SOLVING ONE THIRD OF THE OEIS
FROM SCRATCH

Josef Urban
joint work with Thibault Gauthier and Mirek Olsak

Czech Technical University in Prague

AGI'24
August 14, 2024, Seattle

European Research Council
Established by the European Commission

1/50

TL;DR

+ A machine can find explanations for over 125k OEIS sequences
 This is done from scratch, without any domain knowledge

+ N. Sloane: The OEIS: A Fingerprint File for Mathematics (2021)

« About 350k integer sequences in 2021 from all parts of math

« We use a simple Search-Verify-Train positive feedback loop

+ Developed by us for combining learning & proving since 2006

- However, one of the most surprising experiments in my life:

+ 670 iterations and still refuses to plateau - counters RL wisdom

« Since it interleaves symbolic breakthroughs and statistical learning?
« The electricity bill is only $1k-$3k, you can do this at home

+ Btw., we experimentally verify Occam’s Razor

« Evolving (self-improving) population of 4.5M matching explanations
+ Connections to Solomonoff Induction, AlXI, Gédel Machine?

2/50

Brief Intro to What | Normally Do: ML+ATP for Math

- What is mathematical and scientific thinking?

- Pattern-matching, analogy, induction/learning from examples

« Deductive reasoning and proving

« Complicated feedback loops between learning and deduction

+ Using a lot of previous knowledge - both for induction and deduction

« We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
- Yes! Large libraries of formal proofs and theories

+ So let’s try to develop strong Al on them!

+ In my case done for 25-30 years. Recent overviews:

 Learning Guided Automated Reasoning: A Brief Survey. 2024

« Zar Goertzel's Phd thesis: Learning Inference Guidance in ATP. 2023

« AI4REASON: http://aidreason.org/PR_CORE_SCIENTIFIC_4.pdf

3/50

http://ai4reason.org/PR_CORE_SCIENTIFIC_4.pdf

ENIGMA: Feedback prove/learn loop on formal math

- Done on 57880 Mizar Mathematical Library problems recently

- Efficient ML-guidance inside the best ATPs (E prover and more)

« Training of the ML-guidance is interleaved with proving harder problems

- Ultimately a 70% improvement over the original strategy:

+ ... from 149383 proofs to 25397 proofs (all 10s CPU - no cheating)

« 75% of the Mizar corpus reached in July 2021 - higher times and many
runs: https://github.com/aidreason/ATP_Proofs

« Details in our Mizar60 paper: https://arxiv.org/abs/2303.06686

| S |[SOM) saM[SOM! SEMI|SOME SEME|SOMS soMd
solved | 14933 | 16574 20366 | 21564 22839 | 22413 23467 | 22910 283753
8% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4

S+ +0 +4364 +6215 | +7774 +8414 | +8407 +8964 | +8822 +9274
S— -0 -2723 -782 -1143 -508 -927 -430 -845 -454
| SOME, SOM3, | SOMi; SOMj,
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647

S— -5635 -295 -309 -183
4/50

https://github.com/ai4reason/ATP_Proofs
https://arxiv.org/abs/2303.06686

Can you do this in 4 minutes?

. i -
-'-l
=S e —
I ! T1 % T
== |
! = G
I — —
= il |==3
B g
-
£ i =
=S I abésl P’
——T
= N e e
' e
=/ |
,

'y

5/50

Can you do this in 4 minutes?

theorem 7131+

for A being Subset of R

for 2, b being real numbar st 5 < b & A = RAT (3,5) holds
CLA = [.a,b.]
proof

let A be Subset of R™1; :: thesis:

let a, b be real number ; :: thesis

assune t

A

sis.

RT = RAT s Subset of R°L by wecs.iz, romere:
b.[as Subset of R"1 by romerr

the carrier of R*L /\ (CL ab) = CL ab by e 2.26;

A4 CLRR c= (CLRT) /\ (CL ab) by sme rorc:2:;

thus CUA c= [.a,b.] :: according to ssooie oiset 10 :: thesis
o0f

let x be set ; :: according to mskiders :: thesis:
assume x in CLA ; :: thesi

then x in (CURT) /\ (CL ab) by 42, Ad;
then x in the carrier of R* /A (Ci ab) by ©
hence x in [.a,b.] b thesis

end;
thus [.a,b.] c= CLA :: thesis
proof

let x be set according to

assume A5: x in [.a,b.] ;

then reconsider p'='x as Elenent of Realspace by rermic soe 137
a y A, xaneac 1:1;

st 3 i1 thesis:

p <= b by A5, xe

Pk Cases by 47, oo
suppose 45 p'< b ; i thesis:

now :: th

Tet r be real numher ;i thes

reconsider pp = p s r as Element of RealSpace by wermic.1
cet by = min (5, ((p +) / D));

49: min (90, ((p +1D) / 2)) <= (p + b) / 2 by oacn

assume A10: hesis:
P B+ b)) 20
proof
Per cases by xici o.15
suppose nin (pp, ((6's b) 7 20) = pp : +: thesis
ce p < min (pp, ((p + b) / 2)) by AL0, seac 1207 i+ thesis
suppose min (pp, ((p + b) / 2)) = (p+b) / 2 ; thesis:
hence p < min (pp,((p + b) / 2)) by A8, wnea 1.226 thesis
end;

hen consider 0 being rational number such that

All: p<Q a

A12: 0 < min (po((p +) /2)) by oo
P +b) /2 <b by A8, wmex 122

then min’ (5p, ((p.+ m /) < n b by 49, s oz

then 413: 0 <0 b

Shen Ale: u in 1 a, n by a13, anen

g,in
hen O in A by A2, Al
henu 5211 (1) meets’ A by ALs, xnic 033 ¢+ thesis
e % in CL A by cosouteror romemser 65 ++ thesis

6/50

Can you do this in 4 minutes?

