AI4REASON:

Artificial Intelligence for Large-Scale Computer-Assisted Reasoning

Josef Urban

Czech Technical University in Prague Czech Institute for Informatics, Robotics and Cybernetics ERC Consolidator grant project No. 649043 09/2015 – 08/2020

European Research Council Established by the European Commission

JOSEF URBAN (CTU, PRAGUE)

AI4REASON



Indeed, it is similar to a less known problem B number 13501 in my knowledge base. We can use a similar polynomial reduction to planar graphs as in B, and for the resulting constraint-solving problem we use a modified version Y of the $O(n^9)$ algorithm X published last year in Proc. of Indian Conf. on Graph Theory.

AI REASOI

AI REASON Here is my verified formal proof with 100k basic inference steps. Here are two high-level versions of the proof, one for experts and one for textbooks.

Let's write an ERC proposal about exploring them!

How Distant?

- 15 50 years, depending on our efforts
- Today's numbers about 100x smaller:
 - 10k-30k computer-understandable definitions
 - 200k-300k (small) theorems and proofs
 - 1B-10B primitive lemmas
- Covers roughly the Bc level in Math/CS, PhD level still far
- The main bottleneck:

WEAK AUTOMATION OF REASONING OVER LARGE COMPUTER-UNDERSTANDABLE CORPORA

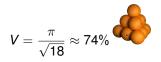
This is where a breakthrough is necessary

AI4REASON Goals

- Breakthrough in a hard problem in AI and reasoning: automatically proving theorems in complex theories
- Produce AI systems that combine learning and reasoning
- Thus help with automating verification of:
 - advanced mathematics and big proofs (Kepler conjecture)
 - software and hardware designs (seL4 OS microkernel)
 - advanced systems and designs (finance, industry, science)
- The idealized/perfect World of Math (Plato/Gödel): Interesting AI area – narrow or general AI?

Example: The Kepler conjecture

 J. Kepler (1611, Prague): The most compact way of stacking balls of the same size in space is a pyramid.



- Big proof: 300 pages + computations (Hales, Fergusson, 1998)
- Formal proof finished in 2014, 20000 theorems & proofs
- All of it computer-understandable and verified in HOL Light:
- polyhedron s /\ c face_of s ==> polyhedron c
- However, this took 20 30 person-years!
- Our AI methods can fully automate 40% of the proofs (2014)
- Similar verification efforts for bug-free compilers, OS, etc.

Sample of Formal Math: Irrationality of $\sqrt{2}$

```
theorem sort2 not rational:
   "sqrt (real 2) ∉ Q"
proof
   assume "sort (real 2) \in \mathbb{O}"
  then obtain m n :: nat where
    n_nonzero: "n \neq 0" and sqrt_rat: "|sqrt (real 2)| = real m / real n"
    and lowest terms: "qcd m n = 1" ...
  from n_nonzero and sqrt_rat have "real m = {sqrt (real 2); * real n" by simp
   then have "real (m^2) = (sqrt (real 2))^2 * real <math>(n^2)"
    by (auto simp add: power2 eq square)
   also have "(sort (real 2))<sup>2</sup> = real 2" by simp
  also have "... * real (m^2) = real (2 * n^2)" by simp
  finally have eq: m^2 = 2 * n^2
  hence "2 dvd m<sup>2</sup>" ...
  with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
  then obtain k where "m = 2^* k"
  with eq have "2 * n^2 = 2^2 * k^2" by (auto simp add: power2 eq square mult ac)
  hence "n^2 = 2 * k^2" by simp
  hence "2 dvd n2" ..
  with two is prime have "2 dvd n" by (rule prime dvd power two)
  with dvd m have "2 dvd gcd m n" by (rule gcd greatest)
  with lowest terms have "2 dvd 1" by simp
  thus False by arith
ged
let SQRT 2 IRRATIONAL = prove
 (``rational(sgrt(&2))`.
 SIMP TAC[rational; real abs; SORT POS LE; REAL POS] THEN
 REWRITE TAC[NOT EXISTS THM] THEN REPEAT GEN TAC THEN
 DISCH THEN (CONJUNCTS THEN2 ASSUME TAC MP TAC) THEN
  SUBGOAL THEN ((\&p / \&g) pow 2 = sart(\&2) pow 2)
    (fun th -> MESON TAC[th]) THEN
 SIMP TAC[SORT POW 2; REAL POS; REAL POW DIV] THEN
 ASM SIMP TAC[REAL EO LDIV EO; REAL OF NUM LT; REAL POW LT;
              ARITH RULE '0 < q <=> (q = 0) '] THEN
 ASM MESON TAC[NSORT 2; REAL OF NUM POW;
               REAL OF NUM MUL; REAL OF NUM EO]);;
```

