TOWARDS THE DREAM OF SELF-IMPROVING UNIVERSAL REASONING AI

Josef Urban

Czech Technical University in Prague

AGI-21 October 18, 2021, Palo Alto

European Research Council Established by the European Commission

- · Philosophical ramblings about where we are and how we should do things
- · Some recent combinations of ML/RL with AR/TP and what they can do
- · Possibly some more open ideas
- Questions?
- (If I run out of time, use my AGI'18 talk https://bit.ly/3qifhg4 is an intro)

Kepler vs Vinge, Prague vs California

- · Kepler (1600s): the beginning of scientific revolution
- · Understand and predict the universe, explore and exploit it
- Driven by crazy geometric, alchymistic, God (Singularity?) theories
- Mathematization of philosophy: rebellion by the mathematicians against philosophers
- Leading to a lot of observation and unhinged conjecturing about how the natural world works
- Experiments, tools, physics, chemistry, science, ...
- ... machines, logic, ..., Turing machines, AI, ...

Kepler vs Vinge, Prague vs California

- · Vinge: Zones of Thought, Singularity, Fire Upon the Deep, Coldsleep
- Encouraging technological progress on a backward planet where you accidentaly crashed to invent space travel and escape
- How do WE do this on our backward planet?
- How do we invent ...
- ... wormholing technology, safe fusion, infinite batteries, ...
- ... immortality, self upload, coldsleep, ...
- ... infinite empathy and compassion, ...
- ... all in our lifetime?
- We Automate Scientific Discovery!
- Art Quaife (1993, Berkeley): Automate math to accelerate science

- Martin Davis: logicists vs heuristists
- Logic Theorist (Newell, Simon) vs DPLL (Davis etc)
- Modern versions of the DPLL algorithm are superhuman
- (a bit like modern neural nets for image recognition are superhuman)
- AR is a constant battle between logic-designed/algorithmic and more heuristic/AI methods
- DPLL, CDCL, Resolution, AVATAR vs my agenda: combine ML and TP

- Robinson's resolution in Herbrand universe as an abstraction of the "embodied" Gelernter's Geometry Machine in Euclidean plane
- Why should we care if something is human/nature inspired if we have a better/faster inhuman algo/hw for it?
- And vice-versa: it is stupid to try to "fully design a solution" when it seems impossibly hard and we are not yet as good as the learning humans
- And frankly, the System 1 vs System 2 idea is just one human-like option.
- There are many plausible inhuman AR ideas and some work great.
- E.g. Voronkov's recent AVATAR:
- SAT solver used for high-level decomposition of the search space, chasing FOL prover on the components.

- My conclusion: AR is an experimental science that should not fall just for ideologies
- I have gradually become suspicious of both the logicists and the humanoids (and their little voices in me)
- We should be Turings/hackers, not Wittgensteins/philosophers
- So I said around 2000: Let the approaches battle it all out.
- And found the largest formal math corpus, translated it for ATPs and ML systems, and started to measure performance.
- Eventually done for Mizar, Isabelle, HOL, Coq and other formal math corpora.
- So you can take our set of 58k toplevel Mizar problems and try to prove as many of them as you can by various AR/TP, ML, RL, AI methods
- Leibniz: Calculemus!

- And we are still only at the beginning.
- · You need to do quite little to beat the state of the art.
- Basic feedback loops can take us quite a bit higher than we were before.
- In some sense, it's not really yet the time of very complex AI architectures.
- · But you need to do the implementation, tuning and experiments right.
- It's hard (but possible) to beat a good ATP by more AI-ish methods.
- But instead of very naive ideas like "GPT will do it all", we need much more serious cross-fertilization of the learning and inferencing algos.
- At this point we need much more work on real AR architectures and their cautious evaluation on non-fake corpora. Ideas are cheap.

The coming of logic-ization and computerization of math/science

- Most of the talks here were natural language (mine too).
- · One exception: the talk by Alexander & Hutter.
- The (old) news: All of math can be very safely checked
- The invention is called symbolic logic and it's over 100 years old.
- And it led quite directly to the creation of computers, which are very much symbolic logic machines.
- For 50-60 years, people have been trying to embed/translate math (and scientific) arguments into the precise logic

The coming of logic-ization and computerization of math/science

- Mike Beeson (nearby in San Jose) has once called it the QED Singularity.
- · And this QED Singularity seems to be finally coming.
- And even if we don't immediatelly get superhuman AIs for math and science.
- But the general embedding of our discourse in logic will be a big deal.
- · It may be the one cure for the current world of disinformation and hacking.
- Things like attention hacking and hacking of credit assignment in science.
- So I could almost have something that was fact-checking Sam's talk in real time yesterday.
- · His proof was sufficiently verbose and not too ambiguous.
- The recent advances in AI/NLP/TP and formal proof technology may allow such fact-checking and assistance of a lot of math/science discourse quite soon.