:= README.md V4

Topology - the closure of rationals on (a,b) is [a,b]

359-long proof in 234s using 3-phase ENIGMA, shifting context and aggressive subsumption.
for A being Subset of RA1 for a, b being real number st a <b & A = RAT (a,b) holds ClA=[.a,b.]
The Mizar proof takes 80 lines:

http://grid01.ciirc.cvut.cz/~mptp/7.13.01 4.181.1147/html/borsuk 5.html#T31

E proof (3-phase parental+lgb+gnn-server plus shifting context plus aggr subsumption) using 38 of the 101
heuristically selected premises (subproblem minimization):
http://grid01.ciirc.cvut.cz/~mptp/enigma_prf/t31_borsuk_5

/local1/mptp/parents/out2/2pb3I8-query1024-ctx1536-w0-coop-srv-local1-f1711-jj1-zar-
parents_nothr_gnnm2_solo1_0.05_0.005_0.1_fw.minsub65all_240s_fw/t31_borsuk_5

Proof object clause steps 1 359

Proof object initial clauses used : 56

Proof object initial formulas used : 38

Proof object simplifying inferences : 180

Parsed axioms 1101

Initial clauses in saturation : 153

Processed clauses 1 7274
...remaining for further processing : 4883
Generated clauses 1 438702
...frozen by parental guidance : 133869
...aggressively subsumed 1 83871
User time 1 234.274 s

7150

What Are the Current Al/TP TODOQOs/Bottlenecks?

+ High-level structuring of proofs - proposing good lemmas

- Proposing new concepts, definitions and theories

 Proposing new targeted algorithms, decision procedures, tactics

+ Proposing good witnesses for existential proofs

« All these problems involve synthesis of some mathematical objects
 Btw., constructing proofs is also a synthesis task

« This talk: explore learning-guided synthesis for OEIS

« Interesting research topic and tradeoff in learning/Al/proving:

- Learning direct guessing of objects (this talk) vs guidance for search
procedures (ENIGMA and friends)

- Start looking also at semantics rather than just syntax of the objects

8/50

Quotes: Learning vs. Reasoning vs. Guessing

“C’est par la logique qu’on démontre, c’est par l'intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)
— Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fdngt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)
— Novalis, quoted by Popper — The Logic of Scientific Discovery

Certainly, let us learn proving, but also let us learn guessing.
— G. Polya - Mathematics and Plausible Reasoning

Galileo once said, "Mathematics is the language of Science.” Hence, facing
the same laws of the physical world, alien mathematics must have a good
deal of similarity to ours.

— R. Hamming - Mathematics on a Distant Planet

9/50

QSynt: Semantics-Aware Synthesis of Math Objects

« Gauthier (et al) 2019-24
« Synthesize math expressions based on semantic characterizations

- i.e., not just on the syntactic descriptions (e.g. proof situations)

« Tree Neural Nets and Monte Carlo Tree Search (a la AlphaZero)

+ Recently also various (small) language models with their search methods
« Invent programs for OEIS sequences FROM SCRATCH (no LLM cheats)

« 126k OEIS sequences (out of 350k) solved so far (670 iterations):
https://www.youtube.com/watch?v=240e jR9wsXs,
http://grid0l.ciirc.cvut.cz/~thibault/gsynt.html

« ~4.5M explanations invented: 50+ different characterizations of primes

« Non-neural (Turing complete) symbolic computing and semantics
collaborate with the statistical/neural learning

- Program evolution governed by high-level criteria (Occam, efficiency)

10/50

https://www.youtube.com/watch?v=24oejR9wsXs
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

OEIS: > 350000 finite sequences

The OEIS is supported by the many generous donors to the OEIS Foundation.

013627 THE ON-LINE ENCYCLOPEDIA
:RE%S OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane
235711 || Search | Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:2,3,5,7,11

Displaying 1-10 of 1163 results found. page12345678910...117
Sort: relevance | references | number | modified | created Format: long | short | data

q +30

A000040 The prime numbers. e

(Formerly M0652 N0241)
2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,

text; internal format)
OFFSET 1,1

COMMENTS See A065091 for comments, formulas etc. concerning only odd primes. For all
information concerning prime powers, see AB00961. For contributions concerning
"almost primes" see A002808.
A number p is prime if (and only if) it is greater than 1 and has no positive
divisors except 1 and p.
A natural number is prime if and only if it has exactly two (positive) divisors.
A prime has exactlv one proper positive divisor. 1. 11/50

Generating programs for OEIS sequences

0,1,3,6,10,15,21, . ..

An undesirable large program:

if x = 0 then 0 else
if x = 1 then 1 else
if x = 2 then 3 else
if x = 3 then 6 else ...

Small program (Occam’s Razor):

Il
-

Fast program (efficiency criteria):
nxn+n

12/50

Programming language

- Constants: 0,1,2

- Variables: x, y

- Arithmetic: +, —, x, div, mod

- Condition : if ... < Othen...else...
- loop(f, a, b) := uz where up = b,

Un = f(un71) n)
- Two other loop constructs: loop2, a while loop
Example:

2x = [[s_, 2 = loop(2 x x,x,1)
X! = H;:1 y= /OOp(y x X, X, 1)

13/50

QSynt: synthesizing the programs/expressions

« Inductively defined set P of our programs and subprograms,
- and an auxiliary set F of binary functions (higher-order arguments)
- are the smallest sets such that 0,1,2, x,y € P, and if a,b,c € P and

f,g € F then:
a+b,a—b,ax b,adivb,amod b,cond(a,b,c) e P
A(x,y).a€ F, loop(f,a,b),loop2(f,g,a,b,c), compr(f,a) € P

- Programs are built in reverse polish notation

« Start from an empty stack

+ Use ML to repeatedly choose the next operator to push on top of a stack
- Example: Factorial is loop(A(x, y). x x y,x, 1), built by:

[T =x Xl =y [y] = X Y] —=x XXy, x]

= [X X y7X71] H/OOP [loop()‘(xxy) X X y)X)1)]

14/50

QSynt: Training of the Neural Net Guiding the Search

« The triple ((head([x x y,x],[1,1,2,6,24,120...]), —1) is a training
example extracted from the program for factorial loop(A(x,y). x x y, x,1)

« —4 is the action (adding 1 to the stack) required on [x x y, x] to progress
towards the construction of loop(A(x, y). x x y,x,1).

one-hot —4

15/50

QSynt program search - Monte Carlo search tree

7 iterations of the tree search gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is {1, x, y, x x y, x mod y}.

