs and go to 2.
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Jakubův et al. MizAR 60 for Mizar 50 6 / 31



Outline

Introduction: Mizar, MML, Hammers and AITP

ENIGMA: ATP Guidance and Related Technologies

Learning Premise Selection From the MML

Experiments and Results
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Saturation Theorem Proving Meets Machine Learning

• ATPs typically perform proof search by contradiction.

• Statements are translated to clauses (literal disjuction).

• Proof search is guided by the given clause algorithm.

• Inference rules allow to infer a new clause.

• The proof state consists of two subsets

1. processed clauses: mutually inferred

2. unprocessed clauses: sorted in a queue heuristically

• In the main loop, the best unprocessed clauses is picked and

moved to processed, giving rise to new unprocessed clauses.
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E Prover: Given Clause Loop
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ENIGMA: Given Clause Guidance
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ENIGMA: Parental Generation Filter
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Gradient Boosted Decision Tree Classifiers and Features

Represent clauses as feature vectors and use LightGBM.

• Vertical / Horizontal Features: count symbol n-tuples

• Conjecture Features: embed conjecture features

• Feature Hashing: hash feature unique string identifiers

• Parent Features: embed features of parent clauses

• Anonymization: forget names except arity (plus ⇒ f 2)
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Graph Neural Network (GNN) Classifiers
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Graph Neural Network (GNN) Classifiers

• A set of clauses is represented by a hypergraph with three

kinds of nodes for clauses, subterms/literals, and symbols.

• Graph hyperedges represent relationships among the objects.

• GNN layers perform message passing across the edges.
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Multi-phase ENIGMA: Fast and Slow Models

• Multi-phase ENIGMA: Introduced to

deal with computationally expensive

(slow) ML models, like graph neural

networks (GNNs).

• Fast model (GBDT) is used for

preliminary clause filtering.

• Fast model over-approximates on

positive classes.

• Only clauses classified with high

confidence as negatives are rejected.
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Additional Related Techniques

• GPU Server Mode: Reduce overhead of GPU loading.

• GPU server with preloaded models on several GPUs.

• Provers communicate with the server via a network socket.

• Leapfrogging: Filter the evolving set of generated clauses.

(1) Stop the prover after some time, filter clauses, and continue.

(2) Split clauses into components, solve separately, and merge.

• BliStr/Tune: Automated invention of ATP strategies.

• interleaves targeted parameter search on problem clusters. . .

• with a large-scale evaluation of the invented strategies

• Deepire: Machine learning in Vampire

• uses recursive neural networks

• classifies generated clauses based on their derivation
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Robust Portfolio Construction

• Machine learning methods typically overfit on the trains.

• We use train/devel/holdout split to prevent overfitting.

• Portfolio construction: Construct a sequence of strategies to

be run sequentially, each with a given time limit.

• For compatibility with Mizar40: portfolio runtime = 420s

• Random split greedy cover construction:

(1) Split the devel set D into halves: D = D1 ∪ D2.

(2) Construct greedy cover C1 on D1 and evaluate C1 on D2.

(3) Goto (1): repeat this process n times (n = 1000)

(4) Select the less overfitting portfolio C1 from (2).
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Premise Selection in MML

• When proving a new conjecture, only a small fraction of the

large ITP library is typically needed.

• Too many redundant significantly reduces ATP performance.

• Several premise selection approaches:

• Bushy Premises (B): Estimate premises based on

human-written premises in the Mizar proof.

• Additional data-driven and machine-learning approaches.
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Multilabel Premise Selection

Simple but fast ML methods used already in Mizar40 evaluation:

• k-NN (K): The k-nearest neighbours algorithm

Choose k facts closest to the conjecture in the feature space

and select their dependencies.

• Naive Bayes (N ): The sparse Naive Bayes algorithm

Estimates the relevance of a fact F by the conditional

probability of F being useful (statistically) under the condition

of the features being present in the conjecture.
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Premise Selection as Binary Classification

The models for clause selection can be used for premise selection.

• Gradient Boosted Decision Trees (L):

• faster to train than the deep learning methods

• perform well with unbalanced training sets

• handle well sparse features

• scores the pairwise relevance of the conjecture and a premise

• Graph Neural Networks (G):

• the same GNN architecture as for clause selection

• scores premises relevance to the conjecture in a single query

• combined with a simpler k-NN to preselect 512 facts
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Ensemble Methods for Premise Selection

• Combine several premise selection methods into one.

