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How Do We Automate Math and Science?

� What is mathematical and scientific thinking?
� Pattern-matching, analogy, induction from examples
� Deductive reasoning
� Complicated feedback loops between induction and deduction
� Using a lot of previous knowledge - both for induction and deduction

� We need to develop such methods on computers
� Are there any large corpora suitable for nontrivial deduction?
� Yes! Large libraries of formal proofs and theories
� So let’s develop strong AI on them!
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Intuition vs Formal Reasoning – Poincaré vs Hilbert

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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Induction/Learning vs Reasoning – Henri Poincaré

� Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

� “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

� I believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)
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Learning vs Reasoning – Alan Turing 1950 – AI

� 1950: Computing machinery and intelligence – AI, Turing test
� “We may hope that machines will eventually compete with men in all

purely intellectual fields.” (regardless of his 1936 undecidability result!)
� last section on Learning Machines:
� “But which are the best ones [fields] to start [learning on] with?”
� “... Even this is a difficult decision. Many people think that a very abstract

activity, like the playing of chess, would be best.”
� Why not try with math? It is much more (universally?) expressive ...
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Induction/Learning vs Reasoning – Turing 1950 – AI

� 1950: Computing machinery and intelligence – AI, Turing test
� On pure deduction: “For at each stage when one is using a logical

system, there is a very large number of alternative steps, any of which
one is permitted to apply, so far as obedience to the rules of the logical
system is concerned. These choices make the difference between a
brilliant and a footling reasoner, not the difference between a sound and a
fallacious one.”
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Why Combine Learning and Reasoning Today?

1 It practically helps!
� Automated theorem proving for large formal verification is useful:

� Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas)
� Formal Proof of the Feit-Thompson Theorem (2012 – Gonthier)
� Verification of compilers (CompCert) and microkernels (seL4)
� ...

� But good learning/AI methods needed to cope with large theories!

2 Blue Sky AI Visions:
� Get strong AI by learning/reasoning over large KBs of human thought?
� Big formal theories: good semantic approximation of such thinking KBs?
� Deep non-contradictory semantics – better than scanning books?
� Gradually try learning math/science:

� What are the components (inductive/deductive thinking)?
� How to combine them together?
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The Plan

1 Make large “formal thought” (Mizar/MML, Isabelle/HOL/AFP,
HOL/Flyspeck ...) accessible to strong reasoning and learning AI tools –
DONE (or well under way)

2 Test/Use/Evolve existing AI and ATP tools on such large corpora

3 Build custom/combined inductive/deductive tools/metasystems

4 Continuously test performance, define harder AI tasks as the
performance grows
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What is Formal Mathematics?

� Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
� Mathematics put on formal logic foundations (symbolic computation)
� ... which btw. led also to the rise of computers (Turing/Church, 1930s)
� Formal math (1950/60s): combine formal foundations and the newly

available computers
� For AGI/Singularity people: Formal proof is the Secure Hardware

Environment from Vinge’s Rainbows End
� Conceptually very simple:
� Write all your axioms and theorems so that computer understands them
� Write all your inference rules so that computer understands them
� Use the computer to check that your proofs follow the rules
� But in practice, it turns out not to be so simple
� Many approaches, still not mainstream, but big breakthroughs recently
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Irrationality of
p

2 (informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem).
p

2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If

p
2

is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a;b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is
also even, contrary to the hypothesis that (a;b) = 1. �
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Irrationality of
p

2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
consider a,b such that

4_3_1: a^2 = 2*b^2 and
a,b are relative prime;

a^2 is even;
a is even;
consider c such that a = 2*c;
4*c^2 = 2*b^2;
2*c^2 = b^2;
b is even;
thus contradiction;

end;

12 / 56



Irrationality of
p

2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)‘
(fun th -> MESON_TAC[th]) THEN

SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;

ARITH_RULE ‘0 < q <=> ~(q = 0)‘] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of
p