[]

[%N [

Y]
l2 17
ly,x]
/ l6
[x mod y| [x x y]
15

[x mod y,1]

16/50

Encoding OEIS for Language Models

- Input sequence is a series of digits
+ Separated by an additional token # at the integer boundaries

+ Output program is a sequence of tokens in Polish notation
- Parsed by us to a syntax tree and translatable to Python

- Example: a(n) = n!

jonancc]
spayespgTRyAY,

NANAN
O e R e
&

NMT layer - l l l l l
=== m
def £(X) 4 // / /

for y in range(1, X+1):

X S By - =

-
return x = P
- _-- _-
%~ L P

T 17150

Search-Verify-Train Positive Feedback Loop

programs

Search

examples

+ Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006 — Machine Learner for Automated Reasoning — MaLARea))

- However, the OEIS setting allows much faster feedback on symbolic
conjecturing

18/50

Search-Verify-Train Feedback Loop for OEIS

- search phase: LM synthesizes many programs for input sequences

- typically 240 candidate programs for each input using beam search

+ 84M programs for OEIS in several hours on the GPU (depends on model)
- checking phase: the millions of programs efficiently evaluated

« resource limits used, fast indexing structures for OEIS sequences

+ check if the program generates any OEIS sequence (hindsight replay)

+ we keep the shortest (Occams’s razor) and fastest program (efficiency)

- from iter. 501, we also keep the program with the best speed/length ratio

- learning phase: LM trains to translate the “solved” OEIS sequences into
the best program(s) generating them

- from iter. 336: train LMs to transform (generalization, optimization)
« our learned version of human-coded methods like ILP and compilation

19/50

Search-Verify-Train Feedback Loop

- The weights of the LM either trained from scratch or continuously updated
« This yields new minds vs seasoned experts (who have seen it all)
« We also train experts on varied selections of data, in varied ways
+ Orthogonality: common in theorem proving - different experts help
+ Each iteration of the self-learning loop discovers more solutions

- ... also improves/optimizes existing solutions

- The alien mathematician thus self-evolves

« Occam’s razor and efficiency are used for its weak supervision

+ Quite different from today’s LLM approaches:

+ LLMs do one-time training on everything human-invented

+ Our alien instead starts from zero knowledge

- Evolves increasingly nontrivial skills, may diverge from humans

« Turing complete (unlike Go/Chess) — arbitrary complex algorithms

20/50

QSynt web interface for program invention

® Applications Places @ ® & #1896 MHz ¢ Mon11:40 Mon
grid01 ciirc.cvut.cz/~thibault/gsynt.html - Chromium
> QSynt:AlrediscoversFer x @ grid01.ciirc.cvut.cz/~thib: X +

e | gridot.ciirc.cvut.cz @ ¥ §1 = O @ Incognito @

QSynt: Program Synthesis for Integer Sequences

Propose a sequence of integers:
|2357111317192329 J

Timeout (maximum 300s)
10

Generated integers (maximum 100)
[32

| Send || Reset
A few sequences you can try:

0110101000101000101
014916212528363749
01361015
235711131719232931374143
112624120

2416256

21/50

QSynt inventing Fermat pseudoprimes

Positive integers k such that 2K =2 mod k. (341 = 11 « 31 is the first non-prime)

First 16 generated numbers (f(0),f(1),f(2),...):
23571113 17 19 23 29 31 37 41 43 47 53
Generated sequence matches best with: A15919(1-75), Al00726(0-59), A40(0-58)

Program found in 5.81 seconds
f(x) := 2 + compr(\x.loop(\(x,1).2*x + 2, x, 2) mod (x + 2), x)
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Callery Resources

English v

Brython version: 310.6 ‘run ‘Python ‘Javascript‘ Share code

1+ def f2(X):
2 [153ew
3+ for iin range (1,X + 1):
4 2
5
6
7
8
9
(x +2) 0
F1(X)
18 ~ for x in range(32):
19 print (fo(x))

22/50

Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr (\(x,y).(loop2(\(x,y).x + vy, \(x,¥).%x, x, 1, 2) - 1)
mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci (n+l)+fibonacci(n-1)

)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes) :

? for(n=1,4000,if(b(n)==0,1if (isprime(n),0,print(n))))
1

705

2465

2737

3745

23/50

QSynt inventing primes using Wilson’s theorem

nis prime iff (n—1)! + 1 is divisible by n (i.e.: (n—1)! = —1 mod n)

First 32 generated numbers (f(0),f(1),f(2),...):
01101010001010001010001000001010
Generated sequence matches best with: A10051(0-100), A252233(0-29), A283991(0-24)

Program found in 5.17 seconds
f(x) := (loop(\(x,i).x * i, x, x) mod (x + 1)) mod 2
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Gallery Resources

English v

Brython version: 310.6 Python |[Javascript || Share code

1~ def f1(X):
X

2 X

3~ for 1 in range (1,X + 1):
4 x=x*1

5 return x

6

7 v def fo(X)

8

9

0(X):
return (F1(X) % (X + 1)) % 2
10~ for x in range(32):

11 print (fo(x))
12
24/50

Introducing Local Macros/Definitions

A macro/expanded version of a program invented for A1813: a(n) = (2n)!/n!.
1,2,12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600,

ﬁ? x + y x + y X x + y

25/50

Introducing Global Macros/Definitions

A macro/expanded version of A14187 (cubes of palindromes).
0,1, 8,27, 64, 125, 216, 343, 512, 729, 1331, 10648, 35937, 85184,