• Prediction scores of different methods might be incomparable.

• Solution: Consider rankings produced by different methods.

• Combine several rankings into one (mean, minimum, . . . ).

• Method weights to set preferred ensemble methods:

EK ,N ,G
0.25,0.25,0.5
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Subproblem Based Premise Minimization

• Mizar proof consists of a series of natural deduction steps

(subproblems) that have to be justified.

• ATP proofs of subproblems can be used to prune the

(overapproximated) set of human-written premises in Mizar.

We consider the following approaches (M):

(1) Only premises of ATP-proved subproblems.

(ignoring unproved)

(2) Add to (1) all explicit Mizar premises of the theorem.

(3) Add to (2) also the (semi-explicit) definitional expansions

detected by the natural deduction module.
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Bushy Experiments and Timeline

solved [%] date premises methods/notes

∼ 32k 56.00 2012 B Mizar40

∼ 38k 65.65 Jun 2020 B ENIGMA @ IJCAR’20

40 268 69.57 Oct 2020 B ENIGMA after IJCAR

40 994 70.83 Nov 12 M subproblem minimization

41 169 71.13 Nov 12 M Vampire with 300 s

42 206 72.92 Dec 7 many E/ENIGMA/Vampire

42 471 73.38 Jan 2021 G, E BliStr/Tune/E strategies

42 826 73.99 May 14 G,L,K Deepire @ FroCoS’21

43 599 75.33 Aug 26 M,B,L 2,3-phase ENIGMA

43 717 75.53 Sep 2 M mainly Vampire/Deepire
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Hammer Mode: ENIGMA on The Premise Selection Data

ENIGMA GBDT alone can reach 55% in several loops:

loop trains devel devel cover

(union) (in 420s) [%]

init 20 604 1215 - -

(1) 25 240 1601 1516 52.33

(2) 25 725 1669 1555 53.69

(3) 25 887 1679 1560 53.88

(4) 29 266 1716 1591 54.94

(5) 37 053 1735 1610 55.59
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Hammer Mode: ENIGMA and Others

Other ATP methods are reasonably complementary to ENIGMA:

prover (420s) cover pairs [%]

E 2.6 (auto-schedule) 1430 14 49.38

Vampire 4.0 (CASC) 1536 14 53.03

BliStr/Tune 1582 210 54.62

ENIGMA/GBDT 1610 42 55.59

ENIGMA/GNN 1670 84 57.66
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Final Hammer Portfolio

• The final portfolio is constructed on the devel using the robust

portfolio construction described earlier.

• Then evaluated on the holdout set.

• The final 420-second portfolio has 95 slices:

• solves 1749 (60.4 %) of the devel problems

• solves 1690 (58.36 %) of the holdout problems

• Compare with Mizar40:

• Bushy mode: from 56.0% to 75.53%

• Hammer mode: from 40.6% to 58.36%
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Single Strategy Performance

1. Our strongest single AI/TP method alone now proves in 30 s

40 % of the lemmas in the hammering mode, i.e., reaching the

same strength as the full 420 s portfolio in Mizar40.

2. Our strongest single AI/TP method now proves in 120 s 60 %

of the toplevel lemmas in the human-premises (bushy) mode,

i.e., outperforming the union of all methods developed in

Mizar40 (56 %).

3. On new (MML v1382) 13 370 theorems (half of them with

new symbols): this strongest method outperforms standard E

by 58.2 %, while this is only 56.1 % on the Mizar40 version

(where we trained). Likely thanks to the anonymous ML

methods that learn only from the structure of the problems

(unlike LLMs that struggle on new terminology).
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Finally

Visit us online!

• Interesting ATP proofs of Mizar theorems

https://github.com/ai4reason/ATP_Proofs

• VizAR: Mizar ATP Proof Gallery

https://ai.ciirc.cvut.cz/vizar/

• Check extended version on arXiv for additonal discussions

https://arxiv.org/abs/2303.06686

• and its “ML-guided deductive synthesis vs LLMs” section

https://ar5iv.labs.arxiv.org/html/2303.06686#A1.SS2
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