2 in Isabelle/HOL

WKHRUHP�VTUW�BQRWBUDWLRQDO�
���VTUW��UHDO��������
SURRI
��DVVXPH��VTUW��UHDO��������
��WKHQ�REWDLQ�P�Q����QDW�ZKHUH
����QBQRQ]HUR���Q�X����DQG�VTUWBUDW���hVTUW��UHDO���h� �UHDO�P���UHDO�Q�
����DQG�ORZHVWBWHUPV���JFG�P�Q� ������
��IURP�QBQRQ]HUR�DQG�VTUWBUDW�KDYH��UHDO�P� �hVTUW��UHDO���h��UHDO�Q��E\�VLPS
��WKHQ�KDYH��UHDO��Pt�� ��VTUW��UHDO����t��UHDO��Qt��
����E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�
��DOVR�KDYH���VTUW��UHDO����t� �UHDO����E\�VLPS
��DOVR�KDYH�������UHDO��Pt�� �UHDO�����Qt���E\�VLPS
��ILQDOO\�KDYH�HT���Pt� ����Qt����
��KHQFH����GYG�Pt����
��ZLWK�WZRBLVBSULPH�KDYH�GYGBP�����GYG�P��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��WKHQ�REWDLQ�N�ZKHUH��P� ����N����
��ZLWK�HT�KDYH�����Qt� ��t��Nt��E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�PXOWBDF�
��KHQFH��Qt� ����Nt��E\�VLPS
��KHQFH����GYG�Qt����
��ZLWK�WZRBLVBSULPH�KDYH����GYG�Q��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��ZLWK�GYGBP�KDYH����GYG�JFG�P�Q��E\��UXOH�JFGBJUHDWHVW�
��ZLWK�ORZHVWBWHUPV�KDYH����GYG����E\�VLPS
��WKXV�)DOVH�E\�DULWK
THG
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Big Example: The Flyspeck project

� Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

V =
�p
18

� 74%

� Formal proof finished in 2014
� 20000 lemmas in geometry, analysis, graph theory
� All of it at https://code.google.com/p/flyspeck/
� All of it computer-understandable and verified in HOL Light:
� polyhedron s /\ c face_of s ==> polyhedron c

� However, this took 20 – 30 person-years!
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What Are Automated Theorem Provers?

� Computer programs that (try to) determine if
� A conjecture C is a logical consequence of a set of axioms Ax
� The derivation of conclusions that follow inevitably from facts.

� Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, ...
� Brute-force search calculi (resolution, superposition, tableaux, SMT, ...)
� Human-designed heuristics for pruning of the search space
� Fast combinatorial explosion on large knowledge bases like Flyspeck and

Mizar
� Need to be equipped with good domain-specific inference guidance ...
� ... and that is what I try to do ...
� ... typically by learning in various ways from the knowledge bases ...
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Mizar demo

http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
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Using Learning to Guide Theorem Proving

� high-level: pre-select lemmas from a large library, give them to ATPs
� high-level: pre-select a good ATP strategy/portfolio for a problem
� high-level: pre-select good hints for a problem, use them to guide ATPs
� low-level: guide every inference step of ATPs (tableau, superposition)
� low-level: guide every kernel step of LCF-style ITPs
� mid-level: guide application of tactics in ITPs
� mid-level: invent suitable ATP strategies for classes of problems
� mid-level: invent suitable conjectures for a problem
� mid-level: invent suitable concepts/models for problems/theories
� proof sketches: explore stronger/related theories to get proof ideas
� theory exploration: develop interesting theories by conjecturing/proving
� feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
� ...
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Large Datasets

� Mizar / MML / MPTP – since 2003
� MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
� Isabelle (and AFP) – since 2005
� Flyspeck (including core HOL Light and Multivariate) – since 2012
� HOLStep – 2016, kernel inferences
� Coq – since 2013/2016
� HOL4 – since 2014
� ACL2 – 2014?
� Lean? – 2017?
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High-level ATP guidance: Premise Selection

� Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

� About 80000 nontrivial math facts at that time – impossible to use them all
� Is good premise selection for proving a new conjecture possible at all?
� Or is it a mysterious power of mathematicians? (Penrose)
� Today: Premise selection is not a mysterious property of mathematicians!
� Reasonably good algorithms started to appear (more below).
� Will extensive human (math) knowledge get obsolete?? (cf. Watson,

Debater, etc)
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Example system: Mizar Proof Advisor (2003)

� train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
� input features: conjecture symbols; output labels: names of facts
� recommend relevant facts when proving new conjectures
� give them to unmodified FOL ATPs
� possibly reconstruct inside the ITP afterwards (lots of work)
� First results over the whole Mizar library in 2003:

� about 70% coverage in the first 100 recommended premises
� chain the recommendations with strong ATPs to get full proofs
� about 14% of the Mizar theorems were then automatically provable (SPASS)

� Today’s methods: about 45-50% (and we are still just beginning!)
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ML Evaluation of methods on MPTP2078 – recall

� Coverage (recall) of facts needed for the Mizar proof in first n predictions
� MOR-CG – kernel-based, SNoW - naive Bayes, BiLi - bilinear ranker
� SINe, Aprils - heuristic (non-learning) fact selectors
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ATP Evaluation of methods on MPTP2078

� Number of the problems proved by ATP when given n best-ranked facts
� Good machine learning on previous proofs really matters for ATP!
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Today’s AI-ATP systems (?-Hammers)