-~ "DIEICIDICICIC]
S +x2+ 222

@G

Main code
UMKHWREWUJKGWRIKLEWRKXWK

J[K]BIFIEIKIKIK
XX xox x

x 1

& —

for y in range (1,(X // 10 + 1):
¥y

for y in range (1,2 + 1)
3(x)

return x

loop) e,

while 1'<= x:
0 - f2(x)) % 10 <= 0
i+

26/50

Five Different Self-Learning Runs

== thn == nmt0 nmt1 == nmt2 == nmt3
80000
60000
40000 ///
20000
0
25 50 75 100 125 150 175

Fiaure: Cumulative counts of solutions. 27/50

Five Different Self-Learning Runs

== thn == nmt0 nmt1 == nmt2 == nmt3

1000

25 50 75 100 125 150 175

Fiaure: Increments of solutions. 28/50

Size Evolution

== small == fast

60

40
o
N
n
o
s

< 20

0

25 50 75 100 125 150 175
Generation

Fiaure: Avra. size in iterations 29/50

Speed Evolution — Technology Breakthroughs

Avrg. Time

== fast == small

600000
400000

200000

80000
60000
40000
20000

25 50 75 100 125 150 175

Generation

Figure: Avrg. time in iterations 30/50

Singularity Take-Off X-mas Card

Solutions

800

600

400

200

16
20

24
28

32
36
40

44

48

52
56
60

Nuke the server room!!!

64
68
72
76

Generation

80

84

88

92

96
100

N

104

108

112

116

120

31/50

Human Made Technology Jumps

=7 = T T T
. g 2
1.2-10° = — n
= &
= &
2 ﬁ
-
1-10° g 2 o n
oz ° $
I 2 = ~ ©
X e = = .

3 E = o =
£80.000 15 £ | z g |
8 T & Z &

5 S o =] —
= g g =}
260,000 |-& £ R
) S E
wv i O

= [~4

o

40,000

20,000

+Bigger model (it. 170) —
P-O virus created (it. 295)
Analogizing added (it. 336)
Memoization revolution (it. 456)

| | | | | |
00 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Iteration

32/50

%
o
S
S
=
>
(@)}
o
o
c
<
5
T
(D)
©
©
=
c
©
S
=
I

(€19 "M JSTT payoeay

(10S "1m) uonnjos pig

Traind

(9¢€ 1) pappe Surzisoeuy

(S6T M) pareard snaia O-4

(0L1 1) [opow 123319+

ing OB clusters

(9S¥ 1) UONIOAIT UOEZTOWOA -

(it. 446)

|
500 550 600 650 700

50 100 150 200 250 300 350 400 450

400 |}

300 |
0

saouanbag

0

Iteration

33/50

n
o
£
-]
>
>
(@)}
o
o
C
e
5
T
9
)
©
S
©)
-
)
<
o
S
©)
w

($4) 1001 2renbs
(€-116) oseqSIp

(659) 1001 Y1ty

(61+) Wua1OY§200/a[SuRL) —

(Lg€) TeranouAfod/orwolofoho —
(-00¢) Terwouk od/orojopPAd

(867) dseq/moo0

(6L€) swd/dxs —

150 200 250 300 350 400 450 500 550 600 650 700

500

o
g (s-v6) ums | S
§/) “wourq/aSueLn
) o
lec 1) uorsuedxa o pomd |2
, : : : o
= o o o -
= =1 =) b3
<t ™ N =
soouanbag

Iteration

34/50

Some Automatic Technology Jumps

* iter 53: expansion/prime: A29363 Expansion of 1/((1 — x*)(1 — x")(1 — x®)(1 — x19))

« iter 78: triangle/binomial: A38313 Triangle whose (i,j)-th entry is binomial(i, j) % 107~/ % 11/
* iter 94-5: sum: A100192 a(n) = Sumy—o. nbinomial(2n, n + k) % 2k

* 109-121: sum/triangle: A182013 Triangle of partial sums of Motzkin numbers

* 171-2: base/representation: A39080 n st base-9 repr. has the same number of 0’s and 4’s
» 258: occur/base: A44533 n st “2,0” occurs in the base 7 repr of n but not of n + 1

* 300-304: cyclotomic/polynomial: A14620 Inverse of 611th cyclotomic polynomial

* 379: exp/prime: A124214 E.g.f.: exp(x)/(2 — exp(3 * x))'/3

* 419: triangle/coefficient: A15129 Triangle of (Gaussian) g-binomial coefficients for g = —13
* 511,3: digit/base/prime: A260044 Primes with decimal digits in 0,1,3.

» 544: square root: A10538 Decimal expansion of square root of 87.

* 659: 4th root: A11084 Decimal expansion of 4th root of 93.

35/50

Translation vs Transformation

Sequences

200

150

100

50

| L |
O
3‘50 460 4!’)0 5(50 5‘50 660 65‘0 700

Iteration

36/50

PO-virus Infection Rates

3.10°

—— nmtl
—— POvirus

. 105 .

o
o

Solutions kept
I
—
o
ot
T

1-10° |

50,000

0 \ ! \ \ \ \ \
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Iteration

37/50

Generalization of the Solutions to Larger Indices

+ Are the programs correct?

- Can we experimentally verify Occam’s razor?
(implications for how we should be designing ML/Al systems!)

+ OEIS provides additional terms for some of the OEIS entries

« Among 78118 solutions, 40,577 of them have a b-file with 100 terms
- We evaluate both the small and the fast programs on them

+ Here, 14,701 small and 11,056 fast programs time out.

+ 90.57% of the remaining slow programs check

« 77.51% for the fast programs

+ This means that SHORTER EXPLANATIONS ARE MORE RELIABLE!
(Occam was right, so why is everybody building trillion-param LLMs?7?7?)

« Common error: reliance on an approximation of a real number, such as .

38/50

Are two QSynt programs equivalent?