Using Learning to Guide Theorem Proving

- · high-level: pre-select lemmas from a large library, give them to ATPs
- · high-level: pre-select a good ATP strategy/portfolio for a problem
- high-level: pre-select good hints for a problem, use them to guide ATPs
- Iow-level: guide every inference step of ATPs (tableau, superposition)
- · low-level: guide every kernel step of LCF-style ITPs
- mid-level: guide application of tactics in ITPs
- mid-level: invent suitable ATP strategies for classes of problems
- mid-level: invent suitable conjectures for a problem
- mid-level: invent suitable concepts/models for problems/theories
- · proof sketches: explore stronger/related theories to get proof ideas
- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from LATEX to formal

Demos

- ENIGMA/hammer proofs of Pythagoras: https://bit.ly/2MVPAn7 (more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and simplified Carmichael https://bit.ly/3oGBdRz,
- 3-phase ENIGMA: https://bit.ly/3C0Lwa8, https://bit.ly/3BWqR6K
- Long trig proof from 1k axioms: https://bit.ly/2YZ00gX
- Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
- TacticToe on HOL4:

http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

Tactician for Coq:

https://blaauwbroek.eu/papers/cicm2020/demo.mp4, https://coq-tactician.github.io/demo.html

• Inf2formal over HOL Light:

http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

ENIGMA: Guiding the Best ATPs like E Prover

- harder for learning than tableau
- the proof state are two large heaps of clauses processed/unprocessed
- 2017: ENIGMA manual feature engineering (Jakubuv & JU 2017)
- 2017: Deep guidance (neural nets) (Loos et al. 2017)
- · both learn on E's proof search traces, put classifier in E
- · positive examples: given clauses used in the proof
- · negative examples: given clauses not used in the proof

ENIGMA: Guiding the Best ATPs like E Prover

• ENIGMA (Jan Jakubuv, Zar Goertzel, Karel Chvalovsky, others)

- · Fast/hashed feature extraction followed by fast/sparse linear classifier
- about 80% improvement on the AIM benchmark
- · Deep guidance: convolutional nets too slow to be competitive
- · ENIGMA-NG: better features and ML, gradient-boosted trees, tree NNs
- · NNs made competitive in real-time, boosted trees still best
- · 2020: fast GNN added (Olsak, Jakubuv), now competitive with GBDTs
- However very different: the GNN scores many clauses (context and query) simultaneously in a large graph
- · 2021: 3-phase architecture with GPU server 17.4% better
- 2021: leapfrogging and Split&Merge:
- · aimed at learning reasoning/algo components

Feedback loop for ENIGMA on Mizar data

- Done on 57880 Mizar problems recently
- · Serious ML-guidance breakthrough applied to the best ATPs
- Ultimately a 70% improvement over the original strategy in 2019
- From 14933 proofs to 25397 proofs (all 10s CPU no cheating)
- Went up to 40k in more iterations and 60s time in 2020
- 75% of the Mizar corpus reached in July 2021 higher times and many runs

	S	$S \odot \mathcal{M}_9^0$	$\mathcal{S} \oplus \mathcal{M}_9^0$	$S \odot \mathcal{M}_9^1$	$S \oplus \mathcal{M}_{g}^{1}$	$S \odot \mathcal{M}_9^2$	$\mathcal{S} \oplus \mathcal{M}_9^2$	$S \odot \mathcal{M}_9^3$	$S \oplus \mathcal{M}_9^3$
solved	14933	16574	20366	21564	22839	22413	23467	22910	23753
$\mathcal{S}\%$	+0%	+10.5%	+35.8%	+43.8%	+52.3%	+49.4%	+56.5%	+52.8%	+58.4
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822	+9274
$\mathcal{S}-$	-0	-2723	-782	-1143	-508	-927	-430	-845	-454
		solved S% S+	S ⊙ M 2415 +61.1 +976	$\begin{array}{cccc} & & \mathcal{S} \oplus \\ 1_{12} & \mathcal{S} \oplus \\ 9 & 24 \\ \% & +64 \\ 1 & +10 \end{array}$	\mathcal{M}_{12}^3 3 701 4.8% 0063 0055	$5 \odot \mathcal{M}_{16}^3$ 25100 +68.0% +10476	<i>S</i> ⊕ <i>M</i> ³ ₁₆ 25397 +70.0% +10647	<u>. </u>	
		S-	-535	-2	295	-309	-183		