JOSEF URBAN (CTU, PRAGUE) AI4REASON

The AI4REASON Plan of Attack

WP1 AI for finding relevant knowledge in large formal corpora:

- How to capture similarity and analogy of ideas?
- How to learn from proofs, counter-examples and theories?
- WP2 AI-based guiding methods for reasoning tools:
 - How to efficiently apply the learned guidance?
 - How to automatically learn the best reasoning strategies?
- WP3 AI for suggesting plausible conjectures and concepts:
 - What makes a good conjecture for a given problem?
 - What concepts are good for a given problem?
- WP4 Self-improving AI interleaving learning and deduction:
 - How to explore easier problems to learn for harder ones?
 - How to develop theories and gain most useful knowledge?
- WP5 Deployment and Cross-Corpora Reuse:
 - Deploy the methods as strong online services
 - Translate informal math to formal

Combining Learning and Theorem Proving

- high-level: select relevant lemmas from a large library
- high-level: select good high-level strategies for a problem
- low-level: guide all inference steps of theorem provers
- mid-level: guide application of tactics to goals
- mid-level: invent suitable strategies for problem classes
- mid-level: invent suitable conjectures for a problem
- mid-level: invent suitable concepts/models for problems
- proof sketches: explore related theories to get proof ideas
- theory exploration: develop new theories by conjecturing
- feedback loops: (dis)prove, learn from it, (dis)prove more

• ...

Some Highlights So Far

- Won two divisions of the 2018 proving competition (CASC)
- 2017/18: Improved the best open prover by ML guidance
- 2018: 40% improvement of the leanCoP prover by reinforcement learning
- 2017-18: TacticToe first ML-guided tactical system
- 2015-18: Blind Strategymaker invent proving strategies
- First deep-learning based provers (with Google Research)
- 2015-18: Inf2formal Translating informal math to formal, using grammar-based/semantic and neural systems
- Invited talks Fields Inst., TYPES'18, Hales'60, AGI'18
- 2016 Google Research Award for JU
- AITP conference series started: aitp-conference.org
- AI/TP group at Google Research (2016), OpenAI 2018?

What Can We Automatically Prove?

Nontrivial human-written proof that face of a polyhedron is polyhedron:

```
let FACE OF POLYHEDRON POLYHEDRON = prove
 ('!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c',
 REPEAT STRIP TAC THEN FIRST ASSUM
   (MP TAC O GEN REWRITE RULE I [POLYHEDRON INTER AFFINE MINIMAL]) THEN
 REWRITE TAC[RIGHT IMP EXISTS THM; SKOLEM THM] THEN
 SIMP TAC[LEFT IMP EXISTS THM; RIGHT AND EXISTS THM; LEFT AND EXISTS THM] THEN
 MAP EVERY X GEN TAC
  ['f:(real^N->bool)->bool'; 'a:(real^N->bool)->real^N';
    'b:(real^N->bool)->real'] THEN
 STRIP TAC THEN
 MP TAC(ISPECL ['s:real^N->bool'; 'f:(real^N->bool)->bool';
                 `a:(real^N->bool)->real^N`; `b:(real^N->bool)->real`]
         FACE OF POLYHEDRON EXPLICIT) THEN
 ANTS TAC THENL [ASM REWRITE TAC]] THEN ASM MESON TAC[]; ALL TAC] THEN
 DISCH THEN (MP TAC o SPEC 'c:real'N->bool') THEN ASM REWRITE TAC[] THEN
 ASM CASES TAC 'c:real^N->bool = {}' THEN
 ASM REWRITE TAC[POLYHEDRON EMPTY] THEN
 ASM CASES TAC 'c:real^N->bool = s' THEN ASM REWRITE TAC[] THEN
  DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON INTERS THEN
 REWRITE TAC[FORALL IN GSPEC] THEN
 ONCE REWRITE TAC[SIMPLE IMAGE GEN] THEN
 ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
 REPEAT STRIP TAC THEN REWRITE TAC[IMAGE ID] THEN
 MATCH MP TAC POLYHEDRON INTER THEN
 ASM REWRITE TAC[POLYHEDRON HYPERPLANE]);;
```

We find an alternative shorter proof based on learning from the large library.