+ As with primes, we often find many programs for one OEIS sequence
Currently we have almost 4.5M programs for the 126k sequences

It may be quite hard to see that the programs are equivalent
Extend to Schmidhuber’s Gédel Machine?
A simple example for 0,2, 4,6, 8, ... with two programs f and g:
« f(0)=0,f(n)=2+f(n—-1)ifn>0
e g(n)=2x%n
« conjecture: Vne N.g(n) = f(n)

+ We can ask mathematicians, but we have thousands of such problems
+ Or we can try to ask our ATPs (and thus create a large ATP benchmark)!
+ Here is one SMT encoding by Janota & Gauthier:

(set-logic UFLIA)

(define-fun-rec £ ((x Int)) Int (ite (<= x 0) 0 (+ 2 (£ (- x 1))))
(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (x 2 c))))))
(check-sat)

39/50

Inductive proof by Vampire of the f = g equivalence

% SZS output start Proof for rec2

1. £(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]

2. 2 [X0 : $int] : (Sgreater(X0,0) & ~f(X0) = $product(2,X0)) [input]

[.

43. ~$less(0,X0) | iGO(X0) = $sum(2,iGO($sum(X0,-1))) [evaluation 40]

44, (! [X0 : $int] : (($product(2,X0) = iGO(X0) & ~$less(X0,0)) => Sproduct(2,S$sum(X0,1)) = iGO($sum(X0,1)))
& Sproduct(2,0) = iG0O(0)) => ! [X1 : $int] : ($less(0,X1) => $product (2,X1) = iGO(X1)) [induction hypo]

[...]

49. $product(2,0) != iGO(0) | $product(2,$sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [resolution 48,41]

50. $product(2,0) != iGO0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [resolution 47,41]

51. $product(2,0) != iGO(0) | ~$less(sK3,0) | ~$less(0,sKl) [resolution 46,41]

52. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [evaluation 49]

53. 0 iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [evaluation 50]

54. 0 iG0(0) | ~$less(sK3,0) | ~$less(0,sKl) [evaluation 51]

55. 0 != iG0(0) | ~S$less(sK3,0) [subsumption resolution 54,39]

57. 1 <=> Sless(sK3,0) [avatar definition]

59. ~S$less(sK3,0) <- (~1) [avatar component clause 57]

61. 2 <=> 0 = iG0(0) [avatar definition]

64. ~1 | ~2 [avatar split clause 55,61,57]

65. 0 iG0(0) | $product (2,sK3) = iGO(sK3) [subsumption resolution 53,39]

67. 3 $product (2,sK3) = iGO0(sK3) [avatar definition]

69. $product (2,sK3) = iGO(sK3) <- (3) [avatar component clause 67]

70. 3 | ~2 [avatar split clause 65,61,67]

71. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) [subsumption resolution 52,39]

72. $product (2, $sum(l,sK3)) != iGO($sum(l,sK3)) | 0 != iG0(0) [forward demodulation 71,5]

74. 4 <=> $product (2,$sum(l,sK3)) = iGO($sum(1l,sK3)) [avatar definition]

76. $product (2,$sum(1l,sK3)) != iGO($sum(l,sK3)) <- (~4) [avatar component clause 74]

77. ~2 | ~4 [avatar split clause 72,74,61]

82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iGO($sum(x1,1)) = $sum(2,1iGO0 ($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]

251. $less(X1,0) | iGO($sum(X1,1)) = $sum(2,1iGO(X1)) [evaluation 246]
ool

1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]

1177. 1 | ~3 | 4 [avatar contradiction clause 1176]

1178. S$false [avatar sat refutation 64,70,77,85,1177]
% SzS output end Proof for rec2

% Time elapsed: 0.016 s 40/50

80 Programs That Have Most Evolved

120
117
116
112
111
11
111
111
109
108
108
108
107
107
107
106
106
106
105
104
104
104
103
108
102
102
102

https:
https:
https:
https:

https

https:
https:
https:

https

https:
https:
https:
https:
https:
https:

https

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

https

//oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
://oeis.

org/A238952
org/A35218
org/A1001
org/A35178
org/A88580
org/A62069
org/Al63109
org/Al615
org/A66446
org/A48250
org/A321516
org/A2654
org/A75653
org/A60278
org/A23890
org/A62011
org/A346613
org/A344465
org/A49820
org/A55155
org/A349215
org/A143348
org/A92517
org/A64840
org/A9194
org/A51953
org/A155085

101
101
101
101
101
101
101
101
101
101
101
100
100
100
100
100
100
100
100
99

99

99
99
99
98
98

https:
https:
https:
https:

https

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

https

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

https

//oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
://oeis.

org/A97012
org/A71190
org/A70824
org/A64987
org/A57660
org/A54024
org/A53222
org/A50457
org/A23888
org/A209295
org/A206787
org/A99184
org/A63659
org/RA62968
org/A35154
org/A339965
org/A277791
org/A230593
org/A182627
org/A9191
org/A82051
org/A62354
org/A247146
org/A211261
org/A147588
org/A318446
org/A203

98
98

97
97
97
97
97
97
96
96
96

96
96
96

96
96
96
96

96
96
96
96

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.

org/Al7666
org/A113184
org/A82
org/A6579
org/A56595
org/A293228
org/A27847
org/A23645
org/Al0
org/A92403
org/A90395
org/A83919
org/A7862
org/A78306
org/A69930
org/RA69192
org/A54519
org/A53158
org/A351267
org/A334136
org/A33272
org/A325939
org/A211779
org/A186099
org/A143152
org/A125168