Proof Assistant ?Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

� Mizar / MML – MizAR
� Isabelle (Auth, Jinja) – Sledgehammer
� Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
� HOL4 (Gauthier and Kaliszyk)
� CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

� 45% success rate
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Recent Improvements and Additions

� Semantic features encoding term matching/unification [IJCAI’15]
� Distance-weighted k-nearest neighbor, LSI, boosted trees (XGBoost)
� Matching and transferring concepts and theorems between libraries

(Gauthier & Kaliszyk) – allows “superhammers”, conjecturing, and more
� Lemmatization – extracting and considering millions of low-level lemmas
� First useful CoqHammer (Czajka & Kaliszyk 2016), 40%–50%

reconstruction/ATP success on the Coq standard library
� Neural sequence models, definitional embeddings (Google Research)
� Hammers combined with statistical tactical search: TacticToe (HOL4)
� Learning in binary setting from many alternative proofs
� Negative/positive mining (ATPBoost - Piotrowski & JU, 2018)
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Summary of Features Used

� From syntactic to more semantic:
� Constant and function symbols
� Walks in the term graph
� Walks in clauses with polarity and variables/skolems unified
� Subterms, de Bruijn normalized
� Subterms, all variables unified
� Matching terms, no generalizations
� terms and (some of) their generalizations
� Substitution tree nodes
� All unifying terms
� Evaluation in a large set of (finite) models
� LSI/PCA combinations of above
� Neural embeddings of above
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FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(‘!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[‘f:(real^N->bool)->bool‘; ‘a:(real^N->bool)->real^N‘;
‘b:(real^N->bool)->real‘] THEN

STRIP_TAC THEN
MP_TAC(ISPECL [‘s:real^N->bool‘; ‘f:(real^N->bool)->bool‘;

‘a:(real^N->bool)->real^N‘; ‘b:(real^N->bool)->real‘]
FACE_OF_POLYHEDRON_EXPLICIT) THEN

ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC ‘c:real^N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real^N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real^N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]);;
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FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ c face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX:
Face t of a convex set s is equal to the intersection of s with the affine hull of t .

FACE_OF_STILLCONVEX:
!s t:real^N->bool. convex s ==>
(t face_of s <=>
t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)

POLYHEDRON_IMP_CONVEX:
!s:real^N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!s t:real^N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)

POLYHEDRON_AFFINE_HULL:
!s. polyhedron(affine hull s)
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Statistical Guidance of Connection Tableau

� learn guidance of every clausal inference in connection tableau (leanCoP)
� set of first-order clauses, extension and reduction steps
� proof finished when all branches are closed
� a lot of nondeterminism, requires backtracking
� Iterative deepening used in leanCoP to ensure completeness
� good for learning – the tableau compactly represents the proof state

Clauses:

c1 : P(x)

c2 : R(x ; y) _ :P(x) _Q(y)

c3 : S(x) _ :Q(b)

c4 : :S(x) _ :Q(x)

c5 : :Q(x) _ :R(a; x)

c6 : :R(a; x) _Q(x)

Closed Connection Tableau: P(a)

R(a; b)

:R(a; b) Q(b)

:Q(b) :R(a; b)

:P(a) Q(b)

S(b)

:S(b) :Q(b)

:Q(b)
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Statistical Guidance of Connection Tableau

� MaLeCoP (2011): first prototype Machine Learning Connection Prover
� extension rules chosen by naive Bayes trained on good decisions
� training examples: tableau features plus the name of the chosen clause
� initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
� 20-time search shortening on the MPTP Challenge
� second version: 2015, with C. Kaliszyk
� both prover and naive Bayes in OCAML, fast indexing
� Fairly Efficient MaLeCoP = FEMaLeCoP
� 15% improvement over untrained leanCoP on the MPTP2078 problems
� using iterative deepening - enumerate shorter proofs before longer ones
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Statistical Guidance of Connection Tableau – rlCoP

� 2018: stronger learners via C interface to OCAML (boosted trees)
� remove iterative deepening, the prover can go arbitrarily deep
� added Monte-Carlo Tree Search (MCTS)
� MCTS search nodes are sequences of clause application
� a good heuristic to explore new vs exploit good nodes:

wi

ni
+ c � pi �

s
ln N
ni

(UCT - Kocsis, Szepesvari 2006)

� learning both policy (clause selection) and value (state evaluation)
� clauses represented not by names but also by features (generalize!)
� binary learning setting used: | proof state | clause features |
� mostly term walks of length 3 (trigrams), hashed into small integers
� many iterations of proving and learning
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Statistical Guidance of Connection Tableau – rlCoP