Neural Clause Selection in Vampire (M. Suda)

Deepire: Similar to ENIGMA:

- build a *classifier* for recognizing *good* clauses
- · good are those that appeared in past proofs

Deepire's contributions:

- Learn from clause derivation trees only Not looking at what it says, just who its ancestors were.
- Integrate using *layered clause queues* A smooth improvement of the base clause selection strategy.
- · Tree Neural Networks: constant work per derived clause
- · A signature agnostic approach
- · Delayed evaluation trick (not all derived need to be evaluated)

Preliminary Evaluation on Mizar "57880"

- · Learn from 63595 proofs of 23071 problems (three 30s runs)
- Deepire solves 26217 (i.e. +4054) problems in a single 10s run

- Mizar / MML MizAR
- Isabelle (Auth, Jinja) Sledgehammer
- Flyspeck (including core HOL Light and Multivariate) HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk)
- · CoqHammer (Czajka and Kaliszyk) about 40% on Coq standard library

- Mizar / MML MizAR
- Isabelle (Auth, Jinja) Sledgehammer
- Flyspeck (including core HOL Light and Multivariate) HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk)
- CoqHammer (Czajka and Kaliszyk) about 40% on Coq standard library \approx 40-45% success rate (close to 60% on Mizar as of 2021)

Premise Selection and Hammer Methods

- · Many syntactic features (symbols, walks in the parse trees)
- More semantic features encoding
- · term matching/unification, validity in models, latent semantics (LSI)
- · Distance-weighted k-nearest neighbor, SVMs, Naive Bayes
- · Gradient boosted decision trees (GBDTs XGBoost, LightGBM)
- · Neural models: CNNs, RNNs/Attention/Transformers/GPT, GNNs
- As of 2020, tough competition between GBDTs, GNNs and RNNs/Transformers (and relatives)
- · K-NN still very good, Olsak's logic-aware GNN probably best
- RNNs/Transformers good at stateful premise selection (Piotrowski 2019,2020)
- · Ensemble methods combining the different predictors help a lot

Premise Selection and Hammer Methods

- · Learning in a binary setting from many alternative proofs
- Interleaving many learning and proving runs (*MaLARea loop*) to get positives/negatives (ATPBoost Piotrowski 2018)
- Matching and transferring concepts and theorems between libraries (Gauthier & Kaliszyk) allows "superhammers", conjecturing, and more
- Lemmatization extracting and considering millions of low-level lemmas and learning from their proofs
- Hammers combined with guided tactical search: TacticToe (Gauthier HOL4) and its later relatives

ENIGMA Proof Example – Knaster

```
theorem Th21:
 ex a st a is a fixpoint of f
  set H = {h where h is Element of L: h [= f.h};
  set fH = {f.h where h is Element of L: h [= f.h};
  set uH = "\/"(H, L);
 set fuH = "\/"(fH, L);
 take uH;
  now
   let fh be Element of L;
   assume fh in fH;
   then consider h being Element of L such that
Al: fh = f.h and
A2: h [= f.h;
   h in H by A2;
   then h [= uH by LATTICE3:38;
   hence fh [= f.uH by Al,QUANTAL1:def 12;
  end;
  then fH is_less_than f.uH by LATTICE3:def 17;
  then
A3: fuH [= f.uH by LATTICE3:def 21;
  now
    let a be Element of L:
   assume a in H;
    then consider h being Element of L such that
A4: a = h \& h [= f.h;
    reconsider fh = f.h as Element of L:
    take fh;
   thus a [= fh & fh in fH by A4;
  end;
  then uH [= fuH by LATTICE3:47;
  then
A5: uH [= f.uH by A3, LATTICES: 7;
  then f.uH [= f.(f.uH) by QUANTAL1:def 12;
  then f.uH in H;
 then f.uH [= uH by LATTICE3:38;
 hence uH = f.uH by A5, LATTICES:8;
end;
```

High-level feedback loops - MALARea

- · Machine Learner for Autom. Reasoning (2006) infinite hammering
- · feedback loop interleaving ATP with learning premise selection
- · both syntactic and semantic features for characterizing formulas:
- · evolving set of finite (counter)models in which formulas evaluated
- · strategy evolution and ENIGMA learning added later
- winning AI/ATP benchmarks (MPTPChallenge, CASC 2008/12/13/18/20)