41/50

https://oeis.org/A238952
https://oeis.org/A97012
https://oeis.org/A17666
https://oeis.org/A35218
https://oeis.org/A71190
https://oeis.org/A113184
https://oeis.org/A1001
https://oeis.org/A70824
https://oeis.org/A82
https://oeis.org/A35178
https://oeis.org/A64987
https://oeis.org/A6579
https://oeis.org/A88580
https://oeis.org/A57660
https://oeis.org/A56595
https://oeis.org/A62069
https://oeis.org/A54024
https://oeis.org/A293228
https://oeis.org/A163109
https://oeis.org/A53222
https://oeis.org/A27847
https://oeis.org/A1615
https://oeis.org/A50457
https://oeis.org/A23645
https://oeis.org/A66446
https://oeis.org/A23888
https://oeis.org/A10
https://oeis.org/A48250
https://oeis.org/A209295
https://oeis.org/A92403
https://oeis.org/A321516
https://oeis.org/A206787
https://oeis.org/A90395
https://oeis.org/A2654
https://oeis.org/A99184
https://oeis.org/A83919
https://oeis.org/A75653
https://oeis.org/A63659
https://oeis.org/A7862
https://oeis.org/A60278
https://oeis.org/A62968
https://oeis.org/A78306
https://oeis.org/A23890
https://oeis.org/A35154
https://oeis.org/A69930
https://oeis.org/A62011
https://oeis.org/A339965
https://oeis.org/A69192
https://oeis.org/A346613
https://oeis.org/A277791
https://oeis.org/A54519
https://oeis.org/A344465
https://oeis.org/A230593
https://oeis.org/A53158
https://oeis.org/A49820
https://oeis.org/A182627
https://oeis.org/A351267
https://oeis.org/A55155
https://oeis.org/A9191
https://oeis.org/A334136
https://oeis.org/A349215
https://oeis.org/A82051
https://oeis.org/A33272
https://oeis.org/A143348
https://oeis.org/A62354
https://oeis.org/A325939
https://oeis.org/A92517
https://oeis.org/A247146
https://oeis.org/A211779
https://oeis.org/A64840
https://oeis.org/A211261
https://oeis.org/A186099
https://oeis.org/A9194
https://oeis.org/A147588
https://oeis.org/A143152
https://oeis.org/A51953
https://oeis.org/A318446
https://oeis.org/A125168
https://oeis.org/A155085
https://oeis.org/A203

Evolution and Proliferation of Primes and Others

https://bit.1ly/3XHZsjK: triangle coding, sigma (sum of divisors),
primes. https://bit.1ly/31J40Gd (the first 24, now 50)

Nr | Program

P1 (if x <= 0 then 2 else 1) + (compr (((loop (x + x) (x mod 2) (loop (x * x) 1 (loop (x + x) (x div 2) 1))) + x) mod (1 + X)) x)
P2 1 + (compr ((((loop (x * x) 1 (loop (x + x) (x div 2) 1)) + x) * X) mod (1 + x)) (1 +x))

P3 1+ (compr (((loop (x * x) 1 (loop (x + x) (x div 2) 1)) + x) mod (1 + X)) (1 + X))

P4 2 + (compr ((loop2 (1 + (if (x mod (1 + y)) <= 0 then 0 else x)) (y - 1) x 1 x) mod (1 + x)) X)

P5 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) x (1 + x)) mod (1 + x)) (1 + X))

3 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (2 + (x div (2 + (2 + 2)))) (1 + x)) mod (1 + x)) (1 + X))

P7 compr ((1 + (loop (if (x mod (1 +y)) <= 0 then (1 +) else x) x x)) mod (1 + X)) (2 + x)

P8 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (1 + (2 + X) div (2 + (2 + 2)))) (1 + x)) mod (1 + X)) (1 + X))
P9 compr (x - (loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) x X)) (2 + x)

P10 compr (x - (loop (if (x mod (1 +y)) <= 0 then 2 else x) (x div 2) X)) (2 + x)

P11 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (1 + (x div (2 + (2 + 2)))) (1 + X)) mod (1 + X)) (1 + X))

P12 compr ((x - (loop (if (x mod (1 +y)) <= 0 then y else x) x x)) - 2) (2 + x)

P13 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (2 + (x div (2 * (2 + (2 + 2))))) (1 + X)) mod (1 + X)) (1 + X))

P14 | compr ((x - (loop (if (x mod (1 +y)) <= 0 then y else x) x X)) - 1) (2 + X)

P15 1 + (compr (x - (loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (2 + (x div (2 * (2 + (2 + 2))))) (1 + X)) (1 + X))

P16 compr (2 - (loop (if (x mod (1 +y)) <= 0 then 0 else x) (x - 2) x)) x

P17 | 1+ (compr (x - (loop (if (x mod (1 + y)) <= 0 then 2 else X) (2 + (x div (2 * (2 + (2 + 2))))) (1 + X)) (1 + X))

P18 | 1+ (compr (x - (loop (if (x mod (1 +y)) <= 0 then 2 else x) (1 + (2 + (x div (2* (2* (2 + 2)))))) (1 + X)) (1 + X))

P19 1 + (compr (x - (loop2 (loop (if (x mod (1 +y)) <=0 then 2 else x) (2 + (y div (2 * (2 + (2 + 2))))) (1 +¥)) 0 (1 - (x mod 2)) 1 X)) (1 + X))

P20 1 + (compr (x - (loop2 (loop (if (x mod (1 +y)) <= 0 then 2 else x) (1 + (2 + (y div (2* (2* (2 + 2)))))) (1 +¥)) O (1 - (xmod 2)) 1 x)) (1 + X))
P21 1 + (compr (x - (loop2 (loop (if (x mod (2 + y)) <=0 then 2 else x) (2 + (y div (2 * (2 + 2) + (2 +2))))) (1 +¥)) 0 (1 - (x mod 2)) 1 X)) (1 + X))
P22 | 1+ (compr (x- (loop2 (loop (if (x mod (2 +y)) <=0 then 2 else x) (2 + (y div (2 * (2* (2 + 2))))) (1 + y)) 0 (1 - (xmod 2)) 1x)) (1 + X))

P23 2+ (compr (loop (x - (if (x mod (1 +y)) <= 0 then 0 else 1)) x x) X)

P24 loop (1 +x) (1-x) (1 +(2* (compr (x - (loop (if (x mod (2 + y)) <= 0 then 1 else x) (2 + (x div (2 * (2 + 2)))) (1 + (x + X)))) X)))