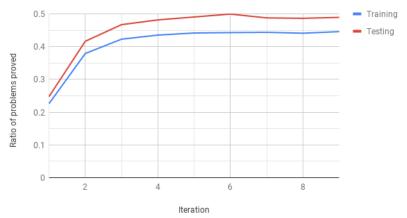
Statistical/Symbolic Guidance by Related Proofs (ProofWatch)

- Nontrivial proof of De Morgan laws for Boolean lattices
- Guided by continuous matching against 32 related proofs
- Most helped by a proof of a related statement for lower-bounded Heyting algebras

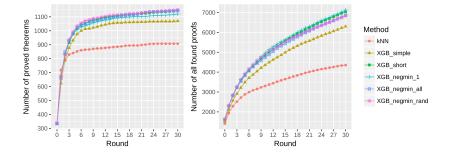
```
theorem :: WAYBEL_1:85
for H being non empty lower-bounded RelStr st H is Heyting holds
for a, b being Element of H holds
    'not' (a "/\" b) >= ('not' a) "\/" ('not' b)
```

Reinforcement Learning of a Tableaux Prover

Reinforcement learning of a tableaux prover on 32k problems



Feedback Loop Generating Alternative Proofs



Informal2formal: Statistical/Semantic Parsing of Math

Strong-semantics probabilistic parser for HOL Light

Input the formula to parse. Separate symbols with spaces:

debug: cache \rightarrow decode \rightarrow 18 bigram&trigram features \rightarrow	1024 nearest neighbours \rightarrow 16 n	yk parses \rightarrow 12 distinct	terms	
Conjecture as HOL Light term:	Type info:	e info: Automatically Provable?		Time
sin (&0) = cos pi / &2		disprove	d	(6.74s)
sin (&0) = cos (pi / &2)		yes	REWRITE_TAC [SIN_0; COS_P12]	(0.87s)
csin (Cx (&0)) = Cx (cos (pi / &2))		yes	REWRITE_TAC [CSIN_0; COS_PI2]	(0.74s)
$csin \left(Cx \left(\&0\right) \right) = ccos \left(Cx \left(pi \; / \; \&2\right) \right)$		yes	MESON_TAC [NUMERAL; CX_COS; CSIN_0; COS_PI2]	(0.76s)
Cx (sin (&0)) = ccos (Cx (pi / &2))		yes	MESON_TAC [SIN_0; NUMERAL; CX_COS; COS_P12]	(0.70s)
Cx (sin (&0)) = Cx (cos (pi / &2))		yes	REWRITE_TAC [SIN_0; COS_P12]	(0.80s)

exp(ii * x) = ii * (sin x) + (cos x)

Conjecture as HOL Light term: cexp (ii * A0) = ii * (csin A0 + ccos A0)	Type info: A0:real^2	Automatically Provable? no advice
cexp (ii * A0) = ii * $csin A0 + ccos A0$	A0:real^2	REWRITE_TAC yes [<u>COMPLEX ADD SYM</u> ; <u>CEXP EULER</u>]
cexp (ii * Cx A0) = ii * Cx (sin A0 + cos A0)	A0:real	disproved
cexp (ii * Cx A0) = ii * (csin (Cx A0) + ccos (Cx A0))	A0:real	no advice
cexp (ii * Cx A0) = ii * csin (Cx A0) + ccos (Cx A0)	A0:real	REWRITE_TAC yes [<u>COMPLEX ADD SYM;</u> <u>CEXP EULER</u>]

JOSEF URBAN (CTU, PRAGUE) AI4REASON

Neural Informal2formal: Performance after Training

Rendered LAT _E X	Suppose s_8 is convergent and s_7 is convergent . Then $\lim(s_8+s_7)=\lim s_8+\lim s_7$
Input LATEX	<pre>Suppose \$ { s _ { 8 } } \$ is convergent and \$ { s _ { 7 } } \$ is convergent . Then \$ \mathop { \rm lim } ({ s _ { 8 } } { + } { s _ { 7 } }) \mathrel { = } \mathop { \rm lim } { s _ { 8 } } + } \mathop { \rm lim } { s _ { 7 } } \$.</pre>
Correct	<pre>seq1 is convergent & seq2 is convergent implies lim (seq1 + seq2) = (lim seq1) + (lim seq2) ;</pre>
Snapshot-	x in dom f implies (x * y) * (f (x (y (y y)
1000))) = $(x (y (y (y y))));$
Snapshot- 2000	seq is summable implies seq is summable ;
Snapshot- 3000	seq is convergent & lim seq = 0c implies seq = seq ;
Snapshot-	seq is convergent & lim seq = lim seq implies seq1 + seq2
4000	is convergent ;
Snapshot-	seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
5000	<pre>seq1 = lim_inf seq2 ;</pre>
Snapshot-	seq is convergent & lim seq = lim seq implies seq1 + seq2
6000	is convergent ;
Snapshot-	seq is convergent & seq9 is convergent implies
7000	lim (seq + seq9) = (lim seq) + (lim seq9) ;
Snapshot-	seq1 is convergent & seq2 is convergent implies
12000	lim (seq1 + seq2) = (lim seq1) + (lim seq2);