MaLARea improvement over E in CASC'20

🖻 Applications Places 🌍 🐻 🔤 👘 👘							Sat 18:07			
	Results - Chromium									• • •
🔍 Startpage S 🗙 🏄 scheduler - 🗴 🐨 time (Unix) 🗴 🔍 Startpage S 🗙 🎯 Samuel Ale: 🗙 🏢 Schedule 🗠 🗙 🎬 Keynotes « 🗴 🚱 Results 🛛 🗴 🕂									0	
$\leftarrow \rightarrow \ \mathbf{C}$ (A Not secure	🗧 🔶 C 🔺 Not secure tptp.org/CASC/J10/WWWFiles/DivisionSummary1.html 🔍 🖈 🚭 👫 🔒 🗰 💮								0 :	
Large Theory Batch	MaL ARe	F	iProver	Zinnernir	Leo-III	ATPBoost	GKC	Leo-	ш	
Problems	0.9	LTB-2.5	LTB-3.3	LTB-2.0	LTB-1.5	1.0	LTB-0.5.1	LTB-	1.4	
Solved/10000	7054/10000	3393/10000	3164/10000	1699/10000	1413/10000	1237/10000	493/10000	93/10000 134/10		
Solutions	7054 70%	3393 33%	3163 31%	1699 16%	1413 14%	1237 12%	493 4%	13	4 1%	

TacticToe: mid-level ITP Guidance (Gauthier'17,18)

- TTT learns from human and its own tactical HOL4 proofs
- · No translation or reconstruction needed native tactical proofs
- · Fully integrated with HOL4 and easy to use
- · Similar to rICoP: policy/value learning for applying tactics in a state
- · However much more technically challenging a real breakthrough:
 - · tactic and goal state recording
 - · tactic argument abstraction
 - absolutization of tactic names
 - nontrivial evaluation issues
 - · these issues have often more impact than adding better learners
- · policy: which tactic/parameters to choose for a current goal?
- · value: how likely is this proof state succeed?
- 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
- similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)

Tactician: Tactical Guidance for Coq (Blaauwbroek'20)

- Tactical guidance of Coq proofs
- · Technically very challenging to do right the Coq internals again nontrivial
- 39.3% on the Coq standard library, 56.7% in a union with CoqHammer (orthogonal)
- · Fast approximate hashing for k-NN makes a lot of difference
- Speed more important than better learners
- Fully integrated with Coq, should work for any development
- User friendly, installation friendly, integration friendly and maintenance friendly
- Took several years, but could become a very common tool for Coq formalizers

More on Conjecturing in Mathematics

- Targeted: generate intermediate lemmas (cuts) for a harder conjecture
- Unrestricted (theory exploration):
- · Creation of interesting conjectures based on the previous theory
- · One of the most interesting activities mathematicians do (how?)
- · Higher-level Al/reasoning task can we learn it?
- · If so, we have solved math:
- ... just (recursively) divide Fermat into many subtasks ...
- ... and conquer (I mean: hammer) them away

A bit of conjecturing history

- The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)
- Combined with automated theorem proving by Colton et al. in early 2000s (HR)
- Theory exploration for Isabelle by Johansson et al (Hipster)
- Several learning-based/neural approaches by our groups since 2015:
- Based mainly on learning analogies and informalization followed by probabilistic/neural disambiguation ...
- · ... Gauthier, Kaliszyk, Chvalovsky, Piotrowski, Goertzel, Wang, Brown, JU

Conjecturing and Proof Synthesis by Neural Language models

- · Karpathy'15 RNN experiments with generating fake Math over Stacks
- I have tried to use that for formal math in 2016 but it looked weak
- GPT (-2,3) looks stronger
- Renewed experiments in 2020 on:
- All Mizar articles, stripped of comments and concatenated together (78M)
- · Articles with added context/disambiguation (156M) (types, names, thesis)
- TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)
- Just the conjecture and premises needed for the 28271 proofs printed in prefix notation
- · Quite interesting results, server for Mizar authors
- Quickly taken up by others on HOL, Isabelle, MetaMath ...

Can you find the flaw(s) in this fake GPT-2 proof?