42/50

https://bit.ly/3XHZsjK
https://bit.ly/3iJ4oGd

n
)
E
S
o
Y
@)
c
Q
el
©
S
()
=
[
| —
o
©
C
©
c
9
e
=
o
>
L

P22 P23 P24

P12 P13 P14 P15 P16 P17 P18 P19 P20 P21

P10 P11

P2 P3 P4 P5 P6 P7 P8 P9

lter | P1

943/50

OO0 0000000000000O00000O0O0O00O0O0O0O0OO0
OO0 000000000000000000000O00OO0O0O0O0O0
0000000000000 00000000O00O0OO0OO0O0O0O0
OO0 0DO0O0O00O00O0O000000000O00O0OO0O0OO0OO0OO0O
OO0 O0O00O00O00O000O00O00O0000O0O0OO0O0OOO0OO0OO0O
O 0000000000000 0O0O0O0O00O00O0OO0O0OO0O0O0O0OO0O
TOTDO - NN D
OO0 O0O0O0O0O0O00O0O000O0O0O0O0O00OCOrMM®MIFILON®D
@O N
DN DO =AM T O
0000000000000 0OCO0O00O0ORNNOAID =+ ™+~ —
~ o
C0O00O0000O000O0O00OCO0OOO0OO0OOOWOWO®O®®OWO®~M
NP o ©o
C0O0000O00O00O0000OCO0O0O0OO-AM™—+ ©®©©W©O®©WO©O©
© Qo @
WY -ONUON N ®N
OO0 0O00O00O00O0O0000O0O0O0ONANDr AN~ BOM— O N
o
VONTONTOD— AW O©WO
OO0 O0O00O00O00O0O0CO0OO-rPMWAH-rPOTMOANN™ — = ~— —
© <
OO0 O0O00O0O0O0O0O0OO0OO0O0O0OO0OO0OONMr~MOOOOOO OO0
DO DO DO
OO0 0O0C0O00O000O0O0OOANrr A NN~™—®©N®N T <
0 OO =Y~ ©
LOXDDOOLANT D= N D
OC0O0O0O0O0O00000O00000CO0MMN-rANNrr DT ®AN
© ©on =
mMoOr-rNYOwA
OO0 O0O0CO0O000OCO0O0OCOO~rANOr-~--ONONOOOOOO
N @
OO0 O0O00O00O0O0O0O00O0ONTHrOTOOOOOOOO OO O
rT-O®OWOoY T
C0O0000O00O0OCOOrrHITVUOLWIA-TOOOOOOOOO
DVORNTN QOO —
OO0 0O0OCO0O0O0OCOOOrVLLYINAN--OOOWTFT N~~~ N —
~ oo
OO0 O0O0C0O0O0OrPr~-rOINTNOOOOOOOOOOO OO
OO0 O0O00O0O0WOOOO0OO0OOO0OO0O0O0O0O00O0OOO0OOOOO0 OO
V)
C0O00O00O00VWOVOOWOrrAINITr"OTOOOOOOO OO
o
COO0O0OCCVWOrIrmTHNOLANANNNNOOOOOOOOOO
=) o
CONOOI-rFTOO-FNTOANAN-TOOOOOOOOOOOO0 OO0 O
LONODPO - NNDITVONVDO-ADTVLONDVDO = N®DT WO
AAAANANDOOODOOOOOOTIIIITIITITITOOOOWL WO

Selection of 123 Solved Sequences

https://github.com/Anon52MI4/oeis—alien

Table: Samples of the solved sequences.

https://oeis.org/A317485 Number of Hamiltonian paths in the n-Bruhat graph.

https://oeis.org/A349073 a(n) = U(2*n, n), where U(n, x) is the Chebyshev polynomial of the second kind.

https://oeis.org/A293339 Greatest integer k such that k/2" < 1/e.

https://oeis.org/Al1848 Crystal ball sequence for 6-dimensional cubic lattice.

https://oceis.org/A8628 Molien series for As.

https://oeis.org/A259445 Multiplicative with a(n) = nif nis odd and a(2°) = 2.

https://oeis.org/A314106 Coordination sequence Gal.6.199.4 where G.u.t.v denotes the coordination sequence for a
vertex of type v in tiling number t in the Galebach list of u-uniform tilings

https://oeis.org/A311889 Coordination sequence Gal.6.129.2 where G.u.t.v denotes the coordination sequence for a
vertex of type v in tiling number t in the Galebach list of u-uniform tilings.

https://oeis.org/A315334 Coordination sequence Gal.6.623.2 where G.u.t.v denotes the coordination sequence for a
vertex of type v in tiling number t in the Galebach list of u-uniform tilings.

https://oeis.org/A315742 Coordination sequence Gal.5.302.5 where G.u.t.v denotes the coordination sequence for a
vertex of type v in tiling number t in the Galebach list of u-uniform tilings.

https://oeis.org/A004165 OEIS writing backward

https://oeis.org/A83186 Sum of first n primes whose indices are primes.

https://oeis.org/A88176 Primes such that the previous two primes are a twin prime pair.

https://ceis.org/A96282 Sums of successive twin primes of order 2.

https://oeis.org/A53176 Primes p such that 2p + 1 is composite.

https://oeis.org/A267262 Total number of OFF (white) cells after n iterations of the "Rule 111" elementary cellular
automaton starting with a single ON (black) cell.

44/50

https://github.com/Anon52MI4/oeis-alien
https://oeis.org/A317485
https://oeis.org/A349073
https://oeis.org/A293339
https://oeis.org/A1848
https://oeis.org/A8628
https://oeis.org/A259445
https://oeis.org/A314106
https://oeis.org/A311889
https://oeis.org/A315334
https://oeis.org/A315742
https://oeis.org/A004165
https://oeis.org/A83186
https://oeis.org/A88176
https://oeis.org/A96282
https://oeis.org/A53176
https://oeis.org/A267262

Infinite Math-Nerd Sniping

- We have 4.5M problems for math nerds like this one:

+ JU: This thing works for the first 1k values (just checked) - any idea why?
* https://oeis.org/A004578 - Expansion of sqrt(8) in base 3.