� On 32k Mizar40 problems using 200k inference limit
� nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

� rlCoP with policy/value after 5 proving/learning iters on the training data
� 1624=1143 = 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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Statistical Guidance the Given Clause in E Prover

� harder for learning than tableau
� the proof state are two large heaps of clauses processed/unprocessed
� 2017: ENIGMA - manual feature engineering (Jakubuv & JU 2017)
� 2017: Deep guidance (neural nets) (Loos et al. 2017)
� both learn on E’s proof search traces, put classifier in E
� positive examples: given clauses used in the proof
� negative examples: given clauses not used in the proof
� ENIGMA: fast feature extraction followed by fast/sparse linear classifier
� about 80% improvement on the AIM benchmark
� Deep guidance: convolutional nets - no feature engineering but slow
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ProofWatch: Statistical/Semantic Guidance of E
(Goertzel et al. 2018)

� Bob Veroff’s hints method used for Prover9/AIM
� solve many easier/related problems
� load their useful lemmas on the watchlist (kind of conjecturing)
� boost inferences on clauses that subsume a watchlist clause
� watchlist parts are fast thinking, bridged by standard (slow) search
� ProofWatch (2018): load many proofs separately
� dynamically boost those that have been covered more
� needed for heterogeneous ITP libraries
� statistical: watchlists chosen using similarity and usefulness
� semantic/deductive: dynamic guidance based on exact proof matching
� results in better vectorial characterization of saturation proof searches
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ProofWatch: Statistical/Symbolic Guidance of E

theorem Th36: :: YELLOW_5:36
for L being non empty Boolean RelStr for a, b being Element of L
holds ( ’not’ (a "\/" b) = (’not’ a) "/\" (’not’ b)

& ’not’ (a "/\" b) = (’not’ a) "\/" (’not’ b) )

� De Morgan’s laws for Boolean lattices
� guided by 32 related proofs resulting in 2220 watchlist clauses
� 5218 given clause loops, resulting ATP proof is 436 clauses
� 194 given clauses match the watchlist and 120 (61.8%) used in the proof
� most helped by the proof of WAYBEL_1:85 – done for lower-bounded Heyting

theorem :: WAYBEL_1:85
for H being non empty lower-bounded RelStr st H is Heyting holds
for a, b being Element of H holds
’not’ (a "/\" b) >= (’not’ a) "\/" (’not’ b)
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ProofWatch: Vectorial Proof State

Final state of the proof progress for the 32 proofs guiding YELLOW_5:36

0 0.438 42/96 1 0.727 56/77 2 0.865 45/52 3 0.360 9/25
4 0.750 51/68 5 0.259 7/27 6 0.805 62/77 7 0.302 73/242
8 0.652 15/23 9 0.286 8/28 10 0.259 7/27 11 0.338 24/71
12 0.680 17/25 13 0.509 27/53 14 0.357 10/28 15 0.568 25/44
16 0.703 52/74 17 0.029 8/272 18 0.379 33/87 19 0.424 14/33
20 0.471 16/34 21 0.323 20/62 22 0.333 7/21 23 0.520 26/50
24 0.524 22/42 25 0.523 45/86 26 0.462 6/13 27 0.370 20/54
28 0.411 30/73 29 0.364 20/55 30 0.571 16/28 31 0.357 10/28
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TacticToe: mid-level ITP Guidance (Gauthier et al.’18)

� learns from human tactical HOL4 proofs to solve new goals
� no translation or reconstruction needed
� similar to rlCoP: policy/value learning
� however much more technically challenging:

� tactic and goal state recording
� tactic argument abstraction
� absolutization of tactic names
� nontrivial evaluation issues

� policy: which tactic/parameters to choose for a current goal?
� value: how likely is this proof state succeed?
� 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
� similar recent work for Isabelle (Nagashima 2018)
� work in progress for Coq (us, OpenAI) and HOL Light (us, Google,

DeepMind)
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Examples of self-evolving metasystems

� positive feedback loops
� Machine Learner for Automated Reasoning (MaLARea, ATPBoost)
� Blind Strategymaker (BliStr)
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Machine Learner for Automated Reasoning
� MaLARea (2006) – infinite hammering
� feedback loop interleaving ATP with learning premise selection
� both syntactic and semantic features for characterizing formulas:
� evolving set of finite (counter)models in which formulas evaluated
� winning AI/ATP benchmarks (MPTPChallenge, CASC 2008/12/13/18)
� ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs
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BliStr: Blind Strategymaker