Applications Places	🔤 💽 🔄 4,71 GHz 3	Wed 15:02	Wed 15:02
emacs@de	ell		• • •
File Edit Options Buffers Tools Index Mizar Hide/Show Help			
: generated theorem with "proof" theorem Th23: :: STIRL2_1:23 for X, Y being finite set st not X is empty {	‰ X c= Y		
& card X = card Y holds X = Y proof			
<pre>:: thesis: not X is empty & X c= Y & card) assume that A1: not X is empty and A2: X c= Y and A</pre>	X = card Y implies X = Y		
:: thesis: $X = Y$ card (Y \ X) = (card Y) - (card X) by A1, A then A4: card (Y \ X) = ((card Y) - 1) - (ca X = Y \ X by A2, A3, Th22; hence X = Y by A4, XBOOLE_0:def_10;	N3, CARD_2:44; ard X) by CARD_1:30;		
:: thesis: verum end;			
-: card tst.miz 99% L2131 (Mizar E	rors:13 hs undo-free)		

Figure: Fake full declarative GPT-2 "proof" - typechecks!

Mizar autocompletion server in action

⊚ Aj	oplicati	ions F	Places 🌚		-	0	3,240	iHz 🛙	W	ed 09:0)7	Wed	09:07
			GPT-2 generator trained on Mizar - Chromium										•••
		$ \{ \}$	〓 〓 ♀ ▶ 〓 □ ≙ ≙ □ ● 〓 ♥ ₩ ₩ ₩ ₩ ₩ № [) (×		3		•		2 (ι	+	
<	\rightarrow	C	O Not secure grid01.ciirc.cvut.cz:5500	Q	. ☆	ABP	Po	ê 💀	1	G	5	0	0
			Number of samples (rewer is faster)										-
			3										
			Temperature (lower is less chaotic)										
			1.0										
			Length of output (shorter is faster)										
			30										
			Generate										- 1
			Sample 1										- 1
			theorem Th0: :: CARD_1:333										- 1
			for M, N being Cardinal holds card M c= M V N proof										- 1
			let M, N be Cardinal; ::_thesis: card M c= M V					- 1					
			Sample 2										- 1
			theorem Th0: :: CARD_1:333										- 1
			for M, N being Cardinal holds M * N is Cardinal proof										- 1
			let M, N be Cardinal; ::_thesis: M *` N is Cardinal										- 1
			eri Samala 2										- 1
			Sample 5										- 1
			theorem Th0: :: CARD_1:333 for M. N. being Cardinal holds Sum (M> N) c= M *` N										- 1
			proof										- 1
			let M, N be Cardinal; ::thesis: Sum (M										- 1

Figure: MGG - Mizar Gibberish Generator.

Proving the conditioned completions - MizAR hammer

Applications Places	emacs@dell	Wed 14:42	Wed 14:4
File Edit Options Buffers Tools Index Mizar Hide/Show Help P 🍙 🚍 🛪 🛤 Save 🔶 Undo 🔀 🌆 🛍 🔍			
begin			
for M, N being Cardinal holds card M c= M V N by XBOOLE_1	:7,CARD_3:44,CARD_1:7,CARD_1:3; :: [ATP details]		
for X, Y being finite set st not X is empty & X c= Y & card X =	= card Y holds X = Y by CARD_FIN:1; :: [ATP details]		
for M, N being Cardinal holds (M in N iff card M c= N) by Unsolved; :: [ATP details]			
for M, N being Cardinal holds (M in N iff card M in N) by CARD_3:44,CARD_1:9; :: [ATP det	tails]		
for M, N being Cardinal holds Sum (M> N) = M $*$ N by CAF	RD_2:65; :: [ATP details]		
for M, N being Cardinal holds M \wedge (union N) in N by Unsolved	d; :: [ATP details]		
for M, N being Cardinal holds M *' N = N *' M by ATP-Unsolv	ved; :: [ATP details]		
-: card_tst.miz 3% L47 (Mizar Errors:2 hs Undo-Tree)		

Wrote /home/urban/mizwrk/7.13.01 4.181.1147/tst8/card tst.miz

A correct conjecture that was too hard to prove

· Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th10: :: GROUPP_1:10 for G being finite Group for N being normal Subgroup of G st N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st N is Subgroup of center G & G ./. N is cyclic holds G is commutative