« loop2(((y *y) div (X +y)) +V, ¥, X + X, 2, loop((1 + 2) * X, X, 2)) mod (1 + 2)

« MO: Not a proof, just a rough idea: The program iterates the function q
[-> 2+q/ 1+q, where q is a rational number. This converges to sqrt(2).
The number q is represented by an integer ‘a’ such thata = 3* = (2« q),
where ’x’ is the input. Once the approximation is good enough,

a = floor(3* = sqrt(8)), so a mod 3 is the digit we want.

45/50

https://oeis.org/A004578

A30187: Expansion of n(q) = n(q%) = n(q")
A30184: Expansion of n(q) = n(q°) = n(q°)

Serious Math Conjecturing — Elliptic Curves

+ Sander Dahmen: Here are some OEIS labels related to elliptic curves
(and hence modular forms), ordered by difficulty. It would be interesting
to know if some of these appear in your results.

- A006571 A030187 A030184 A128263 A187096 A251913

« JU: We have the first three:

» A6571 : loop((push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then ((if (y mod
loop(1 + (X + x), 2, 2)) <= 0 then (x - y) else x) - y) else x, y, push(0, y))) + X, Y,
push(0, x)), x) * 2) divy, x, 1)

» A30187 : loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x
mod (((2 +y) *y) - 1)) <= 0 then (x + x) else X, 2, y)) else x, y, push(0, y))) + X, V,
push(0, x)), x) div y, x, 1)

* A30184 : loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x
mod (1 + (y +Y))) <= 0 then (x + X) else x, 2, y)) else x, y, push(0, y))) + X, ¥,
push(0, x)), x) divy, x, 1)

AB571: Expansion of q * Productk-—1(1 — q*)? « (

xn(q"
#n(q

11*k)

1—
) in powers of q.
)

'5) in powers of g.

46/50

More Bragging

- Hofstadter-Conway $10000 sequence: a(n) = a(a(n-1)) + a(n-a(n-1)) with
a(l)=a(2) =1.
+ D. R. Hofstadter, Analogies and Sequences: Intertwined Patterns of

Integers and Patterns of Thought Processes, Lecture in DIMACS
Conference on Challenges of Identifying Integer Sequences, 2014.

Date: Sun, Mar 17, 2024
To: <dughof@indiana.edu>

Dear Douglas,

our system [1l] has today (iteration 552) found a solution of
https://oeis.org/A004074. The solution in Thibault’s programming
language [1] (with push/pop added on top of [1]) is:

((2% 1oop (push (Lloop (pop (x) , x-1, x) , x) +100p (POp (x) , y=X, pop (x)) , x-1,1)) -1) -x

The related A4001 was solved in iteration 463 and the solution is:
loop (push (loop (pop (x), y-x,pop(x)),x) + loop(pop(x), x-1, x), x — 1, 1)

47/50

Minsky 2014

It seems to me that the most important discovery since Gédel was the
discovery by Chaitin, Solomonoff and Kolmogorov of the concept called
Algorithmic Probability which is a fundamental new theory of how fo make
predictions given a collection of experiences and this is a beautiful theory,
everybody should learn it,

but it's got one problem, that is, that you cannot actually calculate what this
theory predicts because it is too hard, it requires an infinite amount of work.

However, it should be possible to make practical approximations to the
Chaitin, Kolmogorov, Solomonoff theory that would make better predictions
than anything we have today. Everybody should learn all about that and
spend the rest of their lives working on it.

— M. Minsky, Panel discussion on The Limits of Understanding, 2014

48/50

References to our relevant work

¢ Thibault Gauthier, Josef Urban: Learning Program Synthesis for Integer Sequences from Scratch. AAAI
2023: 7670-7677

¢ Thibault Gauthier, Miroslav Olsak, Josef Urban: Alien Coding. CoRR abs/2301.11479 (2023)

¢ Thibault Gauthier, Chad E. Brown, Mikolas Janota, Josef Urban: A Mathematical Benchmark for
Inductive Theorem Provers. LPAR 2023: 224-237

¢ Thibault Gauthier, Cezary Kaliszyk, Josef Urban: TacticToe: Learning to Reason with HOL4 Tactics.
LPAR 2017: 125-143

¢ Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, Michael Norrish: Learning to Prove
with Tactics. CoRR abs/1804.00596 (2018)

¢ Jan Jakubuv, Karel Chvalovsky, Zarathustra Amadeus Goertzel, Cezary Kaliszyk, Mirek Olsak, Bartosz
Piotrowski, Stephan Schulz, Martin Suda, Josef Urban: MizAR 60 for Mizar 50. ITP 2023: 19:1-19:22

¢ Thibault Gauthier: Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic.
LPAR 2020: 230-248

¢ Thibault Gauthier: Tree Neural Networks in HOL4. CICM 2020: 278-283

* Qingxiang Wang, Cezary Kaliszyk, Josef Urban: First Experiments with Neural Translation of Informal to
Formal Mathematics. CICM 2018: 255-270

¢ Bartosz Piotrowski, Josef Urban: Stateful Premise Selection by Recurrent Neural Networks. LPAR 2020:
409-422

¢ Bartosz Piotrowski, Josef Urban: Guiding Inferences in Connection Tableau by Recurrent Neural
Networks. CICM 2020: 309-314

¢ Josef Urban, Jan Jakubuv: First Neural Conjecturing Datasets and Experiments. CICM 2020: 315-323
¢ Bartosz Piotrowski, Josef Urban, Chad E. Brown, Cezary Kaliszyk: Can Neural Networks Learn
Symbolic Rewriting? CoRR abs/1911.04873 (2019)

49/50

Thanks and Advertisement

+ Thanks for your attention!

- To push Al/ML methods in math and theorem proving, we organize:
« AITP — Artificial Intelligence and Theorem Proving

+ September 1-6, 2024, Aussois, France, aitp-conference.org
« ATP/ITP/Math vs Al/ML/AGI people, Computational linguists

+ Discussion-oriented and experimental

+ About 50 people in 2024

« Invited talks by people who do AI/ML/TP for math, physics, ...

50/50

aitp-conference.org

	Motivation, Learning vs. Reasoning vs. Guessing