� Problem: how do we put all the sophisticated ATP techniques together?
� E.g., Is conjecture-based guidance better than proof-trace guidance?
� Grow a population of diverse strategies by iterative local search and

evolution!
� Dawkins: The Blind Watchmaker
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BliStr: Blind Strategymaker

� The strategies are like giraffes, the problems are their food
� The better the giraffe specializes for eating problems unsolvable by

others, the more it gets fed and further evolved
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BliStr: Blind Strategymaker

� Use clusters of similar solvable problems to train for unsolved problems
� Interleave low-time training with high-time evaluation
� Thus co-evolve the strategies and their training problems
� In the end, learn which strategy to use on which problem
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BliStr on 1000 Mizar@Turing problems

� original E coverage: 597 problems
� after 30 hours of strategy growing: 22 strategies covering 670 problems
� The best strategy solves 598 problems (1 more than all original

strategies)
� A selection of 14 strategies improves E auto-mode by 25% on unseen

problems
� Similar results for the Flyspeck problems
� Be lazy, don’t do "hard" theory-driven ATP research (a.k.a: thinking)
� Larry Wall (Programming Perl): "We will encourage you to develop the

three great virtues of a programmer: laziness, impatience, and hubris"
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Statistical/Semantic Parsing of Informalized HOL

� Goal: Learn understanding of informal math formulas and reasoning
� Experiments with the CYK chart parser linked to semantic methods
� Training and testing examples exported form Flyspeck formulas

� Along with their informalized versions
� Grammar parse trees

� Annotate each (nonterminal) symbol with its HOL type
� Also “semantic (formal)” nonterminals annotate overloaded terminals
� guiding analogy: word-sense disambiguation using CYK is common

� Terminals exactly compose the textual form, for example:
� REAL_NEGNEG: 8x :��x = x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))

� becomes
("(̈Type bool)"̈ ! ("(̈Type (fun real bool))"̈ (Abs ("(̈Type real)"̈
(Var A0)) ("(̈Type bool)"̈ ("(̈Type real)"̈ real_neg ("(̈Type real)"̈
real_neg ("(̈Type real)"̈ (Var A0)))) = ("(̈Type real)"̈ (Var A0))))))
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Example grammars

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0
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CYK Learning and Parsing (KUV, ITP 17)

� Induce PCFG (probabilistic context-free grammar) from the trees
� Grammar rules obtained from the inner nodes of each grammar tree
� Probabilities are computed from the frequencies

� The PCFG grammar is binarized for efficiency
� New nonterminals as shortcuts for multiple nonterminals

� CYK: dynamic-programming algorithm for parsing ambiguous sentences
� input: sentence – a sequence of words and a binarized PCFG
� output: N most probable parse trees

� Additional semantic pruning
� Compatible types for free variables in subtrees

� Allow small probability for each symbol to be a variable
� Top parse trees are de-binarized to the original CFG

� Transformed to HOL parse trees (preterms, Hindley-Milner)
� typed checked in HOL and then given to an ATP (hammer)
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Online parsing system

� “sin ( 0 * x ) = cos pi / 2”

� produces 16 parses
� of which 11 get type-checked by HOL Light as follows
� with all but three being proved by HOL(y)Hammer
� demo: http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2
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Flyspeck Progress
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First Mizar Results (100-fold Cross-validation)
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Neural Autoformalization (Wang et al., 2018)

� generate about 1M Latex - Mizar pairs based on Bancerek’s work
� train neural seq-to-seq translation models (Luong – NMT)
� evaluate on about 100k examples
� many architectures tested, some work much better than others
� very important latest invention: attention in the seq-to-seq models
� more data very important for neural training – our biggest bottleneck (you

can help!)
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Neural Autoformalization data

Rendered LATEX If X � Y � Z , then X � Z .
Mizar

X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar

X c= Y & Y c= Z implies X c= Z ;

LATEX

If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX

If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .
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Neural Autoformalization results

Parameter Final Test
Perplexity

Final Test
BLEU

Identical
Statements (%)

Identical
No-overlap (%)

Training
Time
(hrs.)

128 Units 3.06 41.1 40121 (38.12%) 6458 (13.43%) 1
256 Units 1.59 64.2 63433 (60.27%) 19685 (40.92%) 3
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%) 5
1024 Units 1.51 61.6 69179 (65.73%) 22978 (47.77%) 11
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%) 31
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Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then lim(s8+s7) = lim s8+ lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $ .

Correct seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-
1000

x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Thanks and Advertisement

� Thanks for your attention!
� AITP – Artificial Intelligence and Theorem Proving
� April 8–12, 2019, Obergurgl, Austria, aitp-conference.org
� ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
� Discussion-oriented and experimental
� Grown to 60 people in 2018
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