Gibberish Generator Provoking Algebraists

Applic	ations Place	es 🌍		Group	o conjecture -	josef.urt	ban@gmail	l.com - Gmai	il - Chromiu	m		-	<mark>0</mark> et 2	,28G	Hz 🎙	Wed 1	7:12	Wed 1	7:12 • • •
×	2500	0 0 0 0 0 0 0 0 0 0							*1518151		0	a		8 N				+	
$\leftarrow \rightarrow$	C 🔒	mail.google.com/mail/	u/0/?q=svobod	a#search/kiny	o/KtbxLvHcLq	BhDdXBp	oVcmNMshz	DrCQSSmSB			Q	$\dot{\mathbf{T}}$	•	0		× 6) s.	0	0
≡	M 0	Gmail	Q Sear	ch mail									*		0	63		C	
+)_←	0 0 1		9 6.	•	1										<	>	1	31
8,267	2	Michael Kinyon <rr to David, Ales, Petr, E</rr 	nkkinyon@gma Bob, Jan, Karel,	il.com> me ¥							T	iu, May	28, 5:4	1 PM	슙	*	:		9
0 > >		Yes, this is a standar say something like th Multiply two such ele	ird exercise in i his: fix a in G s ements togethe	undergraduate uch that G/N i er and check th	first courses in s generated by hat they comm	n abstract / the cose ute.	t algebra. Ti at aN. Every	he proof is e element of	asy. If I were G can be wr	e giving itten in t	way to he for	o mucl n a^i n	n of a hi for inte	nt to : ger i a	student: and som	i, I woul ie n in N	d 4.		
6°		····	(mars a dinicu	it word to say)	i aia a good jor	λ.												Ľ	+
9 1	*	David Stanovsky < to me, Michael, Ales, Hi, that's a two-line p classical exercise at Denote aN the gene	david.stanovsk Petr, Bob, Jan, proof, although the beginning erator of G/N, h	y@gmail.com Karel + certainly not a of a group the ence G is a ur	> an obvious one tory course): hion of all a^iN,	e (a , i in Z.					TI	iu, May	28, 5:4	2 PM	☆	÷	:		
C) Sig	þ	Take g,h in G, write i calculate gh=a*ixa*j Finiteness makes no holds for infinite grou	them as g=a^b jy=a^{i+j}xy=hg o simplification ups if you repla	c, h=a^jy with a because x,y of the proof. T ice Nat be intered.	x,y in N, and are central. 'h18 you menti egers. It is bein	ion g													
Signin in will sign you into	1	d.	16.																>

Figure: First successes in making mathematicians comment on AI.

- · In total 33100 in this experiment
- · Ca 9k proved by trained ENIGMA
- · Some are clearly false, yet quite natural to ask:

```
theorem :: SINCOS10:17
sec is increasing on [0, pi/2)
leads to conjecturing the following:
Every differentiable function is increasing.
```

Neural Autoformalization (Wang et al., 2018)

- generate ca 1M Latex/Mizar pairs based on Bancerek's work
- train neural seq-to-seq translation models (Luong NMT)
- evaluate on about 100k examples
- · many architectures tested, some work much better than others
- · very important latest invention: attention in the seq-to-seq models
- more data very important for neural training our biggest bottleneck (you can help!)
- Recent addition: unsupervised methods (Lample et all 2018) no need for aligned data!

Rendered LATEX Mizar	If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.
	X c= Y & Y c= Z implies X c= Z;
Tokenized Mizar	
	X c= Y & Y c= Z implies X c= Z ;
latex	
	If $X \sum Z^{,} \ Z^{,}$ then $X \sum Z^{,}$
Tokenized LATEX	
	If $ X \ y \ Y \ y \ z \ , then X \ y \ z \ .$

Parameter	Final Test	Final Test	Identical	Identical
	Perplexity	BLEU	Statements (%)	No-overlap (%)
128 Units	3.06	41.1	40121 (38.12%)	6458 (13.43%)
256 Units	1.59	64.2	63433 (60.27%)	19685 (40.92%)
512 Units	1.6	67.9	66361 (63.05%)	21506 (44.71%)
1024 Units	1.51	61.6	69179 (65.73%)	22978 (47.77%)
2048 Units	2.02	60	59637 (56.66%)	16284 (33.85%)

Rendered ^{LAT} EX	Suppose s_8 is convergent and s_7 is convergent . Then $\lim(s_8+s_7) = \lim s_8 + \lim s_7$
Input LaTEX	<pre>Suppose \$ { s _ { 8 } } \$ is convergent and \$ { s _ { 7 } } \$ is convergent . Then \$ \mathop { \rm lim } ({ s _ { 8 } } { + } { s _ { 7 } }) \mathrel { = } \mathop { \rm lim } { s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } \$.</pre>
Correct	<pre>seq1 is convergent & seq2 is convergent implies lim (seq1 + seq2) = (lim seq1) + (lim seq2) ;</pre>
Snapshot- 1000	x in dom f implies (x * y) * (f (x (y (y y)))) = (x (y (y (y y))))) ;
Snapshot- 2000	seq is summable implies seq is summable ;
Snapshot- 3000	seq is convergent & lim seq = 0c implies seq = seq ;
Snapshot- 4000	<pre>seq is convergent & lim seq = lim seq implies seq1 + seq2 is convergent ;</pre>
Snapshot- 5000	<pre>seq1 is convergent & lim seq2 = lim seq2 implies lim_inf seq1 = lim_inf seq2 ;</pre>
Snapshot- 6000	<pre>seq is convergent & lim seq = lim seq implies seq1 + seq2 is convergent ;</pre>
Snapshot- 7000	seq is convergent & seq9 is convergent implies lim (seq + seq9) = (lim seq) + (lim seq9) ;