Team and Collaborations

- Chad Brown, Jan Jakubův, Martin Suda, Thibault Gauthier, Bartosz Piotrowski, Zarathustra Goertzel, Shawn Wang
- External scientific advisors
 - Prof. Stephan Schulz (Autom. reasoning, DHBW Stuttgart)
 - Prof. Robert Veroff (Autom. reasoning, U. of New Mexico)
 - Prof. Tom Heskes (AI, Radboud U. Nijmegen)
- Further Collaborations
 - Dr. Cezary Kaliszyk, U. of Innsbruck (ERC in 2016)
 - Dr. Jasmin Blanchette, VU Amsterdam (ERC in 2016)
 - Prof. Larry Paulson, U. of Cambridge (ERC in 2017)
 - Prof. Geoff Sutcliffe, U. of Miami
 - Dr. Christian Szegedy, Google Research
 - Prof. Herman Geuvers, Radboud U. Nijmegen
- over 20 research visits so far
- large related national grant awarded to JU in 2017

Future Potential - Science

- Use strong Al/reasoning and formal verification for:
- Science
 - Routinely verify complex math, software, hardware?
 - Make all of math/science computer-understandable?
 - Strong AI assistants for math/science?
- Examples
 - Automatically understand/verify/explain all arXiv papers?
 - Can we train a superhuman system like AlphaGo/Zero for math/physics? What will it take?
 - Can we prove that the Amazon Cloud cannot be hacked?
 - The same for critical government/private IT systems?

Future Potential - Society

- Use strong Al/reasoning and formal verification for:
- Society
 - · Leibniz's dream: Let us Calculate! (solve any dispute)
 - J. McCarthy: Mathem. Objectivity and the Power of Initiative
 - Al/reasoning assistants for law/regulations
 - Verification of financial, transport/traffic systems, ...
 - Explainable and very securely verified systems
- Examples
 - · Prove that two Paris metro trains will never crash?
 - Prove that a trading system doesn't violate regulations?
 - · Prove that a new law is inconsistent with an old one?
 - Automatically debunk fallacies in political campaigns?

Possible Pitfalls and Avoiding Them

Keep informed, don't fall for the hype

- Al is much more than just (deep) learning/neural nets
- E.g., SAT/SMT/model-checking may be one of the biggest recent AI successes Amazon, Facebook, Microsoft, etc.
- Don't expect miracles/singularity due to the current hype
- We can train image recognition & language models, but ...
- .. don't know what it takes to solve hard science problems
- However, some breakthroughs can happen quickly
- Researchers/society/lawmakers need to talk more/faster
- Al infrastructure for EU (CLAIRE) could serve this purpose

Possible Pitfalls and Avoiding Them

Don't let US, China, ...

- ... take away the best EU science minds
- In reasoning and formal methods EU is the leader!
- Make a deal with big AI companies to seriously support open university-based research
- Example: PRAIRIE institute in Paris,
- ... CLAIRE centers modelled after that?
- Infrastructure like CLAIRE very needed in countries like CR
- Larger brain-drain and local incompetence aggravating it
- Use such infrastructure to impose EU values on AI

Links and Impacts on Other AI Areas

- Main areas: Machine Learning, Automated Reasoning
- Needs advances in Representation Learning
- Al needs intuition, but also reasoning and explanations
- Impact on Formal Verification (SW, HW, etc.)
- Potentially on any (hard) science/thinking/arguing
- Alan Turing, 1950, AI:

"We may hope that machines will eventually compete with men in all purely intellectual fields."

Outlook - Bets from 2014

- In 20 years, 80% of Flyspeck and Mizar toplevel theorems will be provable automatically (about 40% in 2014)
- The same in 30 years I'll give you 2:1, In 10 years: 60% (getting there)
- In 25 years, 50% of the toplevel statements in LaTEX-written Msc-level math curriculum textbooks will be parsed automatically and with correct formal semantics

Outlook – Scientific Revolution

- (from a talk about Kepler and Hales)
- What did Kepler, Galileo & Co start to do in 1600s?
- What are we trying to do today?
- Kepler's Conjecture in Strena in 1611 (with many others)
- Kepler's laws, Newton, ..., age of science, math, machines
- ..., Hilbert, ..., Turing, ... age of computing machines?
- 1998 machine helps to find a proof of Kepler's Conjecture
- 2014 machine verifies a proof of Kepler's Conjecture
- ... 2050? machine finds a proof of Kepler's Conjecture?
- (no betting ;-)

Thanks and Advertisements

- Thanks for your attention!
- More examples of our systems at http://ai4reason.org/demos.html
- AITP Artificial Intelligence and Theorem Proving
- April 7–12, 2019, Obergurgl, Austria, aitp-conference.org
- ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
- Discussion-oriented and experimental
- Grown to 60 people in 2018
- 2019: Hales, Goertzel, Gonthier, Marques Silva, Mikolov, Szegedy, Sutskever (?), ...