Unsupervised NMT Fun on Short Formulas

```
len <* a *> = 1 ; len <* a *> = 1 ;
assume i < len q; i < len q;
len < * q * > = 1;
s = apply (v2, v1 ast t); s = apply (v2, v1) . t;
1 + i <= len v2 ;
1 + j + 0 \le len v^2 + 1; 1 + j + 0 \le len v^2 + 1;
let i be Nat ;
assume v is_applicable_to t ; not v is applicable ;
a ast t in downarrow t ; a *' in downarrow t ;
t9 in types a ;
a ast t <= t ;
A is_applicable_to t ; A is applicable ;
Carrier (f) c= B support ppf n c= B
u in Boru in {v}; u in Boru in {v};
F.winw&F.winI; F.winF&F.winI;
GG . v in rng HH ;
a * L = Z_{ZeroLC} (V); a * L = ZeroLC (V);
not u in { v } ;
u <> v ;
v - w = v1 - w1; vw = v1 - w1;
v + w = v1 + w1;
x in A & y in A;
```

```
len < * q * > = 1;
s.(i+1) = tt.(i+1) s.(i+1) = taul.(i+1)
               1 + i <= len v2 ;
                       i is_at_least_length_of p ;
let t be type of T; t is orientedpath of v1, v2, T;
                     t '2 in types a ;
                      a *' <= t ;
                      G0 . y in rng ( H1 ./. y );
                      u >> v ;
                    u <> v ;
             v + w = v1 + w1;
                     assume [ x , y ] in A ;
```

Acknowledgments

- Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
 - Jan Jakubuv, Chad Brown, Martin Suda, Karel Chvalovsky, Bob Veroff, Zar Goertzel, Bartosz Piotrowski, Lasse Blaauwbroek, Martin Smolik, Jiri Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, ...
- HOL(y)Hammer group in Innsbruck:
 - Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima, Shawn Wang
- ATP and ITP people:
 - Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow, Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...
- · Learning2Reason people at Radboud University Nijmegen:
 - Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,
- Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi, Francois Chollet, Sarah Loos
- ... and many more ...
- Funding: Marie-Curie, NWO, ERC

Some General and Hammer/Tactical References

- J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized Reasoning 9(1): 101-148 (2016)
- Cezary Kaliszyk, Josef Urban: Learning-Assisted Automated Reasoning with Flyspeck. J. Autom. Reason. 53(2): 173-213 (2014)
- Cezary Kaliszyk, Josef Urban: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3): 245-256 (2015)
- Cezary Kaliszyk, Josef Urban: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput. 69: 109-128 (2015)
- Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kühlwein, Josef Urban: A Learning-Based Fact Selector for Isabelle/HOL. J. Autom. Reason. 57(3): 219-244 (2016)
- Bartosz Piotrowski, Josef Urban: ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback. IJCAR 2018: 566-574
- T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR abs/1804.00596 (2018).
- Lasse Blaauwbroek, Josef Urban, Herman Geuvers: Tactic Learning and Proving for the Coq Proof Assistant. LPAR 2020: 138-150
- Lasse Blaauwbroek, Josef Urban, Herman Geuvers: The Tactician (extended version): A Seamless, Interactive Tactic Learner and Prover for Coq. CoRR abs/2008.00120 (2020)
- L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning 61(1-4): 423-453 (2018)
- G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath Deep Sequence Models for Premise Selection. NIPS 2016: 2235-2243
- C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large Theories. IJCAI 2015: 3084-3090
- J. Urban, G. Sutcliffe, P. Pudlák, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning with Semantic Guidance. IJCAR 2008: 441-456
- J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging AI Field. LNCS 7788, 240-257, 2013.

Some References on E/ENIGMA, CoPs and Related

- Stephan Schulz: System Description: E 1.8. LPAR 2013: 735-743
- S. Schulz, Simon Cruanes, Petar Vukmirovic: Faster, Higher, Stronger: E 2.3. CADE 2019: 495-507
- J. Jakubuv, J. Urban: Extending E Prover with Similarity Based Clause Selection Strategies. CICM 2016: 151-156
- J. Jakubuv, J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine.CICM 2017:292-302
- Cezary Kaliszyk, Josef Urban, Henryk Michalewski, Miroslav Olsák: Reinforcement Learning of Theorem Proving. NeurIPS 2018: 8836-8847
- Zarathustra Goertzel, Jan Jakubuv, Stephan Schulz, Josef Urban: ProofWatch: Watchlist Guidance for Large Theories in E. ITP 2018: 270-288
- S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105
- Karel Chvalovský, Jan Jakubuv, Martin Suda, Josef Urban: ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E. CADE 2019: 197-215
- Jan Jakubuv, Josef Urban: Hammering Mizar by Learning Clause Guidance. ITP 2019: 34:1-34:8
- Zarathustra Goertzel, Jan Jakubuv, Josef Urban: ENIGMAWatch: ProofWatch Meets ENIGMA. TABLEAUX 2019: 374-388
- Zarathustra Amadeus Goertzel: Make E Smart Again (Short Paper). IJCAR (2) 2020: 408-415
- Jan Jakubuv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda, Josef Urban: ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine. IJCAR (2) 2020: 448-463
- Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, Josef Urban: Towards Finding Longer Proofs. CoRR abs/1905.13100 (2019)
- Zsolt Zombori, Josef Urban, Chad E. Brown: Prolog Technology Reinforcement Learning Prover -(System Description). IJCAR (2) 2020: 489-507
- Miroslav Olsák, Cezary Kaliszyk, Josef Urban: Property Invariant Embedding for Automated Reasoning. ECAI 2020: 1395-1402

Some Conjecturing References

- Douglas Bruce Lenat. AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search. PhD thesis, Stanford, 1976.
- Siemion Fajtlowicz. On conjectures of Graffiti. Annals of Discrete Mathematics, 72(1–3):113–118, 1988.
- Simon Colton. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations. Springer London, 2012.
- Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating theory exploration in a proof assistant. In *CICM 2014*, pages 108–122, 2014.
- Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Initial experiments with statistical conjecturing over large formal corpora. In *CICM'16 WiP Proceedings*, pages 219–228, 2016.
- Thibault Gauthier, Cezary Kaliszyk: Sharing HOL4 and HOL Light Proof Knowledge. LPAR 2015: 372-386
- Thibault Gauthier. Deep reinforcement learning in HOL4. CoRR, abs/1910.11797, 2019.
- Chad E. Brown and Thibault Gauthier. Self-learned formula synthesis in set theory. CoRR, abs/1912.01525, 2019.
- Bartosz Piotrowski, Josef Urban, Chad E. Brown, Cezary Kaliszyk: Can Neural Networks Learn Symbolic Rewriting? AITP 2019, CoRR abs/1911.04873 (2019)
- Zarathustra Goertzel and Josef Urban. Usefulness of Lemmas via Graph Neural Networks (Extende Abstract). AITP 2019.
- Karel Chvalovský, Thibault Gauthier and Josef Urban: First Experiments with Data Driven Conjecturing (Extended Abstract). AITP 2019.
- Thibault Gauthier: Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic. LPAR 2020: 230-248
- Bartosz Piotrowski, Josef Urban: Guiding Inferences in Connection Tableau by Recurrent Neural Networks. CICM 2020: 309-314
- Josef Urban, Jan Jakubuv: First Neural Conjecturing Datasets and Experiments. CICM 2020: 315-323

References on PCFG and Neural Autoformalization

- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: Learning to Parse on Aligned Corpora (Rough Diamond). ITP 2015: 227-233
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil, Herman Geuvers: Developing Corpus-Based Translation Methods between Informal and Formal Mathematics: Project Description. CICM 2014: 435-439
- C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical and Semantic Parsing of Mathematics. ITP 2017: 12-27
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: System Description: Statistical Parsing of Informalized Mizar Formulas. SYNASC 2017: 169-172
- Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation of Informal to Formal Mathematics. CICM 2018: 255-270
- Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, Josef Urban: Exploration of neural machine translation in autoformalization of mathematics in Mizar. CPP 2020: 85-98

Thanks and Advertisement

- Thanks for your attention!
- AITP Artificial Intelligence and Theorem Proving
- September 4-9, 2022, Aussois, France, aitp-conference.org
- ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
- · Discussion-oriented and experimental submit a talk abstract!
- Grown to 80 people in 2019